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A mild palladium-catalyzed ammoxidation approach, which leads to the formation of C≡N triple bond 
from allyl group, has been developed to directly convert allylarenes into alkenyl nitriles.  

Introduction  
Alkenyl nitriles are both unique structural units in organic 

synthesis and versatile building blocks of natural products, 10 

agricultural chemicals, pharmaceuticals, and dyes.1 Due to their 
important applications in various fields, efforts have been 
devoted to the development of efficient synthetic methods for this 
type of nitrile compounds.2 However, most of the methods so far 
developed are based on functional group transformations or 15 

addition reactions. To the best of our knowledge, there is only one 
case in which a Fe-catalyzed direct conversion of the allyl 
derivatives into the corresponding unsaturated nitriles has been 
reported.3,4 Qin and Jiao has demonstrated the oxidative C-H 
bond transformation of allyl arenes or alkenes into the 20 

corresponding nitriles, with Me3SiN3 as the nitrogen source and 
2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as the 
oxidant.4 The allyl radical generated through single-electron-
transfer is proposed as the key step intermediate in this 
transformation. This allylic C-H bond transformation is related to 25 

the recent studies on the transition-metal-catalyzed direct allylic 
C-H functionalization of terminal alkenes, which has emerged as 
powerful strategy in organic synthesis.5-9 

On the other hand, we have recently reported a direct synthesis 
of aromatic nitriles from the methyl arenes with Pd(OAc)2 and N-30 

hydroxyphthalimide (NHPI) as the catalysts, tert-butyl nitrite 
(tBuONO, TBN) as the nitrogen source.10 Benzyl radical A is 
proposed as the key intermediate in the reaction (Scheme 1a). As 
the continuation of our interest in the development of novel 
cyanation methods,11 we further conceived that similar allyl 35 

radical B should also be generated under the similar catalytic  
 
 
 
 40 

 
 
 
 
 45 

 
 
Scheme 1 Pd(OAc)2-catalyzed cyanation of methyl arenes 
and allyl arenes. 

 50 

Table 1. Optimization of Reaction Conditionsa 

 
 
 
 55 

entry cat. 
(mol%) 

TBN 
(equiv) 

additive 
(mol%) 

solvent
 

yield
(%)b

1 Pd(OAc)2 (10) 3 none DCE  trace
2 Pd(OAc)2 (10) 3 none THF trace
3 Pd(OAc)2 (10) 3 none Dioxane 14 
4 Pd(OAc)2 (10) 3 none MeCN 26 
5 Pd(OAc)2 (5) 3 NHPI (30) MeCN 62 
6 Pd(OAc)2 (10) 2 NHPI (30) MeCN 80 
7 
8 

Pd(OAc)2
 
(10)  

Pd(OAc)2 (10) 
2 
2 

THICA (10) 
TEMPO (30) 

MeCN 
MeCN 

56 
26 

9 PdCl2(MeCN)2 (10) 2 NHPI (20) MeCN 11 
10 Cu(OAc)2 (10) 2 NHPI (20) MeCN trace
11 CuCl (10) 2 NHPI (20) MeCN trace
12 Fe(OAc)2 (10) 2 NHPI (20) MeCN trace

 

aThe reaction conditions: 1a (0.3 mmol), catalyst, additive, tert-
butyl nitrite (TBN) in dry solvent with stirring under N2 for 16 h. 
bIsolated yields. NHPI: N-hydroxyphthalimide; THICA: N,N',N"-
trihydroxyisocyanuric acid. TEMPO: 2,2,6,6-tetramethyl-1-60 

piperidinyloxy.   
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system, and a direct conversion of terminal alkenes into alkenyl 70 

nitriles might be achieved. Herein, we report a Pd-catalyzed 
direct transformation of allyl arenes into the corresponding 
alkenyl nitriles, using tert-butyl nitrite as both the nitrogen source 
and the oxidant. The reaction proceeds under mild conditions, 
affording moderate to good yields of alkenyl nitriles (Scheme 1b). 75 

Results and Discussion  
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Similar to our previous study,10 the investigation began with 
evaluation of the direct transformation of 1-allylbenzene 1a into 
the corresponding cinnamonitrile 2a under oxidative conditions 
(Table 1). In the absence of additive, the reaction of 1a catalyzed 
by 10 mol% of Pd(OAc)2 with tert-butyl nitrite at 60 oC in DCE 5 

or THF gave only trace amount of 2a (entries 1 and 2), whereas 
the reaction in 1,4-dioxane and acetonitrile produced 2a in 14% 
and 26% yield, respectively (entries 3 and 4). Gratifyingly, 2a  
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Scheme 2. Scope of the Pd-Catalyzed Direct Conversion of 
Allylarenes into Alkenyl Nitriles. If not otherwise noted, the 
reaction conditions are as following: 1a-s (0.3 mmol), tert-
butyl nitrite (0.6 mmol), Pd(OAc)2 (0.03 mmol), and NHPI 55 

(0.09 mmol) in MeCN (1.5 mL) at 50 oC under N2 for 24 h. 
Yields of isolated products are given. atert-Butyl nitrite (2.5 
equiv) was used. btert-Butyl nitrite (3.0 equiv) was used. 

was formed in 62% yield in the presence of N-
hydroxyphthalimide (NHPI) as an additive in catalytic amount 60 

(30 mol%) with 5 mol% of Pd(OAc)2 (entry 5). The reaction 
could be optimized by using 10 mol% of Pd(OAc)2 at 50 oC 
(entry 6). We also examined another carbon radical producing 
catalyst N, N', N"-trihydroxyisocyanuric acid (THICA) as the 
additive.12 The reaction afforded 2a, albeit in diminished yield. 65 

2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO) has also been 
examined as additive, however, the reaction only gives 2a in 26% 
yield (entry 8). Other metal catalysts, including PdCl2(MeCN)2, 
Cu(OAc)2, CuCl and Fe(OAc)2, have also been examined but 
they only afford very low yield or trace amount of the product 2a 70 

(entries 9-12).     
With the optimized reaction conditions, various allylarenes 

were investigated with 10 mol% Pd(OAc)2 and 30 mol% NHPI as 
co-catalysts' system (Scheme 2). Electron-donating substituents, 
such as Me and OMe, at the para, meta, and ortho positions of 75 

the arene group did not affect the reaction, affording the 
corresponding alkenyl nitriles in 67-83% yields (2b-h, 2o). 
Remarkably, some sensitive substituents or functional groups, 
such as trimethylsilyl (TMS), Cl and Br, were tolerated well in 
this transformation (2h, 2l, 2m). Substrates substituted with 80 

electron-withdrawing groups, such as F and CF3, also worked 
well and afforded the desired products in moderate yields (2k, 
2n).  

It is noteworthy that this reaction also worked with heteroaryl-
substituted propene, 1-allyl-2-thiophene (1p), giving 2p in 77% 

85 

yield. In addition, polycyclic aromatic-substituted propenes were 
also successfully converted into corresponding alkenyl nitriles in 
good yields (2q-s). 

Similar to the transformation of methyl arenes into aromatic 
nitriles,10 a plausible mechanism is proposed as shown in Scheme 90 

3. Initially, as oxidant, tert-butyl nitrite reacts with NHPI to 
generate the active phthalimide N-oxyl radical (PINO). The tert-
butyl nitrite itself decomposes into an NO radical and 2-methyl- 
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Scheme 3. Proposed Mechanism 115 
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2-propanol.13 Then, allyl arene 1 undergoes single-electron-
transfer (SET) oxidation with PINO to produce the corresponding 
allyl radical A. Subsequently, radical recombination of NO 
radical with A to form intermediate B. Upon isomerization of B 
to aldoxime C, Pd(OAc)2-catalyzed dehydration of C finally 5 

leads to the desired nitrile product 2.14 To substantiate this 
mechanistic hypothesis, we have carried out the reaction of 1a 
under the standard conditions but in the absence of Pd(OAc)2 
catalyst. The reaction gave a complex mixture, from which oxime 
C along with the corresponding cinnamaldehyde can be identified 10 

by GC-MS. 
In conclusion, we have developed a novel Pd(II)-catalyzed 

direct synthesis of alkenyl nitriles from the corresponding allyl 
arenes under mild conditions using tert-butyl nitrite as the 
nitrogen source and inexpensive NHPI as the co-catalyst. Notably, 15 

in this transformation, three C-H bonds are cleaved to form one 
C≡N bond. This reaction offers a novel method for the synthesis 
of biologically and medicinally important alkenyl nitriles. 

Experimental Section  
General. All the palladium-catalyzed reactions were performed 20 

under nitrogen atmosphere in a flame-dried reaction flask. All 
solvents were distilled under nitrogen atmosphere prior to use. 
1,4-Dioxane and THF were dried over Na with benzophenone-
ketyl intermediate as indicator. Acetonitrile and 1,2-
dichloroethane were dried over CaH2. For chromatography, 200-25 

300 mesh silica gel (Qingdao, China) was employed. 1H and 13C 
NMR spectra were recorded at 400 MHz and 100 MHz with 
Bruker ARX 400 spectrometer. Chemical shifts are reported in 
ppm using tetramethylsilane as internal standard. IR spectra were 
recorded with a Nicolet 5MX-S infrared spectrometer. LRMS 30 

were obtained on an Agilent 5975C inert 350 EI mass 
spectrometer. HRMS were obtained on a Bruker Apex IV FTMS 
by ESI or GCT CA127 Micronass UK by EI. All reactions were 
carried out in dry sealed tubes under an atmosphere of nitrogen. 
Unless otherwise noted, materials obtained from commercial 35 

suppliers were used without further purification. The starting 
materials 1a-o and 1q-s were prepared from the corresponding 
aryl bromide according to a previously reported literature.7d 1p 
was prepared from thiophene according to a previously reported 
literature.15 40 

 
General procedure for Pd(II)-catalyzed reaction. Under a 
nitrogen atmosphere, allylbenzene 1a (36 mg, 0.3 mmol), tert-
bytylnitrite (65 mg, 0.6 mmol, 2.0 equiv), NHPI (16 mg, 0.09 
mmol, 0.3 equiv) and Pd(OAc)2 (7 mg, 0.03 mmol, 0.1 equiv) in 45 

MeCN (1.5 mL) were stirred at 50 oC for 16 h. After 
cooling, the reaction was diluted with CH2Cl2 (2 mL) and 
the resulting mixture was filtered, and the filtrate was 
concentrated. Purification by column chromatography of 
the mixture gave pure 2a as light yellow oil (31 mg, 80%).4 50 
1H NMR (CDCl3, 400 MHz) δ 7.38-7.46 (m, 6H), 5.88 (d, J = 
16.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 150.5, 133.5, 
131.2, 129.1, 127.3, 118.1, 96.3. 
 
trans-4-Methylcinnamonitrile (2b). The general procedure 55 

gave pure 2b as white solid (30 mg, 70% yield).4 1H NMR 
(CDCl3, 400 MHz) δ 7.35 (d, J = 16.8 Hz, 1H), 7.34 (d, J = 8.0 
Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 5.81 (d, J = 16.4 Hz, 1H), 2.38 
(s, 3H); 13C NMR (CDCl3, 100 MHz) δ 150.4, 141.7, 130.8, 
129.8, 127.3, 118.4, 95.0, 21.4. 60 

trans-2-Methylcinnamonitrile (2c). The general procedure 
gave pure 2c as light yellow oil (34 mg, 79% yield).4 1H 
NMR (CDCl3, 400 MHz) δ 7.69 (d, J = 16.8 Hz, 1H), 7.45 (d, 
J = 7.6 Hz, 1H), 7.30-7.34 (m, 1H), 7.21-7.26 (m, 2H), 5.80 (d, J 
= 16.8 Hz, 1H), 2.40 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 65 

148.4, 137.2, 132.5, 131.0, 130.9, 126.5, 125.5, 118.3, 97.1, 19.5. 
trans-3-Methylcinnamonitrile (2d). The general procedure 
gave 2d as light yellow oil (32 mg, 74% yield).4 1H NMR 
(CDCl3, 400 MHz) δ 7.37 (d, J = 16.4 Hz, 1H), 7.24-7.32 (m, 
4H), 5.86 (d, J = 16.8 Hz, 1H), 2.38 (s, 3H); 13C NMR (CDCl3, 70 

100 MHz) δ 150.7, 138.9, 133.5, 132.0, 129.0, 127.9, 124.5, 
118.2, 96.0, 21.2. 
trans-2-Methoxylcinnamonitrile (2e). The general procedure 
gave pure 2e as yellow oil (34 mg, 72% yield).16 1H NMR 
(CDCl3, 400 MHz) δ 7.63 (d, J = 16.8 Hz, 1H), 7.37-7.41 (m, 75 

2H), 6.92-6.99 (m, 2H), 6.06 (d, J = 16.8 Hz, 1H), 3.90 (s, 3H); 
13C NMR (CDCl3, 100 MHz) δ 158.3, 146.5, 132.3, 128.9, 
122.6, 120.8, 119.0, 111.3, 97.0, 55.6. 
trans-4-Methoxylcinnamonitrile (2f). The general procedure 
gave pure 2f as white solid (33 mg, 70% yield).4 1H NMR 80 

(CDCl3, 400 MHz) δ 7.39 (d, J = 8.8 Hz, 2H), 7.33 (d, J = 16.4 
Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 5.71 (d, J = 16.4 Hz, 1H), 3.84 
(s, 3H); 13C NMR (CDCl3, 100 MHz) δ 162.0, 150.0, 129.0, 
126.3, 118.7, 114.5, 93.3, 55.4. 
trans-3-Methoxylcinnamonitrile (2g). The general procedure 85 

gave pure 2g as light yellow oil (31 mg, 67% yield). 1H 
NMR (CDCl3, 400 MHz). δ 7.30-7.37 (m, 2H), 7.04 (d, J = 7.6 
Hz, 1H), 6.95-6.99 (m, 2H), 3.83 (s, 3H), 5.86 (d, J = 16.8 Hz, 
1H); 13C NMR (CDCl3, 100 MHz) δ  160.0, 150.4, 134.8, 
130.1, 119.9, 118.0, 116.8, 112.4, 96.6, 55.3; IR (neat): ν = 90 

2921, 2849, 2217, 1620, 1599, 1578, 1489, 1456, 1433, 
1279, 1246, 1171, 1159, 1049, 965, 825, 779, 686 cm-1; EI-
MS: m/z (%) 159.1 (M+, 100); HRMS m/z (ESI) calcd for 
C10H10NO (M+H)+: 160.0757, found 160.0752. 
trans-4-(tert-Butyl)cinnamonitrile (2h). The general procedure 95 

gave pure 2h as yellow oil (41 mg, 73% yield).17 1H NMR 
(CDCl3, 400 MHz) δ 7.36-7.44 (m, 5H), 5.83 (d, J = 16.4 Hz, 
1H), 1.33 (s, 9H); 13C NMR (CDCl3, 100 MHz) δ 154.9, 150.4, 
130.8, 127.2, 126.1, 118.4, 95.2, 35.0, 31.1.  
trans-4-(Trimethylsilyl)cinnamonitrile (2i). The general 100 

procedure gave pure 2i as yellow oil (46 mg, 76% yield). 
1H NMR (CDCl3, 400 MHz) δ 7.56 (d, J = 8.0 Hz, 2H), 7.38-
7.43 (m, 3H), 5.90 (d, J = 16.8 Hz, 1H), 0.28 (s, 9H); 13C NMR 
(CDCl3, 100 MHz) δ 150.6, 145.1, 134.0, 133.7, 126.4, 118.2, 
96.4, -1.34; IR (neat): ν = 2958, 2218, 1619, 1398, 1249, 105 

1106, 969, 858, 838, 800, 683 cm-1; EI-MS: m/z (%) 201.1 
(M+, 100); HRMS m/z (ESI) calcd for C12H16NSi (M+H)+ 
202.1047, found 202.1045. 
trans-4-Phenylcinnamonitrile (2j). The general procedure gave 
pure 2j as white solid (44 mg, 71% yield). 1H NMR (CDCl3, 110 

400 MHz) δ 7.59-7.63 (m, 4H), 7.37-7.51 (m, 6H), 5.88 (d, J = 
16.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 150.0, 143.9, 
139.6, 132.2, 128.9, 128.1, 127.8, 127.6, 127.0, 118.2, 95.9; IR 
(neat): ν = 2216, 1618, 1604, 1486, 1409, 1006, 854, 814, 
977, 761, 692 cm-1; EI-MS: m/z (%) 205.1 (M+, 100); 115 

HRMS m/z (ESI) calcd for C15H12N (M+H)+ 206.0964, 
found 206.0961. 
trans-4-Fluorocinnamonitrile (2k). The general procedure 
gave pure 2k as yellow solid (33 mg, 75% yield).17 1H 
NMR (CDCl3, 400 MHz) δ 7.44-7.47 (m, 2H), 7.37 (d, J = 120 

16.8 Hz, 1H), 7.08-7.26 (m, 2H), 5.81 (d, J = 16.8 Hz, 1H); 13C 
NMR (CDCl3, 100 MHz) δ 164.4 (d, J = 251.6 Hz), 149.2, 
129.8 (d, J = 3.2 Hz), 129.4 (d, J = 8.7 Hz), 117.9, 116.4 (d, J = 
22.2 Hz), 96.1. 
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trans-4-Chlorocinnamonitrile (2l). The general procedure gave 
pure 2l as light yellow solid (39 mg, 80% yield)4 1H NMR 
(CDCl3, 400 MHz) δ 7.33-7.39 (m, 5H), 5.8 (d, J = 16.8 Hz, 
1H); 13C NMR (CDCl3, 100 MHz) δ 149.1, 137.3, 132.0, 
129.4, 128.5, 117.8, 97.0. 5 

trans-4-Bromocinnamonitrile (2m). The general procedure 
gave pure 2m as yellow solid (49 mg, 78% yield).18 1H 
NMR (CDCl3, 400 MHz) δ 7.55 (d, J = 8.8 Hz, 1H), 7.34 (d, J 
= 16.4 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 5.88 (d, J = 16.8 Hz, 
1H); 13C NMR (CDCl3, 100 MHz) δ 149.2, 132.4, 128.7, 10 

125.6, 117.8, 97.1. 
trans-4-(Trifluoromethyl)cinnamonitrile (2n). The general 
procedure gave pure 2n as white solid (46 mg, 77% yield).3 
1H NMR (CDCl3, 400 MHz) δ 7.68 (d, J = 8.4 Hz, 2H), 7.57 
(d, J = 8.4 Hz, 2H), 7.44 (d, J = 16.8 Hz, 1H), 5.99 (d, J = 16.8 15 

Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ  148.8, 136.7, 132.7 
(q, J = 32.6 Hz), 127.6, 126.1 (q, J = 3.8 Hz), 123.6 (q, J = 270.7 
Hz), 117.3, 99.2. 
trans-3,5-(Dimethyl)cinnamonitrile (2o). The general 
procedure gave pure 2o as white solid (39 mg, 83% yield). 20 
1H NMR (CDCl3, 400 MHz) δ 7.33 (d, J = 16.4 Hz, 1H), 7.05-
7.07 (m, 3H), 5.84 (d, J = 16.8 Hz, 1H), 2.33 (s, 6H); 13C NMR 
(CDCl3, 100 MHz) δ 150.9, 138.7, 133.4, 133.0, 125.2, 118.3, 
95.7, 21.1; IR (neat): ν = 3019, 2921, 2361, 2330, 2217, 
1619, 1601, 1442, 1302, 1166, 1038, 967, 855, 815 cm-1; 25 

EI-MS: m/z (%) 157.1 (M+, 100); HRMS m/z (ESI) calcd 
for C11H12N (M+H)+ 158.0964, found 158.0960. 
trans-3-(Thiophen-2-yl)acrylonitrile (2p). The general 
procedure gave pure 2p as yellow oil (31 mg, 77% yield).4 
1H NMR (CDCl3, 400 MHz) δ 7.47 (d, J = 16.4 Hz, 1H), 7.42 30 

(d, J = 5.2 Hz, 1H), 7.24-7.26 (m, 1H), 7.07-7.09 (dd, J = 5.2, 3.6 
Hz, 1H), 5.65 (d, J = 16.4 Hz, 1H); 13C NMR (CDCl3, 100 
MHz) δ 142.7, 138.4, 131.2, 129.2, 128.3, 118.0, 94.4. 
trans-3-(Naphthalen-2-yl)acrylonitrile (2q). The general 
procedure gave pure 2q as white solid (48 mg, 89% yield).4 35 
1H NMR (CDCl3, 400 MHz) δ 7.83-7.87 (m, 4H), 7.52-7.56 
(m, 4H), 5.97 (d, J = 16.8 Hz, 1H); 13C NMR (CDCl3, 100 
MHz) δ 150.5, 134.5, 133.1, 131.0 129.6, 129.0, 128.7, 127.8, 
127.8, 127.1, 122.2, 118.3, 96.3. 
trans-3-(Naphthalen-1-yl)acrylonitrile (2r). The general 40 

procedure gave pure 2r as white solid (46 mg, 86% 
yield).19 1H NMR (CDCl3, 400 MHz) δ 8.24 (d, J = 16.4 Hz, 
1H), 8.04 (d, J = 8.4 Hz, 1H), 7.88-7.96 (m, 2H), 7.48-7.68 (m, 
4H), 5.98 (d, J = 16.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 
147.9, 133.6, 131.5, 130.9, 130.7, 128.9, 127.4, 126.6, 125.4, 45 

124.7, 122.8, 118.2, 98.8. 
trans-3-(Phenanthren-9-yl)acrylonitrile (2s). The general 
procedure gave pure 2s as white solid (55 mg, 80% yield). 
1H NMR (CDCl3, 400 MHz) δ 8.62-8.71 (m, 2H), 8.15 (d, J = 
16.4 Hz, 1H), 8.00 (d, J = 7.6 Hz, 1H), 7.82-7.88 (m, 2H), 7.60-50 

7.72 (m, 4H), 5.99 (d, J = 16.4 Hz, 1H); 13C NMR (CDCl3, 100 
MHz) δ 148.6, 131.2, 130.7, 130.4, 130.0, 129.3, 129.1, 128.2, 
127.3, 127.2, 127.2, 126.5, 123.8, 123.3, 122.6, 118.0, 99.3; IR 
(neat): ν = 2924, 2215, 1605, 1494, 1450, 1245, 1148, 959, 
820, 750, 722, 669, 656 cm-1; EI-MS: m/z (%) 229.1 (M+, 55 

100); HRMS m/z (ESI) calcd for C17H12N (M+H)+ 
230.0964, found 230.0960. 
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