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Photopolymerization of methyl methacrylate: Effects 
of photochemical and photonic parameters on the 
chain length. 

V. Charlot, A. Ibrahim, X. Allonas*, C. Croutxé-Barghorn and C. Delaite  

The effect of photochemical and photonic parameters are investigated on the chain length of 
poly(methylmethacrylate) (PMMA) as forms by free radical photopolymerization process. 
Different photoinitiators were tested for the photopolymerization of PMMA. The Type II 
system based on isopropyl thioxanthone (ITX)/ ethyl 4-(dimethylamino)benzoate (EDB) 
gives the best result. The conversion reaches 80% in 20 min contrary to type I 
photoinitiators. The decrease of the ITX concentrations from 3 wt % to 0.05 wt % allows the 
formation of higher chains of PMMA with Mw=170000 g/mol, thanks to the decrease in 
photogenerated radicals. However, there is almost no influence of the light intensity on the 
polymer chains. To optimize the chain length of photopolymerized PMMA, Triazine A (TA) 
was added to reduce the formation of ketyl radicals arising from the reaction of ITX with 
EDB. The mechanism of the reaction of this three-component photoinitiating system studied 
by LFP confirmed the creation of ketyl radical and its oxidation by TA. Then, use of this 
three-component system increases both the kinetic of polymerization and the final 
conversion by virtue of the decrease in ketyl radicals, which act as terminating agents and 
concomitant increase of initiating radicals as formed from the reduced TA. Moreover, thanks 
to these new sources of initiating radicals, photopolymerization can take place at lower 
intensity of light. With TA, it was found possible to photopolymerize in very soft conditions 
and to allow the formation of longer polymer chains with Mw=200000 g/mol at 1 mW/cm². 
 
 
 
 

 

Introduction 

The free radical polymerization of methyl methacrylate (MMA) 
to polymethylmethacrylate (PMMA) is usually performed 
under thermal conditions at moderate temperature (typically 
40°C) through the use of peroxide initiators.1 At lower 
temperature, the reaction time can exceed 10 hours.2 Moreover 
at temperature higher than 50°C, the polymerization can be 
hazardous due to the exergonicity of the reaction.  Then, an 
accurate control of the polymeriation conditions is necessary to 
produce PMMA, a fact of matter when considering the huge 
industrial use of this thermoplastic. It could be of interest to 
polymerize MMA in a faster time scale through a 
photopolymerization process by exposure to ultraviolet or 
visible irradiation. Indeed, photopolymerization has recently 
gained prominence as an attractive alternative to traditional 
polymerization processes due to variety of advantages and 
benefits.3-7 These profits can be attributed to the use of the 

energy provided by light to induce polymerization reactions, 
rather than thermal energy. Photopolymerization also allows 
spatial and temporal control of the reaction.8-9 For industrial 
process, the advantages of “cure on demand” eliminate 
premature reaction which can occur with thermally initiated 
reactions. Finally, photocuring is particularly well adapted for 
heat sensitive substrates without risk of thermal deformation.10-

11 

Traditionally, photopolymerization involves the use of 
multifunctionnal monomers and oligomers leading thus to the 
formation of tridimensional networks.8-12 This reaction was 
rarely applied to the photopolymerization of monofunctional 
monomers to form linear polymer chains. The challenge in such 
case is the achievement of a polymer with molecular weight 
high enough to reach the properties required in industry. 
Indeed, increased molecular weight and narrowed weight 
distribution of macromolecular chains enhance the mechanical 
properties of the final polymer. Moreover, the brittleness can be 
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connected to the weight-average molecular weight while the 
hardness is linked to the number-average molecular weight.13-16 
Generally, the properties of polymers are better when the 
molecular weight is high. But, from a certain molecular weight 
which depend on the nature of the polymer, properties become 
independent of this molecular weight.13  
In photopolymerization reaction, experimental conditions as 
temperature processing or light intensity can influence the 
structure of the polymer and therefore mechanicals 
properties.17-19 Consequently, the photopolymerization of MMA 
films at ambient temperature and the study of molecular weight 
as a function of experimental parameters is limited to a few 
papers. Then, the development of photopolymerized PMMA 
appears to be possible provided that the final molecular weight 
could be improved. 
In this study, the photopolymerization of MMA is performed 
under UV light and the influence of the photonic and 
photochemical parameters on the chain length of polymers was 
studied. The photoinitiating system was optimized in order to 
reduce the detrimental effect of ketyl radicals that act as 
terminating agents. It is shown that high molecular PMMA can 
be obtained under well controlled conditions. 

 

Experimental 

Materials and samples preparation 
Methyl methacrylate (MMA) and polymethylmethacrylate (Mw 
= 120000 g/mol, MFCD00134349) were purchased from 
Sigma-Aldrich and used without any purification. Different 
photoinitiating systems were investigated throughout this study: 
diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO, 
Sigma-Aldrich), 2,2-dimethoxy-2-phenylacetophenone 
(DMPA, BASF) and a mixture of isopropyl thioxanthone (ITX, 
Sigma-Aldrich), ethyl 4-(dimethylamino)benzoate (EDB, 
Sigma-Aldrich) and triazine A (TA, PCAS) were added to the 
MMA /PMMA mixture at different ratios.  
The corresponding absorption spectra are shown in Figure 1 
and the different structures of photoinitiators and co-initiators 
are given in scheme 1.   
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 Techniques 
Photopolymerization kinetics and monomer conversions were 
followed by real-time FTIR20 using a Vertex 70 from Bruker 
Optics operating in a rapid scan mode and equipped with a 
MCT detector. Time resolution was 0.1 s. The irradiation was 
provided by a high pressure mercury-xenon lamp (Hamamatsu 
LC10852) equipped with a reflector at 365 nm and a calorific 
filter which limits the transmission within a narrow range from 
315 nm to 400 nm. As the infrared radiations are not 
transmitted, the sample is not heated by lamp during the 
experiment. The intensity of the lamp is measured using a 
calibrated fiber optic spectrometer (Ocean Optics, USB4000). 
From the emission spectrum of the lamp given in Figure 1, one 
can see that 93% of the energy is emitted at 366 nm and 7% at 
334 nm. The output of the optical guide was placed at a 
distance of 4 cm from the sample with an incident angle of 90°. 
The photopolymerization reaction was carried out in laminated 
conditions using polypropylene film. The conversion of the 
monomer during the photopolymerization was determined by 
the decrease of the area of the C=C stretching vibration band of 
MMA at 1636 cm-1. The conversion of monomer C at time t is 
calculated from: 

	 % 100 

where Ao is the initial absorption band area before exposure and 
At is the absorption area of the double bonds at time t.20,21 The 
final conversion is evaluated as the mean value of three 
experiments to ensure a good reproducibility (± 5% on the final 
conversion). 
Rpmax is defined as the maximum rate of polymerization during 
the first seconds of the polymerization and is calculated from: 

	 %
 

where M0 is the initial concentration of the monomer and C the 
conversion of the monomer at time t.  
 t2w is defined as the time to reach the second polymerization 
wave.22 It corresponds to the second maximum of the 
conversion curve derivative and is calculated from the same 
equation of Rp. 
 
 
Molecular weight (Mw) and polydispersity index (PDI) of the 
UV-polymerized thermoplastic were determined using size 
exclusion chromatography (SEC) analyses performed on a 
Shimadzu LC-20AD liquid chromatograph equipped with two 
Varian PL gel 5µm MIXED-C columns (column, injection and 
refractometer temperature: 30 °C; injection volume: 30 µm) 
and a refractive index detector (Shimadzu RID-10A). THF was 
used as eluent at a flow rate of 1.0 mL/min. The molecular 
characteristics were determined relative to linear polystyrene 
calibration standards. Thus, experimental molecular weights 
were given as polystyrene equivalent.23 Two different 
experiments were performed for each run to ensure a good 
reproducibility (± 200g/mol on Mw). 
 
UV-visible absorption spectrophotometer (Cary 4000, Varian) 
was used to determine the absorption spectra of photoinitiators 
in acetonitrile by using a quartz cell of 1 cm length. 
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The decrease of ITX concentration induces a slowing down of 
the polymerization process and only a slight decrease of the 
final conversion. The time to reach the second wave of 
polymerization is increased by a factor of 2 when the 
concentration of ITX drops from 3 wt % to 0.05 wt % whereas 
the final conversion decreased from 75 % to 68%. During 
irradiation, the sample bleaches, allowing the light to penetrate 
in depth 
 
Table 2. Effect of the photoinitiator concentration on the final 
conversion and the time to reach the second polymerization 
wave (t2w). EDB concentration : 3 wt%. Light intensity : 
147mW/cm². 

[ITX] (wt%) Final conversion (%) t2w (s) 

0.05 68 1065 
0.2 72 1039 

0.6 72 906 

1 76 772 

3 75 540 

 
Figure 3 shows the influence of the photoinitiator concentration 
on the resulting polymers molecular weights. The decrease of 
ITX concentration induces an important increase of the Mw of 
the photopolymerized MMA. The Mw obtained with 3 wt% of 
ITX is around 56000g/mol while it reaches a value of 170000 
g/mol with 0.05 wt% of ITX.  

 

 

Figure 3: Effect of the photoinitiator concentration on the 
molecular weight of the photopolymer at 147mW/cm². EDB 
concentration: 3 wt%. 

The decrease in ITX concentration results in the formation of a 
lower steady-state concentration of initiating radicals and a 
depressed concentration of growing chains and lower 
conversion rates. Therefore, the probability of termination 
reactions is greatly reduced favouring high molecular weights.  

Moreover, the polydispersity index is high (at around 3.5) but 
relatively constant showing a large diversity of chain lengths, as 
usual for free radical photopolymerization reactions. New 
active centers are created during the whole time of 

polymerization, leading to the formation of chains with 
different lengths. 
 
Figure 4 presents the SEC curves of the PMMA pre-polymer 
and the photopolymerized PMMA obtained at with different 
ITX concentrations. Because of the presence of the PMMA pre-
polymer, the polydispersity indices and the Mw of the 
photopolymerized PMMA are skewed. The chromatogram 
shows that with 3 wt% of ITX, the SEC curve is shifted to the 
high retention times corresponding to the low Mw and 
consequently to the formation of short PMMA macromolecules, 
whereas, with 0.05 wt% of ITX, the SEC curve is shifted to 
lower retention time that indicated the formation of longer 
polymer chains. 
Moreover, due to the use of linear polystyrene calibration 
standards, the reported molecular weights of the formed 
PMMA, as expressed in polystyrene equivalent, are lower than 
the actual values. Indeed, the PMMA pre-polymer has a Mw of 
120000g/mol (according to commercial data) and the SEC data 
gives a Mw of only 84000g/mol. 
 

Figure 4: SEC curves of PMMA pre-polymer and 
photopolymerized PMMA obtained with different ITX 
photoinitiator concentrations (0.05 wt% and 3 wt%). 

Effect of the light intensity  
A series of experiments was performed to determine the effect 
of the light intensity on the photopolymerization kinetics and 
the resulting polymer molecular weights. In this part, the 
concentration of ITX/EDB was fixed at 1 and 3 wt%, 
respectively.  
Table 3 shows the effect of the light intensity on the final 
conversion and polymerization kinetics. A sharp increase of 
light intensity from 5 mW/cm² to 147 mW/cm² only induces a 
slight increase of the final conversion, which is still around 
71%. By contrast, an important acceleration of the 
polymerization kinetics is noticed: the time to reach the second 
wave of polymerization is decreased by 1.6. 
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ketone/amine type II photoinitiating system produced under 
light both an initiating radical and a terminating agent. 
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Figure 5: 3ITX transient absorption () recorded in acetonitrile at 
640 nm with an increasing concentration of EDB (from 9.5 x 10-5 
mol.L-1 to 7.5 x 10-4 mol.L-1).  

In the presence of TA as redox additive, a decrease of the ketyl 
radical transient was observed (Figure 6). This indicates that the 
triazine reacts with the ketyl radical yielding to the recovery of 
ITX ground state and the formation of the corresponding 
triazine radical. 
 

 
Figure 6: Ketyl radical ITXH• absorbance (A) measured at 
420 nm in argon saturated acetonitrile solution in the presence 
of TA. 
 
TA is known to be a good electron acceptor which leads to fast 
heterolytic C-Cl cleavage after dissociative electron transfer.33-

39 Therefore, it is proposed that the reaction involves an 
electron transfer reaction from the ketyl radical to TA leading 
to triazynyl radical which can act as initiating radical: 

ITXH + TA → ITXH+ + TA
-Cl- + Cl-  

The starting photoinitiator ITX is recovered after deprotonation 
of ITXH●. As ITXH is trapped during this process, the 

termination reactions are expected to be considerably reduced, 
leading to higher probably of propagation reaction. 
It should be mentioned that ITX triplet state is quenched in the 
presence of TA, with a rate constant of 3.7 109 M-1s-1, i.e. quite 
similar to that of EDB. Taking into account that the molar 
content of EDB is 13 times higher than that of TA, no specific 
interaction between ITX triplet state and TA is expected.  
Then, the proposed mechanism for the three components 
ITX/EDB/TA photoinitiating system is depicted in Scheme 2. 
After excitation of ITX and formation of the triplet state, a 
photoreduction reaction occurs with EDB. This leads to the 
formation of an aminoalkyl radical (EDB-H

•) and a ketyl radical 
(ITXH•). Then, a redox reaction occurs between the ketyl 
radical and TA which forms a new initiating radical and 
regenerates ITX. The disappearance of the ketyl radical and the 
formation of a new initiating radical account for the increasing 
photopolymerization efficiency of the ITX/EDB system in the 
presence of TA. 
 

 

Scheme 2 
 
Towards very low intensity and low photoinitiator 
concentration. It was shown that the decrease of the 
photoinitiator concentration can increase the molecular weight 
of the polymer chains formed by photopolymerization. 
Addition of TA has allowed an increase in both the 
polymerization kinetics and the final conversion. Therefore, it 
was interesting to study the influence of TA on the molecular 
weight of photopolymerized PMMA. The photopolymerization 
of a PMMA / MMA formulation (30/70 wt%) was performed 
for two low light intensities (1 and 5 mW/cm²) and at reduced 
concentration of the 3-component photoinitiating system (figure 
7 and Table 5).  At first, it can be seen that in presence of TA, it 
is possible to photopolymerize at very low intensities, as low as 
1 mW/cm², which is impossible with ITX / EDB photoinitiating 
system. An increase up to 5 mW/cm² does not have a great 
influence on the final conversion: 73% at 1 mW/cm² and 69% 
at 5mW/cm². Similarly polymerization profiles are quite similar 
for the two intensities. 
 
Table 5. Effect of the combination of low light intensity and 
low photoinitiator concentration on the conversion of 
PMMA/MMA formulations. [ITX] = 0.05 wt% [EDB]=3 wt%. 
[TA]=0.5wt% 
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Light intensity (mW/cm²) Conversion (%) t2w (s) 

1 73 356 
5 69 451 

 
Interestingly, SEC experiments show that significant decrease 
of the light intensity combined with depressed concentration of 
PI system strongly affects the polymer chain length (Figure 7).  
The molecular weight of the chains is around 137000 g/mol and 
200000 g/mol at 5mW/cm² and 1mW/cm², respectively. The 
use of TA also increases the polydispersity of the chains since 
the PDI is around 5 for light intensity of 1 mW/cm². The 
disappearance of the radical ketyl as terminating agent 
increases the departure from the control of the polymerization. 
Thanks to use of TA, it is possible to photopolymerize in mild 
conditions (low intensity and photoinitiator concentrations) and 
it allows the formation of longer polymer chains. 

  

Figure 7: Effect of the light intensity on the molecular weight 
of the PMMA/MMA photopolymer. [ITX]=0.05% - [EDB]=3 
wt% - [TA]=0.5%. 

Conclusion 

In this study, the photopolymerization of MMA was performed 
using different photoinitiators. It was found that a 
photoinitiating system based on ITX/EDB leads to almost full 
conversion. After a mechanistic investigation of the 
photoinitiating process and identification of the reactive 
species, it was shown that the molecular weight of the 
photopolymerized PMMA can be modulated. The addition of a 
triazine derivative leads to the vanishing of the ITX ketyl 
radicals that acts as terminating agent. As a consequence, the 
molecular weight of the final polymer increases. This opens 
new opportunities to perform efficient photopolymerization of 
thermoplastics like MMA.  
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