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Abstract 15 

This study reports robust reliable ensemble learning (EL) approach based nano-QSAR models 16 

for predicting the biological effects of diverse nanomaterials (NMs) using simple molecular 17 

descriptors.  EL based nano-QSAR models implementing stochastic gradient boosting and 18 

bagging algorithms were constructed and used to establish statistically significant relationships 19 

between measured biological activity profiles of nanoparticles (NPs) and their simple structural 20 

properties. To demonstrate the predictive ability of the developed nano-QSAR models, five 21 

different representative data sets (case studies) of NMs (NPs with diverse metal cores, NPs with 22 

similar core but diverse surface modifiers, metal oxide NPs, surface modified multi-walled 23 

carbon nanotubes, and fullerene derivatives) studied recently using in vitro cell based assays 24 

were employed. Rigorous validation of the constructed classification and regression nano-QSAR 25 

models performed using various statistical parameters suggested robustness of the EL based 26 

models for their future use. Proposed nano-QSAR models showed high prediction accuracy 27 

(binary classification) of more than 93.18 % (case study 1), 97.25 % (case study 2), and yielded 28 

correlation (R2) of more than 0.851 between experimental and model predicted values of 29 

biological activity in complete data of different diverse sets of NPs. Results for all the five case 30 

studies demonstrated better predictive performance of the proposed nano-QSAR models 31 

compared to the previous studies. The proposed models reliably predicted the biological activity 32 

of all considered NPs, and the methodology is expected to provide guidance for the future design 33 

and manufacturing of NMs ensuring better and safer products.                 34 

 35 

Keywords:   Nanomaterials, ensemble learning, nano-QSAR model, biological activity, 36 

nanostructure, modeling   37 
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1. Introduction 38 

In recent years, nanomaterials (NMs) have gained much importance due to their 39 

widespread applications in different areas. These materials are used in a variety of fields due to 40 

their unique physical and chemical properties, such as shape, size distribution, surface area and 41 

structure, overall charge, porosity, agglomeration rate, and surface chemistry.1 Currently, these 42 

materials can be designed to achieve desired properties and are used in electronics, opto-43 

electronics, biomedical, environmental, material and energy related areas, cosmetics, 44 

pharmaceuticals and catalysts.2 Moreover, the use of NMs in various industries is projected to 45 

increase dramatically in the future and as a consequence, contamination of environment by these 46 

materials is expected, or at least such possibility cannot be disregarded. Manufactured NMs 47 

intended for industrial applications may cause toxic effects in humans and public concern about 48 

the safety of these materials is increasing.3 Recently, there appeared some reports in literature on 49 

the adverse effects of nanoparticles (NPs) on humans and environment.4,5  Acute or repeated 50 

exposure to NPs present in commercial products may potentially cause systemic, cellular and/or 51 

genomic toxicities. There remain scientific gaps in understanding of toxicology of NMs that 52 

these are already contained in commercial products not intended for human exposure, could 53 

contaminate the environment while also not intended for human exposure, and are intended for 54 

biomedical applications such as drug delivery, imagining and sensing.6 Thus, understanding the 55 

biological effects of exposure to NPs is of paramount importance. There is still limited 56 

information about experimentally measured toxic effects of NPs and some isolated toxicity 57 

studies considering single or a few NPs are published in last few years.7-20 Experimental studies, 58 

especially toxicological, are time-consuming, costly, unethical, and often impractical, calling for 59 

the development of efficient computational approaches capable of predicting biological effects of 60 
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NMs. Thus, it is imperative to develop a comprehensive, and ideally, predictive knowledge of 61 

the effects of NPs on the environment as well as animals and humans. Modeling the biological 62 

effects of NPs is difficult task due to their structural heterogeneity, complexity and diversity and 63 

reports on computational modeling of nano toxicology are scarce.21 These computational 64 

methods are based on the assumption that the variation in the properties or biological activities of 65 

a NP can be correlated with changes in its molecular structure and can be used to predict the 66 

activity/property of newly synthesized NPs without restoring to experimentation.1 In most cases, 67 

the exact composition of a given NP is not known and three-dimensional nano-structures may 68 

include large number of highly complex atoms leading to stoichiometric variations between the 69 

NPs, rendering the classical molecular descriptors inappropriate for modeling. However, a few 70 

attempts have been made to develop quantitative-structure activity/toxicity relationships 71 

(QSARs/QSTRs) to correlate molecular nano-structures with activities of NPs using the limited 72 

data available in literature. QSARs for predicting nano-toxicity/biological activity of 48 fullerene 73 

derivatives,22-25 17 metal oxides NPs,2,26 51 NMs possessing varying core metal compositions, 74 

coatings and surface attachments,6,20,21,27 109 NPs with similar metal core with diverse surface 75 

modifiers,1,6,27-29 and 80 surface modified multi-wall carbon nanotubes30,31 have recently been 76 

reported. Modeling techniques, such as means of balance of correlation (MBC),22,25 multiple 77 

linear regression (MLR),2,27,31 logistic regression (LR), Naïve bayes (NB),29 k-nearest neighbor 78 

(k-NN),6,29, partial least square regression (PLSR),23,24 multi-layered perceptron neural network 79 

(MLPN),1,27 support vector machines (SVM)6,29 have been found useful for the establishment of 80 

the relationships between the molecular structures and biological activities of NPs. Although, the 81 

predictive responses achieved using these modeling techniques have been within acceptable 82 

range, these methods have certain limitation. Linear regression methods do not fit the data with 83 
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nonlinear structure, a common feature of experimental toxicity data.32 SVM uses only a limited 84 

data during model building phase.32 MLPN, although, a universal nonlinear method, it suffers 85 

from over-fitting problem in training.32 Therefore, keeping in view the rapidly emerging scope 86 

and applications of the NMs, there is a need to develop more précised and robust methods 87 

capable of predicting the nano-toxicities of various types of materials, which could help in 88 

designing safer materials.  89 

Ensemble learning (EL) methods have emerged as powerful tools for mapping the 90 

relationship between the response and predictors, and have not yet been used for predicting the 91 

biological activity of NPs so far. EL-based techniques are applicable to both classification and 92 

regression problems.33 These methods overcome problems with weak predictors34 and have the 93 

advantage to alleviate the small sample size problem by averaging and incorporating over 94 

multiple models to reduce the potential for over-fitting the training data.35 EL methods with 95 

bagging and stochastic gradient boosting techniques improve the prediction accuracy of weak 96 

learners.36 The bagging minimizes  prediction variance by generating bootstrapped replica data 97 

sets, whereas, boosting creates a linear combination out of many models, where each new model 98 

is dependent on the preceding model.37 Decision tree forest (DTF) and decision treeboost (DTB) 99 

implementing bagging and boosting techniques, respectively are inherently non-parametric 100 

statistical methods and make no assumption regarding the underlying distribution of the values 101 

of predictor variables and can handle numerical data that are highly skewed or multi-model in 102 

nature.38   103 

Selection of appropriate descriptors in toxicity prediction is yet another important issue. 104 

A large number and variety of such descriptors have been used in earlier studies, generally 105 

derived through highly complicated semi-empirical and empirical methods based on quantum 106 
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mechanical calculations.2,6 Hence, it would be desirable to develop toxicologically relevant EL-107 

based nano-QSARs to relate set of simple structural descriptors characterizing NPs with their 108 

measured biological effects (smooth muscle apoptosis, cellular uptake,  cytotoxicity, cell 109 

viability).   110 

In this study, the basic objectives were to construct the EL-based classification and 111 

regression nano-QSAR models (DTB and DTF) for predicting the biological effects of diverse 112 

NPs using simple structural descriptors. Accordingly, five different datasets (a) fifty one various 113 

NMs with diverse metal cores,20 (b) one hundred nine NPs with similar core but diverse surface 114 

modifiers,6 (c) seventeen diverse metal oxide NPs,2 (d) eighty surface modified multi-walled 115 

carbon nanotubes,39 and (e) forty eight different fullerene derivatives24 available in literature for 116 

QSARs analysis were considered. QSAR calculations led to statistically validated and externally 117 

predictive models; these models quantitatively relate the structural properties of NPs with their 118 

experimentally measured biological effects in different cell based assays. To the best of the 119 

knowledge of the authors, this report is the first example of EL-based nano-QSARs analysis of 120 

different sets of NPs successfully demonstrates the high potential of proposed modeling 121 

approaches for improving the experimental design and prioritizing the biological testing of novel 122 

NPs.    123 

 124 

2. Methods 125 

2.1 Datasets 126 

In this study, data from multiple sources were considered for the analysis. For developing 127 

predictive EL-based nano-QSAR models, five different datasets on biological activities of 128 

diverse NPs were used.  129 
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Case study 1:  NMs with diverse metal cores- Shaw et al.20 reported a study on the effect of 51 130 

different NMs (with diverse metal cores) in four cell lines (endothelial and smooth muscle cells, 131 

monocytes, and hepatocytes), using four biological assays (ATP content, reducing equivalents, 132 

caspase-mediated apoptosis, and mitochondrial membrane potential) in each cell line, at four 133 

concentrations per assay. These experiments generated potentially 64 biological response 134 

variables for each of the NMs. Of the possible combinations of biological assays and cell types, 135 

only the apoptosis assays (smooth muscle cell apoptosis, SMA) exhibited dose-response 136 

relationship. Similar to Epa et al.27, the slope of the dose-response curve (SMA) was considered 137 

as a dependent variable for predictive regression modeling. Moreover, for 44 of these NMs, four 138 

structural descriptors (size, relaxivities, R1, R2, and zeta potential) were available. Fourches et 139 

al.6 calculated arithmetic mean of biological activity profile (64 features) designating as Z-mean, 140 

which was taken as basis for binary classification (Z-mean > - 0.40; class 1, and Z-mean < - 141 

0.40, class 0), rendering 22 NMs in each class.  142 

 143 

Case study 2:  NPs with common metal core- The dataset comprised of 109 NPs in which a 144 

supermagnetic NP (cross-linked iron oxide with amine group) was decorated with different 145 

synthetic small molecules.7 NPs were made magnetofluorescent with the addition of fluorescence 146 

isothyocynate molecules on their surfaces to enable measurement of cell uptake. All the NPs in 147 

the dataset have exactly the same metal core decorated with different synthetic small molecules. 148 

Each NP is represented by the structure of organic surface modifier, which in turn is 149 

characterized by conventional molecular descriptors. Then, NPs were screened against human 150 

pancreatic cancer cells (PaCa2). Cellular uptake is expressed as decadic logarithm of the 151 

concentration (pM) of NPs per cell, which varied from 2.23 to 4.44. For binary classification, a 152 
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criterion of Chau and Yap29 was considered. According to this criteria, the NPs having cellular 153 

uptake of more than 5000 NPs per cell were considered to have good/moderate cellular uptake 154 

(positive class), while NPs with cellular uptake of less than 5000 particles per cell were 155 

considered to have poor cellular uptake (negative class). Thus, 59 NPs belong to positive and 156 

remaining 50 NPs were in negative class.       157 

 158 

Case study 3:  Diverse metal oxides NPs - The dataset contains 17 different diverse metal 159 

oxides based NPs2 with sizes ranging from 15 to 90 nm reporting their cytotoxicity in 160 

Escherichia coli bacteria and expressed in terms of the logarithmic values of molar 1/EC50 161 

(effective concentration of a given oxide that reduces bacterial viability by 50%), which varied 162 

from 1.74 to 3.51 mol L-1.  163 

 164 

Case study 4:  Surface modified multi-walled carbon nanotubes CNTs - The dataset contains 165 

80 distinct surface modified multi-walled carbon nanotubes,39 where the surface decorators were 166 

made from a combination of eight amines and nine acylators with a common linking group to the 167 

nanotube. Zhou et al.39 tested these 80 decorator-nanotube complexes (DNC) for their six 168 

different end-points and evaluated acute cytotoxicity (cell) of the DNC library in macrophases 169 

using WST-1 assay.40 Cell viability was measured by determining the mitochondrial 170 

dehydrogenase activity. As described above, only the 29 most nanotoxic DNC based upon the 171 

cumulative index over all six end-points31,39 were retained here for modeling. The experimental 172 

cell viability varied from 1 to 80.  173 

 174 
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Case study 5: Fullerene derivatives NPs – The data on measured binding affinity (minus 175 

decimal logarithm of the 50 % effective concentration, pEC50, µM) for 48 different fullerene 176 

derivatives with the HIV-1 PR (human immunodeficiency virus type 1 aspartic protease) were 177 

taken from Durdagi al.24. The binding affinities were assessed by quantitative assay, based on the 178 

estimated binding energies of fullerene analogous with HIV-1 PR which were determined by 179 

molecular docking. The measured pEC50 values for the considered fullerene derivatives varied 180 

between 2.25 and 8.70.  181 

Histograms of the experimental values of the biological activity end-points under 182 

different case studies are plotted in Fig. 1a-e. A histogram consists of tabular frequencies, shown 183 

as adjacent rectangles, erected over discrete intervals, with an area equal to the frequency of the 184 

observations in the interval. The height of a rectangle is also equal to the frequency density of the 185 

interval. The total area of the histogram is equal to the number of data. From the plotted 186 

histograms, it may be noted that the end-point values in Fig. 1a,b,e show nearly normal 187 

distribution pattern, whereas, those in Fig. 1c,d show multi-model distribution. In multi-model 188 

distribution several processes with normal distributions are combined, because there are many 189 

peals close together, the top of the distribution resembles a plateau.  190 

Figure 1 191 

2.2  Molecular descriptors, feature selection and data processing 192 

Molecular descriptors are the simple mathematical representation of a molecule and are 193 

used to encode significant features of molecules. In case of first dataset containing 44 NMs, four 194 

descriptors available in literature were used here for classification and regression modeling. In 195 

case of second (109 NPs) and fourth (29 DNC) datasets, 174 molecular descriptors (topological, 196 

electronic, geometrical, and constitutional) were calculated for each NP using Chemistry 197 

Page 9 of 44 RSC Advances



10 
 

Development Kit (CDK v 1.0.3).41 For the third (17 NPs) and fifth (48 fullerene derivatives) 198 

dataset, 32 molecular descriptors (topological, geometrical, and constitutional) were calculated 199 

using Chemspider.42 The electronic, constitutional, geometrical and topological descriptors were 200 

calculated by 2D structures of the molecules, which were taken in the form of SMILES 201 

(simplified molecular input line entry system). For case studies 2, 3 and 5, the SMILES were 202 

taken from the literature,2,6,25 whereas for case study 4, molecular structures of the decorator 203 

portions of DNCs were taken from Shao et. al.31 and SMILES were obtained using the 204 

ChemDoodle program (trial version). Chemical structures of the NPs were drawn in 205 

ChemDoodle program using the SMILES (Table SI1-SI4, in the Supplementary Information).    206 

Since, all the molecular descriptors may not be relevant to the nano-QSARs analysis; 207 

elimination of less significant descriptors can improve the accuracy of prediction, and facilitate 208 

the interpretation of the model through focusing on the most relevant variables. For selection of 209 

initial features, model-fitting approaches were considered. In all the case studies, calculated 210 

descriptors were analyzed for the existence of a constant or near constant values and the 211 

descriptors with low variation were excluded from the original pool of descriptors. EL-based 212 

QSAR modeling was then performed. For optimal values of the model parameters, the EL 213 

models were trained by using the set of remaining features computing the respective scoring 214 

functions to rank the contribution of features in the current set. The lowest ranked features were 215 

then removed.32 The EL-QSAR models were retained by using the remaining set of features, and 216 

the corresponding prediction accuracies (classification accuracy, and root mean squared error of 217 

prediction) were computed by means of 5-fold cross validation. Distribution of selected 218 

descriptors for different case studies considered for nano-QSARs modeling in this study are 219 

shown in the radar charts (Fig.2). A radar chart is a graphical method that displays multivariate 220 
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data in the form of a two-dimensional chart with several quantitative variables represented on 221 

axis starting from the same point. The radar charts analysis shows that the NMs used in our case 222 

studies covered a sufficiently large structural space.     223 

Figure 2 224 

Since the aim of present study is to develop robust models capable of making accurate and 225 

reliable predictions of biological activities of new NMs, the QSAR model derived from a 226 

training set should be validated/tested using new moieties for checking its predictive ability. The 227 

validation strategies check the reliabilities of models for their possible application on a new 228 

dataset, and confidence in the prediction can thus be judged. In this study, for classification and 229 

regression modeling, data were split into training (80 %) and test (20 %) subsets using random 230 

distribution approach. Such test sets (when defined prior to analysis) come close to external 231 

validation set, which are commonly accepted as the gold standard to assess real predictivity.43  232 

 233 

2.3 Structural diversity  234 

The diversity of a dataset is very important for global model development.44 Structural 235 

diversity of the NPs can be measured by using the Tanimoto similarity index (TSI), which is an 236 

appropriate distance metric for topology-based chemical similarity studies. In this method the 237 

structure of the chemical compounds to be compared are decomposed into fragments. Each 238 

chemical structure thus characterized by a vector y with components y(j) being binary 239 

substructure descriptors. The similarity of two structures, represented by vectors yA and yB can 240 

be characterized45 by the TSI, tA,B as; . The TSI ranges from 0 (no 241 

similarity) to 1 (pair-wise similarity). Smaller TSI means compounds have good diversity.46 A 242 

good cut-off for biologically similar molecules is 0.7 or 0.8. TSI values for second, third, fourth, 243 
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and fifth datasets are 0.12, 0.21, 0.17, 0.10, respectively. These values suggest that the datasets 244 

used in this work represent NPs with sufficiently high structural diversity. It warrants model 245 

stability and that the external test set is suitable to assess the predictive performance of the 246 

developed model.   247 

 248 

2.4 Ensemble learning based nano-QSAR modeling   249 

An ensemble contains a number of base learners47 and their generalization ability is 250 

usually much stronger. Stochastic gradient boosting and bagging algorithms are implemented 251 

here for constructing the classification and regression nano-QSAR models (DTB, DTF). Brief 252 

description of these methods is given below.  253 

 254 

2.4.1 DTB-nano-QSAR model  255 

In DTB, stochastic gradient boosting improves the accuracy of a predictive function by 256 

applying it repeatedly in a series and combining the output of each function with weighting, so 257 

that the total error of prediction is minimized.37 The DTB algorithm creates a tree ensemble and 258 

it uses randomization during the tree creations (Fig. 3a). The goal is to minimize the loss 259 

function in the training set, {x,y}. After each iteration, F represents sum of all trees built so far: 260 

Fm(x) = Fm-1(x) + Treem(x), where m is the number of trees in the model. Regardless of the loss-261 

function, the trees fitting the gradient on pseudo residuals are regression trees trained to 262 

minimize mean squared error (MSE). Optimal size of the tree was decided using the criteria of 263 

minimal cross-validation error. The DTB model for classification is essentially the same as for 264 

regression except logit (probability) values are fitted rather than raw target values.  265 

Figure 3a 266 
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2.4.2 DTF-nano-QSAR model 267 

  In DTF, a large number of independent trees are grown in parallel, and they do not 268 

interact until after all of them have been built (Fig. 3b). Different training sub-sets are drawn at 269 

random with replacement from the training dataset. Separate models are produced and used to 270 

predict the entire data from aforesaid sub-sets. Then various estimated models are aggregated. In 271 

bagging, a bootstrapped sample is constructed.48 The DTFs use the out of bag data rows for 272 

model validation. This provides an independent test set without requiring a separate data set or 273 

holding back rows from the tree construction. The DTF algorithm makes it highly resistant to 274 

over-fitting.  275 

Figure 3b 276 

2.5 Model validation and prediction verification 277 

The optimal architectures and parameters of the EL-based classification and regression 278 

nano-QSAR models constructed here were determined following both the internal and external 279 

validation procedures. For internal validation, a V-fold cross validation (CV) method was 280 

adopted. The V-fold CV is the most common procedure recommended to check the 281 

generalization ability of the model.43 The advantage of this method is that it performs reliable 282 

and unbiased testing on dataset. For external validation, a separate validation (test) sub-set of the 283 

data was used which was kept out during the training process.32 In case of the predictive models, 284 

validation step using external data set provides information about the predictive ability of the 285 

trained model for the unknown data.46 Benigni et al.49 pointed out that the prediction reliability 286 

should be checked by means of an external test set with new moieties not used in model building. 287 

Optimal models were selected on the basis of the classification accuracy (classification) and root 288 

mean squared error (regression) in the training and validation data.50  Predictive performance of 289 
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the regression models constructed here for external sets was evaluated using various OECD 290 

recommended validation criteria parameters proposed in QSAR literature,51 such as ,52 ,53 291 

54 and concordance correlation coefficient (CCC).55.  uses average of the training data, 292 

instead of that of the prediction set , where next is the number of compounds 293 

in external (test) set, yi and  are the observed and model calculated value of the dependent 294 

variable in external set, and   is the mean value of the dependent variable in training set), 295 

whereas,  takes no account of the distance from the average of the training values 296 

, where,    represents the mean value of the dependent variable in 297 

external (test) set). In  the denominator is calculated on the training set, and both numerator 298 

and denominator are divided by the number of corresponding elements 299 

, where, nTr is the number of compounds in training set). Consonni et 300 

al.54 demonstrated that results obtained by  are independent of the prediction set distribution 301 

and sample size. CCC ( ,where, x and y correspond to the 302 

abscissa and ordinate value of the graph plotting the prediction experimental data values vs. the 303 

ones calculated using the model, n is the number of chemicals, and   and  correspond to the 304 

averages of abscissa and ordinate values) measures both precision and accuracy and involves no 305 

training set information, so it can be considered a true external validation measure, independent 306 

of the samples chemical space. In all simulations, the validation measures are calculated only if 307 

R2 > 0.7.  308 
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  Different statistical parameters were used to evaluate the performance of constructed 309 

nano-QSAR models. For binary classification, statistical parameters, such as sensitivity, 310 

specificity, accuracy and Matthews’s correlation coefficient (MCC) are considered.32 Sensitivity 311 

denotes the percentage of correctly classified active NPs among the total number of active NPs, 312 

whereas specificity is the percentage of correctly classified inactive NPs among the total number 313 

of inactive NPs. Accuracy represents the total number of active and inactive NPs correctly 314 

predicted among the total number of tested NPs. Performance of the regression models 315 

constructed here was evaluated using the mean absolute error (MAE), root mean squared error 316 

(RMSE), squared correlation coefficient (R2) between the measured and predicted values of the 317 

response.56 The RMSE represents the error associated with the model. It is a measure of the 318 

goodness-of-fit, best describes an average measure of the error in predicting the dependent 319 

variable.  320 

 321 

2.6 Applicability domain of the EL nano-QSAR model 322 

The applicability domain (AD) of a predictive model defines the boundaries whereby the 323 

predicted values can be trusted with confidence. The AD was taken into account in order to 324 

consider the scope and limitations of the proposed models, i.e. the range of chemical structures 325 

for which the models are considered to be applicable.57 This approach is based on the ranges of 326 

individual descriptors used for the model building. According to this method, a NP with 327 

descriptor values within the range of those of the training set NPs is considered as being inside 328 

the AD of the model.58   329 

 330 

 331 
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3. Results and discussion 332 

Optimal architecture of the proposed EL-based nano-QSAR models in different case 333 

studies considered here were determined using 5-fold CV procedure. The optimal parameters of 334 

proposed classification and regression models (DTB, DTF) for different case studies considered 335 

here are presented in Table 1.  The internal (CV-RMSE) and external (R2, RMSE, , ,  336 

and CCC) validation results of the developed EL-based regression models in different case 337 

studies are provided in Table 2.  338 

Table 1 339 

Table 2 340 

These results indicate that both the nano-QSAR models (DTB, DTF) herein investigated are 341 

robust and showed no over-fitting of data in any of the five case studies. Model validation using 342 

the external data yielded criteria parameter values were above (except CCC values) their 343 

respective thresholds. The validation criteria threshold for , ,  and  > 0.6 and an 344 

arbitrary cut-off value of 0.85 for CCC have been considered.51 Moreover, criteria proposed by 345 

Eriksson et al.59, the difference between R2 (training) and R2 (validation) should not exceed 0.3. 346 

Model yielding R2> 0.81 for in vitro and > 0.64 for in vivo data can be regarded as acceptable.60 347 

As the proposed models fulfill these criteria and also positively pass internal and external 348 

validation, these were applied to predict the biological activity of new, untested NPs of diverse 349 

NMs. The performance parameters for the regression nano-QSARs both in training, test and 350 

complete data for each of the five case studies are summarized in Table 3. Plots of the measured 351 

and model predicted biological activities in different cases are shown in Fig. 4. The results 352 

obtained for various case-studies are discussed here.       353 

Table 3 354 
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Figure 4 355 

Case study 1:  Nano-QSAR modeling of biological activity induced by diverse NMs- 356 

In this study, both the classification and regression nano-QSAR models were constructed using 357 

four experimentally measured physical descriptors of NMs reported in literature.20 Such 358 

structural descriptors, namely NM size, relaxivities (R1 and R2), and zeta-potential were 359 

available for 44 of the NMs. NMs size ranged between 22 to 74 nm. Relaxivities of NMs 360 

represent their magnetic properties, and zeta-potential represents the intensity of charge on their 361 

surface. The performance parameters of the classification models in training, test, and complete 362 

data are summarized in Table 4. Both the models yielded considerably high accuracy, sensitivity, 363 

specificity of binary classification for the considered NPs. 364 

Table 4 365 

 The selected optimal binary classification models applied to complete data yielded accuracy of 366 

95.45 % (DTB) and 93.18 % (DTF). The sensitivity, specificity and MCC values yielded by two 367 

models in complete data were 100 %, 91.67 %, 0.91 (DTB), 100 %, 88.0 %, 0.87 (DTF), 368 

respectively. Fourches et al.6 developed SVM based model for binary classification of these NMs 369 

using same set of descriptors and reported average values of accuracy, sensitivity and specificity: 370 

73 %, 60 %, and 86 %, respectively. The performance parameters of the constructed nano-QSAR 371 

models for predicting SMA induced by metal oxide NPs in model building and test phases are 372 

presented in Table 3. The results showed high correlations (Fig. 4a) and low prediction errors, 373 

suggesting for their adequacy for predicting SMA induced by new NPs. These models yielded 374 

high correlation (R2) and low RMSE values of 0.939, 2.0 (DTB) and 0.851, 2.93 (DTF), 375 

respectively in complete data, which suggests for relatively better performance of the proposed 376 

QSAR models compared to the earlier (MLR) approach.27 From the results obtained in present 377 
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study, it is evident that the proposed EL-based DTB and DTF nano-QSAR models performed 378 

relatively better.      379 

 380 

Case study 2:  QSAR modeling of cellular uptake of NPs with similar core- 381 

Here, 109 NPs with the same core structure but diverse organic molecules attached to their 382 

surfaces that were tested for cellular uptake against PaCa2 cell were investigated. Each 383 

individual NP was represented by the structure of the organic molecule attached to its surface 384 

which in turn is characterized by molecular descriptors. In this case, relevant descriptors were 385 

selected using the minimum variance followed by model-fitting approach. The descriptors 386 

selected by this procedure are weighted partial negative surface area-3 (WNSA-3), weighted 387 

partial positive area-2 (WPSA-2), chi simple path descriptor of order 5 (SP-5), chi valance path 388 

descriptor of order 4 (VP-4), moment of inertia along X/Z-axis (MOMI-XZ), logarithmic form of 389 

octanol-water partition coefficient predicted by atomic method (XlogP), number of rotatable 390 

bonds (nRotB), number of hydrogen bond donors (nHBDon) for classification and VP-4, chi 391 

valance path cluster of order 6 (VPC-6), ionization potential (IP), nRotB, and number of 392 

hydrogen acceptors (nHBAcc) for regression modeling. IP is electronic, SP-5, VP-4 and VPC-6 393 

are chi-path and chi-path cluster descriptors belonging to topological descriptors, MOMI-XZ, 394 

WNSA-3 and WPSA-2 are geometrical and XlogP, nRotB, nHBDon, nHBAcc are constitutional 395 

descriptors. SP-5, VP-4, VPC-6 signify the total number of fragments of nth order (nth bond 396 

path) in NPs. IP is a measure of the energy needed for the removal of an electron from the 397 

cluster, yields valuable information on the electronic structure. nRotB is a measure of molecular 398 

flexibility. It is obtained simply by counting the non-terminal, non-cyclic, single bonds except C-399 

N amide bond.  nHBAcc represents the number of H-bond acceptors.  400 
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EL-based nano-QSAR models (DTB, DTF) were developed for binary classification 401 

(good/moderate cellular uptake and poor cellular uptake) of the NPs and to predict their cellular 402 

uptake in PaCa2 cells, expressed in terms of decadic logarithm of concentration (pM) of NP per 403 

cell. The performance parameters of the classification models in training, test, and complete data 404 

are summarized in Table 4. Both the models yielded considerably high accuracy, sensitivity, 405 

specificity and MCC of binary classification for the considered NPs. Both the classification 406 

models (DTB, DTF) applied to complete data array yielded accuracy, sensitivity, specificity and 407 

MCC values of 97.25 %, 96.67 %, 97.96 %, and 0.94. MCC value equal to 1 is regarded as a 408 

perfect prediction, whereas, 0 is for a completely random prediction. Chau and Yap29 developed 409 

QSAR models (LR, k-NN, and SVM) for binary classification of 105 NPs considering 1D and 410 

2D PaDEL descriptors and reported average sensitivity, specificity, and MCC values of 86.7 %, 411 

67.3 %, and 0.559 achieved by the best consensus model.  412 

The optimal DTB and DTF regression models were applied to the test and complete 413 

datasets, which explained 91.60 %, 88.94 % variance in training, 78.52 %, 72.14 % variance in 414 

test, and 89.23 %, 85.89 % variance in complete data. Proportion of variance explained by the 415 

model variables is the best single measure of how well the predicted values match the actual 416 

values. The two models yielded RMSE and R2 values of 0.14, 0.932 (DTB) and 0.16, 0.923 417 

(DTF) in complete data. From the values of the performance criteria parameters yielded by the 418 

QSARs in training, test and complete data (Table 3), it is evident that both the models yielded 419 

considerably low RMSE and MAE values in all the three phases. RMSE is a quadratic scoring 420 

rule which measures the average magnitude of the error. It gives a relatively high weight to large 421 

errors, hence most useful when large errors are particularly undesirable. MAE measures the 422 

average magnitude of the error in a set of predictions, without considering their direction. It is a 423 

Page 19 of 44 RSC Advances



20 
 

linear score which means that all the individual differences between predictions and 424 

corresponding measured values are weighted equally in the average.33 Further, a closely followed 425 

pattern of variation by the measured and model predicted cellular uptake of NPs by the 426 

constructed QSAR models in the training and test phases (Fig. 4b) suggest that both the models 427 

performed reasonably well. The results suggest that the EL-based nano-QSAR models are 428 

superior and potentially useful for predicting the cellular uptakes of NPs.   429 

Fourches et al.6 developed QSAR model based on k-NN approach for the cellular uptake 430 

of NPs using same dataset but different set of descriptors and reported R2 and MAE values of 431 

0.72 and 0.18, respectively for the complete data. Ghorbanzadeh et al.1 considering same dataset 432 

performed regression modeling based on MLR and MLPN approaches using 2D and 3D 433 

descriptors and reported R2 and RMSE values of  0.591, 0.364 (MLR) and 0.872, 0.150 (MLPN) 434 

for complete data. Recently, Toropov et al.28 developed a QSAR model with SMILES based 435 

descriptor using CORAL software (which calculates descriptors as well as correlates them with 436 

end-points) and reported R2 and MAE values in sub-training, calibration, test and validation 437 

performed in five different splits (sub-sets) of the data. The overall corresponding R2 and MAE 438 

values ranged between 0.638-0.934 and 0.097 - 0.30, respectively. The statistical results of these 439 

studies suggest that although the performance of these QSAR models based on different 440 

modeling approaches for predicting the cellular uptake of NPs are within acceptability range, the 441 

developed QSAR models in the present work yielded better prediction of the end-point, and the 442 

proposed EL approach towards building nano-QSARs for NPs is more robust.            443 

 444 

 445 

 446 
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Case study 3:  QSAR modeling of cytotoxicity of diverse metal oxide NPs - 447 

In this case, three descriptors (oxygen percent, molar refractivity and polar surface area) were 448 

selected by the initial feature selection method. The oxygen percent (OP) is a constitutional 449 

descriptor and represents the elemental composition of the molecule. Molar refractivity (MolRef) 450 

is calculated based on the atomic method.61 It is strongly related to the volume of the molecules 451 

and their polarizability. Therefore, this measure is also related to London dispersion forces, 452 

which have important effect in NP-receptor interaction processes. Polar surface area (PSA) is a 453 

geometrical descriptor and is known to show good correlation with passive molecular transport 454 

through membranes. This descriptor is formed by polar atoms of the molecule.       455 

EL-based nano-QSAR models were developed to predict the pEC50 in E. coli bacteria. 456 

Optimal DTB and DTF models using three descriptors (OP, PSA and MolRef) captured 96.98 %, 457 

86.50 % of the data variance in training, 91.33 %, 86.38 % in test, and 95.26 %, 86.51 % in 458 

complete data, respectively. The respective models yielded RMSE and R2 values of 0.11, 0.955 459 

(DTB) and 0.19, 0.896 (DTF) in complete data. Values of the model performance criteria 460 

parameters in training, test and complete data are presented in Table 3. It may be noted that the 461 

present QSAR model yielded low RMSE and MAE values in all three phases. Further, a closely 462 

followed pattern of variation by the measured and model predicted pEC50 values by the 463 

constructed QSAR models in the training and test phases (Fig. 4c) suggest that it performed 464 

reasonably well.  465 

Puzyn et al.2 developed and validated a MLR model to describe the relationship between 466 

the structures of 17 metal oxide NPs and their cytotoxicity to bacteria E. coli using single 467 

descriptor. The authors reported the R2 and RMSE values of 0.85, 0.20 in training, and 0.83, 0.19 468 

in test set. In an another study, Toropov et al.26 developed a QSAR model with SMILES based 469 
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descriptor using CORAL software and reported R2 values in the range of 0.83-0.96 for different 470 

test sets in six random splits. A direct comparison of our results with these studies is 471 

inappropriate, because the nature and number of descriptors, and modeling approaches 472 

considered differ to a large extent. Nevertheless, a simple comparison of the model statistics 473 

could provide some basic information about the accuracy of various prediction methodologies. It 474 

may be noted that both these studies considered complex descriptors (including SMILES derived 475 

and quantum mechanical) and in most of the data split folds prediction accuracies were not 476 

satisfactory, thus limiting the applicability of these models for prediction of end-point in new 477 

unknown NPs. Among these, the present study proposed EL-based nano-QSAR models 478 

considering the structurally diverse NPs and using simple structural descriptors yielded better 479 

prediction accuracy for the training, test, and complete data arrays.        480 

 481 

Case study 4:  QSAR modeling of cell viability modified multi-walled CNTs - 482 

In this study, six descriptors (Kier 3, MDEC-22, SP-5, XlogP, WTunity, MOMI-Y) were 483 

selected. The third Kier and Hall kappa molecular shape indices (Kier 3), molecular distance 484 

edge between all secondary carbons (MDEC-22), simple path descriptor of order 5 (SP-5), and 485 

Weighted holistic invariant molecular descriptor (WTunity) are topological, XlogP constitutional 486 

and moment of inertia along y/z-axis (MOMI-YZ) is geometrical descriptor. 487 

Here, nano-QSAR (DTB and DTF) models were developed to predict the cell viability of 488 

CNTs. The optimal DTB and DTF models using six descriptors captured 89.91 %, 85.55 % of 489 

the data variance in training, 77.73 %, 92.21 % in test, and 88.56 %, 84.97 % in complete data. 490 

The respective models yielded R2 values of 0.903 and 0.922 in complete data. Values of the 491 

QSAR models performance criteria parameters in training, test and complete data are presented 492 
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in Table 3. It may be noted that the present QSAR models yielded low RMSE and MAE values 493 

in all the three data arrays. Further, a closely followed pattern of variation by the measured and 494 

model predicted end-point values by the constructed QSAR models in the training and test 495 

phases (Fig. 4d) suggest that it performed reasonably well.  496 

QSARs developed earlier31 using 4-D FP descriptors reported R2 values of 0.857 and 497 

0.759 in training and test phases for predicting the cell viability of CNTs. The performance 498 

criteria values (Table 3) suggest that the EL-based nano-QSAR models developed in present 499 

study performed relatively better.   500 

 501 

Case study 5: QSAR modeling of cytotoxicity of Fullerene derivatives NPs – 502 

In this case study, ten descriptors belonging to the constitutional (aliphatic atom counts, chain 503 

bond count, hetero ring count, atom count, bond count), topological (Balaban index, Platt index, 504 

Weiner index), and geometrical (minimal projection area, molecular Polarizability) classes were 505 

considered for predictive modeling.  506 

Nano-QSARs models (DTB and DTF) were developed to predict the pEC50 of fullerenes 507 

derivatives in E. coli bacteria. The optimal QSAR models (DTB, DTF) using ten descriptors 508 

captured 92.82 %, 88.89 % of data variance in training, 84.91 %, 75.20 % in test, and 92.16 %, 509 

87.74 % in complete data array. The performance parameters of the constructed nano-QSARs for 510 

predicting pEC50 of fullerenes in model training, test, and complete data are presented in Table 3. 511 

The results showed high correlations (Fig. 4e) and low prediction errors, suggesting for adequacy 512 

of these models. The respective models yielded R2 values of 0.958 and 0.943 in complete data. 513 

Both the models yielded low RMSE and MAE values in training, test and complete data (Table 514 

3), and a closely followed pattern of variation by the measured and model predicted pEC50 values 515 
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by the constructed nano-QSAR models in the training and test phases (Fig. 4e) suggest that these 516 

performed reasonably well.  517 

Durdagi et al.23 and Toropov et al.22 earlier developed QSARs for predicting  pEC50 of 518 

fullerenes using complex descriptors and reported high R2 values of 0.997, 0.906 in training and 519 

0.835, 0.992 in test phase, respectively. However, both these studies considered only selected 520 

(20) fullerenes data. In their later studies,24,25 regression models were developed using PLSR and 521 

CORAL approaches, respectively  considering all the 48 fullerene derivatives and reported R2 of 522 

0.993, 0.844 in training and 0.744, 0.792 in test sets.  It is noticeable that in present study, EL-523 

based nano-QSAR models derived using simple descriptors yielded comparable correlation (R2) 524 

values, while considering dataset of all 48 fullerenes.        525 

 526 

3.1 Applicability domain of the proposed EL- nano-QSAR models   527 

The AD of a QSAR model is defined as the response and chemical structure spaces in 528 

which the model makes prediction with a given reliability.57 To validate the predictive ability of 529 

the proposed EL-based nano-QSAR models for screening new NPs, analysis of the AD was 530 

performed following the methods based on the range of the descriptors in training sets for each 531 

of the NPs. According to this approach, the ranges of descriptors calculated for the NPs of 532 

training and test sets pertaining to all the case studies are shown in Table 5. The results depict 533 

that all NPs in training and test sets under all the five case studies are inside the AD of the 534 

proposed models, except 4 NPs in classification (case study 2), 1 CNT (case study 4), and 2 535 

fullerenes (case study 5). These results show that the proposed QSAR models under all the case 536 

studies here have wide applicability for predicting biological activities in new NMs.   537 

Table 5 538 
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3.2 Mechanistic interpretation of the selected descriptors 539 

Selection of the descriptors in QSAR modeling is an important aspect. The selected 540 

descriptors must not only contribute to the end-point in a quantitative manner, but also must have 541 

interpretability from mechanistic point of view. Contributions of the selected descriptors in 542 

constructed nano-QSAR models are shown in Fig. 5.  543 

Figure 5 544 

For the first case study, four descriptors were taken to construct EL-based QSAR models 545 

as selected in earlier study6 for the purpose of a comparison. The relevance of these descriptors is 546 

discussed elsewhere.6 The contributions of these descriptors in classification and regression 547 

models constructed in present study are shown in Fig. 5a,b. It may be noted that the contribution 548 

of zeta potential (ZP) was highest in classification and that of NPs size in regression nano-549 

QSARs. The mechanistic interpretation of the descriptors identified in other four case studies is 550 

discussed here. The  toxicity induced by the NPs may be investigated by considering various 551 

possible mechanisms2,62 such as (a) the release of chemical constituents from NPs, (b) the size 552 

and shape of the particle, which produces stearic hindrances or interferences with the important 553 

binding sites of macromolecules, (c) the surface properties of the material, such as 554 

photochemical and redox properties, and (d) the capacity of NPs to act as vectors for the 555 

transport of other toxic chemicals to sensitive tissues. Once a NP enters a cell, toxicity could 556 

occur through one or combination of these mechanisms.  557 

In the second case study, the classification QSARs were developed using WNSA-3, 558 

WPSA-2, SP-5, VP-4, MOMI-XZ, XlogP, nRotB, nHBDon, whereas in regression QSARs, VP-559 

4, VPC-6, IP, nRotB, and nHBAcc were considered (Fig. 5c,d). The topological descriptors (SP-560 

5, VP-4, VPC-6) help to differentiate the molecules according mostly to their size, degree of 561 
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branching, flexibility and overall shape.63 Chi cluster descriptor (VPC-6) is an indicator of the 562 

degree of nth order branching, and thus implicates the effect of substitution in a molecule. A 563 

molecule that is relatively compact at the same point(s) will have a high value of this 564 

descriptor.64 IP, an electronic descriptor is of critical importance in determining the type of inter-565 

molecular forces which underlie in molecule-receptor interactions. Extensive studies using 566 

electronic parameters reveal that electronic attributes of molecules are intimately related to their 567 

chemical reactivities and biological activities.65 WNSA-3 is defined as the total sum of partial 568 

areas of the NPs which possesses negative partial charges times the total solvation area of the NP 569 

divided by 1000. This descriptor is related to the stability of the chemical bond and surface area 570 

of the NP molecule.66 WPSA-2 is the surface weighted charge partial positive surface area and 571 

related to the charge distribution describing the positively charged surface area of the NP. It is 572 

directly dependent on the H-bonding donor or acceptor ability of the molecule.67 MOMI-XZ is a 573 

geometric parameter and its value depends on the total mass of the molecule, the distribution 574 

within the molecule and position of axis rotation of the molecule.68 XlogP calculated using atom 575 

type prediction method denotes an important property in describing the affinity of the 576 

compounds in terms of their partitioning in the biological membranes.29 nRotB refers to number 577 

of rotatable bonds in the molecules. The positive term associated with the descriptor in QNAR 578 

model indicate that fractional increase in the rotatable bonds in the molecule is beneficial for 579 

biological activity.69 nHBAcc describes capability of moiety in participating in H-bonding. The 580 

highest H-bonding acceptor potential is defined as the maximum ion-pair electro negativity on an 581 

atom considering all N, O, and F atoms in a compound. The H-bond donor plays an important 582 

role in NP-receptor interaction, aqueous solubility and partitioning. Properties such as oral 583 

bioavailability or membrane permeability have often been correlated to the number of H-bond 584 
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donor and log P in a molecule.70 Moreover, the topological descriptors (VPC-6 and VP-4) were 585 

found to be the most important factors, which could be considered to synthesize a new organic 586 

modifier to control PaCa2 cellular uptake of NPs. Also, molecular shape and size, and amount of 587 

branching in organic coatings, can be effective factors in cellular uptake of studied NPs in 588 

pancreatic cancer cells.       589 

In third case study, among the identified descriptors, OP has highest contribution in the 590 

QSAR model followed by PSA and MolRef (Fig. 5e). Auffan et al.71 suggested that the most 591 

important parameter controlling the in vitro cytotoxicity of metallic NPs (zero-valent metals, 592 

metal oxides) is their chemical stability, which is related to the dissolution of the particles 593 

(release of cations) and the catalytic properties and redox modifications of the surface. 594 

Moreover, the release of cations can occur by simple breaking of chemical bonds in the crystal 595 

lattice (without changing the oxidation state of the metal) or by redox reactions with the 596 

molecules in the biological media. In the later case, the release of ions is often accompanied by 597 

the generation of reactive oxygen species (ROS), such as superoxides and hydroxyl radicals. The 598 

generation of ROS may be increased by intimate contact of NP with a cell membrane.72 The 599 

observed toxicity can be induced by the released cations themselves, ROS or both.71,73 PSA is 600 

defined as the part of the surface area of the molecule associated with N, O, S, and the H-bonded 601 

to any of these atoms.74 This descriptor correlates well the passive molecular transport through 602 

membranes and allows the prediction of the transport properties of molecules to the target cell.75 603 

MolRef represents the molar volume corrected by the refractive index. It is a measure of size and 604 

Polarizability of a fragment or molecule and can be used for a substituent or for the whole 605 

molecule.76 This property is an atomic contribution model that assumes the correct protonation 606 

state. Its positive contribution suggests that the increment of the polarity of molecule lead to 607 
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increased activity, moreover, it can also be said that more the number of polar groups in the 608 

molecule, more will be the affinity of the molecules towards the biological activity.77  609 

In fourth case study, regression QSAR models are developed using six descriptors (Kier 610 

3, MDEC-22, SP-5, XlogP, WTunity, MOMI-YZ). Contribution of these descriptors in 611 

developed nano-QSARs is shown in Fig. 5f. Kier 3 is the most sensitive to the molecular 612 

topology and in particular to the branching of the molecule. It describes the valance connectivity 613 

of the molecule of the coordination sphere and also reflects the molecular composition.78 614 

WTunity (WTU) is the weighted holistic invariant molecular descriptor (WHIM). These are 3-D 615 

descriptor based on the calculation of principal component axis computed from a weighted 616 

covariance matrix obtained by the molecule geometric coordinate. It contains chemical 617 

information concerning size, symmetry, shape and distribution of molecular atoms.79 MDEC-22 618 

represents molecular distance edge between all secondary carbons, larger molecular size 619 

increases the toxicity while greater degree of H-bonding in a molecule reduces toxicity by 620 

increasing its polarity.80    621 

In case study 5, the constitutional descriptors (aliphatic atom counts, AAC; chain bond 622 

count, CBC; hetero ring count, HRC; atom count, AC; bond count, BC) capture properties of the 623 

molecule that are related to elements constituting its structure. These descriptors depend 624 

fundamentally on the composition of the molecule. Topological descriptors (Balaban index, BI; 625 

Platt index, PI; Weiner index, WI) treat the structure of the compound as a graph, with atoms as 626 

vertices and co-valent bonds as edge. Weiner index counts the total number of bonds in shortest 627 

paths between all pairs of non-H atoms.81 Analysis of the Balaban index shows that it will 628 

increase with the size of the molecule, degree of branching and unsaturation. The more branched 629 

molecules are less toxic, probably due to their lower membrane penetration abilities. The 630 
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geometrical descriptors (minimal projection area, Mpa; molecular polarizability, Mpol) rely on 631 

spatial arrangement of the atoms constituting the molecule. These descriptors include 632 

information of molecular surface obtained from atomic vander Waals areas and their overlap.82 633 

Molecular polarizability (Mpol) measures the ability of the electrons in a molecule to move 634 

easily as a result of stimulus. Because the electrons in the molecules of the compounds with high 635 

polarizability can relatively move easily, both excited singlet and triplet states of the molecules 636 

of such compounds may not be stable.83 Hence, suggesting that chemicals with large Mpol 637 

values will have higher toxicity.  Contribution of the selected descriptors in constructed nano-638 

QSARs is shown in Fig. 5g. 639 

In view of the above facts, it is clear that the descriptors selected in these case studies 640 

have high relevance in the developed nano-QSARs and quantitative contributions to the end-641 

points along with the mechanistic interpretability towards the biological activity exhibited by the 642 

diverse NMs. The results obtained under all the five case studies here suggest that the proposed 643 

EL-based nano-QSARs performed relatively better than those considered in previous studies and 644 

can be used as reliable tools for predicting the biological activities of diverse NPs using simple 645 

molecular descriptors.       646 

   647 

4. Conclusions 648 

In conclusion, EL-approach based robust and reliable nano-QSAR models have been 649 

proposed for predicting biological activities of NPs derived from diverse NMs using simple 650 

structural descriptors and demonstrated potential benefits of the EL approaches to obtain 651 

predictive knowledge for NPs that affect human cells and utilize this knowledge to improve the 652 

experimental design of new NPs enabling their prioritization for in vivo screening. This work has 653 
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demonstrated the suitability and superiority of the EL approach in developing nano-QSAR 654 

models for predicting biological activity of diverse NPs through their applications to five 655 

different datasets of diverse NMs. The quality of the nano-QSAR models derived in this study 656 

was rigorously estimated according to their external prediction abilities assessed by a five-fold 657 

cross-validation and external data validation procedures. Present study on five diverse datasets 658 

clearly indicated that the proposed approaches have successfully provided promising nano-659 

QSAR modeling tools in this challenging area. The case studies considered here successfully 660 

introduced a new approach to construct robust QSAR models both for classification and 661 

regression problems in the area of computational nano-toxicology. The superiority of the 662 

proposed EL approach over the earlier ones may be attributed to the fact that the DTB and DTF 663 

models incorporate stochastic gradient boosting and bagging algorithms, respectively, which 664 

improves generalization ability of weak learners. The proposed EL approach may be considered 665 

as a potential method for predictive modeling in the area of nano-technology.  666 

 667 
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Legend to the Figures  897 

 898 

Figure 1: Histogram of the (a) SMA data, (b) cellular uptake in PaCa2 cells, (c) pEC50 of  899 

metallic oxide NPs in E. coli, (d) cell viability in CNT, and (e) pEC50 of fullerenes 900 

in HIV-1 PR.  901 

 902 

Figure 2: Radar plot of the distribution of selected descriptors used in (a) case study  903 

1, (b) case study 2, and (c) case study 3, (d) case study 4, and (e) case study 5 for  904 

nano-QSAR modeling.  905 

 906 

Figure 3: Conceptual diagram of the (a) DTB-nano-QSAR and (b) DTF-nano-QSAR 907 

models.  908 

 909 

Figure 4:  Plot of the experimental and model predicted values of the biological activity in 910 

training and test data under (a) case study 1, (b) case study 2, (c ) case study 3, (d) 911 

case study 4, and (e) case study 5, using DTB and DTF nano-QSARs. 912 

 913 

Figure 5: Plot of the contribution of the selected descriptors in NPs biological activity 914 

prediction models for (a) case study 1, classification, (b) case study 1, regression, 915 

(c) case study 2, classification, (d) case study 2, regression, (e) case study 3, 916 

regression, (f) case study 4, regression, and (g) case study 5, regression. 917 

 918 

 919 
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Table 1: Optimal parameters of constructed EL-based nano-QSARs.  920 
 921 

Case study/ 
Model 

Classification  Regression  
Number 
of trees 

Max depth of 
any tree 

No. of Average 
group splits  

Number of 
trees 

Max depth of 
any tree 

No. of Average 
group splits  

Case Study-1 
DTB 332 5 66.1 337 6 50.2 
DTF 95 12 9.3 140 7 5.8 

       
Case Study-2 

DTB 298 5 43.8 362 6 177.9 
DTF 143 11 13.5 282 18 51.9 

       
Case Study-3 

DTB - - - 365 6 19.4 
DTF - - - 171 7 3.4 

       
Case Study-4 

DTB - - - 397 7 21.0 
DTF - - - 170 11 14.1 

       
Case Study-5 

DTB - - - 310 5 53.4 
DTF - - - 693 8 19.8 

 922 
 923 

Table 2:   Performance parameters for ensemble models for different case studies 924 
 925 

Model Sub-Sets  CCC CV-RMSE 

Case Study-1 (n=31)      
DTB Test 0.898 0.898 0.890 0.946 

3.83 
 Complete 0.930 0.930 0.929 0.961 

DTF Test 0.787 0.787 0.770 0.895 
4.03 

 Complete 0.849 0.849 0.847 0.918 
       

Case Study-2 (n=109)      
DTB Test 0.785 0.785 0.724 0.843 

0.31 
 Complete 0.892 0.892 0.888 0.932 

DTF Test 0.721 0.721 0.642 0.783 
0.31 

 Complete 0.859 0.859 0.853 0.906 
       

Case Study-3 (n=17)      
DTB Test 0.915 0.913 0.930 0.957 

0.16 
 Complete 0.953 0.953 0.956 0.974 

DTF Test 0.866 0.864 0.889 0.915 
0.29 

 Complete 0.865 0.865 0.874 0.917 
       

Case Study-4 (n=29)      
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DTB Test 0.791 0.777 0.933 0.926 
5.25 

 Complete 0.796 0.796 0.782 0.854 
DTF Test 0.927 0.922 0.976 0.957 

4.85 
 Complete 0.850 0.850 0.867 0.898 
       

Case Study-5 (n=48)      
DTB Test 0.853 0.849 0.946 0.912 

1.02 
 Complete 0.764 0.763 0.719 0.839 

DTF Test 0.758 0.752 0.912 0.841 
1.07 

 Complete 0.877 0.877 0.894 0.920 
 926 
 927 
 928 
Table 3:   Performance parameters for constructed nano-QSARs  929 
 930 

Case study Model Sub-Sets Mean *SD MAE RMSE R2 
Case Study-1 Experimental Training -9.94 7.65 - - - 

  Test -9.65 8.52 - - - 
  Complete -9.89 7.68 - - - 
 DTB Training -10.30 6.68 0.63 1.87 0.950 
  Test -10.31 7.99 1.86 2.48 0.906 
  Complete -10.30 6.81 0.87 2.00 0.939 
 DTF Training -10.00 6.78 1.96 2.75 0.868 
  Test -10.75 8.57 3.06 3.59 0.817 
  Complete -10.14 7.01 2.17 2.93 0.851 
        

Case Study-2 Experimental Training 3.65 0.41 - - - 
  Test 3.65 0.48 - - - 
  Complete 3.65 0.42 - - - 
 DTB Training 3.65 0.33 0.10 0.12 0.947 
  Test 3.64 0.29 0.17 0.22 0.905 
  Complete 3.65 0.32 0.11 0.14 0.932 
 DTF Training 3.65 0.31 0.10 0.14 0.942 
  Test 3.63 0.26 0.19 0.25 0.889 
  Complete 3.65 0.30 0.11 0.16 0.923 
        

Case Study-3 Experimental Training 2.69 0.56 - - - 
  Test 2.76 0.53 - - - 
  Complete 2.71 0.53 - - - 
 DTB Training 2.69 0.52 0.08 0.09 0.974 
  Test 2.83 0.52 0.11 0.14 0.936 
  Complete 2.74 0.50 0.09 0.11 0.955 
 DTF Training 2.64 0.43 0.17 0.20 0.911 
  Test 2.78 0.41 0.16 0.18 0.894 
  Complete 2.69 0.41 0.16 0.19 0.896 
        

Case Study-4 Experimental Training 34.96 27.71 - - - 
  Test 31.20 16.68 - - - 
  Complete 34.31 25.93 - - - 
 DTB Training 35.12 21.77 6.88 8.61 0.931 
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  Test 32.50 23.64 6.03 7.04 0.971 
  Complete 34.84 21.28 6.96 8.62 0.903 
 DTF Training 35.26 19.21 8.95 10.31 0.929 
  Test 31.41 14.97 3.28 4.16 0.927 
  Complete 34.73 17.96 8.34 9.88 0.922 
        

Case Study-5 Experimental Training 5.33 1.48 - - - 
  Test 5.47 0.92 - - - 
  Complete 5.36 1.38 - - - 
 DTB Training 5.36 1.16 0.32 0.39 0.970 
  Test 5.55 0.78 0.28 0.34 0.863 
  Complete 5.40 1.09 0.31 0.38 0.958 
 DTF Training 5.38 1.05 0.40 0.49 0.963 
  Test 5.49 0.71 0.33 0.43 0.762 
  Complete 5.40 0.99 0.39 0.48 0.943 

*standard deviation 931 
 932 
 933 

Table 4:   Classification performance parameters for EL nano-QSARs for different case studies 934 
 935 

Model Sub-Sets Sensitivity  
(%) 

Specificity 
(%) 

Accuracy 
(%) 

MCC 

      
Case study-1     

DTB Training 100.00 100.00 100.00 1.00 
 Test 100.00 66.67 71.43 0.47 
 Complete 100.00 91.67 95.45 0.91 

DTF Training 100.00 94.74 97.30 0.95 
 Test 100.00 66.67 71.43 0.47 
 Complete 100.00 88.00 93.18 0.87 
      

Case study-2     
DTB Training 100.00 97.44 98.78 0.98 

 Test 88.24 100.00 92.59 0.86 
 Complete 96.67 97.96 97.25 0.94 

DTF Training 100.00 100.00 100.00 1.00 
 Test 87.50 90.91 88.89 0.78 
 Complete 96.67 97.96 97.25 0.94 

      
 936 

 937 
 938 
 939 
 940 
 941 
 942 
 943 
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Table 5a: Applicability domain of the selected descriptors in classification nano-QSARs under 944 
different case studies 945 

Case Studies Descriptors Training Set Test Set 
  Min Max Min Max 

Case study-1 Size 20.00 74.00 20.00 36.00 
 R1 0.50 36.00 0.50 36.00 
 R2 0.50 153.00 0.50 122.00 
 ZP -37.00 5.90 -21.90 3.24 

       
Case study-2 SP-5 0.00 6.81 0.00 6.51 
 VP-4 0.00 5.73 0.00 4.54 
 WPSA-2 49.40 5128.96 43.77 665.06 
 WNSA-3 -79.80 -1.50 -46.45 -2.80 
 MOMI-XZ 1.40 215.31 1.04 77.56 
 XLogP -3.96 15.99 -4.08 7.04 
 nRotB 0.00 32.00 0.00 15.00 
 nHBDon 0.00 6.00 0.00 3.00 

 946 
 947 
 948 

Table 5b: Applicability domain of the selected descriptors in regression nano-QSARs under 949 
different case studies 950 

Case Studies Descriptors Training Set Test Set 
  Min Max Min Max 

Case study-1 Size 20.00 74.00 20.00 31.00 
 R1 0.00 36.00 0.00 32.00 
 R2 0.00 153.00 0.00 62.00 
 ZP -37.00 5.90 -13.60 1.95 

      
Case study-2 VP-4 0.00 5.73 0.00 3.39 
 VPC-6 0.00 23.03 0.00 2.94 
 IP -1.00 9.05 -1.00 9.05 
 nRotB 0.00 32.00 0.00 24.00 
 nHBAcc 1.00 11.00 1.00 8.00 

      
Case study-3 PSA 17.07 43.37 17.07 43.37 
 MolRef 1.44 4.33 1.44 4.24 
 OP 10.3 53.26 14.73 47.07 

      
Case study-4 SP-5 1.74 8.17 3.29 3.99 
 Kier3 3.62 7.80 4.59 7.16 
 MDEC-22 5.06 14.14 5.08 10.30 
 WTU 9.86 43.82 14.64 24.23
 MOMI-YZ 1.77 14.39 4.22 12.58 
 XLogP 0.70 4.59 2.14 4.59 
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Case study-5 Mpol 95.80 160.83 97.61 153.70 
 Mpa 76.52 137.82 75.93 111.66 
 AC 76.00 132.00 80.00 115.00 
 BC 107.00 166.00 111.00 148.00 
 CBC 0.00 24.00 0.00 16.00 
 AAC 18.00 58.00 22.00 48.00 
 HRC 0.00 2.00 0.00 0.00 
 PI 388.00 496.00 384.00 456.00 
 BI 0.54 0.89 0.60 0.88 
 WI 11438.00 35826.00 11488.00 27807.00 

 951 
 952 
 953 
 954 

Page 44 of 44RSC Advances


