Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Journal Name

COMMUNICATION

RSCPublishing

AApeptides Cite this: DOI: 10.1039/x0xx00000x

Haifan Wu, Fengyu She, Wenyang Gao, Austin Prince, Yagiong Li, Lulu Wei, Allison Mercer, Lukasz Wojtas, Shenggian Ma, and Jianfeng Cai*

The Synthesis of Head-to-Tail Cyclic Sulfono-y-

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

We report an efficient method for the preparation of unprecedented head-to-tail cyclic sulfono-y-AApeptides. Following this method, a number of cyclic sequences bearing two to five subunits were efficiently synthesized. In addition, the X-ray crystal structure study of a three-membered cyclic sulfono- γ -AApeptide revealed a type II β -turn-like character.

Cyclic peptides play an important role in the area of drug discovery.¹ The conformational rigidity conferred by macrocyclization is often associated with increased activities compared with linear peptides, especially in the modulation of protein-protein interactions (PPIs).²⁻⁵ Over the years, extensive efforts have been focused on the synthesis and structural modification of cyclic peptides.⁶⁻⁸ In the meantime, a number of classes of peptidomimetics were developed to mimic the structure of peptides.9, 10 These compounds were shown to display similar, even enhanced functions compared to peptides and possess much better stability towards proteolysis.9 Similar to peptides, conformational constraints, such as cyclization, have been introduced to peptidomimetics such as peptoids, further enhancing their structural rigidity and therefore potential biological activity.11-14

Figure 1. Structural presentation of a γ -AApeptide as compared with an α -peptide.

To expand the structural diversity of peptidomimetics, we have recently developed a new class of peptidomimetics termed as "y-AApeptides".15 y-AApeptides contain N-acylated N-aminoethyl amino acid units derived from γ -PNAs (Figure 1). They can be efficiently synthesized by solid phase synthesis methods.¹⁵⁻¹⁷ Previous studies of y-AApeptides have revealed that y-AApeptides are highly resistant to proteolysis and are highly amendable to chemical diversification.¹⁸ In addition, many y-AApeptides were reported to bear promising

biological functions.¹⁸⁻²⁶ We thus believe that further development of y-

AApeptides will broaden the scope of their applications in the future.

seek to extend the structural and functional diversity of y-AApeptides

by macrocyclization. In an initial study, an on-resin head-to-side chain

cyclization method was successfully developed²³ and resulted in the efficient preparation of cyclic y-AApeptides that exhibited broad-

spectrum antimicrobial activities superior to those of linear y-

AApeptides.²³ However, since the cyclization was on the side chains,

the resulting cyclic y-AApeptides exhibited asymmetrical structures,

and therefore structural studies and rational design of those cyclic

sequences are difficult. As such, we have directed interest toward the

development of the head-to-tail cyclic y-AApeptides, especially cyclic

sulfono-y-AApeptides which may present a more rigid structure by

avoiding cis-trans isomerization of tertiary amide bonds in a y-

AApeptide. Herein, we report for the first time an efficient method for

the synthesis of cyclic sulfono-y-AApeptides in a head-to-tail fashion.

In order to assess the potential of cyclic sulfono-y-AApeptides to mimic

functions of peptides, structural analysis of a three-membered cyclic

Inspired by cyclic peptides and cyclic peptidomimetics, we also

Among successful methods for peptide macrocyclization, insolution head-to-tail cyclization of linear peptide precursors in the presence of powerful coupling reagents has found the greatest number of applications. We initially attempted to synthesize linear sulfono-y-AApeptide precursors by following the similar method. As such, a regular Fmoc γ-AApeptide building block¹⁵ was first attached on the 2-

This journal is © The Royal Society of Chemistry 2012

chlorotrityl chloride (CTC) resin (Figure 2A). The Fmoc protecting groups were subsequently removed by 20% piperidine in DMF. However, ninhydrin test of the resulting resin showed negative, indicative of the failure of the first attempt. The LCMS analysis of Fmoc deprotection elution revealed the ketopiperazine formation during the Fmoc-deprotection process (Figure 2A). This is not surprising, as a similar phenomenon was observed on the attempted synthesis of cyclic PNAs.²⁷ Since γ -AApeptides have the same backbone as chiral PNA, it is reasonable that synthesis of γ -AApeptides on CTC resin was unsuccessful.

Figure 3. (**A**) Scheme for the preparation of cyclic sulfono-γ-AApeptide **γ1**. (**B**) Structures of cyclic sulfono-γ-AApeptides in this study. ^aAcetic acid: trifluoroethanol: dichloromethane = 1:1:8 for 2h; ^boptimized cyclization condition: 0.5 mM linear precursors in dichloromethane with O-(Benzotriazol-1-γl)-N,N,N',N'-tetramethyl-uronium tetrafluoroborate (TBTU) (3 equiv.), hydroxybenzotriazole (HOBt) (3 equiv.), and 4-dimethylaminopyridine (DMAP) (5 equiv.) at room temperature for 6 h.

To overcome the observed difficulty, we tested the feasibility of two different linkers, an aryl hydrazine linker and a 4-sulfamylbutyryl "safety-catch" linker, for the preparation of head-to-tail cyclized sulfono- γ -AApeptides (Figure 2B). The linkers were introduced to eliminate the potential six-membered ring formation of ketopiperazine in the first step. Both hydrazine and 4-sulfamylbutyryl linkers contain unique functionality, which can be selectively activated by oxidation and alkylation, respectively.^{28, 29} Upon activation, sequences can be cleaved from solid support by nucleophiles, such as amines, alcohols, and hydroxide, forming the corresponding products.^{30, 31} In the case of intramolecular nucleophilic attack by N-termini amines, cyclic sequences in a head-to-tail fashion can be prepared.^{32, 33} These methods have successfully provided a four-membered cyclic sulfono- γ -AApeptide **y1**. However, the yields were very low (less than 20% for both methods), thus limiting their potential applications.

It is known that the formation of ketopiperazines that lead to selfcleavage off the solid support is significant under basic condition.27 Thus, we hypothesized that if the reaction is carried out under neutral condition, the potential formation of ketopiperazine would be minimized. As such, we introduced the Fmoc-N-Alloc γ -AApeptide building block (Figure 3A), with the assumption that neutral Alloc deprotection condition could bypass the auto-cleavage of ketopiperazines. We then tested the feasibility of this method by synthesizing a four-membered cyclic sulfono-y-AApeptide y1. (Figure 3A) In a general method, an Fmoc-N-Alloc γ-AApeptide building block (y-BB-1) was first attached on the CTC resin. Fmoc protecting groups were removed by 20% piperidine/DMF solution, followed by the modification of the secondary amine by methanesulfonyl chloride. Next, the Alloc protecting groups were removed in the presence of Pd(PPh₃)₄ and Me₂NH.BH₃ in dichloromethane,³⁴ which indeed significantly prevented ketopiperazine formation. The rest of residues

in the sequence were assembled with the regular y-AApeptide synthesis method.¹⁷ Linear protected sulfono-y-AApeptides were cleaved from the solid support with the regular CTC resin cleavage cocktail (acetic acid: trifluoroethanol: dichloromethane = 1:1:8). Finally, seven conditions were investigated for the efficiency of head-to-tail cyclization in solution (Table 1). We first employed PyBOP and HBTU (entry 1 and 2), which are common activating agents for peptide lactamization.^{35, 36} Both of them gave modest results with 70% and 55% yields for PyBOP and HBTU, respectively. Surprisingly, an alternative method with the use of EDC³⁷ (entry 3 and 4) showed even poorer yield (<5%). The most efficient cyclization was performed in dichloromethane with TBTU, HOBt, and DMAP as coupling reagents (entry 6).³⁸ Under this condition, the four-membered cyclic sulfono-y-AApeptide $\gamma 1$ was prepared with high yield (>95%) based on the analytical HPLC trace of the crude compound (Figure 4). No oligomerization was detected.

Table 1.	Cyclization	conditions	for γ1.
----------	-------------	------------	---------

entry	cyclization conditions a (equiv)	solvent	yield ^b (%)
1	PyBOP/HOBt/ <i>i</i> -Pr ₂ NEt (4, 4, 8)	DMF	70
2	HBTU/HOBt/i-Pr2NEt (4, 4, 8)	DMF	55
3	EDC/HOBt/ <i>i</i> -Pr ₂ NEt (4, 4, 8)	DMF	<5
4	EDC/HOBt/ <i>i</i> -Pr ₂ NEt (4, 4, 8)	CH_2Cl_2	<5
5	TBTU/HOBt/ <i>i</i> -Pr ₂ NEt (3, 3, 5)	DMF	50
6	TBTU/HOBt/DMAP (3, 3, 5)	CH_2Cl_2	95
7	TBTU/HOBt/DMAP (3, 3, 5)	DMF	70

^aThe cyclization reactions were conducted with 0.5 mM linear precursor at room temperature for 6 h. ^bYields were determined by analytical HPLC traces. PyBOP: benzotriazol-1-yl-oxytri-pyrrolidinophosphonium hexafluorophosphate; HBTU: 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophos-phate; EDC: 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide.

Figure 4. HPLC trace of crude cyclic sulfono-y-AApeptide y1.

Thus, the optimized coupling condition was selected to synthesize more cyclic sequences so as to demonstrate its generality. It is known that the ring size is another factor that affects the efficiency of synthesis. For instance, cyclization of ring sizes less than seven amino acids in peptides are sometimes problematic due to the backbone steric strain.³⁹ To test the efficiency of cyclization, we investigated the effects of ring size on the cyclization of sulfono-y-AApeptides by the preparation of a two-, a three-, and a five-membered cyclic sulfono-y-AApeptide, y2, y3, and y4 respectively. Surprisingly, all of them showed high yields (Table S1). Even the shortest one γ_2 , which bears same backbone size as a cyclotetrapeptide, displayed remarkable high yields. Short cyclic peptides, such as cyclotetrapeptides have attracted a lot of attention for their potent biological activities.⁴⁰ However, the synthesis still remain a challenge.7 Providing the highly efficient synthetic method, short cyclic sulfono-y-AApeptides may serve as a novel scaffold to mimic the biological functions of short cyclic peptides. In addition, such method can be employed to prepare amphiphilic cyclic sequences ($\gamma 6$ and $\gamma 7$) with more than 50% yield (Table S1).

The functions of peptides/peptidomimetics are tightly associated to their structures. Therefore, it is very intriguing to probe the structural conformation of head-to-tail cyclic sulfono- γ -AApeptides, so as to rationally design new molecules with predictable functions. To this end, we have successfully obtained a monocrystal of the threemembered cyclic sulfono- γ -AApeptide γ_5 by diffusing pentane vapor into a chloroform solution of γ_5 . The structure was then elucidated by X-ray crystallographic study (Figure 5).

The crystal unit cell contains two γ_5 molecules, with each molecule displays segregated side chains on two faces. The top face is comprised of two 4-chlorophenyl sulfonyl groups and a methyl group whereas the bottom face contains two methyl groups and a 4-chlorophenyl sulfonyl group. All three tertiary sulfonamide groups adopt anti conformations. The unusual asymmetry of γ_5 contradicts what is predicted based on its primary structure as well as observed from other macrocycles, such as cyclohexapeptoids^{11, 37, 41}.

Figure 5. (A) Crystal unit cell of cyclic sulfono- γ -AApeptide γ 5. (B) Side view of the crystal structure showing spatial segregation of side chains. (C) Top view of the backbone with subunit 1, 2, and 3. (D) Superimposition of γ 5 backbone (red) with a turn region of a type II β turn (PDB: 1YCC) (yellow).

The backbone of **y5** displays a "twisted" boat-like shape containing three trans amide bonds. (Figure 5B) Two carbonyl groups point outside the ring and one inside the ring. The dihedral angles were calculated and presented in Table S₃. Six torsion angles ϕ , θ , η , ζ , ψ , and ω are defined to describe backbone dihedral angles of a γ -AApeptide (Table S₃). Noticeable variations in dihedral angles ϕ , θ , η , and ζ of the three subunits present the asymmetry of this molecule. Similar to cyclic peptoids, ψ values show almost planar geometry for all three subunits.¹¹ Three trans amide bonds are also revealed by ω values. The mean ω value is 179.2° with a standard deviation of 7.5°, which is close to what was reported for cyclic peptides⁴².

The backbone also displays a hydrogen bond between C=O (subunit 1) and N-H (subunit 3), suggesting a turn-like structure. The turn contains same number of atoms as a peptide β -turn motif. Two carbon atoms (C^a₁ and C^y₃), which mimic two C^a atoms in a peptide β -turn motif, show close proximity (6.103 Å). In addition, superimposition of **y5** backbone at the turn region of a type II β turn (PDB: 1YCC) reveals high similarity (Figure 5D). The preference of **y5** to resemble type II β

turn is shown by comparison with a type I β -turn (Figure S4). The structural conformation of γ_5 suggests the potential of cyclic sulfono- γ -AApeptides to mimic the protein type II β -turn structure. Such β -turn mimics may find applications in various biomedical and material research.

Conclusions

In conclusion, we report an efficient method for the preparation of unprecedented head-to-tail cyclic sulfono-y-AApeptides. Ketopiperazine formation was greatly reduced by introducing a unique Fmoc-N-Alloc y-AApeptide building block for the first attachment on the CTC resin. Head-to-tail macrocyclization of the linear precursors was achieved with high efficiency by using TBTU, HOBt, and DMAP as coupling reagents. Following this method, cyclic sulfono-y-AApeptides varying from two subunits to five subunits were readily synthesized with high yields. In order to elucidate its structural properties, we present for the first time the X-ray crystal structure of a threemembered cyclic sulfono- γ -AApeptide γ_5 . The crystal structure shows a spatial segregation of side chains in an unusual asymmetrical pattern. More interestingly, y5 exhibits a turn-like structure with patterns similar to a peptide type II β -turn structure. By demonstrating the robust synthetic method of cyclic sulfono-y-AApeptides, their capability to mimic peptide β -turn structure, and the ability to introduce different side functional groups, we believe that such macrocycles will find important applications soon after.

Acknowledgements

This work was supported by NSF CAREER award (1351265) for JC.

Notes and references

Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620. * Email: jianfengcai@usf.edu

†Electronic Supplementary Information (ESI) available: experimental procedures, NMR spectra, HPLC traces, and crystallographic data in CIF. See DOI: 10.1039/c000000x/

- E. M. Driggers, S. P. Hale, J. Lee and N. K. Terrett, *Nat. Rev. Drug Discov.*, 2008, 7, 608-624.
- 2. J. A. Robinson, Acc. Chem. Res., 2008, 41, 1278-1288.
- A. Patgiri, K. K. Yadav, P. S. Arora and D. Bar-Sagi, *Nat. Chem. Biol.*, 2011, 7, 585-587.
- P. N. Cheng, C. Liu, M. L. Zhao, D. Eisenberg and J. S. Nowick, *Nat. Chem.*, 2012, 4, 927-933.
- S. Y. Chen, I. R. Rebollo, S. A. Buth, J. Morales-Sanfrutos, J. Touati, P. G. Leiman and C. Heinis, J. Am. Chem. Soc., 2013, 135, 6562-6569.
- J. N. Lambert, J. P. Mitchell and K. D. Roberts, J. Chem. Soc., Perkin Trans. 1., 2001, 471-484.
- 7. C. J. White and A. K. Yudin, Nat. Chem., 2011, 3, 509-524.
- C. J. White, J. L. Hickey, C. C. G. Scully and A. K. Yudin, J. Am. Chem. Soc., 2014, 136, 3728-3731.
- 9. Y. D. Wu and S. Gellman, Acc. Chem. Res., 2008, 41, 1231-1232.
- R. J. Simon, R. S. Kania, R. N. Zuckermann, V. D. Huebner, D. A. Jewell, S. Banville, S. Ng, L. Wang, S. Rosenberg, C. K. Marlowe, D.

C. Spellmeyer, R. Y. Tan, A. D. Frankel, D. V. Santi, F. E. Cohen and P. A. Bartlett, *Proc. Natl. Acad. Sci. USA*, 1992, **89**, 9367-9371.

- S. B. Shin, B. Yoo, L. J. Todaro and K. Kirshenbaum, J. Am. Chem. Soc., 2007, 129, 3218-3225.
- M. L. Huang, S. B. Y. Shin, M. A. Benson, V. J. Torres and K. Kirshenbaum, *Chemmedchem*, 2012, 7, 114-122.
- 13. Y. U. Kwon and T. Kodadek, Chem. Commun., 2008, 5704-5706.
- D. Seebach, J. L. Matthews, A. Meden, T. Wessels, C. Baerlocher and L. B. McCusker, *Helv. Chim. Acta.*, 1997, 80, 173-182.
- Y. H. Niu, Y. G. Hu, X. L. Li, J. D. Chen and J. F. Cai, *New. J. Chem.*, 2011, **35**, 542-545.
- 16. H. F. Wu, M. N. Amin, Y. H. Niu, Q. Qiao, N. Harfouch, A. Nimer and J. F. Cai, *Org. Lett.*, 2012, **14**, 3446-3449.
- 17. H. F. Wu, P. Teng and J. F. Cai, *Eur. J. Org. Chem.*, 2014, **2014**, 1760-1765.
- Y. A. Yang, Y. H. Niu, H. Hong, H. F. Wu, Y. Zhang, J. W. Engle, T. E. Barnhart, J. F. Cai and W. B. Cai, *Chem. Commun.*, 2012, 48, 7850-7852.
- Y. H. Niu, A. Jones, H. F. Wu, G. Varani and J. F. Cai, *Org. Biomol. Chem.*, 2011, 9, 6604-6609.
- Y. H. Niu, S. Padhee, H. F. Wu, G. Bai, L. Harrington, W. N. Burda,
 L. N. Shaw, C. H. Cao and J. F. Cai, *Chem. Commun.*, 2011, 47, 12197-12199.
- Y. H. Niu, G. Bai, H. F. Wu, R. S. E. Wang, Q. Qiao, S. Padhee, R. Buzzeo, C. H. Cao and J. F. Cai, *Mol. Pharm.*, 2012, 9, 1529-1534.
- 22. Y. H. Niu, S. Padhee, H. F. Wu, G. Bai, Q. Qiao, Y. G. Hu, L. Harrington, W. N. Burda, L. N. Shaw, C. H. Cao and J. F. Cai, *J. Med. Chem.*, 2012, **55**, 4003-4009.
- H. F. Wu, Y. H. Niu, S. Padhee, R. S. E. Wang, Y. Q. Li, Q. Qiao, G. Bai, C. H. Cao and J. F. Cai, *Chem. Sci.*, 2012, 3, 2570-2575.
- 24. Y. H. Niu, H. F. Wu, Y. Q. Li, Y. G. Hu, S. Padhee, Q. Li, C. H. Cao and J. F. Cai, Org. Biomol. Chem., 2013, 11, 4283-4290.
- 25. Y. Q. Li, C. Smith, H. F. Wu, S. Padhee, N. Manoj, J. Cardiello, Q. Qiao, C. H. Cao, H. Yin and J. F. Cai, *Acs Chem. Biol.*, 2014, 9, 211-217.
- H. F. Wu, Y. Q. Li, G. Bai, Y. H. Niu, Q. Qiao, J. D. Tipton, C. H. Cao and J. F. Cai, *Chem. Commun.*, 2014, **50**, 5206-5208.
- C. Schwergold, G. Depecker, C. Di Giorgio, N. Patino, F. Jossinet, B. Ehresmann, R. Terreux, D. Cabrol-Bass and R. Condom, *Tetrahedron*, 2002, 58, 5675-5687.
- Y. Wolman, A. Patchornik and P. M. Gallop, J. Am. Chem. Soc., 1961, 83, 1263-&.
- 29. B. J. Backes and J. A. Ellman, J. Org. Chem., 1999, 64, 2322-2330.
- B. J. Backes and J. A. Ellman, J. Am. Chem. Soc., 1994, 116, 11171-11172.
- B. J. Backes, A. A. Virgilio and J. A. Ellman, J. Am. Chem. Soc., 1996, 118, 3055-3056.
- 32. L. H. Yang and G. Morriello, Tetrahedron Lett., 1999, 40, 8197-8200.
- C. Rosenbaum and H. Waldmann, *Tetrahedron Lett.*, 2001, 42, 5677-5680.
- P. Gomez-Martinez, M. Dessolin, F. Guibe and F. Albericio, *Chem. Soc., Perkin Trans. 1.*, 1999, 2871-2874.
- S. M. Yu, W. X. Hong, Y. Wu, C. L. Zhong and Z. J. Yao, Org. Lett., 2010, 12, 1124-1127.
- R. Schmidt and K. Neubert, Int. J. Pept. Protein Res., 1991, 37, 502-507.

Page 5 of 5

Journal Name

- A. S. Culf, M. Cuperlovic-Culf, D. A. Leger and A. Decken, *Org. Lett.*, 2014, 16, 2780-2783.
- H. M. M. Bastiaans, J. L. vanderBaan and H. C. J. Ottenheijm, J. Org. Chem., 1997, 62, 3880-3889.
- 39. U. Schmidt and J. Langner, J. Pept. Res., 1997, 49, 67-73.
- 40. M. Kranz, P. J. Murray, S. Taylor, R. J. Upton, W. Clegg and M. R. J. Elsegood, *J. Pept. Sci.*, 2006, **12**, 383-388.
- B. Yoo, S. B. Y. Shin, M. L. Huang and K. Kirshenbaum, *Chem. Eur. J.*, 2010, 16, 5528-5537.
- M. W. MacArthur and J. M. Thornton, J. Mol. Biol., 1996, 264, 1180-1195.