RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

A General Route for Synthesis of *N*-Aryl Phenoxazines via Copper(I)-Catalyzed *N*-, *N*-, and *O*-Arylations of 2-Aminophenols

Nan Liu,^a Bo Wang,^a Wenwen Chen,^a Chulong Liu,^a Xinyan Wang,^{*a} and Yuefei Hu^{*a}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A novel copper(I)-catalyzed tandem reaction of *N*- and *O*-arylations of 2-[*N*-(2-chlorophenyl)amino]phenols was developed, by which a series of structurally novel *N*-aryl phenoxazines were synthesized efficiently. This success owes much to the discovery of highly efficient homogeneous copper(I)-catalyzed intramolecular *O*-arylation of chlorobenzenes under ligand-free-like conditions. Since 2-[*N*-(2-chloro-

¹⁰ phenyl)amino]phenols were prepared also by copper(I)-catalyzed *N*-arylation of 2-aminophenols, thus a general route for efficient synthesis of *N*-aryl phenoxazines was established via copper(I)-catalyzed *N*-, *N*-, and *O*-arylations of 2-aminophenols in two steps.

Introduction

25

- The structural unit of phenoxazine (1) has been well recognized as an electron-donor in numerous organic compounds used in the developments of dye-sensitized solar cells, laser dyes, fluorescent stains and OLEDs. When its *N*-atom bears an electron-accepting group, a donor-acceptor structure is formed to serve as a dipolar push–pull fluorophore or chromophore. Usually, the aryl groups
- ²⁰ are employed for such purpose and therefore *N*-aryl phenoxazine
 (2) has been gaining increasing importance.^{1,2} As shown in Figure
 1, an OLED using 2PXZ-OXD as a green emitter was reported recently to exhibit the highest EQE among TADF-based OLEDs to date.^{1a}

Figure 1. Structures of phenoxazine and *N*-aryl phenoxazines.

Investigation showed that the construction of the skeleton of phenoxazine (1) at laboratory-scale remains a challenging task to date.³ Only a few protocols were reported for the synthesis of *N*-³⁰ aryl phenoxazines (2) in literature, such as Pd-,¹ Cu-,^{2,4} or basecatalyzed⁵ *N*-arylations, as well as the photocyclizations of azides.⁶ Despite the rapid development of Cu(I)-catalyzed *N*- and *O*-arylations in the past decade,⁷ none of them dealt specifically with the synthesis of *N*-aryl phenoxazines (2). As a result, ³⁵ although there are three C_(Ar)–N bonds and two C_(Ar)–O bonds in the molecule of 2, only the C_(Ar)–N bond on C10 is usually constructed by Cu(I)-catalyzed *N*-arylation² between phenoxazine (1) and halobenzenes (3). Even worse, the most often used procedure for this *N*-arylation was established as early as in 1957, As shown in Scheme 1, we report herein a novel Cu(I)-45 catalyzed tandem reaction for *N*- and *O*-arylations of 2-[*N*-(2halophenyl)amino]phenols (5), by which a series of the derivatives of **2** were prepared efficiently in one-flask. Since the precursor **5** was prepared also by Cu(I)-catalyzed *N*-arylation of 2-aminophenols (**4**), this work in fact presents a general route for 50 efficient synthesis of **2** by Cu(I)-catalyzed *N*-, *N*-, and *O*arylations of 2-aminophenols (**4**) in two steps.

Scheme 1. A general route for efficient synthesis of 2.

Results and Discussion

⁵⁵ Due to the steric hindrance, Cu(I)-catalyzed *N*-arylation of diarylamine is much more difficult than that of monoarylamine. Thus, the synthesis of triarylamines usually required refluxing the mixture of the reactants, catalyst and/or ligand in high boiling solvent (toluene, NMP or DMF) in the presence of a strong base
⁶⁰ (KO'Bu, NaO'Bu or LiNH₂).⁸ However, when 2-aminophenols (4) were used as the substrates, their *N*-arylations could proceed with weak bases under ligand-free conditions.⁹ As shown in Scheme 2,

⁴⁰ in which the toxic nitrobenzene was used as a solvent for producing high temperature.⁴ Thus, it is necessary to develop a mild method for an efficient preparation of **2** to easily achieve the molecular diversity.

This journal is © The Royal Society of Chemistry [year]

by using different ratios of 2-aminophenol (4a) and iodobenzene (3a), the desired diarylamine 7 or triarylamine 8 was synthesized in high yields. It has been confirmed that the compounds 4a and 7 not only were reactants, intermediates, or products, but also s served as ligands. Therefore, the ligand-free conditions for these *N*-arylations can be considered as ligand-free-like conditions. So far, only the derivatives of 8 bearing two identical aryl groups were prepared by this method.

10 Scheme 2. Ligand-free-like N-arylations of 4a.

When we repeated the procedure for the synthesis of **8** starting from **4a**, we found that the yield of the intermediate **7** remained in less than 3% during the entire process. It was clearly revealed that the conversion of **4a** into **7** was the rate-determining step and ¹⁵ the conversion of **7** into **8** was a fast process. As shown in Scheme 3, this hypothesis was proved by using the pre-made **7** as a substrate to give **8** in 88% yield within 4 h.

Scheme 3. A fast conversion of 7 into 8.

- ²⁰ This result also strongly indicated that the unsymmetric triphenylamine 2-[*N*-(2-halophenyl)-*N*-phenylamino]phenol (6) may be synthesized easily via Cu(I)-catalyzed *N*-arylation between iodobenzene (3a) and 2-[*N*-(2-halophenyl)amino]phenol (5). Thus, we may expect that *N*-phenyl phenoxazine (2a) is
- ²⁵ synthesized via Cu(I)-catalyzed intramolecular *O*-arylation of **6**. To our surprise, a novel tandem reaction for *N* and *O*-arylations of **5** occurred to yield **2a** directly instead of the excepted **6** when the mixture of **3a** and **5** was treated with CuI (Scheme 4). As shown in Figure 2, the structure of **2a** was confirmed by single ³⁰ crystal X-ray diffraction analysis.

Scheme 4. The tandem reaction for N- and O-arylations of 5.

2 | Journal Name, [year], [vol], 00–00

Figure 2. The structure of 2a.

To further understand the results in Scheme 4, the pre-made compounds **6a** and **6b** were tested as starting materials. As shown in Scheme 5, both of them carried out Cu(I)-catalyzed *O*-arylations smoothly to give **2a** in 95% yields. Thus, two conclusions were drawn: first, the compound **6** was the ⁴⁰ intermediate for the tandem reaction; secondly, the problem that **5a** gave the lower yield of **2a** in the tandem reaction occurred in the conversion of **5a** into **6a**, in which the highly reactive bromide group may carry out an undesired *N*-arylation between **5a** and **3a**.

Scheme 5. Cu(I)-catalyzed intramolecular O-arylations of 6a and 6b.

It was well known that Cu(I)-catalyzed *O*-arylation of chlorobenzenes was the most difficult task compared with that of ⁵⁰ bromo- and iodobenzenes. Only a few successful procedures were reported in literature, such as by using heterogeneous nanocatalysts^{10a-c} or large amounts of ligands (0.2-0.8 equiv).^{10d-e} To the best of our knowledge, the conversion of **6b** into **2a** is the first example of highly efficient homogeneous Cu(I)-catalyzed *O*-⁵⁵ arylation of chlorobenzene under the ligand-free-like conditions. This work is so important because the *O*-arylation by using chloroaromatics as arylating reagents to replace bromo- or iodoaromatics in the synthesis of aryl ethers has been identified to be one of "dream reactions" by the ACS-GCI Pharmaceutical ⁶⁰ Roundtable in 2005.¹¹

Therefore, we were encouraged to study the *O*-arylation of chlorobenzene further. As shown in Scheme 6, no intermolecular *O*-arylation product **9** was obtained at all from the substrate **8** and ⁶⁵ chlorobenzene under ligand-free-like conditions. Very low yields of **9** were obtained with the ligands **L1-L5** (the most efficient ligands reported in literature).^{10d-e,12} In a recent reference, the synthesis of xanthones by using Cu(I)-catalyzed intramolecular *O*-arylation of chlorobenzenes was reported to fail,¹³ even though ⁷⁰ the corresponding bromo- and iodobenzenes worked well. Therefore, we strongly believed that the highly efficient formation of **2a** from **6b** may depend on the structural nature of **6b** rather than the differences between the intermolecular and intramolecular *O*-arylations.

Scheme 6. Cu(I)-catalyzed intermolecular O-arylations of 8 and PhCl.

As shown in Scheme 7, when **5b** was treated with CuI in the absence of PhI (**3a**), it was recovered in 93% yield without any ⁵ intramolecular *O*-arylated product phenoxazine (**1**). Thus, we hypothesized that the Cu(I)-catalyzed *O*-arylations of **5b**, **6b** and **8** may be mainly controlled by the electronic effect rather than by the steric effect. Those phenomena may arise from the fact that **5b**, **6b** and **8** are also redox-active ligands, which may have ¹⁰ different abilities to store and release electrons during the

catalytic reactions,¹⁴ but how remains unknown.

Scheme 7. Cu(I)-catalyzed intramolecular O-arylations of 5b.

Next, the reaction solvents and copper-resources were screened 15 by using the conversion of **5b** into **2a** as a model reaction. As shown in Table 1, the best result was still obtained when the amounts of PhI (**3a**) and CuI were reduced as low as 1.1 equiv

PhI (3a, 1.1 eq.), [Cu]

Table 1. Effects of the copper resources on the cycloaddition^a

Cs ₂ CO ₃ (3 eq.), solvent, 115 °C, 12 h					
50 <u>−−−−</u> 2a					
Entry	[Cu]-resource (eq.)	Solvent	2a $(\%)^b$		
1	CuI (0.2)	n-PrCN	96		
2	CuI (0.1)	n-PrCN	96		
3	CuI (0.05)	<i>n</i> -PrCN	96		
4	CuI (0.04)	n-PrCN	90		
5	CuI (0.00)	n-PrCN	6		
6	CuI (0.05)	DMF	86		
7	CuI (0.05)	PhMe	83		
8	CuI (0.05)	1,4-dioxane	52		
9	CuI (0.05)	$(CH_2OH)_2$	49		
10	CuI (0.05)	$(CH_2Cl)_2$	20		
11	CuI (0.05)	MeCN	12		
12	CuI (0.05)	THF	10		
13	CuI (0.05)	MeOH	trace		
14	CuCl (0.05)	n-PrCN	95		
15	CuCN (0.05)	n-PrCN	92		
16	Cu(OAc) ₂ .H ₂ O (0.05)	n-PrCN	82		
17	Cu ₂ O (0.05)	n-PrCN	75		
18	CuBr (0.05)	<i>n</i> -PrCN	73		
19	Cu(CO ₂) ₂ .4H ₂ O (0.05)	n-PrCN	63		
20	CuF ₂ .H ₂ O (0.05)	n-PrCN	31		

 $_{20}$ "The mixture of **5b** (1 mmol), **3a**, [Cu] and Cs₂CO₃ in solvent (2 mL) in a Schlenk tube was heated under N₂. ^bIsolated yields were obtained.

and 0.05 equiv, respectively, in *n*-butylnitrile (entry 3). But, all other solvents gave relatively lower yields of **2a** (entries 6-13). ²⁵ Although CuI, CuCl, and CuCN (entries 3, 14 and 15) gave

comparable yields of 2a, we preferred to choose CuI for its chemical stability and easy performance.

Then, the effects of reaction time and bases were tested. As shown in Table 2, the yield of **2a** was increased by increasing the ³⁰ reaction time (entries 1-3). Both Cs_2CO_3 (entry 1) and K_3PO_4 (entry 4) were suitable bases for this reaction, but all others were inactive (entries 5-8). Finally, the entry 3 was assigned as our standard conditions.

 Table 2. Effects of reaction time and bases^a

PhI (**3a**, 1.1 eq.), CuI (0.05 eq.) Base (3 eq.)*, n-*PrCN, 115 ^oC, time

	Babb (0 04.), // 1 1011, 110	0, 1110	~
50	0-98%		2a

Entry	Time (h)	Base	2a (%) ^b
1	6	Cs_2CO_3	67
2	12	Cs_2CO_3	96
3	24	Cs_2CO_3	98
4	12	K_3PO_4	94
5	12	K_2CO_3	45
6	12	Na_2CO_3	0
7	12	NEt ₃	0
8	12	pyridine	0

^aThe mixture of **5b** (1 mmol), **3a**, CuI and a base in *n*-PrCN (2 mL) in a Schlenk tube was heated under N_2 . ^bIsolated yields were obtained.

To generalize this novel method, the substrate scope was tested ⁴⁰ As shown in Scheme 8, all desired products **2a-2x** were obtained in good to excellent yields and some of them (**2a**, **2d**, **2e**, and **2i**) were obtained in almost quantitative yields. However, the iodobenzenes substituted by -Br, -NO₂ and -CN could not give the satisfactory yields of products (**2j-2l** and **2q-2r**) under the

- ⁴⁵ standard conditions. It may be caused by the fact that 4-bromoiodobenzene has two reaction sites and both of them could carry out the Cu(I)-catalyzed *N*-arylations. The -NO₂ or -CN substituted iodobenzenes may have high reactivity to carry out both Cu(I)-catalyzed *N*- and *O*-arylations simultaneously with the
- ⁵⁰ substrates. But, these problems could be solved easily by heating the reaction mixture at 65 °C for the first 6 h to finish the *N*arylation and then at 115 °C for another 18 h to finish the *O*arylation. Unfortunately, dissatisfactory yields of **2a** (34%), **2d** (23%), and **2q** (70%) were obtained when bromobenzene, 2-55 bromo-toluene, and 2-bromo-nitrobenzene were used as the *N*arylating reagents.

Conclusions

A novel Cu(I)-catalyzed tandem reaction for *N*- and *O*-arylations of 2-[*N*-(2-chlorophenyl)amino]phenols was developed, by which a series of *N*-phenyl phenoxazines were prepared efficiently in "one-pot". This work not only provides a general route for efficient synthesis of *N*-phenyl phenoxazines from the commercially available 2-aminophenols in two steps, but also os presents an interesting example to construct the complicated molecules entirely by Cu(I)-catalyzed arylations from the simple starting materials. 35

 a Isolated yields were obtained for all products. b The reaction proceeded at 65 $^{\rm o}{\rm C}$ for 6 h firstly and then at 115 $^{\rm o}{\rm C}$ for another 18 h. c 0.1 Equiv of Cul was used.

Scheme 8. Substrate Scope of the Tandem Reaction

Experimental

5 General information

All melting points were determined on a Yanaco melting point apparatus and were uncorrected. IR spectra were recorded as KBr pellets on a Nicolet FT-IR 5DX spectrometer. All spectra of ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) were recorded on a

- ¹⁰ JEOL JNM-ECA 300 spectrometer in CDCl₃ (otherwise as indicated). TMS was used as an internal reference and *J* values are given in Hz. HRMS were obtained on a Bruker microTOF-Q II spectrometer. The substituted 2-[*N*-(2-chlorophenyl)amino]-phenols **5b** (R = H), **5c** (R = 4-Me), **5d** (R = 3-Me) and **5e** (R = 4-
- ¹⁵ Cl) were prepared by the reported procedure^{9b} (See Supporting Information).

A Typical Procedure for the Preparation of 10-Phenylphenoxazine (2a).

(2C), 128.4 (2C), 123.2 (2C), 121.2 (2C), 115.4 (2C), 113.2 (2C) ppm.

The similar procedure was used for the preparation of products **2b-2x**.

10-(2-Methylphenyl)-phenoxazine (**2b**). White solid, mp 171– 173 °C; IR ν 1633, 1485, 1334, 1269 cm⁻¹; ¹H NMR (DMSO- d_6) δ 7.56-7.53 (m, 1H), 7.48-7.46 (m, 2H), 7.34-7.31 (m, 1H), 6.75-6.62 (m, 6H), 5.71-5.68 (m, 2H), 2.14 (s, 3H) ppm; ¹³C NMR ⁴⁰ (DMSO- d_6) δ 143.9 (2C), 138.9, 136.8, 133.4, 132.2 (2C), 131.0, 128.9 (2C), 128.6 (2C), 123.4 (2C), 121.1, 115.4, 112.6 (2C), 17.6 ppm; HRMS (ESI-TOF) (m/z): Calcd for C₁₉H₁₅NO, [M]⁺ 273.1148; found 273.1150.

⁴⁵ 10-(3-Methylphenyl)-phenoxazine (2c). White solid, mp 123– 125 °C; IR v 1636, 1485, 1335, 1269 cm⁻¹; ¹H NMR (DMSO-d₆) δ7.58-7.52 (m, 1H), 7.35 (d, J = 7.5, 1H), 7.21-7.17 (m, 2H), 6.74-6.63 (m, 6H), 5.86-5.83 (m, 2H), 2.39 (s, 3H) ppm; ¹³C NMR (DMSO-d₆) δ143.9 (2C), 141.2, 138.8, 134.4 (2C), 131.1,
⁵⁰ 130.7, 129.2, 127.6, 123.1 (2C), 121.1 (2C), 115.3 (2C), 113.2 (2C), 21.3 ppm; HRMS (ESI-TOF) (m/z): Calcd for C₁₉H₁₅NO, [M]⁺ 273.1148; found 273.1145.

10-(4-Methylphenyl)-phenoxazine (2d). White solid, mp 124– ⁵⁵ 126 °C; IR ν 2606, 1644, 1484, 1332, 1266 cm⁻¹; ¹H NMR (DMSO- d_6) δ 7.44 (d, J = 7.9, 2H), 7.24 (d, J = 7.9, 2H), 6.71-6.58 (m, 6H), 5.83-5.80 (m, 2H), 2.39 (s, 3H) ppm; ¹³C NMR (DMSO- d_6) δ 143.1 (2C), 138.3, 135.6, 134.1 (2C), 131.9 (2C), 130.1 (2C), 123.7 (2C), 121.4 (2C), 115.2 (2C), 113.1 (2C), 20.8 ⁶⁰ ppm; HRMS (ESI-TOF) (m/z): Calcd for C₁₉H₁₅NO, [M]⁺ 273.1148; found 273.1148.

10-(4-Methoxyphenyl)-phenoxazine (2*e*). White solid, mp 170– 171 °C; IR ν 3062, 1590, 1486, 1335, 1243 cm⁻¹; ¹H NMR 65 (DMSO-*d*₆) δ7.30 (d, *J* = 8.6, 2H), 7.18 (d, *J* = 8.9, 2H), 6.72-6.61 (m, 6H), 5.86-5.82 (m, 2H), 3.83 (s, 3H) ppm; ¹³C NMR (DMSO-*d*₆) δ159.0, 143.1 (2C), 134.3 (2C), 131.5 (2C), 130.5, 123.7 (2C), 121.2 (2C), 116.5 (2C), 115.2 (2C), 113.1 (2C), 55.4 ppm; HRMS (ESI-TOF) (*m/z*): Calcd for C₁₉H₁₅NO₂, [M]⁺ 70 289.1097; found 289.1093.

10-(2-Hydroxyphenyl)-phenoxazine (2f). White solid, mp 152– 153 °C; IR v 3446, 1590, 1488, 1327, 1272 cm⁻¹; ¹H NMR (DMSO- d_6) δ 9.79 (s, 1H), 7.33-7.27 (m, 1H), 7.18 (d, J = 7.9, 75 1H), 7.06 (d, J = 8.3, 1H), 6.99-6.93 (m, 1H), 6.68-6.54 (m, 6H), 5.79-5.74 (m, 2H) ppm; ¹³C NMR (DMSO- d_6 , 125 MHz, 70 °C)

4 | Journal Name, [year], [vol], 00-00

The suspension of 2-[*N*-(2-chlorophenyl)amino]phenol (**5b**, 220 mg, 1 mmol), CuI (9.5 mg, 0.05 mmol) and Cs₂CO₃ (977 mg, 3 mmol) in *n*-PrCN (2 mL) in a Schlenk tube was degassed. Then iodobenzene (**3a**, 224 mg, 1.1 mmol) was added by a syringe. After the resultant mixture was stirred at 115 °C for 24 h under N₂, the solid was filtered off. Then the solvent was evaporated on ²⁵ a rotavapor and the residue was purified by a column chromatography [silica gel, 1% EtOAc in petroleum ether (60–90 °C)] to give 255 mg (98%) of **2a** as white crystals, mp 140–141 °C (lit.⁴ 138–139 °C); ¹H NMR δ 7.60-7.56 (m, 2H), 7.48-7.44 (m, 1H), 7.33 (d, *J* = 5.8, 2H), 6.68-6.55 (m, 6H), 5.89 (d, *J* = 5.8, 2H) ³⁰ ppm; ¹³C NMR δ 143.9 (2C), 138.9, 134.4, 131.0 (2C), 130.8

65

75

 δ 155.8, 144.0 (2C), 134.2 (2C), 132.1, 130.6, 124.7, 124.0 (2C), 121.5 (2C), 121.3, 118.5. 115.5 (2C), 113.4 (2C) ppm; HRMS (ESI-TOF) (*m*/*z*): Calcd for C₁₈H₁₃NO₂, [M]⁺ 275.0941; found 275.0945.

10-(4-Hydroxyphenyl)-phenoxazine (**2g**). White solid, mp 181– 183 °C; IR v 3459, 1631, 1484, 1332, 1265 cm⁻¹; ¹H NMR (DMSO- d_6) δ 9.85 (s, 0.94H), 7.18 (d, J = 8.6, 2H), 7.02 (d, J = 8.6, 2H), 6.73-6.62 (m, 6H), 5.92-5.88 (m, 2H) ppm; ¹³C NMR ¹⁰ (DMSO- d_6 , 125 MHz, 70 °C) δ 158.0, 143.9 (2C), 135.1 (2C), 131.8 (2C), 129.8, 124.1 (2C), 121.6 (2C), 118.3 (2C), 115.6 (2C), 113.7 (2C) ppm; HRMS (ESI-TOF) (*m*/*z*): Calcd for C₁₈H₁₃NO₂, [M]⁺ 275.0941; found 275.0940.

¹⁵ *10-(4-Fluorophenyl)-phenoxazine (2h).* White solid, mp 118– 120 °C; IR v 1631, 1484, 1324, 1266 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 7.51-7.39 (m, 4H), 6.73-6.59 (m, 6H), 5.83-5.78 (m, 2H) ppm; ¹³C NMR (DMSO-*d*₆) δ 162.1 (d, *J* = 246.7), 143.9 (2C), 134.8, 134.3 (2C), 132.7 (d, *J* = 8.6, 2C), 123.2 (2C), 121.4 (2C), 118.1 ²⁰ (d, *J* = 22.2, 2C), 115.5 (2C), 113.1 (2C) ppm; HRMS (ESI-TOF) (*m*/z): Calcd for C₁₈H₁₂FNO, [M]⁺ 277.0897; found 277.0894.

10-(4-Chlorophenyl)-phenoxazine (**2i**). White solid, mp 178– 180 °C; IR ν 1628, 1485, 1335, 1274 cm⁻¹; ¹H NMR (DMSO- d_6) ²⁵ δ 7.71 (d, J = 8.6, 2H), 7.45 (d, J = 8.6, 2H), 6.74-6.61 (m, 6H), 5.86-5.83 (m, 2H) ppm; ¹³C NMR (DMSO- d_6) δ 143.1 (2C), 137.3, 133.6 (2C), 133.3, 132.6 (2C), 131.5 (2C), 123.8 (2C), 121.7 (2C), 115.4 (2C), 113.2 (2C) ppm; HRMS (ESI-TOF) (m/z): Calcd for C₁₈H₁₂CINO, [M]⁺ 293.0602; found 293.0601.

³⁰ *10-(4-Bromophenyl)-phenoxazine (2j).* White solid, mp 184–185 °C (lit.^[4] 200–202 °C); IR ν 3031, 1629, 1484, 1332, 1266 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 7.84 (d, *J* = 8.3, 2H), 7.54 (d, *J* = 8.6, 2H), 6.75-6.62 (m, 6H), 5.87-5.84 (m, 2H) ppm; ¹³C NMR

³⁵ (DMSO-*d*₆) δ143.1 (2C), 137.7, 134.5 (2C), 133.6 (2C), 133.0 (2C), 123.8 (2C), 121.9, 121.7 (2C), 115.4 (2C), 113.2 (2C) ppm; HRMS (ESI-TOF) (*m*/*z*): Calcd for C₁₈H₁₂BrNO, [M]⁺ 337.0097; found 337.0093.

⁴⁰ *10-(4-Nitrophenyl)-phenoxazine* (**2***k*). Red solid, mp 191-193 ^oC; IR *v* 1636, 1520, 1487, 1337, 1271 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 8.47 (d, *J* = 9.0, 2H), 7.74 (d, *J* = 8.9, 2H), 6.83-6.69 (m, 6H), 6.02 (d, *J* = 4.9, 2H) ppm; ¹³C NMR (DMSO-*d*₆) δ 146.8, 145.0, 143.6 (2C), 132.9 (2C), 131.5 (2C), 126.6 (2C), 123.8 (2C), 122.4 ⁴⁵ (2C), 115.7 (2C), 114.0 (2C) ppm; HRMS (ESI-TOF) (*m/z*): Calcd for C₁₈H₁₂N₂O₃, [M]⁺ 304.0842; found 304.0845.

10-(4-Cyanophenyl)-phenoxazine (**2l**). Yellowish solid, mp 158–159 °C; IR v 2226, 1633, 1596, 1488, 1333, 1273 cm⁻¹; ¹H ⁵⁰ NMR (DMSO- d_6) δ 8.14 (d, J = 8.6, 2H), 7.67 (d, J = 8.2, 2H), 6.79-6.68 (m, 6H), 5.92 (d, J = 7.6, 2H) ppm; ¹³C NMR (DMSO- d_6) δ 143.3 (2C), 143.1, 135.5 (2C), 133.0 (2C), 131.7 (2C), 123.8 (2C), 122.1 (2C), 118.3, 115.6 (2C), 113.5 (2C), 111.4 ppm; HRMS (ESI-TOF) (m/z): Calcd for C₁₉H₁₂N₂O, [M]⁺ 284.0944; ⁵⁵ found 284.0940.

2-Methyl-10-phenyl-10H-phenoxazine (2m). White solid, mp 92–94 °C; IR v 1628, 1588, 1487, 1329, 1266 cm⁻¹; ¹H NMR

(DMSO- d_6) δ 7.71-7.39 (m, 5H), 6.71-6.46 (m, 5H), 5.82-5.80 (m, ⁶⁰ 1H), 5.65 (s, 1H), 1.96 (s, 3H) ppm; ¹³C NMR (DMSO- d_6) δ 144.0, 141.7, 139.0, 134.4, 133.9, 132.6, 131.0 (2C), 130.8 (2C), 128.4, 123.0, 121.3, 121.1, 115.3, 115.0, 113.9, 113.2, 20.8 ppm; HRMS (ESI-TOF) (*m*/*z*): Calcd for C₁₉H₁₅NO, [M]⁺ 273.1148; found 273.1147.

2-Methyl-10-(4-methylphenyl)-phenoxazine (**2n**). White solid, mp 71–73 °C; IR ν 1629, 1585, 1488, 1331, 1266 cm⁻¹; ¹H NMR (DMSO- d_6) δ 7.47 (d, J = 7.9, 2H), 7.26 (d, J = 8.6, 2H), 6.72-6.60 (m, 4H), 6.46 (d, J = 7.9, 1H), 5.83-5.80 (m, 1H), 5.66 (s, 70 1H), 2.42 (s, 3H), 1.96 (s, 3H) ppm; ¹³C NMR (DMSO- d_6) δ 144.0, 141.7, 138.3, 136.2, 134.5, 134.0, 132.6, 131.6 (2C), 130.4, 122.9 (2C), 121.2, 121.0, 115.2, 115.0, 113.9, 113.2, 21.2, 20.8 ppm; HRMS (ESI-TOF) (m/z): Calcd for C₂₀H₁₇NO, [M]⁺ 287.1305; found 287.1312.

2-Methyl-10-(4-methoxyphenyl)-phenoxazine (**2**0). White solid, mp 102–103 °C; IR ν 1604, 1505, 1488, 1331, 1245 cm⁻¹; ¹H NMR (DMSO- d_6) δ 7.26 (d, J = 8.6, 2H), 7.15 (d, J = 8.9, 2H), 6.65-6.55 (m, 4H), 6.41 (d, J = 7.9, 1H), 5.80-5.77 (m, 1H), 5.63 ⁸⁰ (s, 1H), 3.81 (s, 3H), 1.93 (s, 3H) ppm; ¹³C NMR (DMSO- d_6) δ 159.3, 144.1, 141.8, 134.7, 134.3, 132.7, 131.8 (2C), 131.4, 123.0, 121.2, 121.0, 116.2 (2C), 115.2, 115.0, 113.9, 113.2, 55.5, 20.8 ppm; HRMS (ESI-TOF) (m/z): Calcd for C₂₀H₁₇NO₂, [M]⁺ 303.1254; found 303.1245.

2-Methyl-10-(4-chlorophenyl)-phenoxazine (**2***p*). White solid, mp 106–108 °C; IR ν 1628, 1488, 1331, 1272 cm⁻¹; ¹H NMR δ 7.57 (d, J = 8.6, 2H), 7.28 (d, J = 8.6, 1H), 6.70-6.43 (m, 6H), 5.88 (d, J = 7.9, 1H), 5.70 (s, 1H), 2.02 (s, 3H) ppm; ¹³C NMR ⁹⁰ δ 144.0, 141.7, 137.6, 134.2, 134.0, 133.6, 132.8, 132.4 (2C), 131.4 (2C), 132.0, 121.7, 121.5, 115.5, 115.2, 113.9, 113.2, 20.8 ppm; HRMS (ESI-TOF) (*m*/*z*): Calcd for C₁₉H₁₄CINO, [M]⁺ 307.0758; found 307.0756.

2-Methyl-10-(4-nitrophenyl)-phenoxazine (2q). Red solid, mp 184–185 °C; IR v 1641, 1514, 1493, 1343, 1328, 1276 cm⁻¹; ¹H NMR (DMSO-d₆) δ 8.43 (d, J = 8.9, 2H), 7.69 (d, J = 8.9, 2H), 6.78-6.63 (m. 4H), 6.53 (d, J = 7.9, 1H), 5.97 (d, J = 7.6, 1H), 5.81 (s, 1H), 1.96 (s, 3H) ppm; ¹³C NMR (DMSO-d₆) δ 146.9, 100 145.8, 144.4, 142.1, 133.1, 133.0, 132.6, 131.3 (2C), 126.4 (2C), 123.1, 122.7, 122.4, 116.0, 115.7, 114.4, 113.8, 20.8 ppm; HRMS (ESI-TOF) (m/z): Calcd for C₁₉H₁₄N₂O₃, [M]⁺ 318.0999; found 318.0998.

¹⁰⁵ 2-Methyl-10-(4-Cyanophenyl)-phenoxazine (2r). Yellowish solid, mp 132–133 °C; IR v 2221, 1637, 1491, 1331, 1268 cm⁻¹;
¹H NMR (DMSO-d₆) δ 8.09 (d, J = 8.2, 2H), 7.62 (d, J = 8.2, 2H), 6.73-6.60 (m, 4H), 6.48 (d, J = 7.9, 1H), 5.85 (d, J = 7.2, 1H), 5.69 (s, 1H), 1.94 (s, 3H) ppm; ¹³C NMR (DMSO-d₆) δ 144.2,
¹¹⁰ 143.8, 141.8, 134.9 (2C), 131.2, 132.9, 132.8, 131.8 (2C), 123.1, 122.4, 122.2, 118.1, 115.8, 115.6, 114.1, 113.4, 112.1, 20.8 ppm; HRMS (ESI-TOF) (m/z): Calcd for C₂₀H₁₄N₂O, [M]⁺ 298.1101;

¹¹⁵ *1-Methyl-10-(4-methylphenyl)-phenoxazine (2s).* White solid, mp 82–84 °C; IR v 1649, 1504, 1470, 1314, 1274 cm⁻¹; ¹H NMR

found 298.1100.

75

(DMSO- d_6) δ 7.26-7.11 (m, 5H), 7.00-6.81 (m, 6H), 2.23 (s, 3H), 1.78 (s, 3H) ppm; ¹³C NMR (DMSO- d_6) δ 151.2, 150.1, 146.8, 135.9, 134.4, 132.9, 132.2, 129.8 (2C), 126.2, 125.3 (2C), 124.5, 124.4, 123.3, 122.4, 116.4, 114.2, 20.8, 18.8 ppm; HRMS (ESI-⁵ TOF) (*m*/*z*): Calcd for C₂₀H₁₇NO, [M]⁺ 287.1305; found 287.1307.

2-*Chloro-10-(4-methylphenyl)-phenoxazine (2t).* White solid, mp 105–107 °C; IR ν 2923, 1629, 1485, 1330, 1265 cm⁻¹; ¹H ¹⁰ NMR (DMSO-*d*₆) δ 7.47 (d, *J* = 7.9, 2H), 7.29 (d, *J* = 8.2, 2H), 6.74-6.61 (m, 5H), 5.84-5.81 (m, 1H), 5.70 (d, *J* = 2.1, 1H), 2.40 (s, 3H) ppm; ¹³C NMR (DMSO-*d*₆) δ 143.7, 142.6, 138.8, 135.6, 135.4, 133.7, 131.9 (2C), 130.1 (2C), 128.0, 123.4, 121.6, 120.4, 116.0, 115.3, 113.5, 113.2, 21.2 ppm; HRMS (ESI-TOF) (*m/z*): ¹⁵ Calcd for C₁₉H₁₄CINO, [M]⁺ 307.0758; found 307.0762.

10-(2-Pyridyl)-phenoxazine (2u). White solid, mp 103–104 °C; IR ν 3061, 1587, 1489, 1329, 1274, 1043 cm⁻¹; ¹H NMR δ 8.69-8.67 (m, 1H), 7.88-7.82 (m, 1H), 7.38-7.26 (m, 2H), 6.81-6.68 (m, ²⁰ 6H), 6.43-6.40 (m, 2H) ppm; ¹³C NMR δ153.7, 150.5, 145.4 (2C), 139.3, 132.8 (2C), 123.2 (2C), 122.6 (2C), 122.2, 122.1, 115.9 (2C), 115.6 (2C) ppm; HRMS (ESI-TOF) (*m/z*): Calcd for $C_{17}H_{12}N_2O$, [M+H]⁺ 261.1022; found 261.1020.

²⁵ *10-(3-Pyridyl)-phenoxazine (2v).* White solid, mp 147–149 °C; IR *v* 3050, 1588, 1485, 1329, 1270, 1021 cm⁻¹; ¹H NMR δ 8.74 (d, *J* = 4.1, 1H), 8.64 (s, 1H), 7.76-7.72 (m, 1H), 7.57-7.53 (m, 1H), 6.76-6.58 (m, 6H), 5.87 (d, *J* = 7.6, 2H) ppm; ¹³C NMR δ 152.8, 149.5, 143.9 (2C), 139.0, 135.7, 133.8 (2C), 125.4, 123.3 ³⁰ (2C), 121.9 (2C), 115.7 (2C), 113.1 (2C) ppm; HRMS (ESI-TOF) (*m/z*): Calcd for C₁₇H₁₂N₂O, [M+H]⁺ 261.1022; found 261.1025.

10-(4-Pyridyl)-phenoxazine (2w). White solid, mp 118–120 °C; IR ν 3061, 1578, 1489, 1332, 1274 cm⁻¹; ¹H NMR δ 8.79 (d, J = ³⁵ 4.8, 2H), 7.32 (d, J = 6.2, 2H), 6.81-6.68 (m, 6H), 6.19 (d, J = 7.6, 2H) ppm; ¹³C NMR δ 152.6 (2C), 147.9, 145.1 (2C), 132.5 (2C), 123.5 (2C), 123.3 (2C), 122.8 (2C), 116.1 (2C), 114.8 (2C) ppm; HRMS (ESI-TOF) (*m*/*z*): Calcd for C₁₇H₁₂N₂O, [M+H]⁺ 261.1022; found 261.1021.

10-(3-Thienyl)-phenoxazine (2x). White solid, mp 123–125 °C; IR ν 3095, 1531, 1481, 1321, 1268 cm⁻¹; ¹H NMR δ 7.56-7.54 (m, 1H), 7.35-7.34 (m, 1H), 7.02 (d, J = 4.8, 1H) 6.70-6.60 (m, 6H), 6.07-6.04 (m, 2H) ppm; ¹³C NMR δ 144.0 (2C), 136.8, ⁴⁵ 134.0 (2C), 127.7, 127.2, 124.7, 123.3 (2C), 121.5 (2C), 115.4 (2C), 113.3 (2C) ppm; HRMS (ESI-TOF) (*m/z*): Calcd for C₁₇H₁₂N₂O, [M]⁺ 265.0561; found 265.0557.

Acknowledgements

40

This work was supported by the National Natural Scientific ⁵⁰ Foundation of China (No. 21372142, 21472107 and 21072112).

Notes and references

^a Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. Fax: +86-10-62771149; Tel: +86-10-62795380; E-mail: <u>yfh@mail.tsinghua.edu.cn</u> and wangxinyan@mail.tsinghua.edu.cn.

⁵⁵ † Electronic Supplementary Information (ESI) available: [Characterizations of compounds **5b-e**, ¹H and ¹³C NMR spectra for

6 | Journal Name, [year], [vol], 00–00

products **2a-2x** and CIF file for the single crystal X-ray diffraction analysis of **2a**]. See DOI: 10.1039/b000000x/

- 60 1 (a) J. Lee, K. Shizu, H. Tanaka, H. Nomura, T. Yasuda and C. Adachi, J. Mater. Chem. C, 2013, 1, 4599–4604; (b) R. Menzel, S. Kupfer, R. Mede, D. Weiß, H. Görls, H. González and R. Becker, Eur. J. Org. Chem. 2012, 5231–5247; (c) H. Tanaka, K. Shizu, H. Miyazaki and C. Adachi, Chem. Commun. 2012, 48, 11392–11394;
- (d) Y. Park, B. Kim, C. Lee, A. Hyun, S. Jang, J.-H. Lee, Y.-S. Gal, T. H. Kim, K.-S. Kim and J. Park, *J. Phys. Chem. C* 2011, 115, 4843–4850; (e) K. Ono, M. Joho, K. Saito, M. Tomura, Y. Matsushita, S. Naka, H. Okada and H. Onnagawa, *Eur. J. Inorg. Chem.* 2006, 3676–3683; (f) G.-S. Jiao, A. Loudet, H. B. Lee, S.
 Kalinin, L. B.-A. Johansson and K. Burgessa, *Tetrahedron* 2003, 59, 3109–3116.
 - (a) J. Sun, H. Jiang, J. Zhang, Y. Tao and R. Chen, *New J. Chem.* 2013, **37**, 977–985; (b) K. M. Karlsson, X. Jiang, S. K. Eriksson, E. Gabrielsson, H. Rensmo, A. Hagfeldt, and L. Sun, *Chem. Eur. J.*
 - 2011, **17**, 6415–6424; (c) K. Kim, S. Jeong, C. Kim, E. Kim, E. Kwon, H. Kim, B.-D. Choi and Y. S. Han, *Synth. Met.* 2010, **160**, 549–555; (d) Y. Zhu, A. P. Kulkarni, P.-T. Wu and S. A. Jenekhe, *Chem. Mater.* 2008, **20**, 4200–4211; (e) Y. Zhu, A. P. Kulkarni and S. A. Jenekhe, *Chem. Mater.* 2005, **17**, 5225–5227; (f) A. Higuchi and Y. Shirota, *Mol. Cryst. Liq. Cryst.* 1994, **242**, 127–133.
 - 3 (a) I. Thome and C. Bolm, *Org. Lett.* 2012, 14, 1892–1895, and the references cited therein; (b) P. Thansandote, E. Chong, K.-O. Feldmann and M. Lautens, *J. Org. Chem.* 2010, 75, 3495–3498.
 4 H. Gilman and L. Moore, *I. Am. Chem. Soc.* 1957, 79, 3485–3487.
- H. Gilman and L. Moore, J. Am. Chem. Soc. 1957, 79, 3485–3487.
 A. Mori, S. Kinoshita, M. Furusyo and K. Kamikawa, Chem. Commun. 2010, 46, 6846–6848.
- 6 (a) L. S. Klimenko, I. A. Oskina, V. M. Vlasov, I. Y. Bagryanskaya and Y. V. Gatilov, *Russ. Chem. Bull., Int. Ed.* 2007, 56, 1130–1134;
 (b) L. S. Klimenko, S. Z. Kusov, V. M. Vlasov, E. N. Tchabueva and V. V. Boldyrev, *Mendeleev Commun.* 2006, 16, 224–225.
- For selected reviews, see: (a) J. Keilitz, H. A. Malik and M. Lautens, *Top. Heterocycl. Chem.* 2013, **32**, 187–224; (b) T. R. M. Rauws and B. U. W. Maes, *Chem. Soc. Rev.* 2012, **41**, 2463–2497; (c) C. Fischer, B. Koenig, *Beilstein J. Org. Chem.* **2011**, 7, 59–74; (d) E.
 Sperotto, G. P. M. van Klink, G. van Koten and G. J. de Vries, *Dalton Trans.* 2010, **39**, 10338–10351; (e) F. Monnier and M. Taillefer, *Angew. Chem., Int. Ed.* 2009, **48**, 6954–6971; (f) G. Evano, N. Blanchard and M. Toumi, *Chem. Rev.* 2008, **108**, 3054– 3131. (g) S. V. Ley and A. W. Thomas, *Angew. Chem., Int. Ed.* 2003, **42**, 5400–5449.
- 8 For selected references, see: (a) A. Tlili, F. Monnier and M. Taillefer, Chem. Commun. 2012, 48, 6408-6410; (b) C.-K. Tseng, C.-R. Lee, C.-C. Han and S.-G. Shyu, Chem. Eur. J. 2011, 17, 2716-2723; (c) H. Xu and C. Wolf, Chem. Commun. 2009, 1715-1717. (d) N. S. Nandurkar, M. J. Bhanushali, M. D. Bhor and B. M. Bhanage, 105 Tetrahedron Lett. 2007, 48, 6573-6576; (e) Y.-H. Liu, C. Chen and L.-M. Yang, Tetrahedron Lett. 2006, 47, 9275-9278; (f) A. S. Gajare, K. Toyota, M. Yoshifuji and F. Ozawab, Chem. Commun. 2004, 1994-1995; (g) N. M. Patil, A. A. Kelkar, Z. Nabi and R. V. Chaudhari, Chem. Commun. 2003, 2460-2461; (h) A. A. Kelkar, A. 110 M. Patil and R. V. Chaudhari, Tetrahedron Lett. 2002, 43, 7143-7146; (i) R. K. Gujadhur, D. Venkataraman and J. T. Kintigh, Tetrahedron Lett. 2001, 42, 4791-4793; (j) R. K. Gujadhur, C. G. Bates and D. Venkataraman, Org. Lett. 2001, 3, 4315-4317.
- (a) Y. Li, H. Wang, L. Jiang, F. Sun, X. Fu and C. Duan, *Eur. J. Org. Chem.* 2010, 6967–6973; (b) D. Maiti and S. L. Buchwald, *J. Am. Chem. Soc.* 2009, **131**, 17423–17429; (c) H. F. Wang, Y. M. Li, F. F. Sun, Y. Feng, K. Jin and X. N. Wang, *J. Org. Chem.* 2008, **73**, 8639–8642.
- 120 10 (a) R. Arundhathi, D. Damodara, R. R. Likhar, M. L. Kantam, P. Saravanan, T. Magdaleno and S. H. Kwon, *Adv. Synth. Catal.* 2011, **353**, 1591–1600. (b) B. Sreedhar, R. Arundhathi, P. L. Reddy and M. L. Kantam, *J. Org. Chem.* 2009, **74**, 7951–7954; (c) J. Y. Kim, J. C. Park, A. Kim, A. Y. Kim, H. J. Lee, H. Song and K. H. Park, *Eur. J. Inorg. Chem.* 2009, 4219–4223; (d) Q. Zhang, D. Wang, X. Wang and K. Ding, *J. Org. Chem.* 2009, **74**, 7187–7190; (e) N. Xia and M. Taillefer, *Chem. Eur. J.* 2008, **14**, 6037–6039.

- 11 D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, H. L. Leazer, R. J. Linderman, Jr., K. Lorenz, J. Manley, B. A. Pearlman, A.; Wells, A. Zaks and T. Y. Zhang, *Green Chem.* 2007, 9, 411–420.
- 12 (a) X. Lv and W. Bao, *J. Org. Chem.* 2007, **72**, 3863–3867. (b). Y.-J. 5 Chen and H.-H. Chen, *Org. Lett.* 2006, **8**, 5609–5612. (c) D. Ma and
- Q. Cai, *Org. Lett.* 2003, **5**, 3799–3802.
 N. Barbero, R. SanMartin and E. Dominguez, *Green Chem.* 2009, **11**,
- 13 N. Barbero, R. SanMartin and E. Dominguez, *Green Chem.* 2009, **11**, 830–836.
- (a) V. Lyaskovskyy and B. de Bruin, ACS Catal. 2012, 2, 270–279.
 (b) W. I. Dzik, J. I. van der Vlugt, J. N. H. Reek and B. de Bruin, Angew. Chem., Int. Ed. 2011, 50, 3356–3358, and the references therein.

Graphical Abstract

A General Route for Synthesis of *N*-Aryl Phenoxazines via Copper(I)-Catalyzed *N*-, *N*-, and *O*-Arylations of 2-Aminophenols

Nan Liu,^a Bo Wang,^a Wenwen Chen,^a Chulong Liu,^a Xinyan Wang,^{*a} and Yuefei Hu^{*a}

A novel copper(I)-catalyzed tandem reaction of N- and O-arylations was developed and a general route for synthesis of N-aryl phenoxazines via copper-catalyzed N-, N-, and O-arylations of 2-aminophenols was established.