Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Synthesis of L-Rhamnose derived chiral bicyclic triazoles as novel sodium-glucose transporter (SGLT) inhibitors

Siddamal Reddy Putapatri, ${ }^{\text {a }}$ Abhinav Kanwal, ${ }^{\text {b }}$ Balasubramanian Sridhar, ${ }^{\text {c }}$ Sanjay K Banerjee, ${ }^{\text {b }}$ Srinivas Kantevari*, ${ }^{\text {a }}$

${ }_{5}$ Received (in $X X X, X X X$) Xth $X X X X X X X X X$ 20XX, Accepted Xth $X X X X X X X X X$ 20XX
DOI: 10.1039/b000000x

Herein we described synthesis of a series of novel fused bicyclic 1,2,3-triazoles from commercially available, natural deoxy sugar, L-rhamnose. The key reactions involved are i) ${ }_{10} \mathbf{Z n}(\mathbf{O T f})_{2}$ catalyzed enantioselective alkynylation of \mathbf{L} rhamnose derived azidoaldehyde and ii) deprotection of acid sensitive 1,2-isopropylidene group followed by in situ intramolecular click-cycloaddition of azidoalkynols. Some compounds exhibit excellent sodium-glucose transporter 15 (SGLT1 and SGLT2) inhibition activity.

Introduction

Compounds containing fused triazoles have become increasingly important in recent years as chemotherapeutic and cardiovascular 20 agents. ${ }^{1}$ In particular, sugar derived fused 1,2,3-triazoles have gained interest as candidates to treat variety of carbohydratemediated diseases, such as diabetes, viral infections including HIV, and cancer metastasis (Compounds 1-6; Figure 1). ${ }^{2}$ Moreover these fused triazole based bioactive heterocycles have ${ }_{25}$ proved to be valuable as genuine amide surrogates due to their physiochemical properties (peptide isosters) and remarkable metabolic stability. ${ }^{3}$

Although several efforts were made for synthesis of aromatic fused bicyclic triazoles ${ }^{1 a, 4}$ their application for the synthesis of 30 carbohydrate derived triazole-fused bicyclic heterocycles was scarce. ${ }^{2}$ Most of the early reported methods used D-glucose as the starting material. ${ }^{5}$ L-Rhamnose, a naturally occurring and easily available 6 -deoxysugar ${ }^{6}$ without any mammalian toxicity, was used as the starting material replacing glucose. For example,
${ }_{35}$ George et al reported total synthesis of bioactive (-)-salicylihalamides using L-rhamnose as the starting substrate replacing

[^0]

Figure 1. Examples of Fused bicyclic 1,2,3-triazoles as potential drug candidates
Scheme 1. Synthesis of azidoaldehyde 10.

Reagents and conditions: a) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; b) 2,2-dimethoxypropane, acetone, Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$; c) TPP, DIAD, DPPA, THF, 0°-RT; d) $50 \% \mathrm{aq}$. $\mathrm{AcOH} ;$ e) $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}, \mathrm{NaIO}_{4}$.

5 glucose. As a part of our ongoing research ${ }^{8}$ on development of rhamnose derived heterocycles, we herein describe synthesis of novel fused chiral bicyclic triazoles from readily available 6deoxymannose (L-rhamnose) and their evaluation as potent SGLT inhibitors.
80

Results and Discussions

Initiating the study, the required azidoaldehy de $\mathbf{1 0}[(4 R, 5 S)-5-$ ((R)-1-azidoethyl)-2,2-dimethyl-1,3-dioxolane-4-carbaldehy de]
85 was synthesized from commercially available L-rhamnose
(Scheme 1). Alcohol 7 synthesized previously in our lab, ${ }^{8}$ was converted to the respective azido analogue $\mathbf{8}$ in 90% y ield under Mitsunobu reaction conditions. Selective deprotection of primary acetonide in $\mathbf{8}$ was achieved in 85% y ield by stirring the mixture 5 in 50% aqueous acetic acid. The required building block $\mathbf{1 0}$ was obtained after oxidative cleavage of 1,2-diol 9 with NaIO_{4} in methanol: water (4:1) at room temperature. All the compounds described in scheme 1 were fully characterized by their ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and mass spectral analysis.
10 Having azidoaldehyde $\mathbf{1 0}$ in hand, the selective addition of phenyl acetylene (11a) was examined under various reaction conditions. The diastereomeric ratio of products 12a \& 12b was assessed using ${ }^{1} \mathrm{H}$ NMR spectra of reaction mixture. Initially, addition of 11a to $\mathbf{1 0}$ using n-butyl lithium ($\mathrm{n}-\mathrm{BuLi}$) as the base 5 in dry THF at $-78{ }^{\circ} \mathrm{C}$ gave both diastereomeric products 12a \& 12b in equal ratio (entry 1, Table 1). Use of hexamethyl phosphoramide (HMPA) as an additive in combination with nBuLi increased ratio of diastereoselectivity to 79:21 respectively (entry 2, Table 1). Later experiments revealed that addition of
${ }_{20}$ phenyl acetylene in presence of S-Binol ligand \mathbf{L}_{1}, diethyl zinc and HMPA as additive to $\mathbf{1 0}$ yielded 12a and 12b in 83:17 diastereomeric ratio. Use of titanium isopropoxide in the place of HMPA further increased the ratio to 93:7. After series of experiments varying reaction conditions, catalysts and additives, 5 12a was obtained in >97 diastereomeric ratio, after enantioselective addition of phenyl acetylene to $\mathbf{1 0}$ in the presence of ligand \mathbf{L}_{2} in combination with zinc triflate and triethy lamine in dry toluene at room temperature. The ligand \mathbf{L}_{2} required here was synthesized from the ($1 S, 2 S$)-(+)-2-Amino-1-
30 (4-nitrophenyl)-1,3-propanediol in two steps using literature procedure. ${ }^{9}$ The general scope and versatility of the reaction was further investigated using a series of alkynes 11b-q. All these reactions proceed smoothly to give diastereoselective azidoalky nols 12b-q in excellent yields (Scheme 2). The products
${ }^{35}$ 12a-q was fully characterized by their IR, ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR and Mass spectral data.

Table 1. Optimization of reaction conditions for addition of 11a to $\mathbf{1 0}^{\text {a }}$

10

11a

S.No	Reagent/ additive	Ligand/ catalyst	Temp (${ }^{\circ} \mathrm{C}$)	Yield (\%) ${ }^{\text {b }}$	Dr (12a: 12b) ${ }^{\text {c }}$
1	BuLi	-	-78	75	50:50
2	BuLi/ HMPA	-	-78	78	79: 21
3	HMPA	L_{1}	RT	73	83: 17
4	-	$\mathrm{L}_{1} / \mathrm{Ti}(i-\mathrm{OPr})_{4}$	RT	80	93:7
5	-	$\mathrm{L}_{2} / \mathrm{Zn}(\mathrm{OTf})_{2}$	RT	92	>97: 3

${ }^{\mathrm{a}}$ Reaction conditions: $\mathbf{1 0}(1 \mathrm{mmol}), \mathbf{1 1 a}(1.2 \mathrm{mmol}), \mathrm{BuLi}(1.1 \mathrm{mmol})$, HMPA (1.1 $\mathrm{mmol}), \mathrm{L}_{1}(30 \mathrm{~mol} \%), \mathrm{Ti}(\mathrm{i}-\mathrm{OPr})_{4}(30 \mathrm{~mol} \%), \mathrm{L}_{2}(1.1 \mathrm{mmol})$, and $\mathrm{Zn}(\mathrm{OTf})_{2}(1.1$
50 mmol). ${ }^{\mathrm{b}}$ Isolated yields. ${ }^{\text {c }}$ The diastereomeric ratio was determined using ${ }^{1} \mathrm{H}$ NMR spectra of diasteromeric products 12a and 12b. $\mathrm{Dr}=$ Diastereomeric ratio.

Now with series of azidoalkynols 12a-q in hand, we next examined various reaction conditions for the preparation of fused chiral bicyclic triazoles. Initial attempts using standard click 55 reaction conditions [Na -ascorbate, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O},{ }^{\mathrm{t}} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}$ ($1: 1$), RT] did not give fruitful results. Further increase in temperature and time did not help in the progress of reaction; instead, it led to decomposition of reaction mixture. In next set of experiments, deprotection of acid sensitive 1,2-isopropy lidene ${ }_{60}$ group was planned before azide-alky ne cycloaddition reaction.

Scheme 2. Sy nthesis of azidoalky nols 12a-q

6
Scheme 3: Sy nthesis of bicyclic triazoles 13a-q

Compound 12a when treated with 3 N HCl in THF at $80^{\circ} \mathrm{C}$, surprisingly resulted fused chiral bicyclic triazole 13a in 80% yield, in addition to the deprotection of acid sensitive 1,2${ }_{5}$ isopropylidene group (Scheme 3). The product 13a was fully characterized by its IR, ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR and Mass (ESI and HRMS) spectral data. Single crystal X-ray analysis unambiguously confirmed the structure for 13a (Figure 2).
${ }_{10}$ Figure 2: ORTEP diagram of 13a. Displacement ellipsoids are drawn at 30% probability level.

Scheme 4: Sy nthesis of bis-fused bicy clic triazole 13r

Table 2: Evaluation of SGLT1 and SGLT2 activity ${ }^{16}$ for 13a-r

Entry	Product	SGLT1 $\left(\mathrm{IC}_{50} \mathrm{nM}\right)$	SGLT2 $\left(\mathrm{IC}_{50} \mathrm{nM}\right)$	SGLT1/ SGLT2
1.	13 a	135.3	381.4	0.3549
2.	13 b	174.8	114.5	1.5269
3.	13 c	187.3	554.3	0.3380
4.	13 d	100.3	204.1	0.4914
5.	13 e	230.8	96.9	2.3818
6.	13 f	290.6	102.0	2.8481
7.	13 g	102.1	134.2	0.7614
8.	13 h	218.5	169.1	1.2916
9.	13 i	256.0	260.4	0.9832
10.	13 j	68.3	132.1	0.4494
11.	13 k	229.8	110.5	2.0796
12.	131	265.5	185.2	1.4335
13.	13 m	344.4	186.6	1.8459
14.	13 n	136.2	157.6	0.8645
15.	13 o	82.9	143.5	0.5774
16.	13 p	125.7	409.5	0.3069
17.	13 q	118.3	545.03	0.2170
18.	13 r	154.8	223.4	0.6926
19.	Phlorizin	65.5	77.9	0.8408

To generalize the protocol, all other azidoalky nols, 12b-q were reacted with 3 N HCl in THF for 1.5 h at $80^{\circ} \mathrm{C}$. Fused bicy clic triazoles 13b-q, were indeed formed in $72-93 \%$ y ields. All the

30 products $\mathbf{1 3 b}-\mathbf{q}$ was fully characterized through ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR and Mass spectral analysis. The product 13b was also confirmed by single crystal X-ray analysis (See ESI). Further, reaction of $\mathbf{1 0}$ with 1,4-diethynyl benzene $\mathbf{1 1 r}$ in presence of ligand \mathbf{L}_{2}, zinc triflate, and triethylamine in dry toluene at room temperature ${ }^{5}$ gave bis-azidoalkynol $\mathbf{1 2 r}$ in 79% yield (Scheme 4). Compound $\mathbf{1 2 r}$ when treated with 3 N HCl in THF at $80^{\circ} \mathrm{C}$ gave bis-fused derivative 13r in 70\% y ield.

Mechanistically, soon after deprotection of acid sensitive 1,2isopropylidene group, the transition intermediate may be 40 attaining conformational flexibility in its architecture, and triggering in situ intramolecular Huisgen [3+2] cycloaddition to y ield required fused chiral bicyclic triazoles 13a-r (Scheme 3 \& 4).

Pharmacology

Inhibition of sodium-glucose co-transporters (SGLTs) was considered as one of the therapeutic options to reduce blood glucose level independent of insulin. ${ }^{10}$ Over the past 10 years, a 5 series of O -glucosides and C -glucosides has been reported as SGLT2 inhibitors. ${ }^{11}$ T-1095 is the first structural derivative of Phlorizin, a natural non selective SGLT inhibitor. ${ }^{12}$ Sergliflozin and remogliflozin are representatives of the O-glucoside class of SGLT2 inhibitors. ${ }^{13}$ Meanwhile, dapagliflozin, followed by canagliflozin and empagliflozin have emerged as C-aryl glucoside class of SGLT2 inhibitors. ${ }^{14}$ Besides this, C-glucosides with indole, benzisothiazole, thiophene and triazole agly con were also investigated as inhibitors of SGLT2 (Figure 3). ${ }^{15}$

60

Figure 3: Examples of SGLT2 inhibitors having triazole(I), indole(II) benzisothiazole(III), and thiophene(IV) agly cons.

In our efforts to find new and potent acyclic C-nucleosides ${ }^{8}$ as novel SGLT inhibitors, new chiral fused triazoles 13a-r was 70 screened for sodium glucose co-transporters SGLT1 and SGLT2 inhibitory activity using cell-based nonradioactive fluorescent glucose uptake assay. ${ }^{16}$ The IC_{50} values (concentration to inhibit 50% D-glucose uptake in cells) of 13a-r were determined from the glucose uptake inhibition curves with reference to phlorizin.
${ }_{75}$ The determined IC_{50} values of 13a-r and the reference drug phlorizin (for comparison purpose) are depicted in Table 2. All eighteen compounds 13a-r showed SGLT1 and SGLT2 inhibition activity with IC_{50} ranging from $68.3-545.0 \mathrm{nM}$. Among all these derivatives, 13e, 13f, and 13k are found to be the most potent ${ }_{80}$ SGLT2 inhibitors with $\mathrm{IC}_{50}: 96.9,102.0$, and 110.5 nM ,
respectively. Other analogues $\mathbf{1 3 d}(100.3 \mathrm{nM}), \mathbf{1 3 g}(102.1 \mathrm{nM})$, and $\mathbf{1 3 j}(68.3 \mathrm{nM})$ are found to be the most potent SGLT1 inhibitors. Alkyl chain residue analogs $\mathbf{1 3 p}$ and $\mathbf{1 3 q}$ are selective SGLT1 inhibitors with IC_{50} : 125.7, and 118.3 nM respectively.

${ }_{5}$ Conclusions

In conclusion, we have synthesized a series of novel fused bicy clic heterocy cles 13a-r from L-rhamnose and evaluated them as SGLT inhibitors. The key reaction of azidoalkynols 12a-r with 3 N HCl in THF at $80^{\circ} \mathrm{C}$ resulted $3+2$ cycloaddition along with ${ }_{0}$ deprotection of 1,2 -isopropylidene to give fused chiral bicyclic 1,2,3-triazoles 13a-r in high yields. All the compounds synthesized and screened, exhibited potent sodium-glucose cotransporter (SGLT1 and SGLT2) inhibitory activity.

${ }_{15}$ Acknowle dgements

Thanks to Department of biotechnology (DBT) for Indo-Australia biotechnology fund (BT/Indo-Aus/07/06/2013) to SK, Ramalingaswami Fellowship to SKB, and CSIR fellowship to SRP \& AK.

Experimental

General Remarks
All the solvents were dried according to standard procedures. The reactions were carried out under nitrogen atmosphere. All the compounds were purified by column chromatography on $60-120$
25 mesh silica gel using hexanes-ethyl acetate as eluent. All the reactions were monitored by TLC analysis. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on 500 MHz or 300 MHz instruments using CDCl_{3} or DMSO- d_{6} as solvent and TMS as an internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 MHz or 125 MHz using CDCl_{3} or
${ }_{30}$ DMSO- d_{6} as solvent and reference. Optical rotation was recorded on DIGIPOL DP 786-M6U Polarimeter. Absolute configuration of the product was determined by single crystal X-ray analysis. Based on the stereochemistry of 13a and 13b, the relative configurations of all the products were determined.

35
(4R,4'S,5S)-5-((R)-1-Azidoethyl)-2,2,2',2'-tetramethyl-4,4'-
bi(1,3-dioxolane) (8). To a solution of alcohol $7(4.0 \mathrm{~g}, 16.2$ $\mathrm{mmol})$ and tripheny lphospine $(5.1 \mathrm{~g}, 19.5 \mathrm{mmol})$ in dry THF was added diisopropylazadicarboxylate ($4 \mathrm{~mL}, 20 \mathrm{mmol}$) slowly at
${ }_{40} 0^{\circ} \mathrm{C}$. After 10 minutes dipheny phosponic azide $(4.2 \mathrm{~mL}, 19.5$ mmol) was added at $0^{\circ} \mathrm{C}$ and stirred at room temperature over night. After completion, THF was evaporated under vacuo and the crude product was thus obtained purified by silica gel column chromatography eluted with hexane: ethyl acetate (98:2) to give
45 azido compound $8(4.1 \mathrm{~g}, 90 \%)$ as light yellow liquid. $[\alpha]_{D}{ }^{29}$ 1.7(c 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.13-4.03(\mathrm{~m}$, $1 \mathrm{H}), 3.98-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.38(\mathrm{dq}, \mathrm{J}=6.7 \mathrm{~Hz}, 1.7,1 \mathrm{H}), 1.48(\mathrm{~d}$, $\mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 109.9$, 109.7, 96.1, 83.7, 77.7, 50 77.4, 67.9, 55.9, 27.3, 26.7, 25.3, 16.3. IR (neat) 2986, 2935, 2101, 1456, 1378, 1247, 1055, $875 \mathrm{~cm}^{-1}$. MS (ESI) m / z 272[M+H] ${ }^{+}$, HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 294.1429, found: 294.1440.

55 (S)-1-((4S,5S)-5-((R)-1-Azidoethyl)-2,2-dimethyl-1,3-dioxolan-$4-\mathrm{yl}) \mathrm{ethane}-1,2$-diol (9).

The azide $8(4.0 \mathrm{~g}, 14.7 \mathrm{mmol})$ in 50% acetic acid (30 mL) was stirred at room temperature overnight, poured in water (30 mL), extracted with ethyl acetate ($2 \times 70 \mathrm{~mL}$) and washed with aq. ${ }_{60} \mathrm{NaHCO}_{3}$. The organic extract was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. The crude residue thus obtained was purified over silica gel column chromatography (ethyl acetate/he xane, 1:1) to give $9(2.9 \mathrm{~g}, 85 \%)$ as a thick syrup. $[\alpha]_{\mathrm{D}}{ }^{29} 14.7$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta \quad 4.03-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.68(\mathrm{~m}$, $2 \mathrm{H}), 3.50(\mathrm{dq}, \mathrm{J}=6.7 \mathrm{~Hz}, 1.5,1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 109.9,82.7,77.0$, 73.0, 63.8, 56.4, 27.1, 26.7, 16.0. IR (neat) 3416, 2988, 2937, 2108, 1456, 1379, 1246, 1057, $874 \mathrm{~cm}^{-1}$. MS (ESI) m / z ${ }_{70} 232[\mathrm{M}+\mathrm{H}]^{+}$, HRMS (ESI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 254.1116, found: 254.1130.

(4R,5S)-5-((R)-1-Azidoethyl)-2,2-dimethyl-1,3-dioxolane-4-

 carbaldehyde (10).75 To a solution of diol $9(1.0 \mathrm{~g}, 4.3 \mathrm{mmol})$ in methanol: water ($8: 2$, $10 \mathrm{~mL}), \mathrm{NaIO}_{4}(1.1 \mathrm{~g}, 5.1 \mathrm{mmol})$ was added and stirred at RT for 1.5 h . Water (40 mL) was added to reaction mixture and extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, ${ }_{80}$ concentrated under reduced pressure. The crude residue of $\mathbf{1 0}$ ($0.86 \mathrm{~g}, 100 \%$) thus obtained was used as such for further reaction. For analytical purpose small amount of crude residue was purified over silica gel flash chromatography (ethyl acetate /hexane, 1:1) to result $\mathbf{1 0}$ as thick syrup. $[\alpha]_{D}{ }^{29}-6.2$ (c 1.0, ${ }_{85} \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.32 (dd, J=1.2, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ (dd, J=4.7, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (dq, $\mathrm{J}=1.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.4,111.7,81.5,79.9,58.2$, 26.4, 25.7, 15.7. IR (neat) 2987, 2936, 2121, 1733, 1456, 1379, ${ }_{90} 1254,1069,871 \mathrm{~cm}^{-1}$. MS (ESI) $m / z 200[\mathrm{M}+\mathrm{H}]^{+}$, HRMS (ESI) Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 200.1035$, found: 200.1040.

General procedure for the enantioselective alkynylation of $\mathbf{1 0}$. To a solution of $\mathrm{Zn}(\mathrm{OTf})_{2}(399 \mathrm{mg}, 1.1 \mathrm{mmol})$ and chiral ligand ${ }_{95} \mathrm{~L}_{2}(389 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry toluene was added triethy lamine ($0.15 \mathrm{~mL}, 1.1 \mathrm{mmol}$) and alkyne 11a-r (1.2 mmol) under N_{2} atmosphere. After 15 min , the azidoaldehyde $\mathbf{1 0}$ (200 mg , 1 mmol) was introduced by syringe. The reaction mixture was stirred for 4 h at $25^{\circ} \mathrm{C}$. After the reaction was completed, the ${ }^{00}$ propargylic alcohol was separated from the ligand by washing with aq. HCl . The crude product was purified through a short flash chromatography column to give the propargylic alcohols 12a-r as syrupy liquids.
(S)-1-((4S,5S)-5-((R)-1-Azidoethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-phenylprop-2-yn-1-ol (12a). Yield: 92\%; [$\alpha]_{\mathrm{D}}{ }^{27}-27.4$ (c $1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.41(\mathrm{~m}, 2 \mathrm{H})$, $7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 4.80(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, \mathrm{J}=3.6 \mathrm{~Hz}, 7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, \mathrm{J}=2.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dq}, \mathrm{J}=2.8,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $10\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.0,131.5,129.1,118.7,110.3,87.2,84.7$, $80.0,79.3,62.3,56.7,27.0,21.4,16.1$. IR (neat) 3429,2986 , 2927, 2112, 1378, 1245, 1067, 767, $694 \mathrm{~cm}^{-1}$. MS (ESI) m / z $302[\mathrm{M}+\mathrm{H}]^{+}$, HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 302.14992, found: 302.14838.
(S)-1-((4S,5S)-5-((R)-1-Azidoethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)-3-(p-tolyl)prop-2-yn-1-ol (12b). Yield: 95%; $[\alpha]_{D}{ }^{27}-117.8$ (c 1.0, CHCl_{3}). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}$, $\left.{ }_{5} \mathrm{~J}=3.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.17(\mathrm{dd}, \mathrm{J}=3.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dq}, \mathrm{J}=2.2$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~d}, \mathrm{~J}=7.5$ $\mathrm{Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.0,131.5,129.1$, 118.7, 110.3, 87.2, 84.7, 80.0, 79.3, 62.3, 56.7, 27.1, 27.0, 21.4, 16.1. IR (neat) 3429, 2986, 2927, 2112, 1378, 1245, 1067, 767, ${ }_{10} 694 \mathrm{~cm}^{-1}$. MS (ESI) $m / z 316[\mathrm{M}+\mathrm{H}]^{+}$, HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 316.16557$, found: 316.16373.
($S, S, R, 1 S, 1 ' S)$-3,3'-(1,4-Phenylene)bis(1-((4S,5S)-5-((R)-1-azidoethyl)-2,2-dimethyl-1,3-dioxolan-4-yl) prop-2-yn-1-ol) (12r). Yield: 79%; $[\alpha]_{\mathrm{D}}{ }^{27}-72.0$ (c 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (300 $\left.{ }_{15} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.78(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{dd}, \mathrm{J}=3.9,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{dd}, \mathrm{J}=$ $2.8,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{dq}, \mathrm{J}=2.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H})$, $1.48(\mathrm{~s}, 6 \mathrm{H}), 1.46(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $131.6,128.0,123.3,122.2,110.3,87.8,86.2,80.2,79.2,71.2$, $2069.0,62.5,56.6,57.0,41.6,27.1,26.9,25.6,16.0$. IR (neat) 3436 , 2987, 2932, 2112, 1502, 1384, 1250, 1088, $840 \mathrm{~cm}^{-1}$. MS (ESI) $m / z 525[\mathrm{M}+\mathrm{H}]^{+}$, HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 525.24561, found: 525.24315 .
${ }_{25}$ A typical procedure for the synthesis of triazolo pyridines (13a-r):
To a solution of $12(100 \mathrm{mg})$ in 2 mL of THF, $3 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$ was added and refluxed for 1.5 h . After the reaction was completed, the reaction mixture cool to RT, and neutralized with aq NaHCO_{3} 30 and extracted with ethyl acetate ($2 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by silica gel column chromatography (ethyl acetate/hexane, 8:2) to afford 13 as a white solid.
35 (4S,5R,6S,7R)-7-Methyl-3-phenyl-4,5,6,7-tetrahydro-[1,2,3] triazolo[1,5-a]pyridine-4,5,6-triol (13a). Yield: 80\%; MP= $243^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27}-8.1$ (c 1.0, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}+\mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.29(\mathrm{~m}, 3 \mathrm{H})$, $5.21(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{dd}, \mathrm{J}=3.7,6.6$ $\left.{ }_{40} \mathrm{~Hz}, 1 \mathrm{H}\right), 4.14(\mathrm{dd}, \mathrm{J}=4.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}+\mathrm{CDCl}_{3}$) $\delta 146.0,131.9,131.7,129.0$, $128.6,128.3,70.1,69.4,63.1,55.0,15.6$. IR (neat) 3549,3447 , 3201, 2979, 1495, 1368, 1267, 1226, 1098, 1038, 994, 695, 648 cm^{-1}. MS (ESI) $m / z 262[\mathrm{M}+\mathrm{H}]^{+}$; HR-MS (ESI) Calcd for
${ }_{45} \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 262.1191$, found: 262.1179 .
(4S,5R,6S,7R)-7-Methyl-3-(p-tolyl)-4,5,6,7-tetrahydro-[1,2,3] triazolo[1,5-a]pyridine-4,5,6-triol (13b). Yield: 90%; MP= $236^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27}-60.9$ (c $1.0, \mathrm{CH}_{3} \mathrm{OH}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO+CDCl $\left.{ }_{3}\right) \delta 7.77(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $505.49($ brs, $1 \mathrm{H}), 5.22$ (brs, 1 H), 5.05 (brs, 2 H$), 4.71-4.62(\mathrm{~m}, 1 \mathrm{H})$, $4.15-3.99(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}+\mathrm{CDCl}_{3}$) $\delta 143.8,136.1,130.7,128.5,128.4$, 126.9, 69.1, 68.2, 62.0, 52.9, 20.7, 15.0. IR (neat) 3549, 3447, 3201, 2979, 1495, 1368, 1267, 1226, 1098, 1038, 994, 695, 648
$55 \mathrm{~cm}^{-1}$. MS (ESI) $m / z 276[\mathrm{M}+\mathrm{H}]^{+}$; HR-MS (ESI) Calcd for $\left.\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{M}+\mathrm{H}\right]^{+}: 276.1348$, found: 276.1360 .
(4S,5R,6S,7R)-7-Methyl-3-(4-((4R,5S,6R,7S)-4,5,6-tri hydroxy-7-methyl-4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a]
pyridin-3-yl)phenyl)-4,5,6,7-tetrahydro-[1,2,3]triazolo[1,5-a] ${ }_{60}$ pyridine-4,5,6-triol (13r). Yield: 70\%; $[\alpha]_{\mathrm{D}}{ }^{27} 24.2$ (c 1.0, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 8.22(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.67 (d, J=8.6 Hz, 2H), $5.65(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}$, $2 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{dd}, \mathrm{J}=3.5,8.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.66(\mathrm{dq}$, $\mathrm{J}=3.2,6.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.12-3.97(\mathrm{~m}, 6 \mathrm{H}), 1.60(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO) $\delta 143.5,137.5,131.7,130.4,128.2$, $126.9,69.5,68.4,62.1,52.8,15.1$. IR (neat) $3539,3282,2926$, 2852, 2696, 1463, 1098, 1061, $994 \mathrm{~cm}^{-1}$. MS (ESI) $m / z 445$ $[\mathrm{M}+\mathrm{H}]^{+}$; HR-MS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 445.1835, found: 445.1850.
${ }_{70}$ X-ray single crystal data for 13a : $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}, M=261.28$, colorless block, $0.22 \times 0.19 \times 0.14 \mathrm{~mm}^{3}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19), $a=7.0280(11), b=12.5922(19), c=$ 14.037(2) $\AA, V=1242.2(3) \AA^{3}, Z=4, D_{\mathrm{c}}=1.397 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=$ 552, CCD Area Detector, $\mathrm{MoK} \alpha$ radiation, $\lambda=0.71073 \AA, T=$ $75294(2) \mathrm{K}, 2 \theta_{\max }=50.0^{\circ}$, 11307 reflections collected, 1285 unique $\left(\mathrm{R}_{\text {int }}=0.0228\right)$. Final GooF $=1.060, R 1=0.0277, w R 2=0.0720$, R indices based on 1239 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ (refinement on F^{2}), 185 parameters, 0 restraints, $\mu=0.101 \mathrm{~mm}^{-1}$. CCDC 944748 contains supplementary Crystallographic data for the structure.
${ }_{80} \mathrm{X}$-ray single crystal data for 13b : $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}, M=275.31$, colorless needle, $0.18 \times 0.09 \times 0.07 \mathrm{~mm}^{3}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19), $a=7.5550(5), b=11.9870(8), c=$ $15.0918(11) \AA, V=1366.74(16) \AA^{3}, Z=4, D_{\mathrm{c}}=1.338 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}$ $=584, \mathrm{CCD}$ Area Detector, $\mathrm{MoK} \alpha$ radiation, $\lambda=0.71073 \AA, T=$ $85294(2) \mathrm{K}, 2 \theta_{\max }=50.0^{\circ}, 13098$ reflections collected, 1402 unique $\left(\mathrm{R}_{\mathrm{int}}=0.0220\right)$. Final GooF $=1.083, R 1=0.0282, w R 2=0.0717$, R indices based on 1355 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$ (refinement on F^{2}), 195 parameters, 0 restraints, $\mu=0.096 \mathrm{~mm}^{-1}$. CCDC 944749 contains supplementary Crystallographic data for the structure.
${ }_{90}$ Evaluation of 13a-r for SGLT Inhibition: ${ }^{8 a, 16}$
Cell culture: Human embryonic kidney (HEK293) cells were purchased from ATCC, USA and made two stable cell lines after expressing SGLT1 \& SGLT2, respectively. Previously, we searched the selectivity of these cell lines for SGLT1 and SGLT2 95 inhibition study. Glucose uptake by these cell lines was only inhibited by SGLT inhibitors but not by any other GLUTs inhibitors. SGLT1 \& SGLT2 transfected HEK cell lines were propagated at $37{ }^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ in Dulbecco's minimal essential medium (DMEM) supplemented with 1.0% of penicillin100 streptomy cin and 10% heat inactivated fetal bovine serum (FBS). The cells were cultured in a 90 mm dish in DMEM with 10% FBS until 70-80 \% confluency was obtained for further use for SGLT1 and SGLT2 inhibition activity.
SGLT inhibition assay: SGLT1/ SGLT2 transfected stable HEK 105 cells were plated at $1 \mathrm{X} 10^{4} /$ well in 96 -well plate and used at sub confluence after 24 h pre-incubation. For measuring SGLT1mediated glucose uptake, all culture media was removed from each well and replaced with $100 \mu 1$ of culture medium with newly synthesized molecules 13a-r at different concentrations (50 nm 1000 nm). After half an hour, fluorescent 2-deoxy-glucose (2NBDG) was added to the plates and incubated at $37^{\circ} \mathrm{C}$ with 5% CO_{2} for a period of 30 min (Kanwal et al, 2012). Cells were lysed with $50 \mu \mathrm{~L}$ of 0.1 N NaOH and fluorescence of aliquots from the lysate was measured at excitation/emission maxima of $\sim 465 / 540$ 115 nm . Phlorizin (non-Specific SGLT1 inhibitor) was used as a standard for this study.

Notes and References

1. (a) K.C. Majumdar, K. Ray, Synthesis, 2011, 3767-3783; (b) Agalave, S. G.; Maujan, S. R.; Pore, V. S. Chem. Asian J. 2011, 6, 2696-2718.
5 2. (a) N. D. Adhikary, P. Chattopadhyay, J. Org. Chem. 2012, 77, 5399-5405; (b) S. Miriam, R-E. Carles, A.P. Miquel, Org. Lett., 2011, 13, 5044-5047; (c) R A. Brawn, M. Welzel, J.T. Lowe, J.S. Panek, Org. Lett., 2010, 12, 336-339; (d) Y. S. Reddy, A. P. J. Pal, P. Gupta, A. A. Ansari, Y. D. Vankar. J. Org. Chem. 2011, 76, 5972-5984; (e) M. L H. Yanai, S. Obara, T. Taguchi, Org. Biomol. Chem., 2008, 6, 2679-2685; (f) Mitchell, F. Tian L. V. Lee, C- H. Wong, Angew. Chem. Int. Ed. 2002, 41, 3041-3044.
2. J. M. Holub, K. Kirshenbaum, Chem. Soc. Rev., 2010, 39, 13251337.

5 4. (a) B. Abarca, R. Ballesteros-Garrido, Top. Heterocycl. Chem. 2014, DOI: 10.1007/7081_2014_121; (b) J. M. Schulman, A. A. Friedman, J. Panteleev, M. Lautens Chem. Commun., 2012, 48, 5557; (c) R. Li, D.J. Jansen, A. Datta Org. Biomol. Chem., 2009, 7, 1921-1930. (d) F. Zhou, C. Tan, J. Tang, Y-Y. Zhang, W-M. Gao, H-H. Wu, Y-H. Yu, and J. Zhou, J. Am. Chem. Soc., 2013, 135, 10994-10997.
5. (a) V. S. Sudhir, N. Y. P. Kumar, R. B N. Baig, S. Chandrasekaran, J. Org. Chem. 2009, 74, 7588-7590; (b) R.I. Anegundi, V.G. Puranik, S. Hotha, Org. Biomol. Chem., 2008, 6, 779-786.
5 6. (a) S. Singh, A. Chang, K. E. Helmich, C. A. Bingman, R. L. Wrobel, E. T. Beebe, S-i. Makino, D. J. Aceti, K. Dyer, G. L. Hura, M. Sunkara, A. J. Morris, G. N. Phillips, Jr., J. S. Thorson, ACS Chem. Biol. 2013, 8, 1632-1639; (b) A.A. Ghoneim, Chemistry Central J. 2011, 5, 1-7. doi:10.1186/1752-153X-5-7; (c) B. G. Davis, T. W. Brandstetter, L. Hackett, B. G. Winchester, R. J. Nash, A. A. Wat son, R. C. Griffiths, C. Smith, G. W.J. Fleet, Tetrahedron, 1999, 55, 4489-4500.
7. H. Torsten, H. Kyounglang, E. Wibke, B. Blackman, S. Roy, P. Srinivas, G. George, J. Org. Chem. 2005, 70, 7592-7604.
55 . (a) S. R. Putapatri, A. Kanwal, S. K. Banerjee, S. Kantevari, Bioorg. Med. Chem. Lett., 2014, 24, 1528-1531; (b) S. Kantevari, S.R. Put apatri, Synlett, 2010, 2251-2256.
9. B. Jiang, Z. Chen, W. Xiong, Chem. Commun., 2002, 48, 15241525.

0 10. (a) A. Kanwal, S. K. Banerjee, Pham. Pat. Analyst, 2013, 2, 77-91.
(b) D. Hinnen, J. Cardiovas. Nurs. 2013, 28(2), 157-165. (c) A. Mather, C. Pollock, Nat. Rev. Neph. 2010, 6(5), 307-311. (d) E. M. Wright, D. D. F. Loo, B. A. Hirayama, Physiol. Rev. 2011, 91(2), 733-794.
(a) D. Vasilakou, T. Karagiannis, E. Athanasiadou, M. Mainou, A. Liakos, E. Bekiari, M. Sarigianni, D. R. Matthews, A. T sapas, Ann. Intem. Med. 2013, 159, 262-274. (b) J. Liu, T. W. Lee, SGLT2 Inhibitors for Type 2 Diabetes, J.E. Macor, (ed.), Book Series: Annual Reports in Medicinal Chemistry, 2011, 46, 103-115. (c) M.Pfister, J. M. Whaley, L. Zhang, J. F. List, Clin Phamacol. Ther. 2011, 89, 621-625. (d) L-T Ho, S. S. Kulkarni, J-C. Lee, Curr. Top. Med. Chem., $2011,11,1476-1512$.
12. (a) E. C. Chao, R. R. Henry, Nat. Rev. Drug Discov. 2010, 9, $551-$ 559. (b) H-Y. Hung, K. Qian, S. L. Morris-Natschke, C-S. Hsu, K-H. Lee, Nat. Prod. Rep., 2012, 29, 580-606.
13. (a) K. Katsuno, Y. Fujimori, Y. Takemura, M. Hiratochi, F. Itoh, Y. Komatsu, H. Fujikura, M. Isaji, J Pharmacol Exp Ther. 2007, 320(1), 323-330. (b) R. L. Dobbins, R. O'Connor-Semmes, A. Kapur, C. Kapitza, G. Golor, I. Mikoshiba, W. Tao, E.K. Hussey, Diabetes Obes Metab. 2012, 14, 15-22. (c) Y. Fujimori, K. Kat suno, I. Nakashima, Y. Ishikawa-T akemura, H. Fujikura, M.J. Isaji, Phamacol. Exp. Ther. 2008, 327, 268-276.
14. (a) Y. Ohtake, T. Sato, T. Kobayashi, M. Nishimoto, N. Taka, K. Takano, k. Yamamoto, M. Ohmori, M. Yamaguchi, K. Takami, S. Y. Yeu, K.H. Ahn, H. Matsuoka, K. Morikawa, M. Suzuki, H. Hagita, K. Ozawa, K. Yamaguchi, M. Kato, S. Ikeda, J. Med. Chem., 2012, 55, 7828-7840. (b) E.M. Lamos, L.M. Younk, S.N Davis, Expert Opin. Drug Metab. Toxicol. 2013, 9, 763-775. (c) R. Grempler, L. Thomas, M. Eckhardt, F. Himmelsbach, A. Sauer, D.E Sharp, R.A. Bakker, M. Mark, T. Klein, P. Eickelmann, Diabetes Obes. Metab. 2012, 14, 83-90.
15. (a) Y. Yamamoto, E. Kawanishi, Y. Koga, S. Sakamaki, T. Sakamoto, K. Ueta, Y. Matsushita, C. Kuriyama, M. TsudaT sukimoto, S. Nomura, Bioorg. Med, Chem. Lett. 2013, 23, 56415645. (b) Y. Koga, S. Sakamaki, M. Hongu, E. Kawanishi, T. Sakamoto, Y. Yamamoto, H. Kimata, K. Nakayama, C. Kuriyama, Y. Matsushita, K. Ueta, M. T suda-Tsukimoto, S. Nomura, Bioorg. Med. Chem. 2013, 21, 5561-5572. (c) L.T. Li, L.F. Zhou, Y.J. Li, J. Huang, R.H. Liu, B. Wang, P. Wang, Bioorg. Med. Chem. Lett. 2012, 22, 642-644. (d) H. Zhou, D.P. Danger, S.T. Dock, L. Hawley, S.G. Roller, C.D. Smith, A.L. Handlon, ACS Med. Chem. Lett., 2010, 1, 19-23.
16. (a) H.C. Chang, S.F. Yang, C. C. Huang, T. Lin, P.H. Liang, C.J. Lin, L.C. Hsu, Mol Biosyst. 2013, 9, 2010-2020; (b) A. Kanwal, S. P. Singh, P. Grover, S. K. Banerjee, Anal. Biochem., 2012, 429, 7075.

[^0]: ${ }^{a}$ Organic Chemistry Division-II (CP C Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, INDIA. Fax: 91-40-27198933; Tel: 4091-40-27191438; E-mail: kantevari@yahoo.com; kantevari@gmail.com
 ${ }^{b}$ Medicinal Chemistry and Phamacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, INDIA.
 Email:banerjees74@hotmail.com
 ${ }^{c}$ Laboratory of X-ray Crystallog raphy, CSIR-Indian Institute of Chemical 45 Technology, Hyderabad, INDIA
 \dagger Electronic Supplementary Information (ESI) available: Experimental data for $\mathbf{1 2 c - q}, \mathbf{1 3 c - q}$, and copies of ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR, HRMS spectra of $\mathbf{8 , 9}, 10,12 \mathrm{a}-\mathrm{r}$, and 13a-r, Cif files of single crystal X-ray diffraction data CCDC 944748 (for 13a) and CCDC 944749 (for 13b). for 50 crystallographic data. See DOI: 10.1039/ b000000x/

