Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Cite this: DOI: 10.1039/coxx00000x

www.rsc.org/xxxxx

Silver Triflate and Triflic Anhydride-Promoted Expedient Synthesis of Acylated 1-Aminoisoquinolines

Yuewen Li,^a Liang Gao,^a Hui Zhu,^a Guangming Li,^{*b} and Zhiyuan Chen*^a

Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A practical and convergent synthesis of biologically active 1-(N-acyl)-1-aminoisoquinolines from the reaction of 2alkynylbenzaldoximes with amides has been realized. The readily available amides could be activated by triflic 10 anhydride (Tf₂O) and efficiently participate in the domino reaction of 2-alkynylbenzaldoximes when catalyzed by AgOTf, thus providing various acylated 1aminoisoquinolines with up to 98% yields.

The substituted aminoisoquinolines are widely found in many ¹⁵ natural products and pharmaceutically active compounds. For example, compounds that containing 1-aminoisoquinoline core structures are well-recognized as efficacious inhibitors of mutant B-Raf enzyme, ^{1a} mutant protein kinase, and PDE4B, ^{1d} adenosine A3 receptor, ^{1e} or as anti-cancer agents due to their strong ²⁰ cytotoxic activities. ² Furthermore, 1-aminoisoquinoline derivatives are also useful synthetic building blocks in the generation of functionalized isoquinoline derivatives.1⁻²

Scheme 1. Biologically active compounds that containing 1-²⁵ aminoisoquioline core structures.

For the preparation of such type of nitrogen-containing heterocycles, traditional synthesis relies on the nucleophilic

displacement reaction between 1-haloisoquinolines and the corresponding amines.³ Transition-metal-catalyzed C-N cross-³⁰ coupling reactions at a late stage as represented by Buchwald-Hartwig amination reactions have been intensively studied as well, and practiced as prominent strategy for the formation of functionalized isoquinolines.⁴ However, although the methods may be of interest, manipulations for these "prefunctionalization" ³⁵ notions, particularly on unactivated 1-haloisoquinolines, are frequently devious and in most cases require toxic reagents such as POCl₃ or expensive noble metal catalysts.

It is well known that domino reactions are fascinating tools in modern drug discovery processes, because they could provide ⁴⁰ straightforward access to complex molecules, simply by mixing several starting materials together and waiting for them to connect into a multipart molecule in a one-pot reaction vessel.⁵ The types of reactions possess several benefits such as efficiency of time and cost saving, avoidance of intermediate isolation and 45 minimum the production of chemical wastes. Recently, the group of Wu developed an efficient domino synthesis of 1aminoisoquinolines via a silver triflate and bismuth triflate cocatalyzed reaction of 2-alkynylbenzaldoximes with isocyanides.^{6a} Later, a silver triflate-catalyzed/PyBrop-promoted tandem 50 reaction of 2-alkynylbenzaldoximes with amines to give functionalized 1-aminoisoquinolines was described.6^b The phosphonium salt (PyBrop) was assumed to act as an energetic activator toward the in situ formed isoquinoline-N-oxide intermediate A (in scheme 3, vide infra), thus introducing 55 secondary or tertiary amines onto the heterocyclic frameworks.⁷ Stimulated by the studies, we envisioned that when activated by a favorable reagent, the readily available amides mignt participate in the domino reaction of 2-alkynylbenzaldoximes, and as a result the structurally useful 1-(N-acyl)-1-aminoisoquinolines should be 60 conveniently generated. Note that currently no general protocol for the synthesis of acylated 1-aminoisoguinolines has been found. Recently, the groups of Charette⁸ and Movassaghi⁹ reported seminar works on the electrophilic activation of readily available

seminar works on the electrophilic activation of readily available amides with trifluoromethanesulfonic anhydride (Tf₂O) in the ⁶⁵ presence of pyridines as the base additive.¹⁰ The resulting highly reaction pyridinium cation could be quickly trapped by weak π nucleophilic agents such as nitriles,^{9b} alkynes and vinyl ethers.^{8c,9c} Inspired by the results and our recent achievements around domino reactions,¹¹ we conceived that the functionalized 70 1-aminoisoquinoline derivatives could be delivered via a reaction of 2-alkynylbenzaldoxime with the activated amides in the presence of a metal catalyst.

We started to explore the practicability of this transformation using 2-alkynylbenzaldoxime 1a (0.4 mmol) and N-

- ⁵ phenylacetamide **2a** (0.2 mmol) as the substrates of model reactions. Silver triflate was selected as the optimal metal catalyst because it had previously been recognized as the most efficient catalyst for the formation of isoquinoline-*N*-oxide **A** (in scheme 3) from 2-alkynylbenzaldoxime.⁶ The reaction of 2-
- ¹⁰ alkynylbenzaldoxime **1a** with AgOTf (10 mol%), *N*phenylacetamide **2a**, Tf₂O (0.22 mmol) and 2-F-pyridine (0.24 mmol) were carried out in various solvents at different temperature. However, these initial investigations all failed to proceed, the reaction became complex and no expected product
- ¹⁵ **3a** could be detected. We realized that the highly electrophilic trifluoromethanesulfonic anhydride (Tf₂O) would be consumed away firstly by 2-alkynylbenzaldoxime **1** in the reaction condition, thus it failed to activate the targeted amide **2a**.

Table 1. Reaction Optimization for the generation of 1-20 aminoisoquinoline 3a

Ta 1	N ^{-OH} + Ph	$N_{H}^{Ph} = \begin{array}{c} 1. \text{ AgOTf (10 mol \%);} \\ DCM (2 \text{ mL}) \text{ in tube A} \\ \hline 2. \text{ Tf}_2 \text{O} (1.1 \text{ eq. relative to 2} \text{ abase } (x $	Ph 2a D 2a D D A A A A A A A A
entry	1a: 2a	base (x equiv.)	3a $(\%)^a$
1	2:1	2-FPy (1.2)	72
2	2:1	$Et_{3}N(1.2)$	28
3	2:1	Pyridine (1.2)	31
4	2:1	2-BrPy (1.2)	48
5	2:1	3-ClPy (1.2)	61
6	2:1	2,6-lutidine (1.2)	53
7	2:1	2,6-Cl ₂ Py (1.2)	54
8	2:1	3-BrPy (1.2)	64
9	2:1	-	13
10	2:1	2-FPy (1.5)	70
11	2:1	2-FPy (3.0)	58
12	1:1.5	2-FPy (1.2)	89^b
13	1:2	2-FPy (1.2)	92^{b}

^{*a*}Reaction condition: **1a** (0.4 mmol), **2a** (0.2 mmol), AgOTf (10 mol%), Tf₂O (0.22 mmol), base (equiv. as relative to **2a**), rt. Isolated yield based on **2a**. ^{*b*}**1a** (0.2 mmol) was used. Isolated ²⁵ yield based on **1a**.

Therefore, in an improved experiment, we carefully modified the reaction by mixing 2-alkynylbenzaldoxime **1a** with silver catalyst in DCM in one reaction tube A, and simultaneously compound **2a** reacted with Tf_2O and 2-FPy in another test tube B, ³⁰ after a period of time, the solution in test tube A was slowly transferred into the test tube B by a syringe, and the resulting reaction mixture was allowed to stir at room temperature for about 4h. From this way we were delighted to obtain the desired product **3a** in 72% yield (Table 1, entry 1). This result

³⁵ demonstrated that the designed reaction was theoretically feasible, and prompted us to investigate the reaction conditions further. Different bases were examined subsequently, however, no improvement was observed and 2-FPy was again shown to be the optimal choice (Table 1, entries 2-8). A poor reaction was ⁴⁰ obtained while in the absence of base (Table 1, entry 9), which highlighted the importance of pyridine salt in the activation progress of amide **2a**. Finally, a nice reaction was observed when using 2-alkynylbenzaldoxime **1a** as the limiting reagent with an excess of *N*-phenylacetamide **2a** (2.0 equiv.), the yield could be ⁴⁵ improved to 92% (Table 1, entry 12).

^aIsolated yield based on 1.

Scheme 2. Generation of 1-aminoisoquinolines by the reaction of 2-alkynylbenzaldoximes with amides.

We next explored the substrate scope of this reaction under the $_{50}$ optimized reaction conditions (Scheme 2). When 2-alkynylbenzaldoxime 1 and silver catalyst were combined with each amide 2 in dichloromethane and treated with Tf₂O and 2-

FPy, we were pleased to obtain the corresponding acylated 1aminoisoquinolines **3** with good functional groups tolerance. As shown in Scheme 2, the 2-alkynylbenzaldoxime **1** bearing either electron-rich (Me, MeO, and EtO) or electron-deficient halide

- substituents (F, Cl) on the R¹ or R² position of aromatic rings were all compatible under the standard conditions, providing the desired products **3a-3i** in excellent yields. Since the *N*-acetyl amide moiety could be easily hydrolyzed under basic conditions to give the corresponding secondary amines, these results
- ¹⁰ indicated that the methods could be potentially applied in the synthesis of some valuable secondary 1-aminoisoquinoline derivatives. Unfortunately, for the reaction of trimethylsilyl group (TMS) substituted compound **1j** with *N*-phenylacetamide **2a**, a poor reaction was observed and the expected product **3j** could not
- ¹⁵ be isolated. During this preliminary screening of the reaction, the limitation we found was related to the substitution pattern of R² which attached at the triple bond of substrate 1: the aromatic moiety is required; otherwise complex mixtures are obtained while alkyl or cycloalkyl groups were present at R² position (**3**j-
- 20 31). Moreover, different *N*-substituted amides were employed in the tandem reaction, and the corresponding acylated products (3m-3p) were nicely furnished in serviceable yields. Note that for the reaction of 2-alkynylbenzaldoxime 1a with nonsubstituted amide, such as acetamide (R = Me) or benzamide (R = Ph), the starting metarials group full ensured as shown by TLC.
- ²⁵ starting materials were full consumed as shown by TLC, however, the reactions were complex and no desired product was identified.

AgOTF (10 mol%) DCM (2.0 mL), air rt, 3 h, in tube A 2-FPy (0.36 mmol) DCM (1.5 mL), N2 -78 °C, in tube B **1a** (0.2 mmol) **2a** (0.3 mmol) no Tr_2O added ! **3a**, n.d. **1a_A**, quant

Scheme 3. Reaction of 1a with 2a in the absence of Tf_2O .

Scheme 4. Proposed mechanism for the reaction of 2-alkynylbenzaldoximes 1 with acetamides 2.

To probe an insight into the mechanism, we have tried the reaction of 1a with 2a in the absence of Tf₂O (Scheme 3). No ³⁵ desired product 3a was detected while the 3-phenylisoquinoline-2-oxide $1a_A$ largely existed in the reaction condition. This result

indicated that the Tf₂O played an important role in the activation of amide. Based on the previous 1-aminoisoquinoline synthesis⁶ and the current activation chemistry of amides,⁸⁻¹⁰ we depicted 40 the following possible mechanism for the formation of 1-(Nacyl)-1-aminoisoquinolines 3 in Scheme 4. We assumed that the isoquinoline-N-oxide A would be generated from 2alkynylbenzaldoximes via a silver triflate-catalyzed 6-endo-dig cyclization reaction.6 Meanwhile, the pyridinium cation species ⁴⁵ **B** would be generated from the electrophilic addition reaction of acetamides 2 with trifluoromethanesulfonic anhydride in the presence of 2-F-pyridine.^{9b,c} The subsequent addition reaction of A to the highly activated electrophile **B** should result in the formation of an isoquiolinium intermediate C accompanied by 50 expulsion of 2-FPy TfOH. C undergoes an intramolecular electrophilic substitution to give D, which subsequently isomerizes to acylated 1-aminoisoquinoline 3.

Conclusions

In conclusion, we have successfully developed an efficient ⁵⁵ synthesis of valuable 1-(*N*-acyl)-1-aminoisoquinolines from 2alkynylbenzaldoximes and various readily available amides. The advantages of this domino approach lie not only in fruitful expedient synthesis of potentially biologically active and naturally occurring aminoisoquinoline derivatives, but also in its ⁶⁰ economical use of reagents in simple procedures. Ongoing studies focus on the extension of substrate scopes and extension of this methodology to natural products and drug synthesis are currently underway.

Acknowledgements

- 65 Financial support from the NSFC (No. 21202065), the Natural Science Foundation of Jiangxi Province (20133ACB20008, 20142BAB213004), and a Sponsored Program for Cultivating Youths of Outstanding Ability from Jiangxi Normal University are of gratefully acknowledged. We thank Professor Jie Wu (Fe der University) for binder of the second sec
- ⁷⁰ (Fudan University) for his invaluable advice during the course of this research.

Notes and references

- ^a Key Laboratory of Functional Small Organic Molecules, Ministry of Education and Key Laboratory of Green Chemistry of Jiangxi Province, 75 College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China. E-mail:
- *zchen@jxnu.edu.cn* ^b Department of Gastroenterology, Xinhua Hospital, Medical School of
- ^a Department of Gastroenterology, Almua Hospital, Medical School of Shanghai Jiaotong University, Shanghai 200433, China. E-mail: 80 ligm68@126.com
- † Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

‡ Footnotes should appear here. These might include comments relevant so to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.

 a) A. Smith, F. DeMorin, N. Paras, Q. Huang, K. Petkus, E. Doherty, T. Nixey, J. Kim, D. Whittington, L. Epstein, M. Lee, M. Rose, C. Babij, M. Fernando, K. Hess, Q. Le, P. Beltran, J. Carnahanz, *J. Med. Chem.* 2009, **52**, 6189; b) S. Yang, H. Van, T. Le, D. Khadka, S. Cho, K. Lee, H. Chung, S. Lee, C. Ahn, Y. Lee, W. Cho, *Bioorg. Med. Chem. Lett.* 2010, **20**, 5277; c) B. Ghosh, T. Antonio, J. Zhen, P. Kharkar, M. Reith, A. Dutta, *J. Med. Chem.* 2010, **53**, 1023; d) S. Govek, G. Oshiro, J. Anzola, C. Beauregard, J. Chen, A. Coyle, D. Gamache, M. Hellberg, J. Hsien, J. Lerch, J. Liao, J. Malecha, L. Staszewski, D. Thomas, J. Yanni, S. Noble, A. Shiau, *Bioorg. Med. Chem. Lett.* 2010, **20**, 2928; e) J. Muijlwijk-Koezen, H. Timmerman, H. van der Goot, W. Menge, J. Drabbe Künzel, M. Groote, A. IJzerman, *J. Med. Chem.* 2000, **43**, 2227.

- 2 W. Cho, S. Min, T. Le, T. Kim, Bioorg. Med. Chem. Lett. 2003, 13, 4451.
- 3 a) N. Sirisoma, A. Pervin, H. Zhang, S. Jiang, A. Willardsen, M. Anderson, G. Mather, C. Pleiman, S. Kasibhatla, B. Tseng, J. Drewe, S. Cai, *Bioorg. Med. Chem. Lett.* 2010, **20**, 2330; b) Q. Shen, S. Shekhar, J. Stambuli, J. F. Hartwig, *Angew. Chem., Int. Ed.* 2005, **44**, 1371; c) P. Fish, C. Barber, D. Brown, R. Butt, M. Collis, R. Dickinson, B. Henry, V. Horne, J. Huggins, E. King, M. O'Gara, D. McCleverty, F. McIntosh, C. Phillips, R. Webster, *J. Med. Chem.* 2007, **50**, 2341; d) B. Lee, M. Biscoe, S. L. Buchwald, *Tetrahedron Lett.* 2009, **50**, 3672.
- For reviews: a) J. F. Hartwig, Acc. Chem. Res. 1998, 31, 852; b) J. P. Wolfe, S. Wagaw, J. Marcoux, S. L. Buchwald, Acc. Chem.Res. 1998, 31, 805; c) J. F. Hartwig, Angew. Chem. Int. Ed. 1998, 37, 2046-2067; d) A. R. Muci, S. L. Buchwald, Top. Curr. Chem. 2002, 219, 131.
- 5 For a reference book, see: *Multicomponent Reactions* (Eds.: J. Zhu, H. Bienaymé), WILEY-VCH, Weihheim, 2005. For selected reviews, see: a) R. Ruijter, R. Scheffelaar, R. V. A. Orru, *Angew. Chem. Int. Ed.* 2011. 50, 6234; b) B. A. Arndtsen, *Chem. Eur. J.* 2009, 15, 302; c) B. Ganem, *Acc. Chem. Res.* 2009, 42, 463; (d) B. B. Toure, D. G. Hall, *Chem. Rev.* 2009, 109, 4439; e) D. M. D'Souza, T. J. Müller. *Chem. Soc. Rev.* 2007, 36, 1095; f) D. J. Ramon, M. Yus, *Angew. Chem. Int. Ed.* 2005, 44, 1602; g) L. Weber, *Curr. Med. Chem.* 2002, 9, 2085.
- 6 a) Z. Chen, X. Yu, M. Su, X. Yang, J. Wu, Adv. Synth. Catal. 2009, 351, 2702; b) D. Zheng, Z. Chen, J. Liu, J. Wu, Org. Biomol. Chem. 2011, 9, 4763.
- 7 A. Londregan, S. Jennings, L. Wei, Org. Lett. 2010, 12, 5254.
- 8 a) A. B. Charette, P. Chua, J. Org. Chem. 1998, 63, 908; b) A. B. Charette, M. Grenon, A. Lemire, M. Pourashraf, J. Martel, J. Am. Chem. Soc. 2001, 123, 11829; c) A B. Charette, S. Mathieu, J. Martel, Org. Lett. 2005, 7, 5401; d) G. Barbe, A. B. Charette, J. Am. Chem. Soc. 2008, 130, 18.
- 9 a) M. Movassaghi, M. D. Hill, J. Am. Chem. Soc. 2006, 128, 4592; b)
 M. Movassaghi, M. D. Hill, J. Am. Chem. Soc. 2006, 128, 14254; c)
 M. Movassaghi, M. D. Hill, O. Ahmad, J. Am. Chem. Soc. 2007, 129, 10096.
- 10 For recent examples on amide activation by Tf₂O, see: a) S. Cui, J. Wang, Y.-G. Wang, J. Am. Chem. Soc. 2008, **130**, 13526; b) K. Xiao, J. Luo, K., Y. Wang, P.-Q. Huang, Angew. Chem. Int. Ed. 2010, **49**, 3037; c) G. Bélanger, G. O'Brien, R. Larouche-Gauthier, Org. Lett. 2011, **13**, 4268; d) J. W. Medley, M. Movassaghi, Org. Lett. 2013, **15**, 3614.
- a) Z. Chen, X. Jia, C. Ye, G. Qiu, J. Wu, *Chem. Asian. J.* 2014. 9, 126; b) Z. Chen, M. Zeng, J. Yuan, Q. Yang, Y. Peng, *Org. Lett.* 2012, 14, 3588; c) Z. Chen, C. Ye, H. Zhu, X. Zeng, J. Yuan. *Chem. -Eur. J.* 2014, 20, 4237; d) Q. Xiao, J. Sheng, Z. Chen, J. Wu, *Chem. Commun*, 2013, 49, 8647.