Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012,
Accepted 00th January 2012
DOI: 10.1039/x0xx00000x
www.rsc.org/

Ligand- and Brønsted Acid/Base-Switchable Reaction Pathways in Gold(I)-Catalyzed Cycloisomerizations of Allenoic Acids

Sachin Handa, ${ }^{a}$ Sri S. Subramanium, ${ }^{a}$ Aaron A. Ruch, ${ }^{a, b}$ Joseph M. Tanski ${ }^{c}$ and LeGrande M. Slaughter* ${ }^{a, b}$

Abstract

Gold-promoted cyclizations of 2,2-diaryl substituted γ-allenoic acids were found to give three isomeric lactone products, each of which could be obtained selectively by exploiting Brønsted acid/base and ligand effects. Simple 5-exo-trig cyclization products were favored by strong donor ligands or base additives, whereas weak donor ligands and a Brønsted acid additive gave isomeric enelactones resulting from double bond migration. Further optimization afforded a class of medicinally relevant bridged tricyclic lactones via a tandem hydroacyloxylation/hydroarylation process. Kinetic studies and control experiments indicated that the initial 5-exo-trig cyclization product serves as a branch point for further isomerization to the other lactone products via cooperative gold(I)/Brønsted acid catalysis.

Introduction

Gold(I) complexes catalyze a diverse array of transformations initiated by π-electrophilic activation of alkynes, allenes, and alkenes toward attack by heteroatom or carbon-based nucleophiles. ${ }^{1}$ Although applications of gold catalysis in the synthesis of complex natural products have begun to appear, ${ }^{2}$ wider adoption may be hindered by the mechanistic intricacy of these processes, which limits predictive ability. ${ }^{3,4}$ Goldmediated reactions can often evolve along divergent mechanistic pathways that are sensitive to ligand effects, substrate structure, or reaction conditions. ${ }^{5}$ Furthermore, there is much evidence that Brønsted acid-either deliberately introduced or generated in situ from the nucleophile-can significantly affect the outcomes of gold-catalyzed transformations. ${ }^{6}$ Several reports have indicated enhanced rates and/or yields in gold-catalyzed reactions with added Brønsted acid, presumably due to accelerated protodeauration. ${ }^{7}$ In other cases, added Brønsted acid changes the reaction stereoselectivity ${ }^{8}$ or opens new reaction pathways that do not occur with gold alone. The latter can involve cascade reactions, in which gold-catalyzed steps are followed by Brønsted acid catalysis, ${ }^{9}$ or may result from Au^{I}-assisted Brønsted acid catalysis. ${ }^{10}$ Brønsted acid can also serve to generate active gold(I) species when basic anionic ligands are present. ${ }^{11}$ It is important to identify and control these various Brønsted acid effects on gold catalysis in order to maximize catalyst efficiency and to enable optimization of potentially competing reaction pathways.

Gold-catalyzed cycloisomerizations of alkynes ${ }^{12}$ and allenes ${ }^{13,14}$ containing pendent carboxylic acids as internal nucleophiles have been relatively little investigated ${ }^{15}$ in comparison to related intramolecular hydrofunctionalizations
involving amines and alcohols. ${ }^{16}$ In particular, only three limited reports of gold-catalyzed hydroacyloxylations of allenoic acids appeared prior to our study, each of them utilizing the same single substrate, which contains an unsubstituted $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - linkage between the allene and the carboxylic acid. ${ }^{13 \mathrm{a}-\mathrm{c}, 17}$ In one study, bimetallic diphosphine gold(I)/chiral silver phosphate catalyst systems were employed to achieve varying degrees of enantioselectivity. ${ }^{13 \mathrm{a}, 18}$ More recently, it was reported that chiral silver(I) phosphate salts alone are effective catalysts for cyclizations of four γ-allenoic acids bearing geminal diphenyl groups adjacent to the carboxylic acid, even at room temperature. ${ }^{15 \mathrm{~d}}$ In these prior reports, only the γ-lactones resulting from simple 5 -exo-trig cyclization were observed.

With a goal of developing modular routes to lactones that could form the cores of medicinally relevant organic molecules, ${ }^{19}$ we examined gold-catalyzed cycloisomerizations of 2,2-diaryl allenoic acids using an expanded series from this known substrate class. ${ }^{15 \mathrm{~d}, 20,21}$ A special goal was to identify and optimize any products resulting from alternative reaction pathways. A few reports have shown that different cyclization products can be obtained in some types of intramolecular allene hydrofunctionalizations upon changing the catalytic metal. ${ }^{22}$ We hypothesized that ligand effects could be utilized to achieve similar results with allenoic acids, given literature precedent for ligand control of regioselectivities in some related goldcatalyzed cycloisomerizations of functionalized alkynes ${ }^{5 \text { a-c, }, 23}$ and allenes ${ }^{24}$ involving internal nucleophiles other than carboxylic acids. During these studies, we found that goldcatalyzed cyclizations of several 2,2-diaryl-substituted γ allenoic acids lead to three isomeric lactone products, each of which can be selected by exploiting Brønsted acid/base effects in combination with ligand effects. One product is a tricyclic δ -
lactone resulting from an unprecedented tandem hydroacyloxylation/hydroarylation process. Evidence of cooperativity between Au^{I} and Brønsted acid has been found in two of the catalytic reaction pathways.

Results and discussion

During an initial screen of in situ-generated cationic $A u^{1}$ complexes bearing common ancillary ligands in the catalytic cycloisomerization of known 2,2-diphenyl γ-allenoic acid substrate 1a, ${ }^{15 \mathrm{~d}}$ two additional products were observed alongside the expected 5 -exo-trig cyclization product $\mathbf{2 a}$ (Table 1). Catalysts containing PPh_{3} or CyJohnPhos (5) afforded $\mathbf{2 a}$ as the major product, along with $\sim 30 \%$ yields of the double bond isomerized enelactone 3a (entries 1,2), which has not been previously reported. Switching to the more strongly donating N -heterocyclic carbene ligands IMes (6) and SIMes (7) nearly eliminated the isomerized product and provided improved yields of 2a (entries 3,4). The structure of 2a was confirmed by X-ray diffraction analysis, ${ }^{\dagger}$ and the structure of $\mathbf{3 a}$ was assigned on the basis of ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ 2D NMR correlation spectroscopy (HMQC and HMBC; see the ESI).

Table 1 Ligand and counterion effects on product distribution in catalytic cycloisomerizations of allenoic acid 1a. ${ }^{\text {a }}$

${ }^{a}$ Reaction conditions: 1a (0.30 mmol), $\mathrm{LAuCl}(5 \mathrm{~mol} \%), \mathrm{AgX}(5 \mathrm{~mol} \%)$, solvent $(2.0 \mathrm{~mL}) .{ }^{b} \mathbf{2} \mathbf{a}$ and $\mathbf{3 a}$ obtained as an inseparable mixture; ratio determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Isolated yield. ${ }^{d} \mathrm{In} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $45{ }^{\circ} \mathrm{C}$. ${ }^{e}$ In DCE at 65 ${ }^{\circ} \mathrm{C}$. ${ }^{f} \mathrm{LiNTf}_{2}$ was used. ${ }^{g} \mathrm{BAr}^{\mathrm{F}}{ }_{4}=$ tetrakis [3,5bis(trifluoromethyl)phenyl]borate.

When poorly donating $\mathrm{P}(\mathrm{OPh})_{3}$ was used as a ligand, formation of $\mathbf{2 a}$ was substantially reduced, and a third product was observed in addition to 3 a (Table 1 , entry 5). The ${ }^{1} \mathrm{H}$ NMR spectrum of this compound showed an absence of olefinic protons, and X-ray crystallography revealed it to be tricyclic δ lactone 4a (Figure 1), ${ }^{\dagger}$ which arises from an apparent tandem
hydroacyloxylation/hydroarylation process. Although several metal-catalyzed tandem reactions that combine heteroatom addition to a carbon-carbon π-bond with hydroarylation have been reported, ${ }^{25}$ such reactions have rarely afforded bridged ring structures, ${ }^{25 e, f}$ and there are no examples involving carboxylic acid nucleophiles. ${ }^{26,27}$ Furthermore, the tricyclic lactone core of $\mathbf{4 a}$ is found in the bioactive natural product carnosol, ${ }^{28}$ suggesting that this tandem cyclization process could have value in medicinal chemistry. ${ }^{29}$ A screen of silver salt activators (entries 6-10) revealed that replacing the $\mathrm{SbF}_{6}{ }^{-}$ counterion with $\mathrm{BF}_{4}{ }^{-}$increased the yield of 4 a to 45% at $65^{\circ} \mathrm{C}$ (entry 10), so the combination of $(\mathrm{PhO})_{3} \mathrm{PAuCl}(\mathbf{8})$ and AgBF_{4} was selected for further optimization.

Fig. 1 X-ray crystal structure of 4a with 50% probability ellipsoids. A second, crystallographically independent molecule with a nearly identical conformation is also present in the asymmetric unit.

Given the acidic functional group of allenoic acid 1a, we hypothesized that protons might play an important role in the reaction pathways leading to $\mathbf{3 a}$ and $\mathbf{4 a}$. Therefore, we examined the effects of co-catalytic amounts of Brønsted base $\left(\mathrm{NEt}_{3}\right)$ or Brønsted acid (p-toluene sulfonic acid hydrate, $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$) on the product distribution (Table 2). Addition of 5 $\mathrm{mol} \% \mathrm{NEt}_{3}$ completely suppressed the formation of $\mathbf{3 a}$ and $\mathbf{4 a}$ and afforded near quantitative yields of 2a (Table 2, entry 1), although higher amounts of base resulted in a lower yield (entry 2). By contrast, increasing amounts of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ led to correspondingly higher quantities of isomerized enelactone 3a (entries 3,4) while still disfavoring formation of $\mathbf{4 a}$. With 20 $\mathrm{mol} \% \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ and $5 \mathrm{~mol} \% \mathbf{8} / \mathrm{AgBF}_{4}$ at extended reaction times, 3a was obtained exclusively in 93% yield (entry 5).

Table 2 Brønsted acid/base effects on product distribution in catalytic cycloisomerizations of allenoic acid 1a. ${ }^{a}$

entry	additive	$t(\mathrm{~h})$	yield $\mathbf{2 a}$ $(\%)^{b}$	yield $\mathbf{3 a}$ $(\%)^{b}$	yield 4a $(\%)^{c}$
1^{d}	$\mathrm{NEt}_{3}(5 \mathrm{~mol} \%)^{e}$	3.0	95	--	--
2^{d}	$\mathrm{NEt}_{3}(20 \mathrm{~mol} \%)^{e}$	8.0	65	--	--
3^{f}	$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%)$	4.0	86	7	--
4^{f}	$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$	4.0	61	31	--
5^{f}	$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$	24	--	93	--

${ }^{a}$ Reaction conditions: 1a (0.30 mmol), $(\mathrm{PhO})_{3} \mathrm{PAuCl}(5 \mathrm{~mol} \%), \mathrm{AgBF}_{4}(5$ mol\%), solvent (2.0 mL), $45^{\circ} \mathrm{C} .{ }^{b} \mathbf{2 a}$ and 3a obtained as an inseparable mixture; ratio determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\text {c }}$ Isolated yield. ${ }^{\text {a }} \mathrm{In}^{\mathrm{CH}} \mathrm{Cl}_{2}$. ${ }^{e} \mathrm{NEt}_{3}$ added as a 1.0 M stock solution in DCE. ${ }^{f}$ In DCE.

In order to gain further insights into the effects of Brønsted acid and base additives on gold-catalyzed cycloisomerizations of 1a, the rates of these reactions were studied under various conditions (Table 3). For these experiments, a pre-activated cationic gold catalyst, nominally formulated as $\left[(\mathrm{PhO})_{3} \mathrm{PAu}^{2}\right] \mathrm{BF}_{4}(\equiv[\mathrm{Au}]),{ }^{30}$ was generated in situ by treating 8
with AgBF_{4} in DCE , followed by filtration of residual silver salts to preclude any background catalysis by $\mathrm{Ag}^{\mathrm{I}} .^{15 \mathrm{~d}}$ Monitoring of reaction products over time by ${ }^{1} \mathrm{H}$ NMR spectroscopy revealed complete conversion of 1a to 2a within 2 min at $45{ }^{\circ} \mathrm{C}$ in the presence of $5 \mathrm{~mol} \%$ [Au], either with or without $20 \mathrm{~mol} \% \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ added. Subsequently, 2a was transformed into 3a at a significantly faster rate [0.39(6) $\mathrm{m} M$ min^{-1}] with $5 \mathrm{~mol} \%$ gold catalyst plus $20 \mathrm{~mol} \% \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ than with gold catalyst alone $\left[0.04(5) \mathrm{m} M \mathrm{~min}^{-1}\right]$ (Table 3, entries 1,2). ${ }^{31}$ Figure 2 illustrates the rapid initial formation of 2a, followed by slow isomerization to 3a, for the reaction involving gold catalyst plus added $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$. A control experiment with $20 \mathrm{~mol} \% \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in the absence of $[\mathrm{Au}]$ (Table 3, entry 3) showed that purely acid-catalyzed formation of 2a (60 min for completion) and 3a $\left[0.20(1) \mathrm{m} M \mathrm{~min}^{-1}\right.$] also occurs, but at significantly slower rates. In addition, isolation of products from the Brønsted acid-catalyzed reaction (20 $\mathrm{mol} \% \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$), using conditions identical to those used for the gold-catalyzed reactions listed in Table 2, revealed incomplete conversion to 3a even after 24 h (14% and 80% respective yields of $\mathbf{2 a}$ and 3a). Addition of NEt_{3} to the cationic [Au] catalyst slowed the formation of 2a considerably but led to no observable 3a (entry 4), consistent with the clean formation of 2a achieved with added NEt_{3} in the optimization studies (Table 2).

Table 3 Measured initial rates of formation of 2a and 3a, starting from 1a. ${ }^{a}$

entry	Au catalyst ${ }^{b}$	additive	Initial rate of formation $\left(\mathrm{m} M \mathrm{~min}^{-1}\right)$ $\mathbf{2 a}$	
			$\mathbf{3 a}^{c}$	
1	$5 \mathrm{~mol} \%[\mathrm{Au}]$	None	$>100^{d}$	$0.04(5)$
2	$5 \mathrm{~mol} \%[\mathrm{Au}]$	$\mathrm{TsOH}^{e}(20 \mathrm{~mol} \%)$	$>100^{d}$	$0.39(6)$
3	--	$\mathrm{TsOH}^{e}(20 \mathrm{~mol} \%)$	$11.4(7)$	$0.20(1)$
4	$5 \mathrm{~mol} \%[\mathrm{Au}]$	$\mathrm{NEt}_{3}(5 \mathrm{~mol} \%)$	$17.5(2)$	--
5	$5 \mathrm{~mol} \% \mathbf{8}$	$\mathrm{TsOH}^{e}(20 \mathrm{~mol} \%)$,	$>100^{d}$	$0.51(8)$
6	-	$\operatorname{AgBF}_{4}(5 \mathrm{~mol} \%)^{d}$		
6	-	$\operatorname{AgBF}_{4}(5 \mathrm{~mol} \%)$	$6.6(2)$	-

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.30 \mathrm{mmol})$, DCE $(1.5 \mathrm{~mL}), 45^{\circ} \mathrm{C} .{ }^{b}$ Preactivated gold catalyst $[\mathrm{Au}]$ was prepared by reaction of $\mathbf{8}$ with AgBF_{4}, followed by removal of AgCl by filtration. ${ }^{c}$ Rate measurement began after formation of 2a was complete. ${ }^{d}$ Formation of 2a was complete within $2 \mathrm{~min} .{ }^{e} \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ used. ${ }^{f} \mathrm{AgCl}$ was not filtered off.

An additional concern was the possible role of silver in these catalytic processes, given that cycloisomerizations of 1a and three similar allenoic acids were reported to be facile with Ag^{1} phosphate salts as catalysts. ${ }^{15 \mathrm{~d}}$ An experiment utilizing 5 $\mathrm{mol} \%$ [Au] catalyst and $20 \mathrm{~mol} \% \mathrm{TsOH}$, but without removal of the AgCl formed upon catalyst pre-activation (Table 3, entry 5), revealed a somewhat higher rate for formation of $\mathbf{3 a}$ $\left[0.51(8) \mathrm{m} M \mathrm{~min}^{-1}\right]$ compared with the corresponding reaction in which AgCl was filtered off (Table 3, entry 2). Thus, background catalysis by heterogeneous silver salt apparently
contributes to, but does not dominate, the isomerization pathway leading to $\mathbf{3 a} . \mathrm{AgBF}_{4}$ alone ($5 \mathrm{~mol} \%$, entry 6) catalyzed the cyclization of 1a to 2a more slowly than $20 \mathrm{~mol} \%$ Brønsted acid (entry 3) and did not catalyze further isomerization to 3a.

Fig. 2 Product concentrations versus time for the catalytic cycloisomerization of 1a with $5 \mathrm{~mol} \%$ cationic [Au] plus $20 \mathrm{~mol} \% \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$: (a) first five minutes; (b) over 24 h .

Table 4 Measured initial rates of formation of 3a, starting from 2a. ${ }^{a}$

${ }^{a}$ Reaction conditions: DCE, 2a $(0.18 \mathrm{M}), 45^{\circ} \mathrm{C}$. ${ }^{b}$ Preactivated gold catalyst [Au] was prepared by reaction of $\mathbf{8}$ with AgBF_{4}, followed by removal of AgCl by filtration.

Given the apparent intermediacy of 2a in the formation of 3a from 1a, further kinetic studies examined the rate of isomerization of purified 2a to 3a under catalytic conditions (Table 4). Conversion of 2a to 3a occurred at a relatively fast rate with $5 \mathrm{~mol} \%$ cationic [Au] plus $20 \mathrm{~mol} \% \mathrm{TsOH}$ [0.88(2) $\mathrm{m} M \mathrm{~min}^{-1}$] (entry 1), whereas the Brønsted acid-catalyzed reaction with $20 \mathrm{~mol} \% \mathrm{TsOH}$ alone was substantially slower $\left[0.26(1) \mathrm{m} M \mathrm{~min}^{-1}\right]$ (entry 2). The higher rate for formation of 3a from 2a (Table 4, entry 1) versus 1a (Table 3, entry 2) under the same conditions was postulated to reflect partial catalyst deactivation or decomposition in the reaction starting from 1a. With $5 \mathrm{~mol} \%[\mathrm{Au}]$ and no added acid, the transformation of 2a to 3a barely occurred (entry 3), affording less than a 3% yield of 3a after 24 h . These experiments suggest a mechanistic
scenario in which cooperative gold/Brønsted acid catalysis is required for efficient formation of $\mathbf{3 a}$, subsequent to the initial cycloisomerization of 1a to 2a. Notably, the TsOH-catalyzed isomerization of 2a to $\mathbf{3 a}$ was not faster in the presence of AgBF_{4} (entry 4), indicating that this type of cooperativity apparently does not extend to homogeneous Ag^{I} catalysts.

Scheme 1 Selective catalytic 5-exo-trig cyclizations of allenoic acids 1a-k to enelactones 2a-k.

3d (71\%) ${ }^{a}$

$3 \mathrm{~g}(61 \%)^{b}$

3k $(41 \%)^{a}$
${ }^{2} 20 \mathrm{~mol} \% \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{b_{5}} \mathrm{~mol} \% \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$.

Scheme 2 Selective catalytic synthesis of double-bond isomerized enelactones $3 a-i, k$.

The ability to select competing pathways to two isomeric lactone products by addition of simple acid/base additives is notable, given that only nonisomerized enelactones such as $\mathbf{2 a}$ were obtained in previous studies of metal-catalyzed γ-allenoic acid cyclizations. ${ }^{13 \mathrm{a}-\mathrm{c}, 15 \mathrm{~d}, 32}$ Double bond isomerizations have been previously reported to occur in conjunction with $\mathrm{Au}^{\mathrm{I}}-$ promoted nucleophilic additions to alkenes, ${ }^{33}$ dienes, ${ }^{10 a}$ and alkynes, ${ }^{34}$ but cooperativity between gold and Brønsted acid in these reactions has only rarely been investigated. ${ }^{10 a}$ These observations enabled us to formulate general conditions for the selective synthesis of either nonisomerized or double bond isomerized enelactones, in synthetically useful yields, for a family of allenoic acids containing differently sized carbocycles at the allene terminus and/or chlorine- or oxygen-substituted 2aryl groups (Schemes 1, 2). Enelactones of type 2 were cleanly obtained by adding $5 \mathrm{~mol} \% \mathrm{NEt}_{3}$ to the $\mathbf{8} / \mathrm{AgBF}_{4}$ catalyst system, which effectively suppressed the double-bond isomerization process (2a-k, Scheme 1). Addition of $20 \mathrm{~mol} \%$ $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($5 \mathrm{~mol} \%$ was sufficient for cyclopentylidene substrates $\mathbf{1 b}, \mathbf{e}, \mathbf{g}, \mathbf{i})$ facilitated selective formation of the isomerized analogues of type 3, although extended reaction times of 12 h were needed to obtain optimal yields ($\mathbf{3 a - i}$ and $\mathbf{3 k}$, Scheme 2). Substrate $\mathbf{1} \mathbf{j}(\mathrm{R}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph})$ did not afford a double bond isomerized product of type 3 due to the lack of a ring that could host a thermodynamically favored internal alkene. Notably, products $\mathbf{2}$ and $\mathbf{3}$ could not be chromatographically separated for substrates $\mathbf{1 a - i}, \mathbf{k}$, reinforcing the importance of selective catalytic routes to the two distinct isomers.

As no products of hydroarylation without lactonization were observed with 1a, we hypothesized that the formation of tricyclic lactone $\mathbf{4 a}$ might occur via the intermediacy of hydroacyloxylation products 2a and/or 3a. Subjecting a purified sample of enelactone $\mathbf{2 a}$ to the preactivated [Au] catalyst at an elevated temperature of $75^{\circ} \mathrm{C}$ in DCE for 16 h afforded a substantial amount of $\mathbf{4 a}$ (29% isolated yield), in addition to a 55% yield of 3a (Scheme 3). Submission of 3a to the same catalytic conditions resulted in no detectable formation of $\mathbf{4 a} ;{ }^{1} \mathrm{H}$ NMR analysis of the product mixture indicated 88% recovery of unreacted 3a, with only a trace ($<1 \%$) of 2 a present. Thus, 4 a is likely formed via the intermediacy of $\mathbf{2 a}$.

Scheme 3 Gold-catalyzed isomerization of 2a at $75{ }^{\circ} \mathrm{C}$, showing isolated yields. No 2a was recovered; the remaining mass balance reflects decomposition to unidentifiable material.

Although the transformation of $\mathbf{2 a}$ into $\mathbf{4 a}$ represents a formal alkene hydroarylation, it seems unlikely that this occurs via Au^{I}-based carbophilic activation of the carbon-carbon double bond toward arene attack, given the geometric constraints imposed by the five-membered lactone ring of 2a and the scant literature precedent for such a reaction. ${ }^{35}$ Goldcatalyzed additions of arenes to nonconjugated alkenes are rare
and mostly limited to examples involving electron-rich aromatic rings. ${ }^{36}$ Furthermore, a closely related tricyclic ether was reported to form upon heating an analogous allenol with 20 $\mathrm{mol} \% \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{TfOH},{ }^{37}$ suggesting that Brønsted acid catalysis may also be important in the formation of 4a. ${ }^{38}$ Therefore, we examined reactions of 1a and 2a with catalytic amounts of Brønsted acids at $75^{\circ} \mathrm{C}$ (Table 5). No formation of 4 a was observed with either $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ or aqueous HBF_{4}, and conversion to 3a was not complete with the latter (entries 1-3). However, $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ led to small amounts of $\mathbf{4 a}$ (entries 4,5), and $4 \mathbf{a}$ was the only product obtained when the stronger Brønsted acid TfOH was employed, although yields were still modest (entries 9,11). The similar yields of 4a obtained from both 1a and 2a using $20 \mathrm{~mol} \% \mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ (entries 4,5) or TfOH (entries 9,11) as the catalyst further support the intermediacy of $\mathbf{2 a}$ in this reaction. These results lead to the conclusion that a very strong Brønsted acid, at least as strong as $\left[\mathrm{HOEt}_{2}\right]^{+}(\mathrm{pKa} \leq-3.6)$, is required to achieve formation of $\mathbf{4 a}$.

Table 5 Isomerizations of 1a and 2a with catalytic Brønsted acid. ${ }^{a}$

${ }^{a}$ Reaction conditions: 1a or $\mathbf{2 a}(0.30 \mathrm{mmol})$, $\operatorname{DCE}(2.0 \mathrm{~mL}), 75^{\circ} \mathrm{C}, 16 \mathrm{~h} .{ }^{b} 20$ $\mathrm{mol} \% \mathrm{HA}$, except as noted. ${ }^{c} \mathbf{2 a}$ and 3a obtained as an inseparable mixture; ratio determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Isolated yield. ${ }^{e} 48 \mathrm{wt} \% \mathrm{HBF}_{4} .{ }^{f}$ Unreacted 2a recovered. ${ }^{g} 51-57 \mathrm{wt} \% \mathrm{HBF}_{4}$.

Because efficient formation of 4a under purely Brønsted acid catalysis was elusive, we developed an alternative Au^{I} promoted procedure involving an initial low-temperature incubation period followed by heating at $75{ }^{\circ} \mathrm{C}$. A $-20^{\circ} \mathrm{C}$ incubation temperature proved optimal (Table 6). We postulate that the low temperature step suppresses catalyst deactivation processes while allowing buildup of a small steady-state concentration of strong Brønsted acid, equivalent to unsolvated $\mathrm{HBF}_{4}\left(\mathrm{pKa} \sim-10.3\right.$ in $\left.\mathrm{DCE}^{39}\right)$. TfOH is a reasonable surrogate for this putative Brønsted acid given its similarly low pKa in DCE (~-11.4). ${ }^{39}$ Notably, a $20 \mathrm{~mol} \%$ loading of TfOH was
found to be optimal with no gold catalyst present (Table 5, entries 6-10), whereas the maximum Brønsted acid concentration that can be formed in the incubation phase of the gold-promoted process is $5 \mathrm{~mol} \%$. The improved yields of 4 a obtained under the latter conditions, despite the lower concentration of Brønsted acid, suggest that the optimal reaction conditions involve cooperative gold/Brønsted acid catalysis rather than purely Brønsted acid catalysis that is initiated by gold. ${ }^{38}$

Table 6 Optimization of gold-promoted formation of tricyclic lactone 4a. ${ }^{a}$

entry	incubation temp $\left({ }^{\circ} \mathrm{C}\right)$	yield 2a $(\%)^{b}$	yield 3a $(\%)^{b}$	yield 4a $(\%)^{c}$
1	$25{ }^{\circ} \mathrm{C}$	--	80	12
2	$0{ }^{\circ} \mathrm{C}$	--	60	37
3	$-20^{\circ} \mathrm{C}$	--	18	80

${ }^{a}$ Reaction conditions: $5 \mathrm{~mol} \%$ cationic [Au] (prepared in situ from $\mathbf{8}+\mathrm{AgBF}_{4}$ followed by filtration $)$, $\mathbf{1 a}(0.30 \mathrm{mmol})$, DCE $(2.0 \mathrm{~mL})$.

Scheme 4 Synthesis of tandem hydroacyloxylation/hydroarylation products 4: Optimized conditions versus TfOH-catalyzed conditions.

The optimized protocol (Method A, Scheme 4) afforded
y yields of tricyclic lactones from allenoic acids 1a-c,
constrating that the gold/Brønsted acid-catalyzed tandem
cess is potentially generalizable, at least with unsubstituted
nene groups present. However, substrates with an inflexible
thenety in place of 2,2-diaryl substituents (1h,i) were
The optimized protocol (Method A, Scheme 4) afforded
good yields of tricyclic lactones from allenoic acids 1a-c,
demonstrating that the gold/Brønsted acid-catalyzed tandem
process is potentially generalizable, at least with unsubstituted
phenyl groups present. However, substrates with an inflexible
xanthene moiety in place of 2,2-diaryl substituents ($\mathbf{1 h} \mathbf{h} \mathbf{i})$ were
The optimized protocol (Method A, Scheme 4) afforded
good yields of tricyclic lactones from allenoic acids 1a-c,
demonstrating that the gold/Brønsted acid-catalyzed tandem
process is potentially generalizable, at least with unsubstituted
phenyl groups present. However, substrates with an inflexible
xanthene moiety in place of 2,2 -diaryl substituents $(\mathbf{1 h}, \mathbf{i})$ were
The optimized protocol (Method A, Scheme 4) afforded
good yields of tricyclic lactones from allenoic acids 1a-c,
demonstrating that the gold/Brønsted acid-catalyzed tandem
process is potentially generalizable, at least with unsubstituted
phenyl groups present. However, substrates with an inflexible
xanthene moiety in place of 2,2-diaryl substituents ($\mathbf{1 h} \mathbf{h} \mathbf{i})$ were
The optimized protocol (Method A, Scheme 4) afforded
good yields of tricyclic lactones from allenoic acids 1a-c,
demonstrating that the gold/Brønsted acid-catalyzed tandem
process is potentially generalizable, at least with unsubstituted
phenyl groups present. However, substrates with an inflexible
xanthene moiety in place of 2,2 -diaryl substituents $(\mathbf{1 h}, \mathbf{i})$ were
The optimized protocol (Method A, Scheme 4) afforded
good yields of tricyclic lactones from allenoic acids 1a-c,
demonstrating that the gold/Brønsted acid-catalyzed tandem
process is potentially generalizable, at least with unsubstituted
phenyl groups present. However, substrates with an inflexible
xanthene moiety in place of 2,2 -diaryl substituents $(\mathbf{1 h}, \mathbf{i})$ were
${ }^{d}$ No $\mathbf{4 g}$ obtained.
unable to undergo hydroarylation, and most others with functionalized aryls ($\mathbf{1 d - g}$) gave only varying amounts of $\mathbf{3}$ but no isolable 4 under these conditions, suggesting high sensitivity to the aryl group substitution pattern in this transformation. An alternative, gold-free protocol using $20 \mathrm{~mol} \% \mathrm{TfOH}$ as the catalyst (Method B) provided substantially poorer yields of 4 in most cases (4a-4c, Scheme 4). However, this method gave isolable tricyclic lactone in two cases in which the gold-based system was ineffective ($\mathbf{4 f}, \mathbf{4 g}$), albeit in modest yields, indicating that the simple Brønsted acid catalyst is complementary to the gold-based system for some substrate types.

Whereas hydroarylation is accompanied by oxygen addition in the formation of tricyclic lactones $\mathbf{4 a - c}, \mathbf{f}, \mathbf{g}$, the behavior of unsymmetrically substituted allenoic acid $\mathbf{1 k}$ shows that the hydroacyloxylation step can be bypassed when suitably located resonance donor groups are present. Under conditions that gave $\mathbf{4}$ with other allenoic acids, $\mathbf{1 k}$ yielded a tetracyclic acid 9 resulting from an apparent double hydroarylation occurring in tandem with double bond isomerization (Scheme 5 and Figure 3). ${ }^{\dagger}$ Although similar double intramolecular hydroarylations of allenes have been reported using $\mathrm{Bi}(\mathrm{OTf})_{3}$ as a catalyst, ${ }^{40}$ we are not aware of any precedent for this transformation involving transition metal catalysts. The tetracyclic core of $\mathbf{9}$ is found in a class of bioactive terpenoid quinone methides, ${ }^{41}$ highlighting the potential synthetic value of this cycloisomerization.

Scheme 5 Double hydroarylation of allenoic acid $\mathbf{1 k}$.

Figure 3 X-ray crystal structure of 9 with 50% probability ellipsoids. The phenyl group (C17-C21) is disordered, with only the major orientation shown.

To account for the combined effects of ligand and Brønsted acid in allenoic acid cyclizations, we propose the mechanistic scenario depicted in Scheme 6. Lactone 2 is generated rapidly from 1 by a gold-mediated oxygen addition/protodeauration sequence (Path A) and remains as the major product in the absence of a suitably activating ligand and/or added proton source. Isomerization of $\mathbf{2}$ to $\mathbf{3}$ occurs via carbocation formation and H^{+}elimination, following attack on the alkene by Brønsted acid or electrophilic $[\mathrm{L}-\mathrm{Au}]^{+}$(Path B). ${ }^{42}$ The synergistic effect of TsOH with gold on the rate of isomerization to 3 may result from Lewis acid activation of the Brønsted acid, ${ }^{10}$ accelerated protodeauration with higher H^{+}
concentration, or both. With sufficiently strong Brønsted acid present ($\mathrm{pKa} \leq-3.6$), protonation of the lactone can compete kinetically with alkene activation, shifting the reaction manifold toward tandem hydroacyloxylation/hydroarylation (Path C). A plausible mechanism ${ }^{43}$ involves elimination from the protonated lactone ${ }^{44}$ to yield a diene, which in turn is protonated or aurated to yield an allylic carbocation that can undergo attack by an aryl group. ${ }^{45}$ Further reaction of H^{+}or LAu^{+}with the resulting 1,4-dihydronaphthalene derivative, followed by a 1,2 -hydride shift and attack of oxygen on the tertiary carbocation, furnishes the tricyclic lactone product 4 . The increased electrophilicity of $A u^{I}$ resulting from weak ligand donicity is important in both Paths B and C , manifesting the isolobal relationship of LAu^{+}to $\mathrm{H}^{+} \cdot{ }^{46}$ However, an additional role of $\mathrm{P}(\mathrm{OPh})_{3}$ in promoting Path C is evidently to slow the protodeauration of the organogold species formed upon initial cyclization of $\mathbf{1 a},{ }^{47}$ thereby leading to a controlled buildup of very strong Brønsted acid (equivalent to unsolvated HBF_{4}) that is a key cocatalyst in this reaction pathway. Added NEt_{3} suppresses Paths B and C due to the key role of protons in both mechanisms.

Scheme 6. Mechanistic rationale for competing reaction pathways of allenoic acids.

Path C differs from the mechanism proposed for a similar acid-catalyzed isomerization of a γ-allenol, in which the intermediacy of the 5-exo-trig cyclization product was not considered. ${ }^{37}$ We cannot rule out an alternative mechanism in which the initial cyclization product $\mathbf{2}$ reverts to allenoic acid $\mathbf{1}$ at elevated temperature, followed by gold-promoted 6-endo-dig hydroarylation, H^{+}attack at the remaining double bond, and trapping of the resulting carbocation by the carboxylic acid. However, this would involve a typically disfavored initial attack at the central allene carbon, ${ }^{16 a}$ and no evidence for reversibility in the conversion of $\mathbf{1}$ to $\mathbf{2}$ has been observed. ${ }^{48}$ In addition, the presence of a bulky L-Au group as "E" in the
proposed allylic cation intermediate preceding hydroarylation (Scheme 6) could explain the failure of the larger aryl groups in substrates $\mathbf{1 f}$ and $\mathbf{1 g}$ to yield tricyclic lactones under goldpromoted conditions (Method A, Scheme 4), despite giving modest yields of the hydroarylation products under purely Brønsted acid catalysis (Method B).

To explain the formation of the unexpected double hydroarylation product 9 with substrate $\mathbf{1 k}$ (Scheme 5), we postulate two mechanistic scenarios that share some features with the pathways leading to products 2-4 (Scheme 7). The reaction could begin with acid-promoted ring opening of the intermediate lactone $\mathbf{2 k}$ in a mechanism similar to Path C (\boldsymbol{a}, Scheme 7), but with the resulting diene undergoing protonation/auration at the less substituted end. This would give a different allyl cation that could undergo attack by the 3methoxylphenyl group to yield a five-membered ring. Alternatively, 2k could revert to $\mathbf{1 k}$ upon heating (b, Scheme 7), followed by either gold-mediated 5-exo-trig hydroarylation or protonation at the central allene carbon and aryl attack at the resulting allylic cation. Either mechanistic pathway (a or b) would be followed by proton- or gold-mediated isomerization of the remaining carbon-carbon double bond (similarly to Path B) and a second hydroarylation to complete the tetracyclic structure. Although these mechanistic pathways are speculative, they both account for the formation of a fivemembered carbocycle in 9 , in contrast to the six-membered ring resulting from hydroarylation in tricyclic lactones 4 . The presence of a resonance donor methoxy group at the aryl 3position is of $1 \mathbf{k}$ is clearly important in promoting the initial 5-exo-trig hydroarylation, given that similar reactivity was not observed for $\mathbf{1 f}$ and $\mathbf{1 g}$, which contain donor groups at the 4position.

Scheme 7. Possible mechanisms for the formation of $9\left(\mathrm{Ar}^{\prime}=3-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$.

Conclusions

In summary, ligand and Brønsted acid/base effects can be exploited in concert to selectively switch between three isomeric products in Au^{I}-catalyzed cyclizations of 2,2-diaryl allenoic acids, albeit with limited substrate scope in the case of
the tandem hydroacyloxylation/hydroarylation process. The kinetically favored enelactone product 2 serves as a divergence point for distinct mechanistic pathways leading to either alkene isomerization product 3 or bridged tricyclic lactone 4, via cooperative gold/Brønsted acid catalyzed processes that are dependent on the strength of the Brønsted acid. The first two reactions provide alkene-appended lactones that could be elaborated into more complex structures, while the third pathway opens access to medicinally relevant bridged polycyclic lactones. These results reinforce previously accumulated evidence ${ }^{6-11}$ suggesting that Brønsted acid/base effects should be carefully examined in order to maximize the efficiency and product structural diversity of gold-catalyzed organic reactions.

Experimental section

General experimental details

All manipulations were carried out under nitrogen in dried, distilled solvents unless otherwise noted. Diethyl ether, THF, and hexanes were purified by distillation from sodium benzophenone ketyl. Dichloromethane and DCE were washed with a sequence of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, deionized water, 5% $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and deionized water, followed by pre-drying over anhydrous CaCl_{2}, and were then refluxed over and distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ under nitrogen. Pyridine and NEt_{3} were dried over activated $4 \AA$ molecular sieves and then distilled, degassed, and stored over dried $4 \AA$ sieves under nitrogen. $\mathrm{Au}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl},{ }^{49}$ $\mathrm{Au}(\mathrm{CyJohnPhos}) \mathrm{Cl}[\mathrm{Au}(\mathbf{5}) \mathrm{Cl}],{ }^{49}$ and $\mathrm{Au}\left[\mathrm{P}(\mathrm{OPh})_{3}\right] \mathrm{Cl}(\mathbf{8})^{50}$ were synthesized by a reported procedure ${ }^{51}$ starting from $\mathrm{Au}(\mathrm{THT}) \mathrm{Cl} .{ }^{52} \quad \mathrm{Au}(\mathrm{IMes}) \mathrm{Cl} \quad[\mathrm{Au}(6) \mathrm{Cl}],{ }^{53} \quad \mathrm{Au}($ SIMes $) \mathrm{Cl}$ $[\mathrm{Au}(7) \mathrm{Cl}],{ }^{53}$ and $\mathrm{AgBAr}^{\mathrm{F}}{ }_{4}^{54}$ were prepared by literature procedures. All gold complexes were ultimately derived from chloroauric acid $(99.9 \%, 49 \% \mathrm{Au})$ purchased from Strem. AgBF_{4} (99\%), AgSbF_{6} (98\%), and $\mathrm{HBF}_{4}(\mathrm{aq})$ (48 wt\%) were purchased from Strem. $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(51-57 \mathrm{wt} \%)$ was purchased from Aldrich. $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(99 \%)$ and TfOH (99\%) were purchased from Acros. Allenoic acid substrates were synthesized by literature procedures $(\mathbf{1 a}, \mathbf{1} \mathbf{j})^{15 d, 22 b}$ or by modifications thereof (see the ESI for details). ${ }^{20,21}$

Optimized catalytic procedures

Synthesis of nonisomerized enelactones 2a-k. In a nitrogen glovebox, allenoic acid substrate ($\mathbf{1 a - k}, 100 \mathrm{mg}$) was added to 2.0 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 4 mL reaction vial. Precatalyst (PhO$)_{3} \mathrm{PAuCl} 8$ ($5 \mathrm{~mol} \%$), AgBF_{4} ($5 \mathrm{~mol} \%$) and $\mathrm{NEt}_{3}(5 \mathrm{~mol} \%$, as a 1.0 M stock solution in DCE) were then introduced. The vial was sealed with a septum cap and placed in a pre-heated aluminum block heater, and the reaction mixture was stirred at $45^{\circ} \mathrm{C}$ for 2 h . After complete consumption of starting material as monitored by TLC, the reaction mixture was diluted with 10.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 10.0 mL of water. The organic layer was separated and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to obtain the crude product, which was purified by flash chromatography on silica.

Synthesis of isomerized enelactones 3a-i. In a nitrogen glovebox, substrate ($\mathbf{1 a - i}, 100 \mathrm{mg}$) was added to 2.0 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 4 mL reaction vial. Precatalyst 8 ($5 \mathrm{~mol} \%$ relative to $\mathbf{1}), \mathrm{AgBF}_{4}(5 \mathrm{~mol} \%)$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%$ for $\mathbf{3 b}, \mathbf{3 e}, \mathbf{3 g}, \mathbf{3 i} ; 20 \mathrm{~mol} \%$ for others) were then introduced. The vial was sealed with a septum cap and placed in a pre-heated aluminum block heater, and the reaction mixture was stirred at
$45{ }^{\circ} \mathrm{C}$ for 12 h . After complete consumption of starting material as monitored by TLC, the reaction mixture was diluted with 10.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 10.0 mL of water. The organic layer was separated and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to obtain the crude product, which was purified by flash chromatography on silica.

Synthesis of tricyclic lactones 4a-d and tetracyclic acid 9 (Method A). In a nitrogen glovebox, precatalyst 8 ($5 \mathrm{~mol} \%$ relative to $\mathbf{1}$) and $\mathrm{AgBF}_{4}(5 \mathrm{~mol} \%)$ were added to 2.0 mL of dry DCE in a 4 mL reaction vial. The precatalyst mixture was stirred for 30 min at $25^{\circ} \mathrm{C}$, and the AgCl precipitate was then removed by three successive filtrations through celite. The filtrate was placed in a fresh 4 mL reaction vial, and the substrate ($\mathbf{1 a - c}, \mathbf{1 k} ; 100 \mathrm{mg}$) was introduced. The vial was sealed with a septum cap, and several layers of PTFE tape were wrapped around the cap seal for protection. The reaction mixture was stirred at $-20{ }^{\circ} \mathrm{C}$ (dry ice $/ \mathrm{CCl}_{4}$ bath) under rigorously dry conditions until the starting material had been consumed as monitored by TLC $(2-8 \mathrm{~h})$. The reaction mixture was then heated at $75^{\circ} \mathrm{C}$ for an additional 3-7 h. The reaction mixture was cooled to room temperature and loaded directly onto a silica pad for column chromatographic purification.

Bronsted acid-catalyzed synthesis of tricyclic lactones 4f,g (Method B). Reaction setup followed Method A, but with no pre-activation step and no $-20^{\circ} \mathrm{C}$ incubation period. After addition of TfOH ($20 \mathrm{~mol} \%$) to a preheated ($75^{\circ} \mathrm{C}$) solution of substrate, the reaction mixture was heated with stirring for 16 h , followed by workup.

Kinetic procedures

Typical kinetic procedure with allenoic acid 1a. Substrate 1a ($100 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(11.5 \mathrm{mg}, 0.060$ mmol) and mesitylene ($4.0 \mu \mathrm{~L}$; NMR internal standard) were added to a 4 mL reaction vial, which was closed with a septum screw-cap. A catalyst stock solution was prepared by mixing 8 ($33 \mathrm{mg}, 0.060 \mathrm{mmol}$) and $\mathrm{AgBF}_{4}(11.5 \mathrm{mg}, 0.060 \mathrm{mmol})$ in 1.5 mL of dry DCE, stirring for 15 min , and filtering three times through celite to remove the AgCl precipitate. The filtrate was diluted to a volume of 2.0 mL . A 0.5 mL aliquot of this solution was syringed into the vial containing the substrate, followed by 1.0 mL of pre-heated $\left(45^{\circ} \mathrm{C}\right) \mathrm{DCE}$, and the vial was placed in a pre-heated aluminum block reactor with magnetic stirring. At periodic intervals, $20 \mu \mathrm{~L}$ aliquots were withdrawn and added to 0.60 mL of a CDCl_{3} solution containing methylisocyanide ${ }^{55}(25 \mathrm{mM})$, in order to deactivate the gold catalyst. Reaction aliquots were stored at $-4^{\circ} \mathrm{C}$ until analysis. Product concentrations were determined by ${ }^{1} \mathrm{H}$ NMR integration of product resonances versus mesitylene. The catalyst deactivation procedure was verified by adding fresh substrate 1a to a deactivated aliquot containing product 2a in $0.25 \mathrm{~m} M \mathrm{MeNC} / \mathrm{CDCl}_{3}$. After 12 h at $25^{\circ} \mathrm{C}$, no change in the concentration of $\mathbf{2 a}$ and no formation of $\mathbf{3 a}$ were observed.

Substrate 1a is only partially soluble in DCE, but dissolution occurred concomitant with its conversion to 2a. In cases in which the rates were slow enough to be measured, the appearance of $\mathbf{2 a}$ followed pseudo zero-order kinetics, consistent with a constant equilibrium concentration of $\mathbf{1 a}$ in solution. Kinetic plots for formation of 3a were consistent with reactions that are pseudo first-order in 2a (see the ESI for plots). Initial rates were determined by least-squares fitting of product concentration versus time plots over the linear region, with uncertainties reported at the 95% confidence level.

Typical kinetic procedure with enelactone 2a. Enelactone 2a ($60 \mathrm{mg}, 0.18 \mathrm{mmol}$), $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(7.0 \mathrm{mg}, 0.036$ mmol) and mesitylene ($2.5 \mu \mathrm{~L}$; NMR internal standard) were added to a 4 mL reaction vial, which was closed with a septum screw-cap. A catalyst stock solution was prepared by mixing 8 $(19.5 \mathrm{mg}, 0.036 \mathrm{mmol})$ and $\mathrm{AgBF}_{4}(7.0 \mathrm{mg}, 0.036 \mathrm{mmol})$ in 1.5 mL of dry DCE, stirring for 15 min , and filtering three times through celite to remove the AgCl precipitate. The filtrate was diluted to a total volume of 2.0 mL . A 0.5 mL aliquot of this solution was syringed into the vial containing the substrate, followed by 0.5 mL of pre-heated $\left(45^{\circ} \mathrm{C}\right) \mathrm{DCE}$, and the vial was placed in a pre-heated aluminum block reactor with magnetic stirring. Data collection and analysis were performed as in kinetic experiments with $\mathbf{1 a}$.

Product characterization

5-(Cyclohexylidenemethyl)-3,3-diphenyldihydrofuran$\mathbf{2 (3 H})$-one (2a). $\quad R_{\mathrm{f}} 0.50$ (1:9 acetone/hexanes); colourless viscous oil, yield $95 \mathrm{mg}(95 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were in agreement with published values. ${ }^{15 \mathrm{~d}}$

5-(Cyclopentylidenemethyl)-3,3-diphenyldihydrofuran$\mathbf{2 (3 H})$-one (2b). $\quad R_{\mathrm{f}} 0.52$ (1:4 diethyl ether/hexanes); white solid, yield 75 mg (75%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were in agreement with published values. ${ }^{15 \mathrm{~d}}$

5-(Cyclohepylidenemethyl)-3,3-diphenyldihydrofuran$\mathbf{2 (3 H})$-one (2c). $\quad R_{\mathrm{f}} 0.49$ (1:4 diethyl ether/hexanes); white solid, m.p. $=111-112{ }^{\circ} \mathrm{C}$, yield $82 \mathrm{mg}(82 \%) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.43-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.28-$ $7.22(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{dt}, J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (ddd, $J=9.6$, $8.4,5.2,1 \mathrm{H}$), 3.07 (dd, $J=13.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (dd, $J=$ $13.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.20(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.46(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 177.4,150.4,142.4,139.9,129.1$, $128.5,127.9,127.8,127.5,127.3,122.3,73.8,58.4,44.5,37.9$, 30.6, 29.7, 29.1, 28.7, 27.3. IR (neat): v 2970 (w), 2918 (w), 1901 (w), 1757 (s), 1647 (w) cm ${ }^{-1}$. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$) calc. 347.2011, found $\mathrm{m} / \mathrm{z} 347.2016$.

3,3-Bis(4-chlorophenyl)-5-

(cyclohexylidenemethyl)dihydrofuran- $2(3 H)$-one (2d). $\quad R_{f}$ 0.57 (1:4 diethyl ether/hexanes); viscous yellow oil, yield 73 $\mathrm{mg}(73 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.20(\mathrm{~m}, 8 \mathrm{H})$, $5.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{ddd}, J=10.4,8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.95 (dd, $J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=13.2,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.20-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.6,149.3,140.3,138.2,134.2,133.6$, 129.4, 129.2, 128.8, 128.7, 118.4, 73.4, 57.5, 44.4, 37.1, 29.7, 28.3, 27.9, 26.5. IR (neat): v 2979 (w), 2926 (w), 1908 (w), 1750 (s), 1640 (w) cm ${ }^{-1}$. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{2}+\right.$ Na^{+}) calc. 423.0894, found $\mathrm{m} / \mathrm{z} 423.0898$.

3,3-Bis(4-chlorophenyl)-5-

(cyclopentylidenemethyl)dihydrofuran- $\mathbf{2 (3 H}$)-one (2e). ${ }^{56} \quad R_{\mathrm{f}}$ 0.55 (1:4 diethyl ether/hexanes); white solid, m.p. $=103-104$ ${ }^{\circ} \mathrm{C}$, yield $68 \mathrm{mg}(68 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-$ $7.21(\mathrm{~m}, 8 \mathrm{H}), 5.38-5.34(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.89(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J$ $=13.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=13.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.26$ $(\mathrm{m}, 3 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.54(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.6,153.2,140.4,138.2,134.2,133.6$, $129.4,129.2,128.8,128.8,117.0,75.8,57.5,44.0,34.2,29.4$, 26.3, 26.0. IR (neat): v 2977 (w), 2922 (w), 1909 (w), 1752 (s), $1647(\mathrm{w}) \mathrm{cm}^{-1}$. HRMS (ESI-orbitrap, $\left.\left[\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}\right)$ calc. 409.0738 , found $\mathrm{m} / \mathrm{z} 409.0736$.

5-(Cyclohexylidenemethyl)-3,3-bis(2,3-
dihydrobenzofuran-5-yl)dihydrofuran-2(3H)-one (2f). $\quad R_{\mathrm{f}}$ 0.45 (3:7 ethyl acetate/hexanes); viscous yellow oil, yield 64
$\mathrm{mg}(64 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.14$ (s, 1H), 7.13 (dd, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39-$ $5.35(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.56$ (quintet, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$), 3.17 (dt, $J=13.6,8.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.98(\mathrm{dd}, J=13.0,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.60 (dd, $J=12.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39-2.28 (m, 3H), 2.26-2.15 $(\mathrm{m}, 1 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 178.2, 159.7, 159.2, 148.5, 135.0, 132.0, 128.1, 127.3, 126.9, $124.8,124.5,119.1,109.3,108.8,73.4,75.6,71.7,71.6,57.6$, 45.4, 37.1, 29.9, 29.9, 29.7, 28.4, 27.4, 26.6. IR (neat): v 2948 (w), 2763 (w), 1755 (s), 1685 (w), 1616 (m) cm^{-1}. HRMS (ESIorbitrap, $\left.\left[\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}\right)$calc. 439.1885 , found m / z 439.1886.

5-(Cyclopentylidenemethyl)-3,3-bis(2,3-
dihydrobenzofuran-5-yl)dihydrofuran- $\mathbf{2 (3 H}$)-one (2 g). $\quad R_{\mathrm{f}}$ 0.40 (3:7 ethyl acetate/hexanes); white solid, m.p. $154-155^{\circ} \mathrm{C}$, yield $60 \mathrm{mg}(60 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22$ (s, $1 \mathrm{H}), 7.14-7.12$ (m, 2H), 6.98 (dd, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39-5.36(\mathrm{~m}, 1 \mathrm{H}), 4.95-$ $4.89(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{t}, J=8.8, \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{t}, J=8.8, \mathrm{~Hz}$, $2 \mathrm{H}), 3.19(\mathrm{t}, J=8.8, \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=8.8, \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{dd}$, $J=12.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=12.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.28$ $(\mathrm{m}, 3 \mathrm{H}), 2.26-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.2,159.7,159.2,152.4,135.1,132.0$, $128.1,127.4,127.4,126.9,124.8,124.5,117.6,109.3,108.8$, 75.7, 75.6, 71.7, 57.5, 44.9, 34.1, 29.9, 29.9, 29.4, 26.3, 26.0. IR (neat): v 3050 (w), 2967 (m), 2929 (w), 1917 (w), 1755 (s), $1567(\mathrm{~m}) \mathrm{cm}^{-1}$. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$) calc. 425.1729, found $\mathrm{m} / \mathrm{z} 425.1729$.

5-(Cyclohexylidenemethyl)-4,5-dihydro-2H-spiro[furan-3,9'-xanthen]-2-one $\quad \mathbf{(2 h}) .{ }^{56} \quad R_{\mathrm{f}} \quad 0.55 \quad(3: 7$ ethyl acetate/hexanes); viscous yellow oil, yield $80 \mathrm{mg}(80 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.12(\mathrm{~m}, 8 \mathrm{H}), 5.44$ (ddd, $J=$ $10.0,8.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=$ $13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.12(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{dd}, J=13.6,10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.64-1.48(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 177.3, 151.7, 151.0, 148.8, 129.3, 129.0, 127.5, 125.9, 124.3, $124.1,123.7,122.9,119.0,117.6,116.7,73.8,50.8,50.3,37.1$, 29.8, 28.4, 28.0, 26.6. IR (neat): v 2955 (w), 2769 (w), 1909 (w), 1751 (s), 1685 (w), 1616 (m) cm ${ }^{-1}$. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$) calc. 369.1467, found $\mathrm{m} / \mathrm{z} 369.1465$.

5-(Cyclopentylidenemethyl)-4,5-dihydro-2H-spiro[furan-3,9'-xanthen]-2-one (2i). ${ }^{56} R_{\mathrm{f}} 0.49$ (3:7 ethyl acetate/hexanes); white solid, m.p. $=150-151{ }^{\circ} \mathrm{C}$, yield 78 mg (78\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \quad 7.35-7.26(\mathrm{~m}, 3 \mathrm{H})$, 7.23 (dd, $J=3.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}$, $3 \mathrm{H}), 5.44-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.26(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=13.2$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.19(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{dd}, J=13.6,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.78-1.59(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.3$, $152.9,151.7,151.0,129.3,129.0,127.4,125.9,124.3,124.1$, 123.7, 122.9, 117.6, 117.6, 116.7, 76.2, 50.2, 34.2, 29.4, 26.4, 26.0. IR (neat): v 3055 (w), 2969 (m), 2922 (w), 1913 (w), 1755 (s), 1599 (m) cm ${ }^{-1}$. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3}+\right.$ $\mathrm{Na}]^{+}$) calc. 355.1310, found $\mathrm{m} / \mathrm{z} 355.1316$.

5-(2-Methylprop-1-en-1-yl)-3,3-diphenyldihydrofuran$\mathbf{2 (3 H})$-one ($\mathbf{2} \mathbf{j}$). $R_{\mathrm{f}} 0.55$ ($1: 4$ diethyl ether/hexanes); colourless oil, yield 85 mg (85%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were in agreement with published values. ${ }^{15 \mathrm{~d}}$

5-(Cyclohexylidenemethyl)-3-(3-methoxyphenyl)-3-phenyldihydrofuran- $\mathbf{2 (3 H}$)-one ($\mathbf{2 k}$). $\quad R_{\mathrm{f}} 0.48$ (1:4 diethyl ether/hexanes); white solid, m.p. $=110-114{ }^{\circ} \mathrm{C}$, yield 83 mg (83%). Mixture of two diastereomers ($1: 1$ ratio by ${ }^{1} \mathrm{H}$ NMR); not separable by TLC. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; proton count reflects both diastereomers): $\delta 7.41$ (dd, $J=8.4,1.2 \mathrm{~Hz}$,

2 H , both diastereomers), 7.34 (td, $J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}$, both diastereomers), 7.33-7.27 (m, 6H, both diastereomers), 7.25$7.20(\mathrm{~m}, 2 \mathrm{H}$, both diastereomers), 7.02 (dd, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, one diastereomer), $6.95(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, one diastereomer), 6.91-6.90 ($\mathrm{m}, 1 \mathrm{H}$, one diastereomer), 6.89-6.84 ($\mathrm{m}, 2 \mathrm{H}$, both diastereomers), 6.77 (dd, $J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, one diastereomer), 5.21 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, one diastereomer), 5.21 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, one diastereomer), $5.13-5.05(\mathrm{~m}, 2 \mathrm{H}$, both diastereomers), 3.78 (s, 3 H , one diastereomer), $3.75(\mathrm{~s}, 3 \mathrm{H}$, one diastereomer), 3.05 (dd, $J=4.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}$, one diastereomer), 3.01 (dd, $J=4.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}$, one diastereomer), 2.69 (dd, $J=$ $10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, one diastereomer), $2.65(\mathrm{dd}, J=10.4,5.6 \mathrm{~Hz}$, 1 H , one diastereomer), 2.28-2.06 (m, 8 H , both diastereomers), 1.61-1.49 (m, 12H, both diastereomers). ${ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta 177.3,177.2,160.1,159.6,148.7,148.7,143.9$, $142.3,141.4,139.8,130.0,129.4,129.1,128.5,127.8,127.8$, $127.5,127.3,120.2,119.8,119.0,114.4,113.9,113.0,112.4$, $73.5,73.4,58.4,58.4,55.4,55.4,44.8,44.8,37.1,29.8,29.7$, 28.4, 27.9, 26.6. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$) calc. 385.1780, found $\mathrm{m} / \mathrm{z} 385.1777$.

5-(Cyclohex-1-en-1-ylmethyl)-3,3-
diphenyldihydrofuran-2(3H)-one (3a). To obtain optimal yields, a reaction time of 24 h and $20 \mathrm{~mol} \% \mathrm{TsOH}$ were used. $R_{\mathrm{f}} 0.50$ (1:9 acetone/hexanes); viscous yellow oil, yield 93 mg (93\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.34$ (m, 4H), 7.33-7.27 (m, 5H), 7.26-7.20 (m, 1H), 5.52-5.51 (m, 1H), 4.49$4.42(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=12.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=$ $13.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (dd, $J=14.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J$ $=14.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.3,142.4,140.0,132.7,129.0$, $128.5,127.8,127.8,127.5,127.3,125.2,76.2,58.2,43.7,43.6$, 29.0, 25.4, 22.9, 22.3. IR (neat): v 2923 (s), 2857 (m), 1951 (w), 1755 (s), 1609 (w) cm ${ }^{-1}$. HRMS (ESI-orbitrap, [$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2}$ $+\mathrm{Na}]^{+}$) calc. 355.1674 , found $\mathrm{m} / \mathrm{z} 355.1670$.

5-(Cyclopent-1-en-1-ylmethyl)-3,3-
diphenyldihydrofuran-2(3H)-one (3b). $\quad R_{\mathrm{f}} 0.52$ ($1: 4$ diethyl ether/hexanes); viscous yellow oil, yield 70 mg (70%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.22(\mathrm{~m}$, $6 \mathrm{H}), 5.51-5.49(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=13.2$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=14.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=13.2$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=14.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.26(\mathrm{~m}$, $4 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.1$, $142.3,140.0,138.8,129.0,128.4,127.8,127.8,127.6,127.4$, 127.2, 76.0, 58.2, 43.7, 36.8, 35.7, 32.6, 23.5. IR (neat): v 2929 (s), 2862 (m), 1953 (w), 1748 (s), 1608 (w) cm ${ }^{-1}$. HRMS (ESIorbitrap, $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$) calc. 319.1698, found $\mathrm{m} / \mathrm{z} 319.1697$.

5-(Cyclohept-1-en-1-ylmethyl)-3,3-
diphenyldihydrofuran-2(3H)-one (3c). $\quad R_{\mathrm{f}} 0.49$ ($1: 4$ diethyl ether/hexanes); white solid, m.p. $=95-96^{\circ} \mathrm{C}$, yield 78 mg (78\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.32(\mathrm{~m}, 4 \mathrm{H})$, 7.32-7.22 (m, 6H), $5.67(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.41(\mathrm{~m}, 1 \mathrm{H})$, 3.02 (dd, $J=13.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ (dd, $J=13.2,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.55(\mathrm{~d}, J=14,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=14,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.15-2.07 (m, 4H), 1.73 (quintet, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.52-1.48 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.3,142.5,140.0$, $139.1,130.6,129.0,128.5,127.9,127.8,127.5,127.3,73.8$, 58.2, 45.6, 43.7, 33.2, 32.5, 28.5, 27.1, 26.7. IR (neat): v 2926 (s), 2857 (m), 1952 (w), 1750 (s), 1602 (w) cm ${ }^{-1}$. HRMS (ESIorbitrap, $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$calc. 347.2011 , found $\mathrm{m} / \mathrm{z} 347.2015$.

3,3-Bis(4-chlorophenyl)-5-(cyclohex-1-en-1-

ylmethyl)dihydrofuran-2(3H)-one (3d). $\quad R_{\mathrm{f}} 0.54$ (1:4 diethyl ether/hexanes); viscous yellow oil, yield 71 mg (71%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}$, $4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 5.54-5.51(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.40(\mathrm{~m}, 1 \mathrm{H})$,
2.95 (dd, $J=12.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=13.2,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48$ (dd, $J=14.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ (dd, $J=14.4,5.6 \mathrm{~Hz}$, $1 \mathrm{H})$, and 2.00-1.92 (m, 4H), 1.64-1.51 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.5,140.4,138.2,134.1,133.6,132.5$, 129.3, 129.2, 128.8, 128.8, 125.5, 76.2, 57.3, 43.5, 43.4, 29.0, 25.4, 22.9, 22.3. IR (neat): v 2926 (s), 1899 (w), 1759 (s), 1593 (m) cm^{-1}. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$) calc. 423.0894, found $\mathrm{m} / \mathrm{z} 423.0890$.

3,3-Bis(4-chlorophenyl)-5-(cyclopent-1-en-1-ylmethyl)dihydrofuran- $\mathbf{2 (3 H}$)-one (3e). $\quad R_{\mathrm{f}} 0.55$ (1:4 diethyl ether/hexanes); white solid, m.p. $=96-97{ }^{\circ} \mathrm{C}$, yield 63 mg (63%). ${ }^{1}{ }^{\mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.34$ (dt, $J=8.8,2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{dt}, J=8.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.48$ (br. s, 1H), 4.51-4.44 (m, 1H), 2.97 (dd, $J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dd, $J=15.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56 (dd, $J=13.2,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44$ (dd, $J=15.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.24(\mathrm{~m}, 4 \mathrm{H}), 1.87$ (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $176.4,140.4,138.5,138.3,134.2,133.7,129.4,129.2,128.8$, 128.0, 76.1, 57.3, 43.5, 36.7, 35.7, 32.6, 23.5. IR (neat): v 2929 (s), 2851 (m), 1901 (w), 1761 (s), 1593 (m) cm ${ }^{-1}$. HRMS (ESIorbitrap, $\left[\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$) calc. 409.0738 , found m / z 409.0737.

5-(Cyclohex-1-en-1-ylmethyl)-3,3-bis(2,3-
dihydrobenzofuran-5-yl)dihydrofuran-2(3H)-one (3f). $\quad R_{\mathrm{f}}$ 0.49 (3:7 ethyl acetate/hexanes); viscous yellow oil, yield 60 $\mathrm{mg}(60 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19-7.13$ (m, 2H), $7.10(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.77 (d, $J=6.8, \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (d, $J=15.6,1 \mathrm{H}), 5.52$ (br. s, $1 \mathrm{H}), 4.56$ (dt, $J=14.0,8.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.47-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.17$ (dd, $J=13.2,8.8 \mathrm{~Hz}, 4 \mathrm{H}$), 2.93 (dd, $J=13.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.51 (dd, $J=12.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=15.0,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.25(\mathrm{dd}, J=14.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.53$ (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.2,159.7,159.3$, $135.2,132.9,132.1,129.4,128.8,128.1,127.4,127.0,125.2$, $124.8,124.5,109.3,108.9,76.2,71.7,71.6,57.4,44.5,43.7$, 29.9, 29.1, 25.4, 23.0, 22.4. IR (neat): v 3058 (w), 2962 (m), 2922 (w), 1901 (w), 1758 (s), 1598 (m) cm ${ }^{-1}$. HRMS (ESIorbitrap, $\left.\left[\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}\right)$calc. 439.1885 , found m / z 439.1883

5-(Cyclopent-1-en-1-ylmethyl)-3,3-bis(2,3-dihydrobenzofuran-5-yl)dihydrofuran- $\mathbf{2 (3 H})$-one ($\mathbf{3 g}$). $\quad R_{f}$ 0.40 (3:7 ethyl acetate/hexanes); viscous yellow oil, yield 61 $\mathrm{mg}(61 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19-7.18(\mathrm{~m}, 1 \mathrm{H})$, 7.14-7.13 (m, 1H), $7.10(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=$ $8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.49-5.47$ (m, 1H), 4.57 (t, $J=8.8, \mathrm{~Hz}, 2 \mathrm{H}), 4.54$ (t, $J=$ 8.8, Hz, 2H), 4.51-4.44 (m, 1H), 3.18 (t, $J=8.8, \mathrm{~Hz}, 2 \mathrm{H}), 3.16$ (t, $J=8.8, \mathrm{~Hz}, 2 \mathrm{H}$), $2.96(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J$ $=14.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=13.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}$, $J=14.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33-2.25 (m, 4H), 1.87 (quintet, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.2,159.7,159.2$, $152.4,135.1,132.0,128.1,127.4,127.4,126.9,124.8,124.5$, 117.6, 109.3, 108.4, 75.7, 71.7, 71.6, 57.5, 44.9, 34.1, 29.9, 29.9, 29.4, 26.4, and 26.0. IR (neat): v 3051 (w), 2967 (m), 2926 (w), 1934 (w), 1757 (s), 1567 (m) cm ${ }^{1}$. HRMS (ESIorbitrap, $\left.\left[\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}\right)$calc. 425.1729 , found m / z 425.1731 .

5-(Cyclohex-1-en-1-ylmethyl)-4,5-dihydro-2H-
spiro[furan-3,9'-xanthen]-2-one (3h). $\quad R_{\mathrm{f}} \quad 0.50 \quad$ (3:7 ethyl acetate/hexanes); viscous yellow oil, yield $78 \mathrm{mg}(78 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ 7.41-7.27 (m, 4H), 7.23-7.17 (m, 4H), $5.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=13.6$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=14.0$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (dd, $J=14.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.94$ (m,
$4 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): δ 176.8, 150.4, 149.4, 132.8, 129.4, 129.2, 127.8, 126.4, 124.4, $124.3,124.1,123.0,122.4,116.9,116.3,76.5,48.6,48.0,43.2$, 28.3, 24.7, 22.4, 21.8. IR (neat): v 2973 (w), 2934 (m), 2859 (w), 1902 (w), 1767 (s), 1493 (m) cm^{-1}. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$) calc. 369.1467, found $\mathrm{m} / \mathrm{z} 369.1451$.

5-(Cyclopent-1-en-1-ylmethyl)-4,5-dihydro-2H-
spiro[furan-3,9'-xanthen]-2-one (3i). $\quad R_{\mathrm{f}} 0.49$ (3:7 ethyl acetate/hexanes); viscous yellow oil, yield 72 mg (72%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.11(\mathrm{~m}$, $6 \mathrm{H}), 5.51$ (br. s, 1 H$), 4.88-4.80(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=14.2,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=13.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=14.0,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.23(\mathrm{dd}, J=13.2,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.2$, $151.6,150.8,138.4,129.3,129.0,128.2,127.4,125.8,124.3$, 124.1, 123.6, 122.8, 117.6, 116.8, 76.5, 50.0, 49.9, 37.3, 35.8, 32.6, 23.5. IR (neat): v 3057 (w), 2969 (m), 2920 (w), 1904 (w), 1750 (s), 1561 (m) cm ${ }^{-1}$. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3}\right.$ $+\mathrm{Na}]^{+}$) calc. 355.1310 , found $\mathrm{m} / \mathrm{z} 355.1318$.

5-(Cyclohex-1-en-1-ylmethyl)-3-(3-methoxyphenyl)-3-phenyldihydrofuran- $\mathbf{2 (3 H}$)-one ($\mathbf{3 k}$). $R_{\mathrm{f}} 0.48$ (1:4 diethyl ether/ hexanes); viscous oil, yield $41 \mathrm{mg}(41 \%)$. Mixture of two diastereomers ($1: 1$ ratio by ${ }^{1} \mathrm{H}$ NMR); not separable by TLC. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; proton count reflects both diastereomers): $\delta 7.37-7.21(\mathrm{~m}, 5 \mathrm{H}$, both diastereomers), 6.99 $(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, one diastereomer), $6.93(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}$, one diastereomer), $6.90-6.86(\mathrm{~m}, 2 \mathrm{H}$, both diastereomers), 6.85 $(\mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}$, one diastereomer), $6.83(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, one diastereomer), $6.80(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, one diastereomer), 6.78 (d, J=2.4Hz, 1 H , one diastereomer), $5.52(\mathrm{~s}, 1 \mathrm{H}$, both diastereomers), $4.51(\mathrm{~m}, 1 \mathrm{H}$, both diastereomers), $3.77(\mathrm{~s}, 3 \mathrm{H}$, one diastereomer), $3.75(\mathrm{~s}, 3 \mathrm{H}$, one diastereomer), $3.04(\mathrm{~m}, 1 \mathrm{H}$, both diastereomers), $2.62(\mathrm{~m}, 1 \mathrm{H}$, both diastereomers), 2.50 (dd, 14, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$ both diastereomers), 2.28 (dd, $\mathrm{J}=14,5.6$ $\mathrm{Hz}, 1 \mathrm{H}$, both diastereomers), $1.99(\mathrm{~m}, 8 \mathrm{H}$, both diastereomers), 1.64 ($\mathrm{m}, 12 \mathrm{H}$, both diastereomers). ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 177.3,177.2,160.1,159.6,144.0,142.3,141.3$, 139.8, 132.7, 130.0, 129.5, 129.0, 128.5, 127.8, 127.5, 127.3, $125.3,125.2,120.3,119.8,114.4,113.9,112.9,112.2,76.3$, 76.2, 58.2, 58.1, 55.4, 47.4, 43.8, 43.6, 29.1, 25.4, 22.9, 22.3. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$) calc. 363.1960, found m/z 363.1945.

1-Cyclohexyl-4-phenyl-1,2,3,4-tetrahydro-1,4-(epoxymethano)naphthalen-9-one (4a). Method A; reaction time 7.5 h at $-20{ }^{\circ} \mathrm{C}$, then 6 h at $75{ }^{\circ} \mathrm{C}$. $R_{\mathrm{f}} 0.58(1: 4$ acetone/hexanes); white solid, m.p. $=232-233{ }^{\circ} \mathrm{C}$, yield 80 mg (80%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.47(\mathrm{~m}, 4 \mathrm{H})$, 7.46-7.41 (m, 1H), $7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dt}, J=7.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dt}, J=7.68,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.55-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 2 \mathrm{H})$, 2.11-2.05 (m, 1H), 1.98-1.89 (m, 2H), 1.82-1.77 (m, 1H), 1.69 (t, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 2 \mathrm{H})$, 1.36-1.28 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 174.4, 141.9, 138.7, 135.7, 129.7, 128.3, 128.1, 128.0, 126.9, 124.4, 122.3, 85.4, 53.2, 28.8, 27.5, 27.0, 26.8, 26.8, 26.5. IR (neat): v 2933 (m), 2851 (m), 1952 (w), 1737 (s), 1600 (w) cm^{-1}. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$) calc. 333.1855 , found m / z 333.1851.

1-Cyclopentyl-4-phenyl-1,2,3,4-tetrahydro-1,4-

 (epoxymethano)naphthalen-9-one (4b). Method A; reaction time 5 h at $-20^{\circ} \mathrm{C}$, then 7 h at $75{ }^{\circ} \mathrm{C}$. $R_{\mathrm{f}} 0.35(1: 4$ diethyl ether/hexanes); white solid, m.p. $=231-234{ }^{\circ} \mathrm{C}($ decomp $)$, yield $71 \mathrm{mg}(71 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.40(\mathrm{~m}$, $6 \mathrm{H}), 7.29(\mathrm{td}, J=15.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=15.2,1.2 \mathrm{~Hz}$,$1 \mathrm{H}), 6.64(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (quintet, $J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.57-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.96(\mathrm{~m}, 2 \mathrm{H})$, $1.90-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.6,141.5,139.6,135.8,129.7$, 128.3, 128.2, 128.0, 127.0, 124.2, 122.3, 85.7, 53.5, 42.2, 30.5, 27.9, 27.9, 27.3, 26.6, 26.3. IR (neat): v 2951 (w), 2865 (w), 1739 (s), 1601 (w), 1477 (m) cm ${ }^{-1}$. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$) calc. 319.1698, found $\mathrm{m} / \mathrm{z} 319.1697$.

1-Cycloheptyl-4-phenyl-1,2,3,4-tetrahydro-1,4-(epoxymethano)naphthalen-9-one (4c). Method A; reaction time 3 h at $-20^{\circ} \mathrm{C}$, then 5 h at $75^{\circ} \mathrm{C}$. $R_{\mathrm{f}} 0.37(1: 4$ diethyl ether/hexanes); white solid, m.p. $=218-219{ }^{\circ} \mathrm{C}$, yield 83 mg (83\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.40(\mathrm{~m}, 5 \mathrm{H})$, $7.38-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.22-1.56(\mathrm{~m}, 14 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.5,141.9,139.5,135.7,129.7,128.3$, $128.1,128.0,126.9,124.4,122.1,87.3,53.2,40.7,29.2,29,2$, 28.1, 27.7, 27.2. IR (neat): v 3042 (w), 2946 (w), 1864 (w), 1739 (s), 1610 (w), 1486 (m) cm^{-1}. HRMS (ESI-orbitrap $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$) calc. 347.2011, found $\mathrm{m} / \mathrm{z} 347.1991$.

9-Cyclohexyl-6-(2,3-dihydrobenzofuran-5-yl)-1,2,6,7,8,9-hexahydro-9,6-(epoxymethano)naphtho[2,1-b]furan-11-one (4f). Method B. $R_{\mathrm{f}} 0.42$ (2:8 ethyl acetate/hexanes); viscous yellow oil, yield $54 \mathrm{mg}(54 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.57(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ $(\mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.54(\mathrm{~m}, 4 \mathrm{H}), 3.25-3.18(\mathrm{~m}, 4 \mathrm{H})$, 2.73$2.70(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.66$ $(\mathrm{m}, 1 \mathrm{H}), 1.66-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.24(\mathrm{~m}$, $3 \mathrm{H}), 1.12-1.03(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.6,159.2,158.8,133.7$ (2C), 130.6 (2C), 126.9 (2C), 124.0, 109.0 (2C), $84.3,71.4,56.9,53.0,52.0,36.0$, $32.0,30.3,30.0,29.9,26.8,23.8,21.0$. IR (neat): $v 2932(\mathrm{~m})$, 2857 (m), 1762 (s), 1614 (w), 1492 (m), 1235 (m) cm${ }^{-1}$. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$) calc. 439.1885, found m / z 439.1874.

9-Cyclopentyl-6-(2,3-dihydrobenzofuran-5-yl)-1,2,6,7,8,9-hexahydro-9,6-(epoxymethano)naphtho[2,1-b]furan-11-one ($\mathbf{4 g}$). Method B. $R_{\mathrm{f}} 0.45$ (2:8 ethyl acetate/hexanes); viscous yellow oil, yield 31 mg (31%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.60-4.54 (m, 4H), 3.26-3.18 (m, 4H), 2.83-2.79 (m, 1H), 2.45 $(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-1.26(\mathrm{~m}, 9 \mathrm{H}), 0.88-0.81(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.8,159.2,159.1,134.2,131.6$, $128.4,127.4,127.2,126.9,124.6,124.1,109.0,108.9,96.0$, $76.8,71.5,58.0,56.6,48.8,38.4,34.2,30.4,30.0,30.0,28.2$, 22.4. IR (neat): v 2926 (m), 2855 (m), 1762 (s), 1616 (w), $1491(\mathrm{~m}), 1231(\mathrm{~m}) \mathrm{cm}^{-1}$. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4}+\right.$ $\mathrm{Na}]^{+}$) calc. 425.1729 , found $\mathrm{m} / \mathrm{z} 425.1719$.

2-Methoxy-4-phenyl-4,5,5a,6,6a,7,8,9,10,10a-decahydroacephenanthrylene-4-carboxylic acid (9). Method A; reaction time 4 h at $-20^{\circ} \mathrm{C}$, then 4.5 h at $75^{\circ} \mathrm{C}$. $R_{\mathrm{f}} 0.49(3: 4$ diethyl ether/hexanes); white solid, m.p. $=292-295{ }^{\circ} \mathrm{C}$ (decomp), yield $80 \mathrm{mg}(80 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.32-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.64-$ $2.54(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87$ $(\mathrm{m}, 1 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.25(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.9,159.9,142.0$, $141.2,138.8,136.8,128.5,127.4,127.3,111.4,109.0,63.5$, $55.8,48.4,38.5,36.2,34.1,33.2,28.8,28.2,25.9,22.4$. IR (neat): v 3282 (br), $2928(\mathrm{~m}), 2957(\mathrm{~m}), 1710(\mathrm{~m}) \mathrm{cm}^{-1}$. HRMS (ESI-orbitrap, $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$) calc. 363.1960 , found m / z 363.1957.

Acknowledgements

This work was initiated under support from the U.S. National Science Foundation (CHE-1214066 and CHE-1360610) and continued with funding from the Oklahoma Center for the Advancement of Science \& Technology (HR12-171). We thank Doug Powell (Univ. of Oklahoma) for assistance with the X-ray structure of 9, Prof. Frank D. Blum (OSU) for assistance with laboratory oversight, and Prof. Jimmie Weaver (OSU) for helpful discussions.

Notes and references

${ }^{a}$ Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, 74078, USA.
${ }^{b}$ Department of Chemistry, University of North Texas, 1155 Union Circle \#305070, Denton, Texas, 76203, USA (present address). E-mail: legrande@unt.edu
${ }^{c}$ Department of Chemistry, Vassar College, Poughkeepsie, New York, 12604, USA.
\dagger CCDC 997310-997312 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Electronic Supplementary Information (ESI) available: Synthetic procedures for allenoic acid substrates; crystal data for compounds 2a, 4a, and 9; kinetic plots; copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. See DOI: 10.1039/b000000x/

1. (a) A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180; (b) A. Fürstner and P. W. Davies, Angew. Chem. Int. Ed., 2007, 46, 3410; (c) Z. Li, C. Brouwer and C. He, Chem. Rev., 2008, 108, 3239; (d) N. D. Shapiro and F. D. Toste, Synlett, 2010, 5, 675; (e) A. S. K. Hashmi and F. D. Toste, eds., Modern Gold Catalyzed Synthesis, WileyVCH, Weinheim, 2012.
2. (a) A. S. K. Hashmi and M. Rudolph, Chem. Soc. Rev., 2008, 37, 1766; (b) M. Rudolph and A. S. K. Hashmi, Chem. Soc. Rev., 2012, 41, 2448; (c) A. Fürstner, Acc. Chem. Res., 2014, 47, 925.
3. C. Obradors and A. M. Echavarren, Chem. Commun., 2014, 50, 16.
4. For an example of a mechanistically intricate, but nevertheless highly predicable gold-catalyzed reaction, see the furanyne cycloisomerization: (a) A. S. K. Hashmi, T. M. Frost and J. W. Bats, J. Am. Chem. Soc., 2000, 122, 11553; (b) A. S. K. Hashmi, M. Rudolph, H.-U. Siehl, M. Tanaka, J. W. Bats and W. Frey, Chem. Eur. J., 2008, 14, 3703. Alternative reaction pathways in furanyne cycloisomerizations have also been identified: (c) A. S. K. Hashmi, Pure Appl. Chem., 2010, 82, 1517.
5. (a) C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas and A. M. Echavarren, Angew. Chem. Int. Ed., 2004, 43, 2402; (b) C. Nieto-Oberhuber, S. López, M. P. Muñoz, D. J. Cárdenas, E. Buñuel, C. Nevado and A. M. Echavarren, Angew. Chem. Int. Ed., 2005, 44, 6146; (c) C. H. M. Amijs, V. LópezCarrillo, M. Raducan, P. Pérez-Galán, C. Ferrer and A. M. Echavarren, J. Org. Chem., 2008, 73, 7721; (d) Y. Xia, A. S. Dudnik, V. Gevorgyan and Y. Li, J. Am. Chem. Soc., 2008, 130, 6940; (e) A. Correa, N. Marion, L. Fensterbank, M. Malacria, S. P. Nolan and L.

Cavallo, Angew. Chem. Int. Ed., 2008, 47, 718; (f) I. Alonso, B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós and J. L. Mascareñas, J. Am. Chem. Soc., 2009, 131, 13020; (g) A. Escribano-Cuesta, P. Pérez-Galán, E. Herrero-Gómez, M. Sekine, A. A. C. Braga, F. Maseras and A. M. Echavarren, Org. Biomol. Chem., 2012, 10, 6105; (h) J. Barluenga, R. Sigüeiro, R. Vicente, A. Ballesteros, M. Tomás and M. A. Rodríguez, Angew. Chem. Int. Ed., 2012, 51, 10377.
6. A. S. K. Hashmi, Catal. Today, 2007, 122, 211.
7. (a) J. H. Teles, S. Brode and M. Chabanas, Angew. Chem. Int. Ed., 1998, 37, 1415; (b) E. Mizushima, K. Sato, T. Hayashi and M. Tanaka, Angew. Chem. Int. Ed., 2002, 41, 4563; (c) E. Mizushima, T. Hayashi and M. Tanaka, Org. Lett., 2003, 5, 3349; (d) B. K. Corkey and F. D. Toste, J. Am. Chem. Soc., 2005, 127, 17168; (e) C.-Y. Zhou, P. W. H. Chan and C.-M. Che, Org. Lett., 2006, 8, 325; (f) C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan and A. M. Echavarren, Chem. Eur. J., 2006, 12, 1677; (g) W. Chaładaj, M. Corbet and A. Fürstner, Angew. Chem. Int. Ed., 2012, 51, 6929.
8. E. Jiménez-Núñez, C. K. Claverie, C. Nieto-Oberhuber and A. M. Echavarren, Angew. Chem. Int. Ed., 2006, 45, 5452.
9. (a) V. Belting and N. Krause, Org. Lett., 2006, 8, 4489; (b) L. Zhang and S. Wang, J. Am. Chem. Soc., 2006, 128, 1442; (c) Z.-Y. Han, H. Xiao, X.-H. Chen and L.-Z. Gong, J. Am. Chem. Soc., 2009, 131, 9182; (d) X.-Y. Liu and C.-M. Che, Org. Lett., 2009, 11, 4204; (e) M. E. Muratore, C. A. Holloway, A. W. Pilling, R. I. Storer, G. Trevitt and D. J. Dixon, J. Am. Chem. Soc., 2009, 131, 10796; (f) Z.-Y. Han, R. Guo, P.-S. Wang, D.-F. Chen, H. Xiao and L.-Z. Gong, Tetrahedron Lett., 2011, 52, 5963; (g) A. W. Gregory, P. Jakubec, P. Turner and D. J. Dixon, Org. Lett., 2013, 15, 4330; (h) X. Wu, M.-L. Li and P.-S. Wang, J. Org. Chem., 2014, 79, 419; (i) S. M. Inamdar, A. Konala and N. T. Patil, Chem. Commun., 2014, 50, 15124.
10. (a) O. Kanno, W. Kuriyama, Z. J. Wang and F. D. Toste, Angew. Chem. Int. Ed., 2011, 50, 9919; (b) C. H. Cheon, O. Kanno and F. D. Toste, J. Am. Chem. Soc., 2011, 133, 13248; (c) H. Yamamoto and K. Futatsugi, Angew. Chem. Int. Ed., 2005, 44, 1924.
11. (a) J. W. Han, N. Shimizu, Z. Lu, H. Amii, G. B. Hammond and B. Xu, Org. Lett., 2014, 16, 3500; (b) M. Kumar, G. B. Hammond and B. Xu, Org. Lett., 2014, 16, 3452. The generation of active gold species has even been reported with weak Brønsted acids such as terminal alkynes. See: (c) A. S. K. Hashmi, Acc. Chem. Res., 2014, 47, 864.
12. (a) E. Genin, P. Y. Toullec, S. Antoniotti, C. Brancour, J.-P. Genêt and V. Michelet, J. Am. Chem. Soc., 2006, 128, 3112; (b) C. A. Sperger and A. Fiksdahl, J. Org. Chem., 2010, 75, 4542; (c) E. Tomás-Mendivil, P. Y. Toullec, J. Díez, S. Conejero, V. Michelet and V. Cadierno, Org. Lett., 2012, 14, 2520; (d) E. Tomás-Mendivil, P. Y. Toullec, J. Borge, S. Conejero, V. Michelet and V. Cadierno, ACS Catal., 2013, 3, 3086.
13. (a) G. L. Hamilton, E. J. Kang, M. Mba and F. D. Toste, Science, 2007, 317, 496; (b) A. S. K. Hashmi, A. Loos, A. Littmann, I. Braun, J. Knight, S. Doherty and F. Rominger, Adv. Synth. Catal., 2009, 351, 576; (c) S. Cauteruccio, A. Loos, A. Bossi, M. C. Blanco Jaimes, D. Dova, F. Rominger, S. Prager, A. Dreuw, E. Licandro and A. S. K. Hashmi, Inorg. Chem., 2013, 52, 7995.
14. For related gold-mediated cyclizations of allenoates, see: R. Döpp, C. Lothschütz, T. Wurm, M. Pernpointner, S. Keller, F. Rominger and A. S. K. Hashmi, Organometallics, 2011, 30, 5894.
15. For allene hydroacyloxylations catalyzed by Cu^{I}, see: (a) $\mathrm{S} . \mathrm{Ma}, \mathrm{Z}$. Yu and S. Wu, Tetrahedron, 2001, 57, 1585; for examples catalyzed by Ag^{I}, see: (b) Z. Wan and S. G. Nelson, J. Am. Chem. Soc., 2000, 122, 10470; (c) Z. Liu, A. S. Wasmuth and S. G. Nelson, J. Am. Chem. Soc., 2006, 128, 10352; (d) J. L. Arbour, H. S. Rzepa, J. Contreras-García, L. A. Adrio, E. M. Barreiro and K. K. Hii, Chem. Eur. J., 2012, 18, 11317.
16. (a) N. Krause and C. Winter, Chem. Rev., 2011, 111, 1994; (b) A. Corma, A. Leyva-Pérez and M. J. Sabater, Chem. Rev., 2011, 111, 1657; (c) M. Rudolph and A. S. K. Hashmi, Chem. Commun., 2011, 47, 6536; (d) N. Huguet and A. M. Echavarren, Top. Organomet. Chem., 2013, 43, 291.
17. Stoichiometric iodocyclizations of allenoic acids are also known. See: (a) X. Jiang, C. Fu and S. Ma, Chem. Eur. J., 2008, 14, 9656; (b) X. Jiang, C. Fu and S. Ma, Eur. J. Org. Chem., 2010, 687; (c) X. Zhang, C. Fu, Y. Yu and S. Ma, Chem. Eur. J., 2012, 18, 13501.
18. Gold-catalyzed enantioselective bromocyclizations of two γ-allenoic acids without 2,2-diaryl substituents have also been reported: D. H. Miles, M. Veguillas and F. D. Toste, Chem. Sci., 2013, 4, 3427.
19. I. Merfort, Curr. Drug Targets, 2011, 12, 1560.
20. S. Handa Ph.D. Thesis, Oklahoma State University, 2013.
21. While this study was being completed, one of the authors pursued $A u^{1}$-catalyzed enantioselective hydroacyloxylations of some of the same allenoic acid substrates in a different research group. See: S. Handa, D. J. Lippincott, D. H. Aue and B. H. Lipshutz, Angew. Chem. Int. Ed., 2014, 53, 10658.
22. (a) Z. Zhang, C. Liu, R. E. Kinder, X. Han, H. Qian and R. A. Widenhoefer, J. Am. Chem. Soc., 2006, 128, 9066; (b) J. L. Arbour, H. S. Rzepa, A. J. P. White and K. K. Hii, Chem. Commun., 2009, 7125.
23. (a) C. Ferrer and A. M. Echavarren, Angew. Chem. Int. Ed., 2006, 45, 1105; (b) C. Ferrer, C. H. M. Amijs and A. M. Echavarren, Chem. Eur. J., 2007, 13, 1358.
24. (a) C. Winter and N. Krause, Angew. Chem. Int. Ed., 2009, 48, 6339; (b) P. Mauleón, R. M. Zeldin, A. Z. González and F. D. Toste, J. Am. Chem. Soc., 2009, 131, 6348.
25. For examples involving gold, see: (a) R.-V. Nguyen, X. Yao and C.J. Li, Org. Lett., 2006, 8, 2397; (b) S. W. Youn and J. I. Eom, J. Org. Chem., 2006, 71, 6705; (c) S. Bhuvaneswari, M. Jeganmohan and C.H. Cheng, Chem. Eur. J., 2007, 13, 8285; (d) N. T. Patil, V. S. Raut, R. D. Kavthe, V. V. N. Reddy and P. V. K. Raju, Tetrahedron Lett., 2009, 50, 6576; (e) J. Barluenga, A. Fernández, A. Satrústegui, A. Diéguez, F. Rodríguez and F. J. Fañanás, Chem. Eur. J., 2008, 14, 4153; (f) F. J. Fañanás, A. Fernández, D. Çevic and F. Rodríguez, J. Org. Chem., 2009, 74, 932; (g) Y. Luo, Z. Li and C.-J. Li, Org. Lett., 2005, 7, 2675; (h) X.-Y. Liu, P. Ding, J.-S. Huang and C.-M. Che, Org. Lett., 2007, 9, 2645; (i) X. Zeng, G. D. Frey, R. Kinjo, B. Donnadieu and G. Bertrand, J. Am. Chem. Soc., 2009, 131, 8690; (j) X.-Y. Liu and C.-M. Che, Angew. Chem. Int. Ed., 2008, 47, 3805; (k) Y. Zhou, E. Feng, G. Liu, D. Ye, J. Li, H. Jiang and H. Liu, J. Org. Chem., 2009, 74, 7344; (1) N. T. Patil, P. G. V. V. Lakshmi and V. Singh, Eur. J. Org. Chem., 2010, 4719.
26. X. Zeng, Chem. Rev., 2013, 113, 6864.
27. For a related example of tandem hydroarylation/hydroalkoxylation catalyzed by $\mathrm{Sn}(\mathrm{OTf})_{2}$, see ref 22 b .
28. A. Luxenburger, Tetrahedron, 2003, 59, 3297.
29. Related bioactive polycyclic lactones include: (a) Kuehneromycin A (anti-HIV): J. Jauch, Angew. Chem. Int. Ed., 2000, 39, 2764; (b) plumericin (anticancer): C. A. Wood, K. Lee, A. J. Vaisberg, D. G. I. Kingston, C. C. Neto and G. B. Hammond, Chem. Pharm. Bull., 2001, 49, 1477; (c) antrocin (anticancer): Y. K. Rao, A. T. H. Wu, M. Geethangili, M.-T. Huang, W.-J. Chao, C.-H. Wu, W.-P. Deng, C.-T. Yeh and Y.-M. Tzeng, Chem. Res. Toxicol., 2011, 24, 238.
30. Recent reports suggest that chloro-bridged digold monocations, possibly with associated Ag^{I}, may be the predominant species formed under similar silver salt activation conditions with biaryl phosphines (e.g. 5) bound to Au. See: (a) A. Homs, I. Escofet and A. M. Echavarren, Org. Lett., 2013, 15, 5782; (b) Y. Zhu, C. S. Day, L. Zhang, K. J. Hauser and A. C. Jones, Chem. Eur. J., 2013, 19, 12264.
31. For purposes of comparison, absolute initial reaction rates are reported, starting from identical concentrations of 1a or 2a. Calculated rate constants are included in the ESI.
32. For a related isomerization process in the presence of $\mathrm{Fe}^{\mathrm{III}}$, see: M. S. Jung, W. S. Kim, Y. H. Shin, H. J. Jin, Y. S. Kim and E. J. Kang, Org. Lett., 2012, 14, 6262.
33. (a) C.-G. Yang and C. He, J. Am. Chem. Soc., 2005, 127, 6966; (b) A. R. Jagdale, J. H. Park and S. W. Youn, J. Org. Chem., 2011, 76, 7204.
34. B. C. Chary and S. Kim, J. Org. Chem., 2010, 75, 7928.
35. M. Chiarucci and M. Bandini, Beilstein J. Org. Chem., 2013, 9, 2586.
36. (a) M.-Z. Wang, M.-K. Wong and C.-M. Che, Chem. Eur. J., 2008, 14, 8353; (b) Y.-P. Xiao, X.-Y. Liu and C.-M. Che, J. Organomet. Chem., 2009, 694, 494; (c) M. Jean and P. van de Weghe, Tetrahedron Lett., 2011, 52, 3509.
37. K. Mori, S. Sueoka and T. Akiyama, Chem. Lett., 2009, 38, 628.
38. Brønsted acid catalysis has been implicated in some intermolecular hydrofunctionalizations of unactivated alkenes that nominally involve a metal catalyst. See: (a) D. C. Rosenfeld, S. Shekhar, A. Takemiya, M. Utsunomiya and J. F. Hartwig, Org. Lett., 2006, 8, 4179; (b) Z. Li, J. Zhang, C. Brouwer, C.-G. Yang, N. W. Reich and C. He, Org. Lett., 2006, 8, 4175; (c) M. A. Bowring, R. G. Bergman and T. D. Tilley, Organometallics, 2011, 30, 1295; (d) T. T. Dang, F. Boeck and L. Hintermann, J. Org. Chem., 2011, 76, 9353.
39. A. Kütt, T. Rodima, J. Saame, E. Raamat, V. Mäemets, I. Kaljurand, I. A. Koppel, R. Y. Garlyauskayte, Y. L. Yagupolskii, L. M. Yagupolskii, E. Bernhardt, H. Willner and I. Leito, J. Org. Chem., 2011, 76, 391.
40. G. Lemiére, B. Cacciuttolo, E. Belhassen and E. Duñach, Org. Lett., 2012, 14, 2750.
41. (a) Y. Hirose, S. Hasegawa and N. Ozaki, Tetrahedron Lett., 1983, 24, 1535; (b) Q. Zhou, in Quinone Methides, ed. S. E. Rokita, Wiley, Hoboken, NJ, 2009, pp. 269-295.
42. A reviewer has suggested that the proposed allylgold intermediate in Path B may undergo preferential attack by H^{+}at the γ-position, which would generate 2a rather than 3a when $\mathrm{E}=\mathrm{LAu}$. There is literature precedent for such reactions occuring at metal-bound η^{1}-allyl ligands, although we are not aware of any examples involving $A u^{I}$. For examples involving $\mathrm{Au}^{\text {III }}$, see: (a) S. Komiya and S. Ozaki, Chem. Lett., 1988, 1431; (b) T. Sone, S. Ozaki, N. C. Kasuga, A. Fukuoka
and S. Komiya, Bull. Chem. Soc. Jpn., 1995, 68, 1524; (c) For examples involving other transition metals, see: H. Kurosawa, J. Organomet. Chem., 1987, 334, 243; (d) For examples involving main group metals, see: G. Courtois and L. Miginiac, J. Organomet. Chem., 1974, 69, 1.
43. A. S. K. Hashmi, Angew. Chem. Int. Ed., 2010, 49, 5232.
44. J. Q. Bond, D. M. Alonso, R. M. West and J. A. Dumesic, Langmuir, 2010, 26, 16291.
45. There is precedent for Au^{1}-assisted Brønsted acid catalysis in hydrofunctionalizations of dienes. See ref 10a.
46. H. G. Raubenheimer and H. Schmidbaur, Organometallics, 2012, 31, 2507.
47. W. Wang, G. B. Hammond and B. Xu, J. Am. Chem. Soc., 2012, 134, 5697.
48. No ${ }^{1} \mathrm{H}$ NMR signals for 1a were observed upon heating a sample of 2a at $75^{\circ} \mathrm{C}$ with $20 \mathrm{~mol} \% \mathrm{TfOH}$ in DCE- d_{4} in a sealed NMR tube. Signals for 4a began appearing with no signs of an intermediate.
49. C. Nieto-Oberhuber, S. López and A. M. Echavarren, J. Am. Chem. Soc., 2005, 127, 6178.
50. M. A. Tarselli and M. R. Gagné, J. Org. Chem., 2008, 73, 2439.
51. M. J. Johansson, D. J. Gorin, S. T. Staben and F. D. Toste, J. Am. Chem. Soc., 2005, 127, 18002.
52. R. Uson, A. Laguna and M. Laguna, Inorg. Synth., 1989, 26, 85.
53. P. de Frémont, N. M. Scott, E. D. Stevens and S. P. Nolan, Organometallics, 2005, 24, 2411.
54. K. J. Miller, T. T. Kitagawa and M. M. Abu-Omar, Organometallics, 2001, 20, 4403.
55. R. E. Schuster, J. E. Scott and J. Casanova, Org. Synth., 1966, 46, 75.
56. A nonracemic analogue of this compound has recently been reported (ref 21).

