This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Enantioselective synthesis of $\alpha\alpha$-difluoro-β-lactams using amino alcohol ligands

Atsushi Tarui, Takeshi Ikebata, Kazuyuki Sato, Masaaki Omote and Akira Ando*

A practical and highly enantioselective Reformatsky reaction of ethyl bromodifluoroacetate with imines using a cheap and commercially available amino alcohol ligand is described. A variety of $\alpha\alpha$-difluoro-β-lactams were obtained in up to 74% yield with high enantioselectivity in excess of 99% ee. The use of ethyl bromodifluoroacetate provides for ease of operation because of the inherent chemical stability of this reagent.

Introduction

The incorporation of fluorine atoms in organic molecules can substantially alter the physical and biological properties of the molecules, leading to useful biological and pharmacological effects. 1 Organofluorine compounds have been used extensively in the medicinal, 2 agrochemical, 3 and material science fields. 4 In particular, fluorine-containing compounds have been successful as pharmaceutical drugs. 5 The β-lactam structure has been used not only in antibiotics, 6 but also in bioactive compounds, including a hypercholesterol therapeutic agent. 7 Incorporation of CF$_2$ group into a β-lactam ring to create an α-fluorinated β-lactam is expected to enhance the antibiotic activity of the parent β-lactam due to increased electrophilicity and structural strain of an amide bond. In fact, fluoro-β-lactams and difluoro-β-lactams have been shown to be effective in the inhibition of β-lactamases 8 and human leukocyte elastase. 9 Furthermore, it is important that α-fluorinated β-lactams have been used as building blocks to introduce α-fluorinated β-amino acid moieties into bioactive compounds. 10 To date, fluorinated β-lactams have been synthesized by various approaches, including cycloaddition of an halofluoroacetate with Schiff bases, 11 [2+2] fluoroketene-imine condensation, 12 Mitsunobu ring closure of 3-hydroxy-2,2-difluoropropanamides, 10a,b,13 intramolecular hydroamination of difluoroproargyl amides, 14 cycloaddition of a nitro to hexafluoropropene, 15 and direct electrophilic fluorination of β-lactam nuclei. 16 The Reformatsky reaction of an halofluoroacetate with an imine is the simplest and most direct approach toward a fluoro-β-lactam. Recently, we reported the syntheses of several fluorinated β-lactams, including the $\alpha\alpha$-difluoro-β-lactam (3) and α-bromo-$\alpha\alpha$-fluoro-β-lactam (4), using the Reformatsky reaction of bromofluoroacetate (1) or di

Scheme 1 Imino-Reformatsky reaction of halofluoroacetate 1 and 2.

bromofluoroacetate (2) with imines (Scheme 1). 17,18 Although fluorinated β-lactams are important in medicinal chemistry, stereoselective syntheses of these molecules remain scarce. Stereoselective approaches have been limited to starting from chiral imines, chiral oxazolines, or chiral halodifluoroacetates in a diastereoselective manner. 19 $\alpha\alpha$-Difluoro-β-amino esters, which are non-cyclized Reformatsky adducts, have also been synthesized using the Reformatsky reaction of 1 with chiral imines. 20 Akiyama et al. have reported an asymmetric Mannich reaction using difluoroenol silyl ethers with N-Boc imines in the presence of a 1,1’-bi-2-naphthol derived chiral phosphoric acid catalyst, providing $\alpha\alpha$-difluoro-β-lactams enantioselectively from the Mannich-adducts. 21 Recently, high enantioselectivity has been achieved through the reaction of ethyl iododifluoroacetate or ethyl ioddifluoroacetate with ketones in the presence of a stoichiometric amount of a chiral ligand. 22,23 Unfortunately, despite giving the desired products in high yield with good enantioselectivity, the poor chemical stability of the iodoacetate reagents has impaired the convenience of this approach. Recently, we published an asymmetric imino-Reformatsky reaction of 2 with an imine
using a substoichiometric amount of (1R,2S)-1-phenyl-2-(1-pyrrolidinyl)-propan-1-ol (L1) as a chiral ligand (eqn (1)). In this reaction, a variety of different imines were used to provide the chiral (3S,4R)-α-bromo-α-fluoro-β-lactams (4) in good yields with high enantio- and diastereoselectivities. As part of our ongoing work toward the stereoselective synthesis of fluorinated β-lactams, we herein report the asymmetric synthesis of α,α-difluoro-β-lactams by a convenient approach using the chemically stable reagent 1 in the presence of a chiral amino alcohol ligand.

Result and discussion

Optimization of the enantioselective synthesis of difluoro-β-lactams

Based on our previous research, we envisioned that the imino-Reformatsky reaction of 1 using a chiral amino alcohol ligand would proceed enantioselectively to provide a new approach to enantioenriched α,α-difluoro-β-lactam 3. We initially investigated the enantioselective Reformatsky reaction with the modified conditions of our previously reported reaction (Table 1, entry 1). The reaction of 1 with benzylidenebenzylamine was carried out in CH2Cl2 at 0 °C in the presence of 0.75 equiv of L1. The reaction provided the desired product (3a) with excellent enantiomeric excess (96%), but the reaction was slow and the yield of 3a was moderate (63%). To improve the yield of 3a, the reaction conditions were optimized. When a stoichiometric amount of L1 was used, the yield of 3a was slightly increased (entry 2). This improvement in yield was also observed when the reaction was carried out at room temperature (entry 3). Different chiral ligands were also explored to find the optimal ligand. (1R,2S)-2-(Dimethylamino)-1-phenylpropan-1-ol (L2) was effective, although the stereoselectivity was slightly decreased (entry 4). (1R,2S)-2-(Dibutylamino)-1-phenylpropan-1-ol (L3) was found to be an inferior catalyst with respect to the chemical yield and enantioselectivity of the product compared with L1 (entry 5). The prolinol ligand (L4) also led to lower enantioselectivity of the desired product, although the yield of product was comparable to that of L1 (entry 6). Based on these results, the optimal reaction conditions were determined to be a stoichiometric amount of ligand L1 at room temperature.

Scope and limitations for the enantioselective syntheses of difluoro-β-lactams

With the optimal conditions in hand, we investigated the generality of our protocol using a variety of differently substituted aromatic imines. The results of these investigations are listed in Table 2. In comparison with the reaction of 2, high enantioselectivity was observed regardless of the substituents on the aromatic rings. In particular, imines bearing an electron-withdrawing substituent on the aromatic ring gave rise to the corresponding products with high enantioselectivity (3c–3f). However, the yields of the products were lower than those of the products in the reaction with 2. These results suggest that the low yields of 3 were caused by the low reactivity of 1 with the diethyl zinc. In fact, generation of the Reformatsky reagent from 1 required the use of heat or an additive, such as diethylaluminum chloride, whereas the Reformatsky reagent of 2 can be generated below room temperature without the presence of a promoter. In all cases, the decomposition products of imine were recovered, after column chromatography. The opposite enantiomer was also obtained, using the (1S,2R)-isomer of the ligand, in 67% yield and 86% ee.

Absolute configuration of the products and the proposed reaction mechanism

The absolute configuration of the product 3a was determined by comparison of the order of elution by chiral HPLC analysis and the sign of the optical rotation with (S)-3a obtained from the reaction of (−)-menthyl bromodifluoroacetate with benzyl-
Table 2 Scope and limitations of asymmetric syntheses of 3

<table>
<thead>
<tr>
<th>Ligand L1</th>
<th>Product</th>
<th>Yield^{a}</th>
<th>ee^{b}</th>
<th>Reaction Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.0 equiv) 1</td>
<td>(R)-3a</td>
<td>(72%, ee = 91%)</td>
<td>(18 h)</td>
<td>(ee = 94%)</td>
</tr>
<tr>
<td>(3.5 equiv) Bn</td>
<td>(S)-3b</td>
<td>(60%, ee = 92%)</td>
<td>(18 h)</td>
<td>(ee = 96%)</td>
</tr>
<tr>
<td>(1.0 equiv) 2</td>
<td>(R)-3c</td>
<td>(47%, ee = 97%)</td>
<td>(18 h)</td>
<td>(ee = 90%)</td>
</tr>
<tr>
<td>(1.0 equiv) L1</td>
<td>(R)-3d</td>
<td>(74%, ee = 99%)</td>
<td>(16 h)</td>
<td>(ee = 94%)</td>
</tr>
<tr>
<td>MeO/C</td>
<td>(S)-3e</td>
<td>(69%, ee = 94%)</td>
<td>(21 h)</td>
<td></td>
</tr>
<tr>
<td>(1.0 equiv) 3</td>
<td>(R)-3f</td>
<td>(45%, ee = >99%)</td>
<td>(17 h)</td>
<td></td>
</tr>
<tr>
<td>(1.0 equiv) 4</td>
<td>(S)-3g</td>
<td>(76%, ee = 91%)</td>
<td>(17 h)</td>
<td></td>
</tr>
<tr>
<td>(1.0 equiv) 5</td>
<td>(R)-3h</td>
<td>(65%, ee = 80%)</td>
<td>(18 h)</td>
<td>(ee = 90%)</td>
</tr>
</tbody>
</table>

a Isolated yields.

b Determined by HPLC.

c The values indicate the ee after recrystallization of the products.

d The (1S,2R)-isomer of ligand L1 was used.

denebenzylamine. The results indicated that the absolute configuration of the product obtained through the Reformatsky reaction is (R)-3a. Absolute configurations of the other products were also assigned in the same manner. Considering these results, we proposed the reaction mechanism as shown in Scheme 2, which is the same model that we have previously proposed. This transition model is supported by Noyori’s representative transition model as well as Soai’s model. However, the exact mechanism of this reaction remains unclear. Hence, a detailed investigation on the mechanism will be presented in a future paper.

Conclusions

We have presented a convenient method for an enantioselective imino-Reformatsky reaction of ethyl bromodifluoroacetate (1) using a stoichiometric amount of (1R,2S)-1-phenyl-2-(1-pyrrolidinyl)-propan-1-ol (L1) as a chiral ligand. This approach provides for not only convenient experimental operation, as it uses the chemically stable reagent 1, but also easy access to a chiral fluorinated building block. The reaction gave rise to chiral α,α-difluoro-β-lactams with excellent enantioselectivity up to in excess of 99% ee under mild conditions at room temperature.

Experimental

NMR spectra were obtained from a solution in CDCl$_3$ using 600 and 400 MHz for 1H, 150 and 100 MHz for 13C and 564 and 84 MHz for 19F. Chemical shifts of 1H NMR and 13C NMR are reported in ppm from tetramethylsilane (TMS) as an internal standard. Chemical shifts of 19F NMR are reported in ppm from benzotrifluoride (BTF) as an internal standard. All data are reported as follows: chemical shifts, relative integration value, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet doublet, br = broad, brs = broad-singlet, m = multiplet), coupling constants (Hz). High-resolution mass spectroscopy (HRMS) experiments were measured on a double-
focusing mass spectrometer with an ionization mode of EI. Infrared (IR) spectra were recorded in KBr tablets or thin films on KBr disks. Melting points were measured uncorrected. Analytical high performance liquid chromatography (HPLC) was performed on a Shimadzu 10A instrument using Daicel Chiralpak AD-H (0.46 cm I.D. × 25 cm). Optical rotations were recorded on a JASCO P1020.

All experiments were carried out under an argon atmosphere in flame-dried glassware using standard inert techniques for introducing reagents and solvents unless otherwise noted. Anhydrous THF and diethyl ether (Et₂O) were distilled over benzophenone ketyl sodium just before use. Anhydrous dichloromethane were distilled over P₂O₅ just before use. All commercially available materials were used as received without further purification. Diethyl zine 1.0 M in hexane was purchased from Aldrich. All imines were synthesized from amines and aldehydes using MgSO₄ as a desiccant. The ligand (L₂) was synthesized following the procedure described in the literature.²⁹

General procedure for the enantioselective imino-Reformatsky reaction of ethyl bromodifluoroacetate.

Ethyl bromodifluoroacetate (2) (2.0 mmol, 0.26 mL) was added to a solution of the corresponding imine (1 mmol) and (1R,2S)-1-phenyl-2-(1-pyrrolidinyl)-propan-1-ol (L₁) (1.0 mmol, 205 mg) in CH₂Cl₂ (8 mL) at ambient temperature. Then, the mixture was cooled to 0 °C, and 1.0 M Et₃Zn in hexane (3.5 mmol, 3.5 mL) was slowly added to the mixture at 0 °C. The reaction mixture was allowed to warm to ambient temperature, and the whole mixture was stirred at the same temperature for the appropriate time. The mixture was quenched with saturated aqueous NaHCO₃, and was filtered through a Celite pad. The filtrate was extracted with AcOEt, and then the extract was washed with brine and dried over MgSO₄. The solvent was removed in vacuo and the residue was purified by column chromatography (AcOEt/hexane) to afford the corresponding α,α-difluoro-β-lactam 3.

Racemates 3 were synthesized following the procedure described in the literature.¹⁷

(R)-1-Benzyl-3,3-difluoro-4-(naphthalen-2-yl)azetidin-2-one 3b. The titled product 3b was obtained as a colorless solid (143 mg, 46%), after column chromatography (AcOEt/hexane = 1:9), mp 94.5–95.0 °C; [α]D₂₉ = -109 (c 1.00 in CHCl₃); IR (KBr) cm⁻¹ 1770; δ_C (CDCl₃, 600 MHz) 3.99 (1H, dd, J 14.9, 1.9 Hz), 4.89 (1H, dd, J 7.4, 2.0 Hz), 4.98 (1H, d, J 14.9 Hz), 7.12–7.13 (2H, m), 7.31–7.33 (4H, m), 7.54–7.56 (2H, m), 7.70 (1H, m), 7.83–7.91 (3H, m), δ_δ (CDCl₃, 150 MHz) 44.4 (m), 68.3 (dd, J 27, 24 Hz), 120.7 (dd, J 293, 290 Hz), 124.5, 126.9, 127.1, 127.9, 128.1, 128.4, 128.5, 128.7, 129.0, 129.1, 133.1, 133.5, 133.9, 161.0 (m); δ_p (CDCl₃, 90 MHz) –58.6 (1F, d, J 225 Hz), –51.5 (1F, dd, J 225, 7 Hz); m/z (EI) 322.1121 (M⁺, C₉H₈F₂NO requires 323.1122). The ee was determined to be 92% by HPLC (Daicel CHIRALPAK AD-H, hexane/PrOH = 95:5, 0.7 ml/min, 254 nm, major 15.2 min and minor 14.8 min).

(R)-1-Benzyl-3,3-difluoro-4-(4-(trifluoromethyl)phenyl)azetidin-2-one 3e. The titled product 3e was obtained as a colorless solid (162 mg, 47%), after column chromatography (AcOEt/hexane = 1:9), mp 142.0–143.0 °C; [α]D₂₉ = 77 (c 1.00 in CHCl₃); IR (KBr) cm⁻¹ 1771; δ_C (CDCl₃, 400 MHz) 3.98 (1H, dd, J 14.9, 2.2 Hz), 4.77 (1H, d, J 7.3, 1.9 Hz), 4.95 (1H, d, J 14.9 Hz), 7.10–7.13 (2H, m), 7.32–7.36 (5H, m), 7.68 (2H, d, J 7.8 Hz); δ_p (CDCl₃, 100 MHz) 44.6 (m), 67.3 (dd, J 27, 24 Hz), 120.3 (dd, J 293, 290 Hz), 123.4 (q, J 271 Hz) 125.8 (q, J 4 Hz) 128.3, 128.4, 128.5, 129.0, 131.8 (q, J 33 Hz) 132.8, 134.1 (m), 160.4 (m); δ_p (CDCl₃, 90 MHz, Hexafluorobenzene) 41.2 (1F, d, J 225 Hz), 48.1 (1F, dd, J 225, 7 Hz), 99.3 (3F, s); m/z (EI) 341.0839 (M⁺, C₉H₈F₂NO requires 341.0839). The ee was determined to be 97% by HPLC (Daicel CHIRALPAK AD-H, hexane/PrOH = 98:2, 1.0 ml/min, 254 nm, major 10.4 min and minor 9.5 min).

(R)-1-Benzyl-4-(4-chlorophenyl)-3,3-difluoroazetidin-2-one 3d. The titled product 3d was obtained as a colorless solid (226 mg, 74%), after column chromatography (AcOEt/hexane = 1:9), mp 76.5–77.5 °C; [α]D₂₉ = -109 (c 1.04 in CHCl₃); IR (KBr) cm⁻¹ 1814; δ_C (CDCl₃, 400 MHz) 3.93 (1H, dd, J 14.7, 2.0 Hz), 4.68 (1H, dd, J 7.2, 2.2 Hz), 4.92 (1H, d, J 14.7 Hz), 7.10–7.13 (2H, m), 7.16 (2H, d, J 8.4 Hz), 7.31–7.34 (3H, m), 7.40 (2H, d, J 7.8 Hz); δ_p (CDCl₃, 100 MHz) 44.3 (m), 67.2 (dd, J 26, 24 Hz), 120.2 (dd, J 293, 290 Hz), 128.3, 128.4, 128.9, 129.1, 129.2, 132.9, 135.8, 160.5 (m); δ_p (CDCl₃, 90 MHz) –58.4 (1F, d, J 225 Hz), –51.8 (1F, dd, J 225, 7 Hz); m/z (EI) 307.0575 (M⁺, 100%), δ_p (CDCl₃, 90 MHz) –58.4 (1F, d, J 225 Hz), –51.8 (1F, dd, J 225, 7 Hz); m/z (EI) 307.0575, 309.0538 (34). The ee was determined to be 96% by HPLC (Daicel CHIRALPAK AD-H, hexane/PrOH = 9:1, 0.7 ml/min, 254 nm, major 11.2 min and minor 10.1 min).

(R)-1-Benzyl-3,3-difluoro-4-(4-methoxy carbonylphenyl)azetidin-2-one 3e. The titled product 3e was obtained as a colorless solid (230 mg, 69%), after column chromatography (AcOEt/hexane = 1:4), mp 98.0–99.0 °C; [α]D₂₉ = -92 (c 1.00 in CHCl₃); IR (KBr) 1812, 1715 cm⁻¹; δ_C (CDCl₃, 600 MHz) 3.94 (3H, s), 3.96 (1H, dd, J 14.8, 2.0 Hz), 4.75 (1H, dd, J 7.3, 1.8 Hz), 4.95 (1H, d, J 14.8 Hz), 7.09–7.11 (2H, m), 7.30 (2H, d, J 8.3 Hz), 7.32–7.33 (3H, m), 8.08 (2H, d, J 8.3 Hz); δ_p (CDCl₃, 150 MHz) 44.6 (m), 52.4, 67.6 (dd, J 27, 24 Hz), 120.4 (dd, J 293, 291 Hz), 128.1, 128.6, 128.9, 129.2, 130.2, 131.6, 133.1,
135.0, 160.7 (m), 166.3; δf (CDCl3, 90 MHz) = −58.1 (1F, d, J = 224 Hz), −51.5 (1F, dd, J = 224, 7 Hz); m/z (EI) 331.1014 (M+. C18H14F3O3 requires 331.1020). The ee was determined to be 94% by HPLC (Daicel CHIRALPAK AD-H, hexane/PrOH = 4:1, 1.0 mL/min, 254 nm, major 9.5 min and minor 7.0 min).

(R)-4-(1-Benzyl-3,3-difluoro-4-oxoazetidin-2-yl)benzonitrile 3f. The titled product 3f was obtained as a colorless solid (133 mg, 45%), after column chromatography (AcOEt/hexane = 1:4), mp 66.0–67.3 °C; [α]25D −154 (c 1.00 in CHCl3); IR (KBr) cm−1 2228, 1811; δi (CDCl3, 400 MHz) 4.01 (1H, dd, J = 14.9, 2.0 Hz), 4.76 (1H, dd, J = 7.3, 1.9 Hz), 4.92 (1H, d, J = 14.9 Hz), 7.09–7.12 (2H, m), 7.31–7.35 (5H, m), 7.71 (2H, d, J = 8.3 Hz); δc (CDCl3, 100 MHz) 44.8 (m), 67.3 (dd, J = 26, 24 Hz), 113.7, 117.8, 120.2 (dd, J = 293, 291 Hz, 128.4, 128.5, 129.0, 132.5, 132.7, 135.3, 135.3, 160.2 (m); δf (CDCl3, 90 MHz) −57.7 (1F, d, J = 225 Hz), −51.2 (1F, dd, J = 225, 7 Hz); m/z (EI) 298.0990 (M+. C17H12F2NO requires 298.0918). The ee was determined to be >99% by HPLC (Daicel CHIRALPAK AD-H, hexane/PrOH = 4:1, 1.0 mL/min, 254 nm, major 9.3 min and minor 8.4 min).

(R)-1-Benzyl-3,3-difluoro-4-phenylazetidin-2-one 3g. The titled product 3g was obtained as a colorless liquid (208 mg, 48%), after column chromatography (AcOEt/hexane = 1:9). m.p 75–77.0 °C; [α]25D +65.1 (c 1.00 in CHCl3); δi (CDCl3, 400 MHz) 3.94 (1H, dd, J = 14.8, 2.2 Hz), 4.95 (1H, d, J = 14.8 Hz), 7.11–7.14 (2H, m), 7.22–7.24 (2H, m), 7.32–7.33 (3H, m), 7.41–7.44 (3H, m), δc (CDCl3, 90 MHz) −58.9 (1F, d, J = 224 Hz), −51.8 (1F, dd, J = 224, 7 Hz). The ee was determined to be 89% by HPLC (Daicel CHIRALPAK AD-H, hexane/PrOH = 4:1, 0.7 mL/min, 254 nm, major 9.0 min and minor 10.2 min).

Notes and references

