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Abstract 

We present wearable dry electrodes made of silver nanowires for electrophysiological sensing 

such as electrocardiography and electromyography. The dry electrodes perform as well as the 

Ag/AgCl wet electrodes when the subject is resting and show less motion artifacts, but 

without the electrolytic gel. The nanowire electrodes show no signs of skin irritation, which is 

desirable for long-term health monitoring.  
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Wearable sensors for health, wellness, and activity monitoring that track physiological 

data and sync with smart recording devices are becoming increasingly popular.
[1-4]

 In 

particular, long-term monitoring of electrophysiological (or bioelectronic) signals such as 

electrocardiograms (ECGs), electromyograms (EMGs), and electroencephalograms (EEGs) 

gives a wealth of physiological information that can be used to both monitor the body and 

diagnose and treat various ailments.
[5-6]

 However, conventional electrodes used to record these 

electrophysiological signals, while giving high-quality signals and suitable for short-term or 

clinical use, cannot be used in a long-term, wearable setting due to the addition of an 

electrolytic gel layer between the skin and electrode used to enhance the clarity of 

biopotential recordings; the gel eventually dries which irritates the skin and causes signal 

degradation.
[7-8,10]

   

Dry electrodes are a viable alternative due to the elimination of the electrolytic gel layer. 

However, solid metal dry electrodes are uncomfortable to wear, have high skin-electrode 

impedance, and have large motion artifacts that result from the electrode slipping on the skin 

and from hairs between the skin and electrode.
[8,10]

  

The aforementioned problems with dry electrodes can be mitigated or eliminated if the 

electrode has intimate, conformal contact with the skin. Recent advances in flexible and 

stretchable electronics
[3-6]

 have paved the way for dry electrodes. By creating a flexible/ 

stretchable dry electrode, the issue of maintaining intimate skin contact is mitigated while also 

allowing for comfortable wear that does not impede the day-to-day activities of the user. A 

number of flexible/stretchable dry electrodes have been reported.
[9-22]

 Invasive electrodes, 

using microneedles,
[12]

  have good signal quality, but cannot be used long-term due to patient 

discomfort and high motion artifact. Among the variety of noninvasive (or surface) electrodes, 

some have costly fabrication methods
[14-15,17-19]

 and/or run the risk of the conductive metal 

(e.g., Au) delaminating from the flexible substrate, while others show large motion artifacts 

that can be attributed to the lack of conformal contact with skin.
[13-14]

 Conductive textile 
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electrodes
[10,22]

 have been demonstrated, but the electrophysiological signals acquired have 

poor signal-to-noise ratios due to the electrodes sliding on the skin. Additionally, the 

biocompatibility of multiple dry surface electrodes has not been evaluated.
[15,20-22]

  

In this paper, we present a silver nanowire (AgNW) based dry electrode that is 

noninvasive and wearable for electrophysiological sensing. The AgNWs are inlaid below the 

surface of an elastomeric substrate made of polydimethylsiloxane (PDMS), which prevents 

the NWs from delamination while creating a highly conductive surface (with constant 

conductivity >5,000 S/cm).
[23]

 The electrode is flexible and stretchable, which can conform to 

the curvilinear surfaces of the body thus reducing skin-electrode impedance and eliminating 

most motion artifacts. The AgNW dry electrodes perform as well as, and in some cases better 

than, the conventionally used Ag/AgCl wet electrodes in ECG and EMG measurements. 

Silver is widely used in biomedical applications due to its antibacterial properties, and 

reported studies on silver nanoparticles and NWs have shown that the antibacterial properties 

of bulk silver could translate to the nanoscale.
[24-26]

  

The AgNW electrodes were fabricated following the method reported previously
[23, 27-29]

 

with modifications. AgNWs with average diameter of 90 nm and length of 10 – 60 µm, 

synthesized by the polyol method,
[30-31]

 were purchased from Blue Nano. After liquid PDMS 

was poured over the AgNW network, a metal snap that is compatible with current ECG/EMG 

equipment was pressed into the AgNW/ PDMS mixture. After curing, the AgNW network 

was inlaid in PDMS and the snap is securely connected to the AgNW/PDMS network. The 

fabrication process is shown in Figure 1a along with a finished electrode, Figure 1b. Velcro 

straps (or tapes) were used to attach the electrodes to the wrist for ECG measurements, as 

shown in Figure 1c, or to the forearm for EMG measurements. 

The topmost layer of skin, the stratum corneum, is considered a dielectric material with 

the most prominent effect on electrode-skin impedance; the drier the stratum corneum, the 

higher the impedance.
[11,32-33]

 While the conventional Ag/AgCl electrodes use electrolytic gel 
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to moisten the skin and improve electrode-skin contact, dry electrodes eliminate the use of 

this gel. Therefore, dry electrodes need a low electrode-skin impedance to attain 

electrophysiological signals of comparable quality to the Ag/AgCl electrodes.
[11,32]

 The 

electrode-skin impedance was measured by performing a frequency sweep from 40 Hz – 100 

kHz over two skin-mounted electrodes (one electrode on the left wrist and one on the right) 

using an impedance analyzer (4294A Precision Impedance Analyzer, Agilent). The 

application pressure of the electrode has a significant effect on the quality of electrode-skin 

contact.
[7,11] 

The electrode-skin impedance was recorded at various application pressure levels 

(light, medium, and heavy) to determine the proper electrode application pressure. 

In addition to applying the electrolytic gel to the skin, two more steps are typically taken 

to treat the stratum corneum before taking an ECG with the Ag/AgCl wet electrodes to 

increase signal quality and improve electrode-skin contact – abrading the skin to remove dead 

skin cells and cleaning the electrode application area.
[7]

 However, no skin preparation was 

performed before the AgNW/PDMS electrodes were applied for ECG testing. Three sets of 

ECG data were gathered with increasing intensity of movement to study the effects of motion 

artifact on the electrodes. The first set of data was taken the subject was seated and resting (no 

movement). The second set while the subject was standing and swinging their arms (one 

degree of movement). And the last test was performed while the subject was jogging (two 

degrees of movement).   

Unlike the ECG measurements, the statum corneum was only cleaned with 70% Isopropyl 

Alcohol before applying the wet or dry electrodes for the surface EMG measurement. The 

electrodes were placed on the right extensor digitorum communis. Two tests were performed 

where EMG signals were acquired: a settling trial and a wrist-extension trial. For the settling 

test, the subject was seated and relaxed. The right arm was placed on a flat table with a 

neutral/relaxed wrist position while the left arm was relaxed by the subject’s side. EMG data 

was recorded with any muscle contractions. For the wrist-extension trial, the posture was kept 
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the same as in the settling test. The subject performed ten wrist-extension contractions with 

consistent effort and approximately a 60-degree wrist extension. Each contraction lasted 3 

seconds with a 10 second rest interval between each contraction. Frequency analysis was 

performed on the acquired EMG signals, with DC offset removed, to interpret and compare 

the signals gathered from each type of electrode.  

Figure 2 shows how the electrode-skin impedance changes with the application pressure. 

As expected, the impedance decreases with increasing pressure. This trend is attributed to the 

increased electrode-skin contact area with increased pressure. The medium level of pressure 

(0.27 psi) is most similar to the pressure applied by a wristwatch. It was also noted that 

increase in pressure beyond the medium level did not have a correspondingly strong effect on 

the reduction of skin-electrode impedance. Therefore, the medium pressure (0.27 psi) was 

used as the application pressure in our electrophysiological measurements. 

The ECGs taken with the AgNW electrode and with the Ag/AgCl electrode while the 

subject was resting are shown in Figure 3a. For comparison, the ECG signals are included on 

the same figure although they were recorded separately. No significant differences were noted 

between the two, zero-degree-of-movement ECG signals. Each wave of the ECG signal (P, 

QRS complex, and T) are clearly defined and the absence of a wandering baseline shows that 

the dry electrode is well attached to the skin, as shown in Figure 3b. No filtering in addition 

to the predetermined settings on the ECG amplifier was used in plotting the ECG signals, so 

while the signal acquired with the AgNW electrode is slightly noisier, the noise can be 

reduced via post-process filtering. 

The effect of motion artifact on signal quality was investigated by taking ECG 

measurements with increasing degrees of movement. The first test, shown in Figure 3c, 

consisted of localized movement near the sensing area, or one degree of movement: swinging 

the arms. The second test, shown in Figure 3d, added a second degree of movement, jogging 

while letting the arms swing naturally. As before, the signals acquired with the AgNW 
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electrode were measured separately from the Ag/AgCl electrode. In both tests, the AgNW 

electrode outperformed the Ag/AgCl electrode in terms of signal quality. This is attributed to 

the conformal contact of the AgNW electrode with the skin whereas the wet electrode can 

slide on the skin due to the gel layer. In the first test (Figure 3c), the ECG waveform is 

clearly visible for both the wet and dry electrode; although the wet electrode signal has 

wandering baseline indicating that there is some minor slipping of the electrode on the skin. 

Additionally, the wet electrode shows slightly more noise in the signal than the dry electrode, 

making it difficult to distinguish minor nuances in the recording acquired with the wet 

electrode. This would pose a challenge in using the ECG signal for diagnostic purposes where 

clear signals are of the utmost importance. Both signals show significant degradation with the 

addition of a second degree of movement. For the Ag/AgCl electrode, the only discernible 

ECG waveform is the R peak, which could be used to determine heart rate but does not show 

the complete ECG spectrum. Therefore, it is unusuable in applications that require a more 

detailed view of the heart’s performance during activity. For the AgNW electrode, the P wave, 

QRS complex, and T wave are still visible although the waveform has a significant amount of 

noise and wandering baseline.  

The AgNW electrodes were able to be worn for 3 hours at a time and repeatedly for a 

week during a test with no noticable discomfort or skin irritation. Degradation of AgNW 

electrodes over time due to oxidation could potentially compromise the device 

performance.
[34, 35]

 Compared to unprotected AgNW electrodes (i.e., AgNWs on top), fully 

embedded AgNW electrodes in PDMS were found to keep the same resistance for a much 

longer period of time.
[35] 

In our case, the AgNW electrodes were re-used over the course of 4 

months with no signal degradation.   

Figure 4a shows the location of the electrodes used in the EMG measurements. Figure 4b 

shows the EMG data gathered from the Ag/AgCl electrode and from the AgNW electrode 

during the wrist-extension trials, respectively. Visual inspection of the EMG recordings shows 
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almost no difference between the two electrodes other than the slight amplitude increase in 

the AgNW recording. The EMG signal, where the subject flexed for 3 s and relaxed for 10 s, 

from the right extensor digitorum communis is clear in each electrode data set. While the 

EMG signal amplitude is higher when acquired with the AgNW electrode, the signal-to-noise 

ratio (SNR) of the wet Ag/AgCl electrode, 27.3 dB, is higher than that of the dry AgNW 

electrode, 24.7 dB. These results show that the wet and dry electrodes are comparable and that 

the dry AgNW electrode can be used to measure high-quality EMG recordings. The power 

spectral density of the each signal, shown in Figure 4c, displays comparable spectra with the 

dominant frequency components of each signal residing between 25 and 180 Hz. The AgNW 

electrodes have mean frequency (MNF) and median frequency (MDF) values of 115.2 Hz and 

135.6 Hz, respectively, while Ag/AgCl electrodes have 119.1 Hz and 139.0 Hz, respectively. 

The AgNW frequency values are only slightly lower than the Ag/AgCl values, again showing 

nearly identical electrode performance. In particular, the AgNW electrodes show promise for 

use in prosthetic applications as they acquire high-quality EMG signals without 

compromising the comfort of the wearer due to drying of the electrolytic gel or Ag/AgCl plate 

pressing into the skin. The AgNW electrodes can also be integrated into gel liners used in 

artificial limb applications. 

Compared to most other dry electrodes,
[10, 13-14, 22]

 both the EMG and ECG signals 

acquired with the AgNW dry electrodes show much better quality. In addition, the AgNW 

electrodes generate a larger signal magnitude than the Ag/AgCl wet electrodes. Such an 

increase in signal magnitude can be attributed to the intimate contact between the NW 

electrode and the skin. The intimate contact of our AgNW electrodes is key to eliminating 

motion artifacts and enhancing the electrophysiological sensing capability.  

In summary, wearable AgNW dry electrodes were fabricated and used to measure ECG 

and EMG signals with excellent performances. The electrodes are flexible and stretchable, 

which allows for high-quality electrophysiological measurement due to their intimate, 
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conformal contact with the skin. When the subject was resting, ECG signals measured by the 

AgNW dry electrode are comparable to those by the conventional Ag/AgCl wet electrode. 

With increasing degrees of movement, AgNW electrodes showed less motion artifacts than 

the Ag/AgCl electrodes. The AgNW electrodes recorded strong, clear EMG signals with 

similar signal-to-noise ratio compared to the Ag/AgCl electrodes. The AgNW electrodes 

showed no signs of skin irritation or signal degradation after long-term wearing. In addition, 

the fabrication process of the AgNW electrodes is simple and cost-effective. AgNWs have 

been used for many stretchable and wearable device applications
[36]

. The present study 

demonstrates that the AgNW dry electrodes can be an alternative to the wet electrodes in 

electrophysiological sensing, particularly for the long-term health monitoring.  

 

Experimental 

ECG Measurements: ECG signals were measured using an ECG amplifier (ADInstruments 

Powerlab with ECG attachments). All ECG signals were acquired with the electrodes in the 

lead 1 position (negative electrode placed on the right arm, positive electrode placed on the 

left arm, and ground electrode placed on the right leg). Pre-gelled Ag/AgCl electrodes (Red 

Dot
TM

, 3M, St. Paul, MN) were used as the commercial electrodes in ECG measurements. 

Surface EMG Measurements: For EMG measurement, the measurement electrodes were 

placed in a bipolar configuration with the electrodes 22 mm apart (center-to-center), parallel 

to the muscle fiber direction. The ground electrode was placed on the elbow. EMG signals 

were sampled at 1000Hz using a 16-channel EMG system (MA300, Motion Lab System, LA) 

containing a preamplifier that filtered the signals between 10 and 2000Hz with an adjustable 

pass-band gain of 1000. Pre-gelled Ag/AgCl electrodes (Norotrode 20, Myotronics, Kent, 

WA) were used as the commercial electrodes in EMG measurements. 

Frequency Analysis of EMG Signals: For both wet and dry electrodes, the SNR is defined as 
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  SNR�� = 10 log�
(�������
������

)� = 20 log�
(�������
������

),   (1)  

where Anoise was estimated from the data gathered in the settling trials and Asignal from the 

muscle contration data in the wrist-extension test. Note that A is the root mean square (RMS) 

of the signal.   

Both MNF and MDF were used to compare the two types of EMG electrodes.
[29]

 MNF is 

the sum of the product of the EMG power spectrum (P) and frequency ( f) divided by the sum 

of the power spectrum 

   ��� = ∑ � ! " #� ∑ ! " #�
$ ,     (2) 

where the subscript i denotes the variable value at the ith frequency bin and M denotes the 

total number of frequency bins. MDF  is the power spectral density of the EMG signal divided 

into two segments with equivalent cumulated power 

    ∑ ! "%& #� = ∑ ! " #"%& = �
� ∑ ! " #�  ,    (3) 

The power spectral density (PSD) for each muscle contraction recorded in the EMG trials was 

approximated from the signals without DC offset using Welch’s averaged modified 

periodogram. The PSD values across the ten contractions were normalized between 0 and 1 

according to the maximum and minimum power recorded then averaged over the 10 

contractions. The MNF and MDF were then calculated using the normalized PSD values. The 

study protocol was approved by the Institutional Review Board at the University of North 

Carolina, Chapel Hill. 
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Figure 1. (a) Schematic of the fabrication process of the AgNW dry electrodes. (b) AgNW dry 

electrode with a metal snap. (c) AgNW dry electrode with Velcro strap for ECG measurements. 

 

 

 

 

Figure 2. Electrode-skin impedance with increasing application pressure. 
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Figure 3. (a) ECG recording of Ag/AgCl wet electrode and AgNW dry electrode taken while subject 

was seated and resting. (b) ECG signal comparison of the P, Q, R, S, and T waves between the 

Ag/AgCl electrode and NW electrode. (c) ECG signal comparison of the subject swinging their arms, 

one degree of movement. (d) ECG signal comparison of the subject jogging, two degrees of 

movement.  
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Figure 4. (a) AgNW electrodes on the forearm for EMG sensing (with black caps) and the 

ground/reference electrode (with green cap). (b) EMG signals from the Ag/AgCl wet electrode and 

AgNW dry electrode. (c) Normalized power spectral density of each electrode from the wrist 

extension trials. 
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