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Quantitative structure-activity relationships and design of 

thymine-like inhibitors of thymidine monophosphate kinase 

of Mycobacterium tuberculosis with favorable 

pharmacokinetic profile 

Keita M. a,d, Kumar A. a,b,c, Dali B. a,d, Megnassan E. a,d,*, Siddiqi M.I. a,b, 
Frecer V.a,e,f and Miertus S. a,f,g  

We have designed new potent inhibitors of thymidine monophosphate kinase of 

Mycobacterium tuberculosis (TMPKmt) using structure-based molecular design. Three-

dimensional (3D) models of TMPKmt-inhibitor complexes were prepared by in situ 

modification of the crystal structure of TMPKmt co-crystallized with the natural substrate 

deoxythymidine monophosphate (dTMP) (PDB entry code: 1G3U) and a training set of 20 

thymine derivatives bearing an aliphatic or aromatic group attached through a spacer (THMDs) 

with known inhibitory potencies. A QSAR model was elaborated for the training set THMDs 

and a linear correlation was established between the computed free energies of THMDs 

binding and observed enzyme inhibition constants (Ki
exp

). Validation of this QSAR model was 

performed with a 3D-QSAR pharmacophore generation (PH4). Structural information derived 

from the 3D model and breakdown of computed TMPKmt-THMDs interaction energies up to 

individual active site residue contributions helped us to design new more potent TMPKmt 

inhibitors. We obtained a reasonable agreement between the free energies of TMPKmt-THMDs 

complexation (∆∆Gcom) and Ki
exp

 values, which explained approximately 93% of the TMPKmt 

inhibition data (pKi = - 0.1422·∆∆Gcom + 4.9199, R2 = 0.93). Similar agreement was established 

for the PH4 pharmacophore model (pKi
exp

 = 1.0016 × pKi
pre
 + 0.0077, R2 = 0.95). Comparative 

analysis of the active site residues contributions directed substitutions to various positions of 

the naphtholactam or naphthosultam moeties and suggested their replacement with phthalimido 

or isoindolinone or indanone rings, which led to a predicted increase of the inhibitory potency. 

The predicted Ki
pre

 for the best inhibitor candidate reached the picomolar range for aliphatic 

acyclic nucleoside analogs and for benzyl pyrimidine-like analogs. This computational 

approach, which combines molecular modelling, pharmacophore generation and analysis of 

TMPKmt-THMDs interaction energies resulted in a set of proposed TMPKmt inhibitors. It can 

thus direct medicinal chemists in their search for new antituberculotic agents.   

 

 

 

1. Introduction 

At this moment, we can be quite sure that the millennium 
development goal to halve the tuberculosis (TB) mortality 
relative to the 1990 level by 2015 [1], will not be met. On the 
contrary, the number of countries reporting incidence of cases 
of multidrug-resistant (MDR) and extensively drug-resistant 
(XDR) tuberculosis, which are resistant to almost all 
fluoroquinolones plus the injectable antituberculotics, kanamy-
cin, amikacin or capreomycin, is growing [2]. Therefore, it 
becomes crucial to analyse why the TB burden increases 
despite treatment and past and current vaccination efforts. 

According to WHO, Sub-Saharan Africa has the highest rates 
of TB driven primarily by the HIV co-infection, while 
approximately 2 billion individuals worldwide suffer from a 
latent mycobacterium infection and are at risk of developing 
active tuberculosis [3].  
Thymidine monophosphate kinase (TMPKmt) was recognized as 
a validated pharmacological target (TMPKmt is an essential 
enzyme for the synthesis of thymidine diphosphate from 
deoxythymidine monophosphate (dTMP) that is needed for 
DNA synthesis and replication). TMPKmt inhibitors block the 
replication of the mycobacterium [4]. So far, the most potent 
thymidine-derived inhibitors (THMD) reported in the literature 
exert their inhibitory activity in the low micromolar range 
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(3.5 – 5µM) [5]. More potent reported THMDs with inhibition 
constants within 0.27 - 0.75 µM contain aliphatic spacer linking 
the thymine base to the distal naphtholactam or naphthosultam 
moieties [6]. Similarly, THMDs with aromatic spacers reached 
an inhibitory concentration range of 6.5 - 10 µM. Some THMD 
structures are shown in Figure 1.  
The availability of X-rays crystal structures of the TMPKmt 
enzyme bound to its substrate as well as to several THMDs 
opened the gate to structure-based design of new 
antituberculotic agents sharing similar mode of action [7]. 
 

 

R1 ≡ CH3, H, F, Br, I, CH2OH, Benzyl 

R2 ≡ H, OH, NH2, Cl, F  
R3 ≡ OH, NH2, N3, F, CH2X (X ≡ NH2,F,OH) 

 

dTMP derivatives (5 ≤ Ki ≤ 50 µM) 

 

 
 
 

(1) 
 

(2) 
 

(3) 
 

Ki = 7µM 2.3 ≤ Ki ≤ 3.5 µM Ki = 8µM 
 

 
(4) 

 
(5) 

 
(6) 

 
6.5 ≤ Ki ≤ 10 µM 1.1 ≤ Ki ≤ 1.9 µM 0.42 ≤ Ki ≤ 0.75 µM 

 

Figure 1: Structures of known TMPKmt inhibitors. 
 

 
 

Figure 2: Interaction map of dTMP with active site residues (right) and 
location of the active site (CPK representation of dTMP) in the 3D 
model of TMPKmt (left). 
 
Structure-based design of TMPKmt inhibitors can start with 
assessment of enzyme-ligand interaction maps (Figure 2), 
which can be extracted from high resolution crystal structures 
of TMPKmt - dTMP complexes, such as 1GSI [8] and 1G3U [9] 
[10, 11]. The maps show the pyrimidine ring of the thymine in 
a π - π stacking interaction with Phe70 and a hydrogen bond 
with Arg74 keeping the orientation of the pyrimidine ring, 
while the hydroxyl group of the ribose ring is hydrogen bonded 
to Asp9. The phosphate group is kept in its position by 
electrostatic interactions with the Mg2+ ion and by hydrogen 
bonding to Arg95. On the basis of this structural information 
dTMP analogs were proposed with the phosphate group 

replaced by anionic isosteres and bearing bromine substitution 
on the pyrimidine ring intended to improve the ADME profile 
of the compounds [5, 12] (Figure 1, molecules (1) to (6)). The 
dTMP analogs with alkene linkers replacing the ribose moiety 
and dibenzoindolone or dibenzoquinolone rings exploring the 
edge to face interaction between the naphtyl group and the 
selective Tyr39 residue (5) and (6) represent submicromolar 
inhibitors of the TMPKmt [6]. In a recent computational 
inhibitor design study a dTMP analogue with a carboxylate 
group in the 5'-position of the ribose ring was predicted to shift 
the inhibitory potency up to the nanomolar concentration range 
(Ki

pre = 0.155 nM; Fig. 3, inhibitor A) [11].  
In this work we have extended the structure-based design of 
TMPKmt inhibitors and propose analogs that contain aromatic 
moieties attached by aliphatic or aromatic spacers to the thymi-
ne, which interact with the side chains of residues Tyr103, 
Tyr165 and Tyr39. A Hansch-type QSAR model of inhibitor-
enzyme interaction was built for a training set of 20 known 
THMDs, which correlates computed Gibbs free energy of the 
enzyme-inhibitor complex formation with the experimental 
inhibition constants [6, 12, 13]. In addition a 3D-QSAR model 
was used to prepare a four-feature pharmacophore (PH4) of the 
THMDs. The predictive power of the QSAR model of inhibi-
tor-enzyme binding was cross-checked with the PH4 3D-QSAR 
pharmacophore model. This was used to screen a set of model-
led thymidine analogs for potent TMPKmt inhibitors. The vir-
tual hits identified by the complexation QSAR model reached 
predicted activities within subnanomolar concentration range. 

 
 

Figure 3: Chemical structure of proposed nanomolar inhibitor A [11].  

2. Methods 

2.1  Training and validation sets 

The training and validation sets of thymine-like inhibitors of 
TMPKmt used in this study were taken from the literature 
[6, 12, 13]. The inhibitory potencies of these derivatives cover 
sufficiently broad range of activity to allow a reliable QSAR 
model to be built (0.27 µM ≤ Ki

exp
 ≤ 202 µM). 

2.2  Model building 

Molecular models of the enzyme-inhibitor complexes (E:I), free 
TMPKmt (E) and inhibitors (I) were prepared from the high-
resolution crystal structure (1.95Å) of a reference complex 
containing the deoxythymidine monophosphate (dTMP) bound 
to TMPKmt [8] (Protein Data Bank  [14] entry code 1G3U) 
using Discovery Studio 2.5 molecular modelling program [15]. 
The structures of E and E:I complexes were considered to be at 
the pH of 7 with neutral N- and C-terminal residues and all 
protonizable and ionizable residues charged. No crystallogra-
phic water molecules were included into the model. The 
inhibitors were built into the reference structure by in situ 
replacing of the derivatized groups of the dTMP moiety 
(molecular scaffold). An exhaustive conformational search over 
all rotatable bonds of the replacing function group coupled with 
a careful gradual energy-minimization of the modified inhibitor 
and active site residues of the TMPKmt located in the vicinity of 

 

X= O, NH 
Y= O, S, NH
R= H, OH 

 

X= O, S 
R= H, OH
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the inhibitor (within 5 Å distance), was employed to identify 
low-energy bound conformations of the modified inhibitor. The 
resulting low-energy structures of the E:I complexes were then 
carefully refined by minimization of the whole complex. This 
procedure has been successfully used for model building of 
viral, bacterial and protozoal enzyme-inhibitor complexes and 
design of peptidomimetic, hydroxynaphthoic and thymidine 
inhibitors [11, 16, 17, 18, 19, 20]. 

2.3  Molecular mechanics 

Modelling of inhibitors, TMPKmt and complexes was carried 
out in all-atom representation using atomic and charge 
parameters of the CHARMm force field [15]. A dielectric 
constant of 4 was used for all molecular mechanics (MM) 
calculations in order to take into account the dielectric shielding 
effect in proteins. Minimizations of the E:I complexes, free E 
and I were carried out by relaxing the structures gradually, 
starting with the added hydrogen atoms, continued with inhi-
bitor heavy atoms, followed by residue side chains and 
concluded with protein backbone relaxation. In all the geometry 
optimizations, a sufficient number of steepest descent and con-
jugate gradient iterative cycles were used with the convergence 
criterion for the average gradient set to 0.01 kcal.mol-1.Å-1. 

2.4  Conformational search 

Free inhibitor conformations were derived from their bound 
conformations in the E:I complexes by gradual relaxation to the 
nearest local energy minimum. Then a Monte Carlo search 
(with an upper limit of 50 000 iterations) for low-energy 
conformations over all rotatable bonds except those in the rings 
was carried out using Discovery Studio [15]. Two hundred 
unique conformations were generated for each inhibitor by 
randomly varying torsion angles of the last accepted conformer 
by ±15° at 5000 K followed by subsequent energy 
minimization. During the minimization a dielectric constant ε = 
80 was used to account approximately for the dielectric 
screening effect of hydration upon the generated conformers. 
The conformer with the lowest total energy was selected and re-
minimized at ε = 4. 

2.5  Solvation Gibbs free energies 

The electrostatic component of solvation Gibbs free energy that 
includes also the effects of ionic strength via solving nonlinear 
Poisson-Boltzmann equation [21,22] was computed by the 
DelPhi module in Discovery Studio [15]. The program treats 
the solvent as a continuous medium of high dielectric constant 
(εo = 80) and the solute as a cavity of low dielectric (εi = 4) 
with boundaries linked to the solute’s molecular surface, which 
encloses the solute’s atomic charges. The program uses a finite 
difference method to numerically solve for the molecular 
electrostatic potential and reaction field around the solute. 
DelPhi calculations were carried out on a (235 × 235 × 235) 
cubic lattice grid for the E:I complexes and free E and (65 × 65 
× 65) grid for the free I with full coulombic boundary con-
ditions. Two subsequent focusing steps led in both cases to a 
similar final resolution of about 0.3 Å per grid unit at 70% 
filling of the grid by the solute. Physiological ionic strength of 
0.145 mol.dm-3, atomic partial charges and radii defined in the 
CHARMm parameter set [15] and a probe sphere radius of 1.4 
Å were used. The electrostatic component of the solvation 
Gibbs free energy was calculated as the reaction field energy 
[21, 23, 24, 25]. 

2.6  Calculation of binding affinity 

Inhibition constant (Ki) of a reversible inhibitor I is related to 
the standard Gibbs free energy (GFE) change of the formation 
of E:I complex (∆Gcom) in a solvent. The Ki value can thus be 
predicted from the complexation GFE as ∆Gcom = -RTlnKi 
assuming the following equilibrium: 

    {E}aq + {I}aq  ↔ {E:I}aq            (1) 

where {}aq indicates solvated species. The standard GFE 
change of reaction (1) can be derived by molecular simulations 
of the complex and the free reactants: 

    ∆Gcom = G{E:I} - G{E} - G{I}              (2) 

In this work we approximate the exact values of standard GFE 
for larger systems such as enzyme-inhibitor complexes by the 
expression [18-19]:  

    G{E:I} ≈ EMM{E:I} + RT - TStrv{E:I} + Gsol{E:I}         (3)  

where EMM{E:I} stands for the molecular mechanics total 
energy of the complex (including bonding and non-bonding 
contributions), Gsol{E:I} is the solvation GFE and TStrv{E:I} is 
the entropic term: 

    TStrv{E:I} = TStran{E:I} + TSrot{E:I} + TSvib{E:I}         (4) 

composed of a sum of contributions arising from translational, 
rotational and vibrational motions of E:I. Assuming that the 
tran and rot terms for the complex E:I and free enzyme E are 
approximately equal, we obtain: 

    ∆Gcom ≈ [EMM{E:I}-EMM{E}-EMM{I}] + [Gsol{E:I}-Gsol{E}-
Gsol{I}] + TStran{I} + TSrot{I} - [TSvib{E:I}-TSvib{E}-TSvib{I}] 
= ∆HMM + TStran{I} + TSrot{I} - ∆TSvib + ∆Gsol          (5) 

where TStran{I} and TSrot{I} describe the translational and 
rotational entropy terms of the free inhibitor and ∆TSvib 
represents a simplified vibrational entropy change upon the 
complex formation: ∆TSvib = TSvib{I}E - TSvib{I} [26, 27]. 
Comparison between different inhibitors was done via relative 
changes in the complexation GFE with respect to a reference 
inhibitor, Iref, assuming ideal gas behaviour for the rotational 
and translational motions of the inhibitors: 

  ∆∆Gcom = ∆Gcom(I) - ∆Gcom(Iref) = ∆∆HMM - ∆∆TSvib + ∆∆Gsol (6) 

The binding energy calculation protocol in Discovery Studio 
2.5.5 (the latest version of DS 2.5) can now compute the loss of 
conformational entropy of a bound ligand [28]. This term is 
denoted ∆∆TS in tables 2 and 5. The use of the entropic 
contribution leads to a more accurate evaluation of the relative 
binding affinity. 
The evaluation of relative changes is preferable as it is expected 
to lead to partial cancellation of errors caused by the 
approximate nature of the molecular mechanics method as well 
as solvent and entropic effects description. 

2.7  Interaction energy 

To calculate the MM interaction energy (Eint) between enzyme 
residues and the inhibitor, a protocol available in Discovery 
Studio 2.5 [15] that computes the non-bonded interactions (van 
der Waals and electrostatic terms) between defined sets of 
atoms, was used. The calculations were performed using 
CHARMm force field [15] with a dielectric constant of 4. The 
breakdown of Eint into active site residue contributions 
(presented in % of total Eint of TMPKmt-THMD) reveals the 
significance of individual interactions and allows a comparative 
analysis, which leads to identification of affinity enhancing and 
unfavourable THMD substitutions. 
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2.8  Pharmacophore generation 

Pharmacophore modelling assumes that a set of structural 
features in a molecule is recognized by the receptor and is 
responsible for the molecule's biological activity. Bound 
conformations of inhibitors taken from the models of E:I 
complexes were used for building of 3D-QSAR pharmacophore 
by means of Catalyst HypoGen algorithm [29] implemented in 
Discovery Studio 2.5 [15]. The top scoring pharmacophore 
hypothesis was built up in three stages (constructive, 
subtractive and optimization step) from the set of the most 
active inhibitors. Inactive molecules served for definition of the 
excluded volume. The maximum number of five features 
allowed by the HypoGen algorithm was selected based on the 
THMD scaffold and substituents during the pharmacophore 
generation, namely: hydrophobic aromatic (HYdAr), hy-
drophobic aliphatic (HYd), hydrogen-bond donor, (HBD), 
hydrogen-bond acceptor (HBA) and ring aromatic (Ar). 
Adjustable parameters of the protocol were kept at their default 
values except the uncertainty on the activity, which was set to 
1.25 instead of 3. This parameter choice was intended to bring 
the uncertainty interval of experimental activity from wide span 
〈Ki/3, 3×Ki〉 to a relatively narrow one 〈4×Ki/5, 5×Ki/4〉 taking 
thus into account the accuracy and homogeneity of the 
measured inhibitory activities which are coming from the same 
laboratory. During generation of 10 pharmacophores the 
number of missing features was set to 0. The best 
pharmacophore model was selected. 

2.9 ADME-related Properties 

Pharmacokinetics properties such as octanol/water partitioning 
coefficient, aqueous solubility, blood/brain partition coefficient, 
Caco-2 cell permeability, serum protein binding, number of 
likely metabolic reactions, and another eighteen descriptors 
related to adsorption, distribution, metabolism and excretion 
(ADME properties) of the inhibitors were computed by the 
QikProp program [30] based on the method of Jorgensen 
[31,32,33]. In this approach, experimental results of more than 
710 compounds including about 500 drugs and related 
heterocycles were used to produce regression equations 
correlating experimental and computed descriptors resulting in 
an accurate prediction of molecule’s pharmacokinetic 
properties. Drug likeness (#stars) - the number of property 
descriptors that fall outside the range of values determined for 
95 % of known drugs out of 24 selected descriptors computed 
by the QikProp [30], was used as an additional ADME-related 
compound selection criterion – the druglikeness. 
 
Table 1. Training and validation sets of THMDs for the QSAR model 

 

Inhibitor R1 R2 Ki (µM) 

THMD1 CH3 =O 1.9 
THMD2 CH3 -OH  4.7 
THMD3 CH3 -OCH3  6.2 
THMD4 H =O 1.4 

 

 

 

Inhibitor R Ki (µM) 

THMD5 H 0.42 
THMD6 NO2 0.75 
THMD7 SO2 0.27 

 

 

 

Inhibitor R1 R2 Ki (µM)

THMD8 CH3 CH2CH2CONH2 89 
THMD9 CH3 CH2CH2COOH 55 
THMD10 CH3 CH=CHCONH2 195 
THMD11 CH3 (CH2)3CONH2 112 
THMD12 CH3 C≡CCH2CH2OH 70 
THMD13 Br (CH2)3COOH 10 
THMD14 CH3 Br 38 
THMD15 H (CH2)3COOH 202 
THMD16 Cl (CH2)3COOH 6.5 
THMD17 CH3 (CH2)3COOH 13 
THMD18 Cl (CH2)3CONH2 39 
THMD19 Cl (CH2)4COOH 16 
THMD20 Br (CH2)4CONH2 35 

 
Inhibitor R Ki (µM) 

THMV1 NCHCOCH3 6 
THMV3 NH2 2.4 

 

 

 

Inhibitor R1 R2 Ki (µM)

THMV2 Br (CH2)3CONH2 39 

 

3. Results and discussion 

A training set of 20 THMDs (Table 1) and validation set of 3 
THMVs (Table 1) were selected from 3 series of TMPKmt 
inhibitors with experimentally determined activities studied in 
the same laboratory [6, 12, 13]. Their experimental inhibition 
constants Ki

exp cover a concentration range sufficiently large 
(0.27 – 202 µM) to serve well for building of a useful QSAR 
model of TMPKmt inhibition. 

QSAR model 

The relative Gibbs free energy of the E:I complex formation, 
equation (6), was computed for the complexes prepared by in 
situ modification of the template inhibitor dTMP in the binding 
site of TMPKmt as described in the Methods section. Table 2 
lists the ∆∆Gcom of E:I binding and its components, equation (6). 
Since it is computed in an approximate way, the relevance of 
the binding model is evaluated through a correlation with the 
experimental activity data (Ki

exp) by a linear regression. The 
statistical data of the obtained regression equation are presented 
in Figure 3A and listed in Table 3. Relatively high values of the 
regression coefficient and Fischer F-test indicate that there is a 
strong relationship between the binding model and the observed 
inhibitory potencies of the THMDs. The ratio of predicted and 
observed inhibition constants (Ki

pre
/Ki

exp) for the validation set of 
THMVs (not included into the training set) is close to one and 
documents considerable predictive power of the QSAR model. 
Therefore, the regression equation and computed ∆∆Gcom 
quantities can be used to predict TMPKmt inhibition constants 
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Ki
pre

 of novel THMD analogs, provided that the analogs share 
the same binding mode with the training set compounds.  
To identify chemical modifications of THMDs leading to new 
inhibitor structures with high predicted binding to TMPKmt, we 
have analyzed contributions of individual residues of the 
enzyme binding pocket to the total computed enzyme-inhibitor 
interaction energy (Eint). In this way we have noticed a 
significant contribution to the Eint from residues Phe70, Arg95, 
Ser99 with a strong variation of the contributions of Arg153 
and Arg160 for the highly active THMDs (Figure 6) and less 
active inhibitors (Figure 7). 

 
A 

 
 
 

B 
Figure 3. A. Plot of the correlation equation between pKi and relative 
complexation Gibbs free energies ∆∆Gcom [kcal/mol] of the training set. 
B. Superimposition of optimized bound conformations of highly active 
training set compounds. 
 
 

  
 

Figure 4. Close-up of one of the 
most active training set inhibitor 
THMD5 (green color) at the active 
site of TMPKmt. Hydrogen bonds are 
shown in dashed black lines, other 
interactions are displayed as solid 
black lines. 

 

Figure 5. Naphtholactam moie-
ty in stick representation fitted 
into the binding pocket of the 
TMPKmt. Solid molecular surfa-
ce of the active site is shown in 
green colour. 

 

 
Figure 6.  Interaction energy breakdown (in % of the total Eint of 
TMPKmt:THMD) to residue contributions for highly active training 
set THMDs. 

 

 
Figure 7. Interaction energy breakdown (in % of the total Eint of 
TMPKmt:THMD) to residue contributions for less active training set 
THMDs. 
 

Binding mode of inhibitors 

The binding mode of THMDs in the active site of TMPKmt 
present in the crystal structures of TMPKmt-dTMP complexes 
[7, 8, 9] which was used in the complexation model of 
inhibitors THMD1-THMD20 is illustrated in Figures 4 and 5. 
In this model the main electrostatic and hydrogen bonding 
interactions of the phosphate moiety of dTMP with residues 
Arg95 (and Tyr39) are preserved (Figure 6). The stacking 
interaction of the pyrimidine ring with Phe70 is kept along with 
the cation-aromatic π interaction with Arg95 and Arg153. This 
last interaction is probably the main driving force of the 
increase of affinity of the submicromolar inhibitors THMD5-
THMD7 with the TMPKmt. A comparison of the interaction 
patterns of Figures 6 and 7 highlights the main stabilizing 
contributions of individual residues to the Eint (in % of the total 
Eint of TMPKmt:THMD) for the highly active THMDs 
(hTHMDs) namely THMD5 (0.42 µM), THMD6 (0.75 µM), 
THMD7 (0.27 µM) and THMD13 (10 µM) (Figure 6) and for 
less active ones (lTHMDs) THMD10 (195 µM), THMD11 
(112 µM) and THMD15 (202 µM) (Figure 7). The essential 
contributions of residues to Eint expressed in % of total Eint for 
hTHMDs vs. lTHMDs for Phe36 (5% vs. 0%), Pro37 (6% vs. 
0%), Phe70 (8% vs. 0%), Arg74 (5% vs. 0%), Asp94 (5% vs. 
1%), Arg95 (8% vs. 4%), Arg153 (8% vs. 3%) and Arg160 
(10% vs. 4%) known to be significant to the binding of the 
potent analogs globally are missing for the less active THMDs. 
Oppositely Tyr96 (0% vs. 7%) contribution is missing for 
hTHMDs can be used for the design of new potent analogs. A 
refined analysis of hTHMDs (Figure 6) reveals the essential 
contribution specific to aromatic spacer THMDs (arTHMDs) 
and missing for aliphatic spacer THMDs (alTHMDs): Glu166 
(9% for THMD13 vs. 0% for THMD5-7), Gln172 (5% vs. 1%) 
and Val8 (4% vs. 0%). Improvement in the contribution of 
these last three residues lead to more potent arTHMDs analogs 
exemplified by THMA49 and 50. The increased contribution of 
Tyr103 (7% for THMD13 vs. 4% for THMD5-7) is due to 
additional aromatic π - π interaction with the aromatic spacer as 
depicted in 2D in Figure 10.  
For alTHMDs Figures 4 and 6 indicate that positions 6 and 7 of 
the naphtholactam are suitable for favourable interactions with 
Lys13 while positions 4 and 5 can be used for interaction with 
Arg14. 
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Table 2. Complexation Gibbs free energy (binding affinity) and its 
components for the training set of TMPKmt inhibitors THMD1-20 and 
validation set inhibitors THMV1-3. 

Training 

Seta 

Mw
b 

∆∆HMM
c 

∆∆Gsol
d ∆∆∆∆∆∆∆∆TS

e
 ∆∆Gcom

f Ki
exp  g  

[g/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [µM] 

THMD1 375 -1.40 -1.67 0.93 -4 1.9 
THMD2 439 -4.32 3.02 0.96 -2.26 4.7 
THMD3 377 -6.36 4.42 1.04 -2.98 6.2 
THMD4 391 -4.25 0.49 0.85 -4.61 1.4 
THMD5 361 -18.42 10.36 0.75 -8.81 0.42 
THMD6 392 -24.14 15.30 1.11 -9.95 0.75 
THMD7 383 -20.63 11.47 0.94 -10.09 0.27 
THMD8 287 1.69 3.47 0.36 4.8 89 
THMD9 288 1.46 3.29 0.37 4.38 55 
THMD10 285 2.96 5.35 0.37 7.94 195 
THMD11 301 1.36 4.97 0.54 5.79 112 
THMD12 284 3.33 3.22 0.43 6.12 70 
THMD13 366 -18.90 19.80 1 -0.1 10 
THMD14 294 6.36 0.55 1.11 5.8 38 
THMD15 288 3.04 8.09 0.44 10.69 202 
THMD16 323 -16.93 15.66 0.73 -2.01 6.5 
THMD17 302 -9.20 8.65 0.55 -1.1 13 
THMD18 322 -7.83 9.66 0.73 1.1 39 
THMD19 337 -5.59 8.44 0.88 1.97 16 
THMD20 380 -19.70 19.87 1.11 -0.95 35 

Validation 

Set 

Mw
 

∆∆HMM
 

∆∆Gsol ∆∆∆∆∆∆∆∆TS ∆∆Gcom Ki
pre/ 

Ki
exp h [g/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] 

THMV1 404 -18.51 17.30 1.21 -2.42 0.907 
THMV2 366 -9.04 13.08 1.00 3.05 0.837 
THMV3 362 -17.38 13.50 0.88 -4.76 1.054 

a for the chemical structures of the training and validation sets of inhibitors see Table 1; 
b Mw is the molecular mass of the inhibitor; 
c ∆∆HMM is the relative enthalpic contribution to the Gibbs free energy change related to 

the TMPKmt:THMD complex formation derived by molecular mechanics (MM): 
∆∆HMM ≅ [EMM{TMPKmt:THMDx} - EMM{THMDx}] - [EMM{TMPKmt:THMD0} - 
EMM{THMD0}], THMD0 – is the reference inhibitor molecule (1) with R1=Me, 
R2=H, R3=OH and R4=N3; 

d ∆∆Gsolv is the relative solvation Gibbs free energy contribution to the Gibbs free 
energy change related to TMPKmt:THMD complex formation: ∆∆Gsol = 
[Gsol{TMPKmt:THMDx} - Gsol{THMDx}]-[Gsol{TMPKmt:THMD0}-Gsol{THMD0}]; 

d ∆∆TS is the relative entropic contribution of the inhibitor to the Gibbs free energy 
related to protease-inhibitor complex formation: ∆∆TS = [TS{TMPKmt:THMDx} - 
TS{THMDx}] - [TS{TMPKmt:THMD0} - TS{THMD0}]; 

f ∆∆Gcom is the relative Gibbs free energy change related to the enzyme-inhibitor 
complex formation: ∆∆Gcom ≅ ∆∆HMM + ∆∆Gsol - ∆∆TSvib. 

g Ki
exp

 is the experimental TMPKmt inhibition constant taken from reference [6,12,13]. 
h ratio of predicted and experimental inhibition constants Ki

pre
/Ki

exp
. Ki

pre
 was derived 

from pKi
pre

 = -log10(Ki
pre) which was predicted from computed ∆∆Gcom using the 

regression equation shown in Table 3. 

Table 3. Regression analysis of computed binding affinities ∆∆Gcom and 
experimental inhibition constants pKi

exp
 = -log10(Ki

exp
) of THMDs 

towards TMPKmt. 

Statistical Data of Regression 

pKi = - 0.1422·∆∆Gcom + 4.9199  
Number of compounds n  20 
Squared correlation coefficient of regression R

2  0.93 

Cross-validated squared correlation coefficient R
2

XV  0.92 

Standard error of regression σ 0.248 
Statistical significance of regression, Fischer F-test 218.9 
Level of statistical significance α > 95% 

Range of activity of Ki
exp

  [µM] 0.27 - 202 

 

Pharmacophore model of inhibitory activity 

The 3D-QSAR PH4 pharmacophore generation process follows 
three main steps, the constructive, the subtractive and the 
optimization steps. The constructive phase of HypoGen auto-
matically selected as leads the most active compounds for 
which 0.27 × 1.25 – Ki

exp
 /1.25 > 0, namely 0.27 ≤ Ki

exp
 ≤ 0.42 

µM, THMD5 and THMD7 were used to generate all starting 
PH4 features and only those features were retained which 
matched both leads THMD5, THMD7. In the subtractive phase 
the inactive compounds with log10(Ki

exp
) - log10(0.27) > 3.5 

were used to remove those pharmacophoric features that 
mapped more than 50% of these compounds, while 
pharmacophore representatives which contained all five 
features were retained. In the optimization phase, only the 
highest scoring PH4s based on their probability function cost 
which was calculated by a simulated annealing protocol, were 
retained. A total of 10 optimized hypotheses were kept all 
displaying four features. The costs ranged from 89.7 (Hypo1) to 
190.5 (Hypo10). The relatively small gap between the highest 
and the lowest cost corresponds well with the homogeneity of 
the generated hypotheses and the consistency of the training set. 
For this PH4 the fixed cost (47.9) is lower than the null cost 
(810.3) by a difference ∆ = 762.4. This difference is a major 
quality indicator of the PH4 predictability (it has to be noted 
that ∆ > 70 corresponds to an excellent chance or a probability 
higher than 90% that the model represents a true correlation 
[15]). To be statistically significant the hypotheses have to be 
as close as possible to the fixed cost and as far as possible from 
the null cost. For the set of 10 hypotheses the difference was 
larger or equal to 762.4, which attests high quality of the 
pharmacophore model. The standard indicators as the root-
mean-square deviations (RMSD) between the hypotheses range 
from 1.998 to 3.732 and the squared correlation coefficient (R2) 
falls to an interval from 0.97 to 0.91. The first PH4 hypothesis 
with the best cost, RMSD and R2 was retained for further 
analysis. The statistical data for the set of hypotheses (costs, 
RMSD, R) are listed in Table 4. The regression equation for 
Hypo1: pKi

exp
 = 1.0016 × pKi

pre
 + 0.0077 (n = 20, R

2
 = 0.95, 

R
2

XV = 0.94, F = 330.8, σ = 0.204, α > 95%) is plotted in 
Figure 8. The figure shows also the geometry of the Hypo1 
PH4 and the THMV3 inhibitor mapping to it. To check the 
consistency of the generated pharmacophore model we have 
calculated the ratio of predicted and observed activities 
(Ki

pre
/Ki

exp
) for the validation set. The computed ratios were as 

follows: THMV1, 1.019; THMV2, 0.918; THMV3, 1.068; all 
of them lie relatively close to one, which documents a 
substantial predictive power of the regression for the best PH4 
model. The randomization validation of the PH4 model was 
also carried out by the CatScramble algorithm in the Catalyst 
for 49 random runs corresponding to 98% confidence level. 
This procedure created 10 valid hypotheses for each run, 
however, none of them was as predictive as the Hypo10, the 
hypothesis with the highest cost is shown in Table 4. Thus there 
is a 98% probability that the best selected hypothesis Hypo1 
represents a pharmacophore model for the biological activity of 
THMDs within the same level of predictive power as the 
complexation model, which relies on the 3D structures of the 
TMPKmt:THMDx complexes and computed Gibbs free energies 
of the enzyme-inhibitor binding ∆∆Gcom.  
 
Table 4. Output parameters of 10 generated PH4 pharmacophoric hypotheses 
after CatScramble validation procedure for TMPKmt inhibitors listing RMSD, 
total cost and correlation coefficient R 
 

Hypothesis RMSD R Total Cost 

Hypo1 1.998 0.97 89.7 
Hypo2 2.733 0.95 123.9 
Hypo3 2.921 0.94 135.2 
Hypo4 3.038 0.94 141.4 
Hypo5 3.182 0.93 150.1 
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Hypo6 3.701 0.91 188.1 
Hypo7 3.699 0.91 188.3 
Hypo8 3.703 0.91 188.8 
Hypo9 3.707 0.91 188.9 
Hypo10 3.732 0.91 190.5 
Fixed Cost 0.0 1.0 47.9 
Null Cost 8.802 0.0 810.3 

 

Table 5.  Designed THMD analogs (THMA1-50) and their predicted 
inhibitory activities (Ki

pre
) against TMPKmt 

 

 

Inhibitor 
Structure 

∆∆HMM ∆∆Gsol ∆∆∆∆∆∆∆∆TS ∆∆Gcom 
Ki

pre
 

[nM] R4 R5 R6 R7 

THMA1 H H OH H -24.72 10.19 0.90 -15.43 77 
THMA2 H H H OH -26.14 9.37 0.87 -17.64 37 
THMA3 H CH2OH H H -24.05 5.27 1.01 -19.8 18 
THMA4 H H CH2OH H -24.59 6.39 1.02 -19.23 22 
THMA5 H H H CH2OH -23.89 4.91 0.96 -19.93 18 
THMA6 H CH2OH CH2OH H -24.52 1.51 1.21 -24.22 4 
THMA7 H H SO2Cl H -32.57 11.41 1.45 -22.61 7 
THMA8 H H Cl H -21.50 3.57 1.05 -18.97 24 
THMA9 H H F H -21.36 3.61 0.91 -18.66 27 
THMA10 H H Br H -21.16 3.40 1.31 -19.07 23 
THMA11 H H Cl Cl -19.56 3.50 0.90 -15.43 77 

 

Inhibitor 
Structure 

∆∆HMM ∆∆Gsol ∆∆∆∆∆∆∆∆TS ∆∆Gcom 
Ki

pre 

[nM] R3 R4 R5 R6 

THMA12 H H H H -29.51 12.06 0.56 -18.02 33 
THMA13 H NHCOCH3  H H -27.33 11.10 1.05 -17.28 42 
THMA14 H NO2 H H -24.51 12.29 0.56 -12.78 183 
THMA15 H NH2 H H -25.82 8.09 0.71 -18.44 29 
THMA16 H COO(-) H H -31.87 6.95 0.99 -23.14 6 
THMA16' H H COO(-) H -24.17 4.40 0.99 -20.76 13 
THMA17 H OCH3 H H -28.90 4.92 0.85 -24.82 4 
THMA18 OCH3 OCH3 H H -30.62 9.18 1.03 -22.48 8 
THMA19 OCH3 H OCH3 H -29.87 12.65 1.08 -18.3 30 

 

 

Inhibitor 
Structure 

∆∆HMM ∆∆Gsol ∆∆∆∆∆∆∆∆TS ∆∆Gcom

Ki
pre 

[nM] R3 R4 R5 R6 

THMA20 H H H H -29.06 1.70 0.52 -27.88 1.31 
THMA21 H H NO2 H -21.02 -1.97 0.96 -23.95 4.7 
THMA22 H H NH2 H -19.45 -1.95 0.68 -22.08 8.7 
THMA23 H H COO(-) H -27.06 2.11 0.95 -25.9 2.5 
THMA24 H COO(-) H H -27.15 8.12 0.91 -19.94 18 
THMA25 H H NHCOCH3 H -26.08 1.61 1.09 -25.55 2.80 
THMA26 CH3 H NHCOCH3 H -27.45 -1.83 0.99 -30.28 0.60 
THMA27 CH2CH3 H NHCOCH3 H -39.69 6.97 1.27 -33.99 0.18 
THMA28 H H OCH3 H -23.28 7.09 0.50 -16.7 51 
THMA29 H OCH3 OCH3 H -24.82 1.11 1.05 -24.75 4 
THMA30 CH3 OCH3 OCH3 H -23.00 0.86 1.13 -23.27 6 
THMA31 Cl Cl Cl Cl -20.18 -7.84 0.86 -28.88 0.94 

 

Inhibitor 
Structure 

∆∆HMM ∆∆Gsol ∆∆∆∆∆∆∆∆TS ∆∆Gcom

Ki
pre 

[nM] R3 R4 R5 R6 

THMA32 H H H H -18.84 5.18 0.57 -14.23 114 
THMA33 H H NH2 H -20.54 -2.13 0.96 -23.63 5 
THMA34 H H OCH3 H -24.37 -9.06 1.17 -34.6 0.15 
THMA35 H OCH3 OCH3 H -22.61 0.04 1.04 -23.61 5 
THMA36 NH2 H OCH3 H -19.31 -2.91 0.93 -23.15 6 
THMA37 COO(-) H OCH3 H -13.22 -7.17 1.12 -14.48 105 
THMA38 H H NHCOOH H -25.28 0.56 1.09 -25.81 2.6 
THMA39 H H OCH2CO2

- H -32.82 19.95 1.29 -14.16 117 
THMA40 H H COOC2H5 H -26.75 2.86 1.22 -25.11 3 
THMA41 CH2CO2

- H OCH3 H -19.89 9.74 1.25 -11.41 287 
THMA42 H H OCH3 OCH3 -26.37 2.16 0.98 -25.19 3 
THMA43 H H NHCOCH3 H -27.99 1.34 1.08 -27.73 1.37 
THMA44 H H COO(-) H -32.07 21.52 0.95 -11.5 278 

 

 

 

Inhibitor R1 R2 ∆∆HMM ∆∆Gsol ∆∆∆∆∆∆∆∆TS ∆∆Gcom
Ki

pre  
[nM] 

THMA45 Br CHOH(CH2)2CO2
- -50.51 30.22 1.07 -21.36 11 

THMA46 Br CHOH(CH2)2CO2CH3 -27.41 19.00 1.21 -9.63 514 
THMA47 Br (CHOH)2CH2CO2

- -52.01 34.75 1.19 -18.45 29 
THMA48 CH3 CHOH(CH2)2CO2

- -50.30 30.22 0.68 -20.76 13 
THMA49 Br CHOH(CH2)2OCH3 -46.22 8.83 0.96 -38.35 0.05 
THMA50 CH3 CHOH(CH2)2OCH3 -45.98 8.68 0.51 -37.81 0.06 
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Figure 8. Coordinates (top), 
features (middle left) and mapping 
(middle right) of the TMPKmt 
inhibition pharmacophore with 
THMV3 (yellow). The correlation 
plot experimental vs. predicted 
inhibitory activity is displayed at 
the bottom. 

New inhibitors 

 The design of new analogs in this work is based either on 
the favourable features of the naphtholactam, phthalimide, 
isoindoline and indanone moieties linked via 2-butene spacer to 
the thymine or the carboxylic, hydroxymethyl moiety via 
aromatic spacer, Table 5, [5, 6]. We have noticed that certain 
substitutions in positions 4 to 7 of the naphtholactam ring and 
in positions of 3 to 6 of the related phthalimide, isoindoline and 
indanone moieties with a reduced size lead to elevated 
predicted binding affinities of the modelled analogs to the 
TMPKmt due to favourable attractive interactions of the 
substituents with the cationic residues Lys13 and Arg14, which 
are located in the vicinity of the substitution sites. This is the 
reason why some of the novel analogs (THMA1-50, Table 5) 
bearing negatively charged substituent in some of these 
positions were predicted to display inhibition potencies in the 
picomolar range. The Ki

pre
 were calculated from the regression 

equation of the QSAR model of TMPKmt inhibition by THMDs 
(Table 3). The substitutions and molecular scaffolds considered 
are listed for the five considered categories of the THMAs in 
Table 5 and are shown on Figures 9 - 11.  
The picomolar Ki

pre
 of some designed compounds may 

represent a somewhat too optimistic prediction of activity that 
falls outside of the concentration range of the training set 
inhibitors considered in the QSAR model of TMPKmt 
inhibition. However, the indication of elevated inhibitory 
potencies of these molecules can still be a useful hint for 
medicinal chemists developing more potent TMPKmt inhibitors 
to explore the proposed chemical structures. 

New analogs with an aliphatic spacer 

Substitution in positions R4 to R7 of the naphtholactam moiety 

These analogs THMA1-11 are derived from the most potent 
training set inhibitor THMD7 (Figure 4) and are intended to 
involve Lys13 and Arg14 residues into inhibitor binding. The 
best of them THMA6, which bears two hydroxymethyl groups 
in the positions R5 and R6 reached predicted inhibitory potency 
towards the TMPKmt Ki

pre
 = 4 nM (Figure 9). 

Replacement of the naphtholactam by phthalimide moiety 

Replacement of the bulky naphtholactam moiety by a smaller 
less hydrophobic phthalimide was not favourable for the 
analogue binding. Substitution with a methoxy group at 
position 4 in THMA17 resulted in a predicted Ki

pre
 of 4 nM. 

Surprisingly placement of a carboxyl group to the R4 position in 
THMA16 did not lead to the expected favourable interaction 
with Arg14. Despite the fact that the HB between the 
negatively charged carboxyl oxygen and Arg14 is conserved 
the potency remained almost unchanged (Ki

pre
 = 6 nM) with 

respect to THMA17, due in part to the COO(-) group's repulsive 
interaction with Glu124 and Glu166 in THMA16.  
 

Removal of one ketone from phthalimido moiety 

When the phthalimido moiety was replaced by an isoindoline 
the predicted activity increased almost 30 times c.f. THMA12 
(Ki

pre
 = 33 nM) and THMA20 (Ki

pre
 = 1.31 nM), most probably 

due to unfavourable interaction of the ketone oxygen with the 
hydroxyl group of Tyr39 (Figure 9). Additional substitutions at 
positions 3 and 5 by methyl and methylamide groups, 
respectively (THMA26) or alternatively by chlorines in 
positions R1 to R4 (THMA31) resulted in predicted 
subnanomolar inhibitory potencies of the designed analogs c.f. 
THMA27. 
 
Removal of nitrogen atom from 5 membered isoindoline ring 

When the isoindoline is replaced by an 1-indanone by 
replacement of the sp2 ring nitrogen with a sp3 methylene group 
the predicted activity of the analogs drops by two orders of 
magnitude, c.f. THMA20 (Ki

pre
 = 1.31 nM) and THMA32 

(Ki
pre

 = 114 nM). However, this substitution confers higher 
flexibility and improved spatial orientation of the indanone 
moiety. Substitutions in position R5 by methoxy or acetamide 
groups led to analogs with predicted low nanomolar and 
subnanomolar inhibitory potencies (THMA34 and THMA43).  
The attachment of anionic carboxyl –COO(-) and especially 
methoxyacetate –OCH2COO(-) groups into the R5 position 
added two hydrogen bonds of the THMA39 to the residues 
Arg14 and Arg74 (Figure 9), but resulted in a relatively weak 
predicted binding affinity due to unfavorable solvent effect and 
anionic inhibitor desolvation. 
 

 
THMA12 (Ki

pre
 = 33 nM) THMA20 (Ki

pre
 = 1.31 nM) 

THMA17 (Ki
pre

 = 4 nM) THMA32 (Ki
pre

 = 114 nM) 

THMA34 (Ki
pre

 = 0.15 nM) THMA39 (Ki
pre

 = 117 nM) 

Figure 9.  Some of the most active designed analogs are shown at the 
active site of TMPKmt in stick representation. Hydrogen bonds are 
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shown in black dashed lines, other important interactions are shown as 
solid black lines. 
 

  

THMA45 (Ki
pre

 = 11 nM) THMA49 (Ki
pre

 = 0.05 nM) 

Figure 10. 2D depiction of interaction between TMPKmt and THMA45 
with aromatic spacer at the enzyme's active site, cation-aromatic π and 
aromatic π - π interactions are in orange line, HBs are in dashed blue 
line and charge interactions in dashed purple line. 
 

 
Figure 11. Interaction energy breakdown to residue contributions for 
the best designed analogs with aliphatic spacer (THMA34, red) and 
with aromatic spacer (THMA49, green). 
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Compounds a #stars b Mw 
c
 

[g.mol-1] 

Smol 
d
 

[Å2] 

Smol,hfo 
e
 

[Å2] 

Vmol 
f
 

[Å3] 
RotB g HBdon 

h
 HBacc 

i
 logPo/w 

j
 logSwat 

k
 logKHSA 

l
 logB/B m BIPcaco 

n
 

[nm.s-1] 
#meta o Ki

exp
 
p
 

[µM] 
HOA q %HOA r 

THMD6 1 392.4 622.1 176.5 1125.1 5 1 7.5 1.8 -4.1 0 -2.0 47.5 4 0.75 3 67 
THMD7 0 383.4 577.7 162.8 1071.7 4 1 8 1.7 -3.3 -0.2 -1.2 201.8 3 0.27 3 78 
THMD9 0 288.3 535.5 185.4 920.9 5 2 5.5 1.8 -3.3 -0.3 -1.7 20.3 4 55 2 61 

THMD11 0 301.3 573.1 215.8 988.8 6 3 6 0.7 -2.1 -0.5 -1.9 32.5 5 112 2 58 
THMD13 0 367.2 562.5 136.7 970.8 6 2 5.5 2.5 -3.9 -0.2 -1.6 24.2 3 10 2 66 
THMD15 0 288.3 535.1 133.9 921.4 6 2 5.5 1.8 -3.2 -0.3 -1.9 16.1 3 202 2 59 
Rifampin 1 137.1 313.3 0.0 479.2* 2 3 4.5 -0.7 0 -0.8 -0.8 267.5 2 - 2 67 
Isoniazid 4 123.1* 299.3 0.0 442.6* 1 2 5 -0.6 -0.5 -0.8 -0.7 298.4 4 - 2 67 

Ethambutol 2 204.3 475.7 395.8 805.7 11 4 6.4 -0.2 0.6 -0.8 0.0 107.8 4 - 2 62 
Pyrazinamide 10 823.0* 1090* 850.0* 2300* 25* 6 20.35* 3.0 -3.1 -0.3 -2.7 38.2 11* - 1 34 
Gatifloxacin 0 375.4 597.5 355.7 1093.0 2 1 6.8 0.5 -4.0 0 -0.6 17.0 1 - 2 52 
Moxifloxacin 0 401.4 641.2 395.6 1167.1 2 1 6.8 1.0 -4.7 0.2 -0.6 20.9 1 - 2 56 
Rifapentine 10 877.0* 1024.3* 844.9* 2332.6* 24* 6 20.9* 3.6 -2.2 -0.2 -1.5 224.0 13* - 1 51 
Bedaquiline 4 555.5 786.5 213.7 1531.7 9 1 3.8 7.6* -6.9 1.7 0.4 1562.2 5 - 1 100 
Delamanid 2 534.5 795.6 284.4 1469.9 7 0 6.0 5.8 -7.6 1.0 -1.0 590.9 2 - 1 85 
Linezolid 0 337.4 554.6 337.2 995.4 2 1 8.7 0.6 -2.0 -0.7 -0.5 507.0 2 - 3 79 
Sutezolid 1 353.4 594.0 330.6 1046.2 2 1 7.5 1.3 -3.4 -0.4 -0.4 449.3 0 - 3 82 
Ofloxacin 1 361.4 580.5 337.0 1044.0 1 0 7.3 -0.4 -2.8 -0.5 -0.4 25.9 1 - 2 50 
Amikacin 14 585.6 738.3 350.3 1499.5 22* 17* 26.9* -7.9* -0.2 -2.1 -3.5 0 14* - 1 0 

Kanamycin 10 484.5 655.8 258.9 1290.9 17* 15* 22.7* -6.7* 2.0 -1.4 -3.1 0 12* - 1 0 
Imipenem 0 299.3 486.5 259.1 879.4 8 3 7.2 1.0 -1.8 -0.7 -1.4 35.0 3 - 3 61 

Amoxicillin 2 365.4 560.8 164.6 1032.9 6 4.25 8.0 -2.5 -0.8 -1.1 -1.5 1.0 5 - 1 12 
Clavulanate 0 199.2 396.1 184.6 629.5 4 2 6.5 -0.8 0.3 -1.3 -1.3 13.3 2 - 2 42 

 
a
  known compounds inhibitors with experimentally determined inhibition constants, see Table 1; 

b
  drug likeness, number of property descriptors (from 24 out of the full list of 49 descriptors of QikProp, ver. 3.7, release 14) that fall outside the range of values for 95% of 

known drugs (range or recommended values: 0 – 5); 
c
  molecular weight in g.mol-1 (range for 95% of drugs: 130 – 725 g.mol-1) [30]; 

d
  total solvent-accessible molecular surface, in Å2

 (probe radius 1.4 Å) (range for 95% of drugs: 300 – 1000 Å2); 
e
  hydrophobic portion of the solvent-accessible molecular surface, in Å2

 (probe radius 1.4 Å) (range for 95% of drugs: 0 – 750 Å2); 
f 

 total volume of molecule enclosed by solvent-accessible molecular surface, in Å3
 (probe radius 1.4 Å) (range for 95% of drugs: 500 – 2000 Å3); 

g
  Number of non-trivial (not CX3), non-hindered (not alkene, amide, small ring) rotatable bonds (range for 95% of drugs: 0 – 15); 

h
  Estimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution. Values are averages taken over a number of configurations, 

so they can be non-integer (range for 95% of drugs: 0.0 – 6.0); 
i 

 Estimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution. Values are averages taken over a number of 
configurations, so they can be non-integer (range for 95% of drugs: 2.0 – 20.0); 

j 
 logarithm of partitioning coefficient between n-octanol and water phases (range for 95% of drugs: -2 – 6.5); 

k
  logarithm of predicted aqueous solubility, log S. S in mol dm–3 is the concentration of the solute in a saturated solution that is in equilibrium with the crystalline solid                  

(range for 95% of drugs: -6.0 – 0.5); 
l
  logarithm of predicted binding constant to human serum albumin (range for 95% of drugs: -1.5 – 1.5); 

m
  logarithm of predicted brain/blood partition coefficient. Note: QikProp predictions are for orally delivered drugs so, for example, dopamine and serotonin are CNS negative 

because they are too polar to cross the blood-brain barrier (range for 95% of drugs: -3.0 – 1.2); 
n
  predicted apparent Caco-2 cell membrane permeability in Boehringer-Ingelheim scale, in [nm/s] (range for 95% of drugs: < 25 poor, > 500 great); 

o
  number of likely metabolic reactions (range for 95% of drugs: 1 – 8); 

p
  experimental THMD inhibitory activity [6,12,13]; 

q
 human oral absorption (1-Low, 2-Medium, 3-High); 

r 
 percentage of human oral absorption in gastrointestinal tract (<25% - poor, >80% high); 

(*) star indicating that the property descriptor value falls outside the range of values for 95% of known drugs.
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New analogs with aromatic spacer 

The training set THMDs is composed with almost 50% 
aliphatic spacer (alTHMDs, 0.27 ≤ Ki

exp ≤ 6 µM) and 50% 
aromatic spacer (arTHMDs, 10 ≤ Ki

exp ≤ 202 µM). At first sight 
and according to their potency it seems obvious that designed 
arTHMAs will never reach the potency level of alTHMAs. The 
analysis of residues contribution to Eint breakdown for 
THMD13 (the best arTHMDs in the training set) in Figure 6 
shows that the three additional interactions between the 
aromatic spacer ring and residues Arg95 and Arg160 (cation -
 π) and Tyr103 (π - π) raise substantially the affinity towards 
TMPKmt. Moreover as depicted in 2D in Figure 10 and the 
graph in Figure 11 the carboxylic group repulsive interactions 
with Glu124 and Glu166 lowers the affinity (THMA45, 47 and 
48). Oppositely the methoxy group enhances the THMAs 
stabilizing interactions with the enzyme exemplified by 
THMA49 and 50. Besides the basic stacking involving the 
thymine moiety common to both alTHMAs and arTHMAs, 
these three additional π - π and cation - π interactions and 
finally two HBs between the OH on R2 and Arg153 and 
Asp163 justify the significant increase of the predictive potency 
exhibited by arTHMAs. 

The overall contribution to �int of the residues specific for 
TMPKmt of 15% for THMA34 vs. 5% for THMA49 breakdown 
into residue contributions: Arg14 (7% – THMA34 vs. 0% –
 THMA49), Tyr39 (4% – THMA34 vs. 1% – THMA49) and 
Asn100 (4% – THMA34 vs. 4% – THMA49) render the best 
arTHMA less selective than its alTHMA counterpart. For 
arTHMAs the conversion of the carboxylic acid group 
(THMA45, Ki

pre
 = 8 nM) into a bulkier methyl ester resulted in 

a detrimental decrease of affinity (THMA46, Ki
pre

 = 458 nM). 

 

ADME-related Properties of THMA Inhibitors 

Drug likeness parameter (#stars, for definition see the Methods 
section) computed for known THMD inhibitors of TMPKmt, 
antituberculotics either in clinical use or in clinical trials (Table 
6) and selected potent designed analogs THMAx (Table 7) 
characterizes the ADME related properties relevant for the 
pharmacokinetic profile of a compound. As we can see from 
Tables 6 and 7, the most potent THMDs as well as the 
predicted most active designed THMAs display favourable 
values of #stars parameter equal to 0 for all except one 
compound. Five of the novel antituberculosis drugs in trials 
also display #stars equal to zero. Therefore, the designed 
THMA analogs are predicted to possess favourable 
pharmacokinetic profiles and thus represent suitable candidates 
for synthesis and experimental testing. 

The most active designed alTHMAs (THMA6 and 34) and 

arTHMAs (THMA49 and 50) display pharmacokinetic profiles 
for almost all descriptors considered (Table 7). [30]. There is, 
however, a noticeable difference in the cell wall permeability 
parameter BIPcaco-2 (Table 7) showing that arTHMAs display 
higher predicted permeability rates than the two alTHMAs. It is 
worthwhile mentioning that about 50% of new antituberculotics 
in (pre)clinical trials fall into low BIPcaco-2 permeability range. 
arTHMAs' predicted percentage of human oral absorption in 
gastrointestinal tract (HOA) falls into the range of  85% against 
66% for alTHMAs, which suggest the possibility of higher oral 
bioavailability for the most active arTHMAs [30]. According to 
these descriptors the arTHMAs analogs display more favorable 
predicted ADME-related profiles and drug-like properties and 
thus represent candidate molecules suitable for synthesis. 

 

 
Figure 12. Connolly surface of the predicted most active arTHMA 
THMA49 at the active site of TMPKmt. The binding cleft surface is 
coloured according to residue hydrophobicity: red-hydrophobic, blue-
hydrophilic and white-intermediate residues. 
 

Conclusions 

The high statistical significance of the QSAR model and PH4 
pharmacophore model derived from a training set of 20 and 
validation set of 3 THMD compounds was well documented. 
Presence of the naphtholactam moiety in the most potent 
alTHMAs TMPKmt inhibitors and analysis of the active site 
residue contributions to Eint directed us in our effort to optimize 
the structures of the known inhibitors and enhance the 
involvement of the residues Lys13 and Arg14 in the inhibitor 
binding. We have replaced in alTHMAs the bulky and rigid 
naphtholactam moiety by smaller less hydrophobic and more 
flexible phthalimide, isoindoline and indanone moieties. 

Novel 
Analogs a 

#stars b Mw 
c
 

[g.mol-1] 

Smol 
d
 

[Å2] 

Smol,hfo 
e
 

[Å2] 

Vmol 
f
 

[Å3] 
RotB g HBdon 

h
 HBacc 

i
 logPo/w 

j
 logSwat 

k
 logKHSA 

l
 logB/B m BIPcaco 

n
 

[nm.s-1] 
#meta o Ki

pred
 
p
 

[nM] 
HOA q %HOA r 

THMA6 0 407.4 634.3 245.4 1174.3 8 3 9.9 1.1 -3.2 -0.3 -2.0 70.6 5 3 3 66 
THMA12 0 325.3 546.4 170.1 971.3 4 1 6.5 1.7 -3.4 -0.1 -1.2 207.2 3 21 3 79 
THMA28 0 341.4 590.1 290.9 1058.0 5 1 7.3 2.0 -3.6 -0.1 -1.2 341.5 5 33 3 84 
THMA32 0 310.4 571.3 216.4 1002.9 4 1 5.5 2.5 -4.1 0.1 -1.1 379.2 5 77 3 88 
THMA34 0 384.4 639.2 309.7 1147.6 6 2 8.3 2.0 -4.1 -0.3 -2.0 17.2 6 0.094 2 61 
THMA39 0 384.4 669.8 262.1 1174.7 7 2 8.3 1.9 -4.4 -0.3 -2.6 7.1 7 101 2 54 
THMA49 0 369.2 557.8 200.4 976.7 7 2 6.9 1.9 -3.3 -0.3 -1.0 396.6 3 0.03 3 85 
THMA50 0 304.3 560.9 286.1 983.8 7 2 6.9 1.7 -3.0 -0.3 -1.2 426.5 4 0.04 3 84 

 
a
 see Table 5 for the chemical structures of the virtual hits; 

b
 to r except p see the footnote of Table 6; 

p
 predicted Ki

pre s were estimated from the QSAR equation, Table 3; 
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Additional substitutions with methoxy, hydroxy-methyl and 
acetamide groups in positions R4 and R5 of the aromatic 
scaffolds improved the binding site interactions by specific 
hydrogen bonding involving the Lys13, Arg14, Arg153 and 
Tyr39 residues to reach 0.15 nM predicted potency. These 
residues were identified and targeted based on the active site 
interaction energy Eint breakdown for a molecular mechanics 
all-atom model of inhibitor-TMPKmt binding and comparative 
analysis, which led to identification of new potent inhibitor 
candidates. In the same way replacement of the butenyl spacer 
of alTHMAs by an aromatic one in arTHMAs intensifies the 
affinity by adding three π - π and cation - π interactions and 
two HBs to reach picomolar predicted potency.  
Although our activity predictions may be somewhat too 
optimistic, they still point to a specific subset of the chemical 
space which may contain subnanomolar TMPKmt inhibitors 
with favourable pharmacokinetic profiles. A more systematic 
search through screening of combinatorial library targeted 
around our designed inhibitors THMA34, THMA27, THMA48 
and THMA49 and subsequent activity evaluation in an 
enzymatic assay may lead to a discovery of new potent 
antituberculotics.  
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