Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2014,
Accepted 00th January 2014
DOI: 10.1039/x0xx00000x
www.rsc.org/

An Easy Access to α-Aryl Substituted Ketophosphonates: Lewis Acid Mediated Reactions of 1,3-diketones with α-hydroxyphosphonates and Tandem Regioselective C-C Bond Cleavage

Gangaram Pallikonda, ${ }^{a}$ Manab Chakravarty ${ }^{* a}$ and Manoj K. Sahoo ${ }^{b}$

A range of α-aryl substituted γ-ketophosphonates is synthesised by Lewis acid mediated reactions of 1,3 -diketones and easily accessible, inexpensive benzylic α hydroxyphosphonates in an operationally-simple method under solvent-free conditions without exclusion of air/moisture. A regioselective C-C bond cleavage for 1,3 -diketones in a tandem fashion has also been demonstrated. Synthesis of a γ ketophosphonate with phenol functionality at α - position (structural analogue of raspberry ketone, a natural product) has also been presented.

Introduction

Among organophosphonates, γ-ketophosphonates have received significant concern in synthetic and biological chemistry as they exhibit an extensive range of biological activities such as herbicides, fungicides and several enzyme [matrix-metalloprotease (MMP-2), kininogenase, osteoclastic acid phosphatase (OAP)] inhibitors. ${ }^{1-3}$ Notably, the presence of a substituent at α-position plays a key role to make these γ-ketophosphonates (such as A-C; Fig 1) more biologically active. ${ }^{1-2}$ Furthermore, these γ-ketophosphonates have also been considered as precursors for the synthesis of γ hydroxyphosphonates ${ }^{3 \mathrm{~b}}$ and also to synthesise methylenomycin- B, a natural product that belongs to a family of cyclopentanoid antibiotics. ${ }^{3 a}$ Thus, the synthesis of new α-aryl-substituted γ-keto phosphonates is highly desirable.

Fig. 1 Examples of biologically significant α-substituted γ ketophosphonates.

Some methods available for the synthesis of α-substituted and unsubstituted γ-ketophosphonates are presented in eq 1-4. ${ }^{4-5}$ The conjugate addition of phosphites/phosphines with enones is the most common approach (routes a-e, eq 1). Using the same starting materials, γ-ketophosphonates were synthesised in both optically active/inactive forms in the presence of palladium ${ }^{5 c}$ or organozinc ${ }^{5 d}$
compounds (route cor d, eq 1). Recently, some research groups have accomplished the synthesis of these compounds by the treatment of α, β-unsaturated carbonyl compounds with phosphites/phosphines in the presence of expensive lanthanide complexes (route e, eq 1). ${ }^{5 \mathrm{abb}}$ The traditional route via deprotonation of alkylphosphonate using the strong, air/moisture sensitive base n-BuLi followed by the treatment of toxic halogenated compounds is also well known (eq 2 \& 2'). Reported aerobic hydroacylation of vinylphosphonates (eq 3) was ineffective to afford α-substituted γ-ketophosphonates. ${ }^{4 \mathrm{a}}$

Previous Work

$\mathrm{Et}_{2} \mathrm{Zn}, \mathrm{CH}_{2} \mathrm{I}_{2}$ (ref. 5 e)

The $\mathrm{ZnEt}_{2} / \mathrm{CH}_{2} \mathrm{I}_{2}$ mediated chain extension reaction starting from β ketophosphonates has also been described (eq 4). ${ }^{5 \mathrm{e}} \mathrm{It}$ is worth noting that organozinc compounds should be handled with enough care as these are highly pyrophoric and quite expensive compared to other common Lewis acids such as Fe (III), Bi (III) etc.

In our continuing efforts on acid mediated synthesis of α substituted organophosphonates, ${ }^{6}$ we presently report a handy and economical Lewis acid mediated route to access a range of α-aryl substituted γ-ketophosphonates from easily accessible α hydroxyphosphonates and 1,3-diketones mostly under solvent-free conditions (eq 5).

This work

(eq 5)
Even though Lewis acid catalysed benzylation of 1,3-diketones is familiar, ${ }^{7}$ the presence of phosphoryl group makes the chemistry more interesting ${ }^{3 c-e}$ to afford the biologically important γ ketophosphonates efficiently in a convenient protocol. A subsequent regioselective C-C bond cleavage for the phosphoryl substituted 1,3diketones is observed via tandem fashion on employing different reaction conditions exclusive of any separate alcohol treatment. The iron(III)/other metal mediated C - C bond cleavage to produce a ketone is known in the literature only in the presence of alcohol. ${ }^{8}$

Results and discussion

In our present study α-hydroxyphosphonates (1a-e, Fig. 2, synthesised by following Pudovik reactions of phosphite and aldehydes) $)^{9}$ and 1,3-diketones (2a-d, Fig 2) were preferred with a consideration of accessibility, structural reactivity and diversity.

Fig. 2 The phosphonates and 1,3-diketones used as precursors

The initial study was focused on the screening of different acids for the reactions of easily accessible inexpensive phosphonate (1a) and symmetrical 1,3-diketone (2a) to afford the γ-ketophosphonates 3a and $\mathbf{3 b}$ where $\mathbf{3 b}$ is a C-C bond cleaved product. It was found that the acids, solvent and temperature affect the product ratio ($\mathbf{3 a}: \mathbf{3 b}$) significantly (Table 1). Brønsted acids such as triflic acid (TfOH) and p-toluenesulfonic acid (p-TSA) were also quite effective ${ }^{10}$
(entries 14-16, Table 1) for this reaction but are not much explored herein.

Table 1 Reactions of 1a with 2a under different reaction conditions ${ }^{\mathrm{a}}$

${ }^{\text {a }}$ Reaction conditions: 1a (1 equiv), 2a (1 equiv) and acid (1 equiv) in a stoppered flask without exclusion of moisture/air using the LR grade solvent. ${ }^{\text {b }}$ The ${ }^{31} \mathrm{P}$ NMR spectrum of reaction mixture showed the formation of $\mathbf{3 b}$ in 98%. ${ }^{\text {c }}$ nitromethane solvent also showed the same result. ${ }^{\text {d remaining starting }}$ material (1a) was recovered. ${ }^{\text {e }}$ The ${ }^{31} \mathrm{P}$ NMR spectrum for the reaction mixture showed another unassigned peak at $\delta 22.1(\sim 30 \%)$.

The results shown in entries 1 and 7 (Table 1) incited us to perform the reaction using anhydrous FeCl_{3} with two drops of water (0.08 ml) and that showed the consumption of both starting materials within 1 h at $90{ }^{\circ} \mathrm{C}$ to form compound $\mathbf{3 a}$. After $8 \mathrm{~h}, \mathbf{3 a} / \mathbf{3 b}$ was isolated as a mixture in $1 / 3$ ratio. The mixture of $\mathbf{3 a}$ and $\mathbf{3 b}$ was
easily converted to only $\mathbf{3 b}$ by treating with $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ at $60^{\circ} \mathrm{C}$ for $5-6 \mathrm{~h}$ or by refluxing the mixture in the presence of FeCl_{3} and methanol for 4 h . Although another C-C bond cleaved product, ester ($\mathbf{3} \mathbf{b}$ ', Table 1) is expected from the reported Lewis acid mediated reactions of secondary alcohols and 1,3-diketones, ${ }^{8}$ we could not find any product of type $\mathbf{3 b}$ ' during our investigations (verified by ${ }^{31} \mathrm{P}$ NMR spectrum ${ }^{\$}$ of the reaction mixture).

Being inexpensive and efficient Lewis acid, $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was selected to run other reactions of phosphonate $\mathbf{1 a}$ with diketones 2b-d under solvent-free conditions at $70{ }^{\circ} \mathrm{C}$ but the reaction was not clean in case of symmetrical 1,3- diketone 2b. The only phosphonylated 1,3-diketone (γ-ketophosphonate 3c, Scheme 1) was obtained from the reaction of $\mathbf{2 b}$ with $\mathbf{1 a}$ at room temperature (28 ${ }^{\circ} \mathrm{C}$) in dichloromethane (DCM) in the presence of anhydrous FeCl_{3}. No C-C bond cleaved product was obtained from 3c even after repeated efforts under different reaction conditions. For both unsymmetrical 1,3-diketones 2c and 2d, phosphonate 1a generated 3b as a major regioselective C-C bond cleaved product in 80% and 95% yield respectively when $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was used under neat conditions at $70{ }^{\circ} \mathrm{C}$ (Scheme 1). Although phosphonylated diketone 3d was isolated in 16% yield from the reaction with 2c but compound of type 3e (Scheme 1, expected from 2d) could not be isolated. This observation was even consistent for the reactions of other phosphonates $\mathbf{1 b} \mathbf{- e}$ with unsymmetrical 1,3-diketones like 2cd. The yield of $\mathbf{3 d}$ was increased to $\sim 90 \%$ by replacing $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with anhydrous FeCl_{3}. The presence of $-\mathrm{CF}_{3}$ group made the system comparatively more reactive to form the $\mathrm{C}-\mathrm{C}$ bond cleaved product 3b in 95\% yield.

Scheme 1 Reaction of diketones 2b-d with the α hydroxyphosphonate 1a.

The phosphonate 1b generated a mixture of products (of type $\mathbf{3 g}, \mathbf{3 i}$ and $\mathbf{3 j}$; Scheme 2) from reactions with $\mathbf{2 a}$ or $\mathbf{2 c}$ under the same reaction conditions $\left(\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}, 8 \mathrm{~h}, 70^{\circ} \mathrm{C}\right)$. Attempt to use anhydrous FeCl_{3} under neat conditions at $70^{\circ} \mathrm{C}$ or in nitromethane at $28^{\circ} \mathrm{C}$ also led to the same result. Gratifyingly, the use of $\mathrm{Bi}(\mathrm{OTf})_{3}$ as a Lewis acid produced the 1,3-diketones $\mathbf{3 g - h}$ in $>90 \%$ yield (Scheme 2). Moreover, Fe (III) mediated regioselective bond
cleavage for both compounds $\mathbf{3 g}$-h afforded expected compound $\mathbf{3 i}$ (19%) as a minor product along with $\mathbf{3 j} \mathbf{(7 5 \%)}$ as a major product due to the favourable acid mediated $\mathrm{O}-\mathrm{CH}_{2} \mathrm{Ph}$ bond breakage. Compound $\mathbf{3 h}$ was found to be more reactive compared to $\mathbf{3 g}$ in terms of the C-C bond cleavage reaction. In this approach, phenol functionality at α-carbon of γ-ketophosphonate has been easily introduced by starting with $\mathbf{1 b}$. This ketone ($\mathbf{3} \mathbf{j}$) is a structural analogue of raspberry ketone, ${ }^{11}$ a low-abundant natural product that contains a phenolic group.

Scheme $2 \mathrm{Bi}(\mathrm{OTf})_{3}$ mediated reaction of $\mathbf{1 b}$ with 1,3-diketones $\mathbf{2 a}$ or $2 c$.

All other γ-ketophosphonates ($\mathbf{3 k} \mathbf{k} \mathbf{u}$), generated from reactions of α-hydroxyphosphonates ($\mathbf{1 b - e}$) and 1,3-diketones (2a-d) under different Lewis acids/reaction conditions have been presented in table 2 (for phosphonylated diketones) or table 3 (for phosphonylated monoketones).

The phosphonylated 1,3-diketone ($\mathbf{3 k}$, entry 1 , Table 2) was synthesised from reaction of phosphonate (1b) with acetylacetone (2b) by using anhydrous FeCl_{3} in dichloromethane. In a similar manner, the reaction of $\mathbf{2 b}$ with phosphonates $\mathbf{1 c}$ and $\mathbf{1 e}$ generated γ-ketophosphonate $\mathbf{3 m}{ }^{\dagger}$ (entry 3 , Table 2) and $\mathbf{3 u}$ (entry 8 , Table 2) respectively. It is noted that the duration of reaction with phosphonates is comparatively higher for $\mathbf{2 b}$ ($18-30 \mathrm{~h}$) than for other 1,3-diketones.

The ${ }^{31} \mathrm{P}$ NMR spectrum for the reaction mixture of Fe (III)mediated reaction of phosphonate $\mathbf{1 c}$ with 1,3-diketone $2 \mathbf{c}$ showed the presence of two products that include phosphonylated 1,3diketone $\mathbf{3 n}$ (entry 4, Table 2, $\sim 82 \%$ with a diastereomeric ratio 1:4) and monoketone 30 (entry 1, Table 3, 18\%). It was difficult to isolate these products in pure form. However, to our delight, use of $\mathrm{Cu}(\mathrm{OTf})_{2}$ as a Lewis acid was successful to produce 3 n (entry 4 , Table 2) in high yiled. The monoketone $\mathbf{3 o}$ could also be obtained by using $\mathbf{1 c}$ and $\mathbf{2 d}$ in the presence of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (entry 1, Table 3). Again $\mathrm{Cu}(\mathrm{OTf})_{2}$ worked well for synthesising phosphonylated diketone 31 (entry 2, Table 2).

With the concern of synthesising useful reported compounds of type A (Fig. 1), our effort to use naphthalene based α -
hydroxyphosphonate 1d gave a fruitful result with the reactions of 1,3-diketones (2a-d) to afford γ-ketophosphonates $\mathbf{3 p}$ (phosphonylated 1,3-diketone, entry 5, Table 2) and $\mathbf{3 q}$ (phosphonylated monoketone, entries $2 \& 3$, Table 3) in excellent yield using $\mathrm{Fe}(\mathrm{III})$ as Lewis acid. When the reaction between phosphonate 1d and 1,3-diketone $\mathbf{2 a}$ was performed using $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ under neat conditions at $70{ }^{\circ} \mathrm{C}$, the reaction mixture showed the presence of diketone $\mathbf{3 p}(5 \%)$ and regioselective C-C bond cleaved product monoketone $\mathbf{3 q}(92 \%)$ in the ${ }^{31} \mathrm{P}$ NMR spectrum. The diketone $\mathbf{3 p}$ was isolated in 72% yield by using anhydrous FeCl_{3} in nitromethane after 16 h (entry 5, Table 2). The same reaction was also run using $\mathrm{Bi}(\mathrm{OTf})_{3}$ but partial ($\sim 40 \%$) conversion from $\mathbf{1 d}$ to $\mathbf{3 p}$ was observed, even after heating for 8 h . Both the unsymmetrical diketones $\mathbf{2 c}$-d generated compound $\mathbf{3 q}$ in excellent yield (entry 3 , Table 3) but corresponding phosphonylated 1,3-diketones were not isolated. Using this protocol, one can avoid using toxic halogenated and air/moisture sensitive compounds or pathways ${ }^{\text {ld }}$ to synthesise α-naphthyl substituted γ-ketophosphonates (3p-q) efficiently. The acetylacetone (2b) was not reactive towards phosphonate 1d to obtain the desired product under the present reaction conditions.

Table 2 Synthesis of phosphonylated 1,3-diketones (γ-ketophosphonates) from α-hydroxyphosphonates (1b-e) and 1,3-diketones (2a-c) under different reaction conditions ${ }^{\text {a }}$

Entry	Phosphonates $(\mathbf{1}) /$ diketones $(\mathbf{2})^{a}$	Lewis Acid/solvent/ temp $\left({ }^{\circ} \mathrm{C}\right) /$ time (h)	γ-ketophosphonate $($ yield in \%)
1	$\mathbf{1 b} / \mathbf{2 b}$	$\mathrm{FeCl}_{3} / \mathrm{DCM} / \mathrm{rt} / 18$	$\mathrm{PhH}_{2} \mathrm{CO}$

(83)

| $\mathbf{1 c / 2 a}$ |
| :--- | :--- |
| $\mathrm{Cu}(\mathrm{OTf})_{2} /$ nitrometh |
| $\mathrm{ane} / 60 / 8$ |

${ }^{a}$ Phosphonates (1 equiv), 1,3-diketone (1 equiv) and Lewis Acid (1 equiv). ${ }^{\mathrm{b}} \mathbf{3} \mathbf{m}$ was isolated along with $\mathbf{3 m a}$ as a $1: 1$ mixture (see the experimental and supporting information for details). ${ }^{\text {a }}$ The monoketone (3s, entry 4, Table 3) was isolated in 27% yield from this reaction. ${ }^{\mathrm{d}}$ The monoketone (3s) was isolated in 78% yield along with $\mathbf{3 t}$.

The α-dimethylamino substituted γ-ketophosphonates [phosphonylated 1,3-diketones $\mathbf{3 r}$ and $\mathbf{3 t - u}$ (entries 6-8, Table 2) and monoketone $\mathbf{3 s}$ (entry 4, Table 3)] were obtained by starting from phosphonate $\mathbf{1 e}$ and diketones $\mathbf{2 a} \mathbf{a}$ d using Fe (III)-mediated reactions. All these reactions were carried out under neat conditions at $70{ }^{\circ} \mathrm{C}$ except in case of synthesising $\mathbf{3 u}$ as mentioned before. The reaction of $\mathbf{1 e}$ with $\mathbf{2 a}$ generated $\mathbf{3 r}$ in 63% and $\mathbf{3 s}$ in 27% yield where $\mathbf{2 c}$ gave almost the same result like 2a to afford compounds $\mathbf{3 t}$ and $\mathbf{3 s}$ (entry 7, Table 2) in 18% and 78% yields, respectively. Only phosphonylated monoketone 3 s was isolated when 1,3-diketone 2d was used (entry 4, Table 3) for the reaction.

Table 3 Synthesis of phosphonylated monoketones (γ-ketophosphonates) from other α-hydroxyphosphonates ($\mathbf{1 c - e}$) and 1,3-diketones ($\mathbf{2 a}, \mathbf{2 c}-\mathbf{d}$) under different reaction conditions ${ }^{\text {a }}$

Entry	Phosphonates $(\mathbf{1}) /$ /diketones $(\mathbf{2})^{a}$	Acid/solvent/temp $\left({ }^{\circ} \mathrm{C}\right) /$ time (h)	$\mathrm{FeCl}_{3 .} 6 \mathrm{H}_{2} \mathrm{O} / \mathrm{neat}$ $/ 60 / 8$
1	$\mathbf{1 c / 2 d}$		
(yield in \%)			

3.	1d/2c or 2d	$\begin{aligned} & \mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O} / \text { neat } \\ & / 70 / 12 \end{aligned}$	3q (80)
4	1e/2d	$\begin{aligned} & \mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O} / \text { neat } \\ & / 70 / 12 \end{aligned}$	 (91)

${ }^{\text {a }}$ Phosphonates (1 equiv), 1,3-diketone (1 equiv) and Lewis Acid (1 equiv).
From the literature survey ${ }^{7,8}$ and the results obtained herein, the reaction mechanism could be explained by a direct alkylation of 1,3-diketones with a suitable carbocation obtained by the Lewis acid mediated activation of hydroxyl group (a poor leaving group) from α-hydroxyphosphonates. Generation of cations are subjective to the substituents (electron-donating/ extended conjugation) present in the benzene ring. Furthermore, nucleophilic reaction might depend on the keto/enol ratio including the steric factor of the 1,3-diketones. Notably, 1,3-diketones are also known to act as bidentate ligands to decrease the Lewis acidity of the metals. ${ }^{7 \mathrm{~d}}$ Along with that, the subsequent regioselective C - C bond cleavage is also a reason to stabilise the best reaction conditions for different combinations of α-hydroxyphosphonates and 1,3-diketones to afford the desired γ-ketophosphonates. Moreover, with all these experimental results, we believe the $\mathrm{C}-\mathrm{C}$ bond cleavage occurs with the help of water molecules present in the reaction mixture. Based on the literature, ${ }^{8}$ proposed metal mediated $\mathrm{C}-\mathrm{C}$ bond cleavage mechanism (Scheme 3) predicts the formation of benzoic acid that was successfully isolated in sublimed form from the wall of the reaction flask. With this result, helpful evidence is established for the proposed mechanism which has not been demonstrated so far due to the formation of volatile ester as a side product because alcohol was used in place of water. ${ }^{8}$

Scheme 3 Proposed pathway for the C-C bond cleavage

With the experimental observations obtained from the reactions of unsymmetrical 1,3-diketones and considering the stability of the possible tautomeric forms (\mathbf{X} and \mathbf{Y}, Scheme 4) we surmise that the more conjugated enol form \mathbf{Y} is the most favourable one to obtain the product $\mathbf{3 b}$ under the present reaction condition.

Scheme 4 The reaction of $\mathbf{1 a}$ with unsymmetrical 1,3-diketones.
A theoretical calculation considering $\mathbf{3 d}$ showed a small difference in energy between the form \mathbf{X} and $\mathbf{Y} .{ }^{12}$ The product of type $\mathbf{3 f}$ was not formed under these reaction conditions. In the literature, enol form of type \mathbf{X} was considered to be the most stable one based on the experimental observations. ${ }^{8 \mathrm{c}-\mathrm{d}}$

Conclusions

This study describes a new convenient and inexpensive method to synthesise a variety of biologically important γ ketophosphonates in good yields. The reaction conditions are optimised for different combinations of α-hydroxyphosphonates and 1,3-diketones to generate the desired compounds effectively. Fe (III) is the Lewis acid of choice to generate most of the phosphonylated di/monoketones. Only for generating phosphonylated diketones $\mathbf{3 g}-\mathrm{h}, \mathrm{Bi}(\mathrm{OTf})_{3}$ was used and $\mathrm{Cu}(\mathrm{OTf})_{2}$ was chosen to synthesise posphonylated diketones 31 \& 3n. The Lewis acid $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is successfully used for the $\mathrm{C}-\mathrm{C}$ bond cleavage reactions to synthesise phosphonylated monoketones. Finally, we are able to accomplish the synthesis of the structural analogue of raspberry ketone.

Experimental

Silica gel (100-120 mesh size) was used for the column chromatography. Reactions were monitored by TLC on silica gel 60 F254 (0.25 mm). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra (${ }^{1} \mathrm{H}, 400$ or 500 $\mathrm{MHz} ;{ }^{13} \mathrm{C}, 101$ or $125 \mathrm{MHz} ;{ }^{31} \mathrm{P}, 162$ or 212 MHz) were recorded using a 400 or 500 MHz spectrometer in CDCl_{3} with shifts referenced to $\mathrm{SiMe}_{4}(\delta 0)$ or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(\delta 0)$. Some cases (for compounds $\mathbf{3 m}+\mathbf{3 m a}, \mathbf{3 k}$ and $\mathbf{3 j}$) DEPT experiments were also performed. IR spectra were recorded on an FT-IR spectrophotometer. Melting points were determined by using a local hot-stage melting point apparatus and were uncorrected. Elemental analyses were carried out on a CHN analyzer. Mass spectra were recorded using LC-MS equipment. Compounds diethyl hydroxyl(aryl)methylphosphonates 1a-e were prepared by following methods reported in the literatures. ${ }^{9}$ Reactions were run without exclusion of air/moisture in a stoppered reaction flask.

(i) Reaction of $1 a$ with 1,3-diketone (2a):

Synthesis of (\pm)-diethyl 2-benzoyl-1-(4-methoxyphenyl)-3-oxo-3phenylpropylphosphonate (3a) To a stirred solution of $1 \mathbf{1 a}(0.50 \mathrm{~g}$, 1.82 mmol), dibenzoylmethane ($\mathbf{2 a}, 0.400 \mathrm{~g}, 1.82 \mathrm{mmol}$), anhydous
$\mathrm{FeCl}_{3}(0.29 \mathrm{~g}, 1.82 \mathrm{mmol})$ was added and then the reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 8 h . After completion of the reaction as indicated by TLC, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with ethyl acetate (3×20 ml). After filtration and removal of solvent in vacuum, the crude product was purified by column chromatography using EtOAc/ pet ether $(70 / 30)$ as the eluent to afford 3a. Yield $0.788 \mathrm{~g}(90 \%)$; offwhite solid; $\mathrm{mp} 172-174{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2983, 1700, 1602, 1508, 1257, 1024, 966 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \quad 0.93-0.97$ (m, 6H), 3.45-3.69 (m, 1H), 3.72 (s, 3H), 3.74-3.87 (m, 3H), $4.45(\mathrm{dd}, J=$ 19.7 and $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=11.1$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-$ $6.72(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.59(\mathrm{~m}, 6 \mathrm{H}), 7.75(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 15.9 and 16.1 (d, $J \sim 6.0 \mathrm{~Hz}$ each), 44.2 (d, $J=139.1 \mathrm{~Hz}$), $55.2,56.9$, 61.9 and $63.5(\mathrm{~d}, J=7.3 \mathrm{~Hz}$ each $), 113.9,125.8(\mathrm{~d}, J=7.0 \mathrm{~Hz})$, $128.6(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 128.9,129.3,131.2(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 133.4$, 133.6, 136.9, 137.0, 158.8, 192.2 (d, $J=16.5 \mathrm{~Hz}$), 192.9; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.0(\mathrm{~s}) ; \mathrm{LC} / \mathrm{MS} \mathrm{m} / \mathrm{z} 481[\mathrm{M} \mathrm{+H}]^{+}$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{P} \mathrm{C} \mathrm{67.49} ,\mathrm{H} \mathrm{6.08;} \mathrm{found} \mathrm{C} \mathrm{67.58} ,\mathrm{H} \mathrm{6.14}$.

(\pm)-Diethyl

1-(4-methoxyphenyl)-3-oxo-3-
phenylpropylphosphonate (3b) This compound was synthesised in a manner similar to the synthesis of $\mathbf{3 a}$ with similar molar quantities using $\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$. Yield $0.618 \mathrm{~g}(90 \%)$; viscous liquid; IR (KBr , cm^{-1}) 2983, 1686, 1605, 1510, 1450, 1246, 1034, 959; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10$ and 1.29 (two sets of triplet, $J \sim 7.1 \mathrm{~Hz}$ each, $6 \mathrm{H}), 3.61-3.73(\mathrm{~m}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.89-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.94-4.12$ $(\mathrm{m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.56(\mathrm{~m}$, $3 \mathrm{H}), 7.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.3$ and 16.4 (two sets of doublets, $J=5.0 \mathrm{~Hz}$ each), 38.1 (d, $J=138$.0 Hz), 39.2, 55.2, 61.9 and 62.9 (two sets of doublets, $J=7.5 \mathrm{~Hz}$ each), $113.9(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 127.8(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 128.1,128.6$, $130.2(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 133.3,136.6,158.7(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 196.5(\mathrm{~d}, J$ $=15.0 \mathrm{~Hz}),{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.9 . \mathrm{LC} / \mathrm{MS} \mathrm{m} / \mathrm{z} 377[\mathrm{M}$ $+\mathrm{H}]^{+}$. This compound is reported in the literature. ${ }^{\text {5d }}$

(ii) Reactions of 1a with 1,3-diketones (2b-d)

Synthesis of (\pm)-diethyl 2-acetyl-1-(4-methoxyphenyl)-3oxobutylphosphonate (3c) To a stirred solution of $\mathbf{1 a}(0.50 \mathrm{~g}, 1.82$ mmol) and acetylacetone ($\mathbf{2 b}, 0.18 \mathrm{~g}, 1.82 \mathrm{mmol}$), in anhydrous dichloromethane (4 mL) as solvent, anhydrous $\mathrm{FeCl}_{3}(0.29 \mathrm{~g}, 1.82$ $\mathrm{mmol})$ was added and then the reaction mixture was stirred at $28^{\circ} \mathrm{C}$ for 18 h . The compound 3c was isolated using column chromatography (EtOAc/Hexane) with partial ($\sim 14 \%$) enol form. Yield 0.590 g , (91%); off-white solid; mp 192-194 ${ }^{\circ} \mathrm{C}$; IR (KBr , cm^{-1}) 2356, 1690, 1515, 1361, 1265, 1176, 1026, 937; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.08$ and 1.23 (two sets of triplet, $J \sim 7.2 \mathrm{~Hz}$ each, $6 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.82$ $-4.04(\mathrm{~m}, 4 \mathrm{H}), 4.59(\mathrm{dd} \rightarrow \mathrm{t}, J=11.4$ and $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17-7.19 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 16.2 and 16.3 (d, $J \sim 6.0 \mathrm{~Hz}$ each), 28.2, 30.6, 43.1 (d, $J=138.9 \mathrm{~Hz}$), $55.3,62.5$ and $63.2(\mathrm{~d}, J=7.0 \mathrm{~Hz}$ each $), 69.5,114.3,124.9130 .8$, 159.2, 201.5, 201.7 (d, $J=17.7 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 25.6 (s); LC/MS m/z $357[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{P} \mathrm{C}$ 57.30, H 7.07; found C 57.42, H 6.87 .

Synthesis of (\pm)-diethyl 2-benzoyl-1-(4-methoxyphenyl)-3oxobutylphosphonate (3d) Reaction was performed in a manner similar to the synthesis of $\mathbf{3 b}$ using benzoylacetone (2c) with a similar quantity as 2a. The product $3 \mathrm{~d}(0.534 \mathrm{~g}$, yield 16%) was isolated followed by 3b $(0.550 \mathrm{~g}$, yield $80 \%)$. Under the same reaction conditions $\left(\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right.$, neat, $\left.70{ }^{\circ} \mathrm{C}, 80 \mathrm{~h}\right)$, the reaction of $\mathbf{1 a}$ with $\mathbf{2 d}$ gave exclusively compound $\mathbf{3 b}$ in 95% yield. The yield of 3d was increased to 90% by performing the reaction using anhydrous FeCl_{3}.

Characterization for 3d: off-white solid; mp 96-98 ${ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}$, cm^{-1}) 2980, 1726, 1680, 1511, 1253, 1028, 960; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96$ and 1.02 (two sets of triplet, $J \sim 7.0 \mathrm{~Hz}$ each, $6 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.88(\mathrm{~m}, 7 \mathrm{H}$, the singlet at $\delta 3.73$ was also merged), $4.31(\mathrm{dd}, J=21.6,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dd} \rightarrow \mathrm{t}, J=9.6$ and $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.62$ $(\mathrm{m}, 3 \mathrm{H}), 8.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 16.0 and 16.1 (d, $J \sim 5.6 \mathrm{~Hz}$ each), 27.5, 43.5 (d, $J=137.5 \mathrm{~Hz}$), 55.3 , 62.3 and 63.2 (d, $J=7.0 \mathrm{~Hz}$ each), 63.6, 114.3, 124.9, 128.9, 129.2, 131.2, 133.9, 136.6, 159.2, 193.4, $201.7(\mathrm{~d}, J=17.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.8(\mathrm{~s}) ; \mathrm{LC} / \mathrm{MS} \mathrm{m} / \mathrm{z} 419[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{P} \mathrm{C} \mathrm{63.15} ,\mathrm{H} \mathrm{6.50;} \mathrm{found} \mathrm{C} \mathrm{62.89} ,\mathrm{H} \mathrm{6.72}$.

(iii) Reactions of $1 b$ with 1,3-diketones (2a\&2c)

Synthesis of (\pm)-diethyl 2-benzoyl-1-(4-(benzyloxy)phenyl)-3-oxo-3-phenylpropylphosphonate ($\mathbf{3 g}$) To a stirred solution of $\mathbf{1 b}(0.50$ $\mathrm{g}, 1.42 \mathrm{mmol}$) and dibenzoylmethane ($\mathbf{2 a}, 0.31 \mathrm{~g}, 1.42 \mathrm{mmol}$), in anhydrous dichloromethane (4 mL) as solvent, $\mathrm{Bi}(\mathrm{OTf})_{3}(0.46 \mathrm{~g}$, 0.70 mmol) was added and then the reaction mixture was stirred at rt for 9 h . The compound was isolated using column chromatography. Yield 0.720 g , (91%); off-white solid; mp 170-172 ${ }^{\circ} \mathrm{C}$; IR (KBr , cm^{-1}) 2987, 1695, 1602, 1510, 1445, 1253, 1026, 954; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95-1.03(\mathrm{~m}, 6 \mathrm{H}), 3.47-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.93(\mathrm{~m}$, $3 \mathrm{H}), 4.49(\mathrm{dd}, \mathrm{J}=22 \mathrm{~Hz}, 12 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 6.42-6.47(\mathrm{~m}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.2-7.49(\mathrm{~m}, 10 \mathrm{H}), 7.50-7.62(\mathrm{~m}, 3 \mathrm{H})$, $7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.8$ and 16.0 (two sets of doublets, $J=6.1 \mathrm{~Hz}$ each), $44.2(\mathrm{~d}, J=139.4 \mathrm{~Hz}), 56.9,61.9$ and 63.3 (two sets of doublets, $J=7.1 \mathrm{~Hz}$ each $), 69.9,114.8,114.9,126.1(\mathrm{~d}, J=7.0 \mathrm{~Hz})$, $127.5,127.9,128.5,128.6,128.8,129.2,131.2,133.3,133.5,136.8$, $136.9,158.0,192.2(\mathrm{~d}, J=17.2 \mathrm{~Hz}), 192.9$; ${ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 26.3 ; \mathrm{LC} / \mathrm{MS} \mathrm{m} / \mathrm{z} 557[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{P} \mathrm{C}, 71.21 ; \mathrm{H}, 5.98$; Found C, $71.28 \mathrm{H}, 5.83$.

Synthesis of (\pm)-diethyl 2-benzoyl-1-(4-(benzyloxy)phenyl)-3-oxobutylphosphonate (3h) By starting with 2c, this compound was synthesised using similar procedure and molar quantities as 3 g . Yield 0.650 g , (93%); viscous liquid; IR (KBr , $\left.\mathrm{cm}^{-1}\right) 1723,1680,1602,1508,1450,1253,1035,969 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98$ and 1.04 (two sets of triplet, $J=\sim 7.5$ Hz each, 6 H), $1.86(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.89(\mathrm{~m}, 4 \mathrm{H}), 4.37(\mathrm{dd}, J=24$ $\mathrm{Hz}, 12 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{dd} \rightarrow \mathrm{t}, J=12.0 \mathrm{~Hz}$ each, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.65(\mathrm{~m}, 10 \mathrm{H}), 8.18(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.9$ and 16.0 (two sets of doublets, $J=6.1 \mathrm{~Hz}$ each $), 27.4,43.5(\mathrm{~d}, J=138.4 \mathrm{~Hz})$, 62.1 and 63.1 (two sets of doublets, $J=7.1 \mathrm{~Hz}$ each), 63.5, $70.1,115.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 125.3(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 127.6,128.0$, $128.6,128.8,129.1,131.2(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 133.8,136.6,136.8$, $158.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 193.3,201.5(\mathrm{~d}, J=18.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.2 . \mathrm{LC} / \mathrm{MS} \mathrm{m} / \mathrm{z} 495[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{P} \mathrm{C}, \mathrm{68.01;} \mathrm{H}, \mathrm{6.32} .\mathrm{Found} \mathrm{C}, \mathrm{68.15;} \mathrm{H}$, 6.26 .
(iv) Regioselective C-C bond cleavage for 3g and 3h: Synthesis of $\mathbf{3 i}$ and $\mathbf{3 j}$: A solution of $\mathbf{3 h}(0.40 \mathrm{~g}, 0.81 \mathrm{mmol})$ in methanol was heated under reflux using $\mathrm{FeCl}_{3}(0.13 \mathrm{~g}, 0.81 \mathrm{mmol})$ for 2 h . The compound $3 \mathbf{i}$ was isolated using column chromatography followed by $\mathbf{3} \mathbf{j}$. In case of $\mathbf{3 g}$, the reaction mixture had to stir for 4 h . The same result was also obtained by using $\mathrm{FeCl}_{3 .} 6 \mathrm{H}_{2} \mathrm{O}$ at $60^{\circ} \mathrm{C}$ for 6 h .
(\pm)-Diethyl
(1-(4-(benzyloxy)phenyl)-3-oxo-3phenylpropyl)phosphonate (3i) Yield 0.071 g , (19%); viscous liquid; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2925, 1687, 1604, 1508, 1445, 1225, 1025, $969 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08$ and 1.28 (two sets of triplet, $J=6.8 \mathrm{~Hz}$ each, 6 H), $3.58-3.74(\mathrm{~m}, 3 \mathrm{H}), 3.87-3.97(\mathrm{~m}, 2 \mathrm{H})$,
4.01-4.11 (m, 2H), $5.00(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.56$ $(\mathrm{m}, 10 \mathrm{H}), 7.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 16.3 and 16.5 (two sets of doublets, $J=6.1 \mathrm{~Hz}$ each), 38.2 (d, $J=$ 142.0 Hz), $39.3,62.1$ and 63.1 (two sets of doublets, $J=7.1 \mathrm{~Hz}$ each), $70.1,114.9,127.6,128.0,128.2,128.6,128.7,130.3,130.4$, 133.4, 136.7, 137.0, 158.1 (d, $J=2.7 \mathrm{~Hz}$), 196.6 (d, $J=15.6 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.5$; LC/MS m/z $453[\mathrm{M}+\mathrm{H}]^{+}$.

(\pm)-Diethyl

1-(4-hydroxyphenyl)-3-oxo-3phenylpropylphosphonate ($\mathbf{3 j}$) Yield 0.220 g , (75\%); off-white solid; mp 114-116 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3207, 1686, 1604, 1512, 1450, $1229,1027,975 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10$ and $1.27(\mathrm{t}, J=$ 7.0 Hz each , 6 H), 3.55-3.79 (m, 3H), 3.85-3.94 (m, 2H), 4.02-4.09 $(\mathrm{m}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.54(\mathrm{~m}$, $3 \mathrm{H}), 7.90-7.93(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.3$ and 16.4 (two sets of doublets, $J=5.8 \mathrm{~Hz}$ each), 38.1 (d, $J=141.5 \mathrm{~Hz}$), 38.9, 62.3 and 63.3 (two sets of doublets, $J=7.3 \mathrm{~Hz}$ each), 116.0, 125.9 (d, $J=7.2 \mathrm{~Hz}$), 128.2, 128.7, 130.2, 133.4, 136.6, 156.2, 196.8 $(\mathrm{d}, J=14.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.7 . \mathrm{LC} / \mathrm{MS} \mathrm{m} / \mathrm{z}$ $363[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P} \mathrm{C}, 62.98 ; \mathrm{H}, 6.40$. Found C, 63.17; H, 6.51.
(v) Reactions of $1 b$ with 1,3-diketone (2b): Synthesis of (\pm)-diethyl 2-acetyl-1-(4-(benzyloxy)phenyl)-3-oxobutylphosphonate (3k). This compound is synthesised in a manner analogous to compound $\mathbf{3 c}$ by starting with $\mathbf{1 b}(0.50 \mathrm{~g})$ using similar molar quantitites. Yield 0.510 g , (83%); off-white solid; mp 118-120 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2984, 1696, 1607, 1512, 1360, 1244, 1029, 965; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.09$ and 1.24 (two sets of triplet, $J=7.2 \mathrm{~Hz}$ each, $6 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.81-4.05(\mathrm{~m}$, $4 \mathrm{H}), 4.60(\mathrm{dd} \rightarrow \mathrm{t}, J \sim 11.6 \mathrm{~Hz}$ each, 1 H), 5.01 ($\mathrm{s}, 2 \mathrm{H}$), 6.90 (d, $J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.41(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.2$ and 16.3 (two sets of doublets, $J=5.5 \mathrm{~Hz}$ each), 28.2, $30.5,43.1$ (d, $J=138.1 \mathrm{~Hz}$), 62.5 and 63.2 (two sets of doublets, $J=7.1 \mathrm{~Hz}$ each), $69.5,70.1,115.3,125.4(\mathrm{~d}, J=7.8 \mathrm{~Hz})$, 127.6, 128.1, 128.7, 130.8 ($\mathrm{d}, J=5.7 \mathrm{~Hz}$), 136.8, 158.4, 201.5, 201.7 (d, $J=17.7 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 25.6. LC/MS $\mathrm{m} / \mathrm{z} 433[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{P} \mathrm{C}, 63.88 ; \mathrm{H}, 6.76$. Found C, 63.94; H, 6.49.
(vi) Reaction of 1c with 1,3-diketone 2a: Synthesis of (\pm)-diethyl 2-benzoyl-1-(3,4-dimethoxyphenyl)-3-oxo-3-
phenylpropylphosphonate (31) To a stirred solution of $\mathbf{1 c}(0.50 \mathrm{~g}$, $1.64 \mathrm{mmol})$, dibenzoylmethane $(0.36 \mathrm{~g}, 1.64 \mathrm{mmol})$ in anhydrous nitromethane $(4 \mathrm{~mL})$ as solvent, copper(II) trifluoromethanesulfonate $(0.59 \mathrm{~g}, 1.63 \mathrm{mmol})$ was added and then the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 8 h . The compound 31 was isolated using column chromatography. Yield 0.740 g , (88%); off-white solid; mp $147-149{ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}) 2983, 1693, 1589, $1515,1452,1258,1153,1034,962 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 0.94-1.00 (m, 6H) 3.46-3.54 (m, 1H), 3.73 ($\mathrm{s}, 3 \mathrm{H}), 3.76-3.91(\mathrm{~m}$, $6 \mathrm{H}), 4.45(\mathrm{dd}, J=19.8$ and $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd} \rightarrow \mathrm{t}, J=11.1$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.29$ $(\mathrm{m}, 2 \mathrm{H}), 7.39-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.9$ and $16.2(\mathrm{~d}, J \sim$ 5.9 Hz each), $44.6(\mathrm{~d}, J=138.7 \mathrm{~Hz}), 55.7,55.8,56.7,57.4,61.9$ and 63.5 (d, $J=7.2 \mathrm{~Hz}$ each), 110.9 (d, $J=1.6 \mathrm{~Hz}$), 113.3 (d, $J=6.0$ $\mathrm{Hz}), 122.6(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 126.0(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 128.6,128.7$, $128.9,129.2,133.4,133.6,136.9,127.1,148.2,148.6,192.3$ (d, $J=$ 16.1 Hz), 192.8; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.0(\mathrm{~s}) ; \mathrm{LC} / \mathrm{MS}$ $\mathrm{m} / \mathrm{z} 511[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{P} \mathrm{C}, 65.87 ; \mathrm{H}, 6.12$. Found C, 65.94; H, 6.03.
(vii) Reaction of acetylacetone (2b) with 1c: This reaction was performed in a manner analogous to synthesis of compound 3c
by starting with $1 \mathbf{c}(0.50 \mathrm{~g}, 1.42 \mathrm{mmol})$ using similar molar quantitites at $28{ }^{\circ} \mathrm{C}$ for 24 h . The compound $\mathbf{3 m}$ was isolated along with 3 ma in $1: 1$ ratio. The amount isolated from column 0.55 g (mixture of $\mathbf{3 m} \& \mathbf{3 m a}$), The compound $\mathbf{3 m a}(0.25 \mathrm{~g}, 44$ \%) was crystalised from this mixture from dichloromethane/hexane mixture (1:2).
Spectroscopic data for the mixture of $\mathbf{3 m} \& \mathbf{3 m a}$:
IR (KBr, cm^{-1}) 2989, 1697, 1658, 1350, 1242, 1030, 964; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.01$ and 1.18 (two sets of triplet, $J=7.2 \mathrm{~Hz}$ each, 6 H$), 1.81(\mathrm{~s}, 3 \mathrm{H}), 2.28$ and $2.32(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.65(\mathrm{~m}, 1 \mathrm{H})$, 3.70-3.82 ($\mathrm{m}, 2 \mathrm{H}$), $3.79 \& 3.81(\mathrm{~s}$, each 3 H$), 3.86-4.03(\mathrm{~m}, 1 \mathrm{H})$, 4.49-4.55 (m, 1H), $4.61(\mathrm{dd} \rightarrow \mathrm{t}, J \sim 11.4 \& 11.6 \mathrm{~Hz}$ each, 1 H$), 6.75-$ $6.81(\mathrm{~m}, 3 \mathrm{H})$; Peaks for 3 ma appeared at $\delta 1.09$ and 1.23 (two sets of triplet, $J=7.2 \mathrm{~Hz}$ each, 6 H), $2.44(\mathrm{dd}, J \sim 1.9 \& 5.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.48(\mathrm{~s}$, $3 \mathrm{H}), 3.58-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 4.01-4.06$ $(\mathrm{m}, 2 \mathrm{H}), 4.42-4.49(\mathrm{qd}, J=2 \& 29.5 \mathrm{~Hz}$, not well resolved, 1 H), 6.96 $(\mathrm{s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.2$ and 16.3 (d, $J \sim 5.7 \mathrm{~Hz}$ each), 28.2, 30.6, 43.5 (d, $J=138.7 \mathrm{~Hz}$), $55.8,56.1,62.5$ and $63.3(\mathrm{~d}, J=7.2 \mathrm{~Hz}$ each $), 69.5,111.2(\mathrm{~d}, J=2.3$ $\mathrm{Hz}), 112.7(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 122.0(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 125.4(\mathrm{~d}, J=7.9$ $\mathrm{Hz}), 148.6(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 149.0(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 150.6(\mathrm{~d}, J=9.6$ $\mathrm{Hz})$; Peaks for 3ma appeared at $\delta 13.2,16.3(\mathrm{~d}, J \sim 6.1 \mathrm{~Hz}), 31.0$, 49.7 (d, $J=131.2 \mathrm{~Hz}), 56.0,56.3,62.9$ and $63.1(\mathrm{~d}, J=7.2 \mathrm{~Hz}$ each $)$, 104.1, 108.5, $132.5(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 135.0(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 137.9(\mathrm{~d}, J$ $=4.4 \mathrm{~Hz}), 149.7,150.1(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 196.8 ;{ }^{31} \mathrm{P}$ NMR $(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 25.6(\mathrm{~s}) \& 23.9(\mathrm{~s})(1: 1) ;$ LC/MS m/z $387[\mathrm{M}+\mathrm{H}]$ for $\mathbf{3 m}$ and $369[\mathrm{M}+\mathrm{Na}+2 \mathrm{H}]^{+}$for 3 ma .

Data for the 3ma obtained after crystallization

White crystalline solid; $\mathrm{mp} 126-128^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2989,1656$, 1555, 1338, 1243, 1031, $965 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.06$ and 1.23 (two sets of triplet, $J=7.2 \mathrm{~Hz}$ each, 6 H), 2.44 (dd, $J \sim 2.0 \&$ $5.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.88(\mathrm{~m}, 1 \mathrm{H})$, $3.97(\mathrm{~s}, 6 \mathrm{H}), 4.01-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.53(\mathrm{qd}, J=2.0 \& 29.5 \mathrm{~Hz}$, not well resolved, 1 H$), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.0,16.2(\mathrm{~d}, J \sim 6.2 \mathrm{~Hz}), 30.9,49.7(\mathrm{~d}$, $J=130.0 \mathrm{~Hz}$), $56.1,56.2,62.9$ and 63.1 (d, $J=7.2 \mathrm{~Hz}$ each), 104.1, $108.5,132.5(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 135.0(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 137.9(\mathrm{~d}, J=4.4$ Hz), 149.7, 150.0, 196.7. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.3$ (s) [96%]; $\sim 4 \%$ of $\mathbf{3 m}$ also was observed in ${ }^{31} \mathrm{P}$ NMR]. LC/MS m/z 369 $[\mathrm{M}+\mathrm{Na}+2 \mathrm{H}]^{+}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{P}$ C 55.81, H 7.32; found C 56.19, H 6.35 .
(viii) Reaction of 1c with 1,3-diketones 2c and 2d: Synthesis of (\pm)diethyl (2-benzoyl-1-(3,4-dimethoxyphenyl)-3oxobutyl)phosphonate (3n) Similar procedure and molar quantities as $\mathbf{3 1}$ are used. The reaction mixture of $\mathbf{1 c}$ and $\mathbf{2 c}$ was stirred at 60 ${ }^{\circ} \mathrm{C}$ for 6 h . Yield 0.600 g , (81%); viscous liquid; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 2986, 1722, 1679,1589, 1513, 1254, 1023; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 0.96$ and 1.01 (two sets of triplet, $J=7.0 \mathrm{~Hz}$ each, 6 H), $1.83(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.82(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{dd}$, $J=21.7$ and $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd} \rightarrow \mathrm{t}, J=11.9$ and $12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.96(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.62(\mathrm{~m}, 3 \mathrm{H})$, 8.14-8.16 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.1$ and $16.2(\mathrm{~d}$, $J \sim 6.0 \mathrm{~Hz}$ each $), 27.5,43.8(\mathrm{~d}, J=138.3 \mathrm{~Hz}), 55.8,55.9,62.2$ and 63.2 (d, $J=7.6 \mathrm{~Hz}$ each), $63.6,11.2,113.2,122.5(\mathrm{~d}, J=7.1 \mathrm{~Hz})$, $125.4(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 128.9,129.2,133.9,136.6,148.7(\mathrm{~d}, J=3.3$ $\mathrm{Hz}), 149.0(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 193.3,201.7(\mathrm{~d}, J=17.4 \mathrm{~Hz})$; ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.8(\mathrm{~s}) ; \mathrm{LC} / \mathrm{MS} \mathrm{m} / \mathrm{z} 449[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{7} \mathrm{P}$ C, 61.60; H, 6.52. Found C, 61.38; H, 6.26.
Synthesis of (\pm)-diethyl (1-(3,4-dimethoxyphenyl)-3-oxo-3phenylpropyl)phosphonate (3o). This compound was synthesised using similar procedure and molar quantities as $\mathbf{3 b}$ for 8 h from the reaction of 1c with 2d. Yield 0.620 g , (93%); viscous liquid; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2983,1685,1593,1514,1253,1152,1033 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.09$ and 1.27 (two sets of triplet, $J \sim 6.8 \mathrm{~Hz}$
each, 6 H$), 3.57-3.73(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.88-3.94$ $(\mathrm{m}, 2 \mathrm{H}), 4.05-4.09(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.98(\mathrm{~m}$, $2 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.3$ and 16.4 (two sets of doublets, J $=6.1 \mathrm{~Hz}$ each $), 38.5(\mathrm{~d}, J=141.4 \mathrm{~Hz}), 39.3,55.8,55.9,61.9$ and 62.9 (two sets of doublets, $J=7.1 \mathrm{~Hz}$ each), 111.1 (d, $J=3.0 \mathrm{~Hz}$), $112.6(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 121.4(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 128.1,128.2(\mathrm{~d}, J=7.1$ $\mathrm{Hz}), 128.6,133.3,136.6,148.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 148.7(\mathrm{~d}, J=3.0 \mathrm{~Hz})$, $196.5(\mathrm{~d}, J=15.1 \mathrm{~Hz}) ;$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 28.8. LC/MS $\mathrm{m} / \mathrm{z} 407[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{P} \mathrm{C}, 62.06 ; \mathrm{H}, 6.70$. Found C, 61.86; H, 6.48.

(ix) Reaction of $1 d$ with 1,3-diketones 2a, 2c and 2d

Synthesis of (\pm)-diethyl 2-benzoyl-1-(naphthalene-1-yl)-3-oxo-3phenylpropylphosphonate (3p) To a stirred solution of $1 \mathbf{d}(0.50 \mathrm{~g}$, 1.7 mmol) and dibenzoylmethane ($\mathbf{2 a}, 0.38 \mathrm{~g}, 1.7 \mathrm{mmol}$), in anhydrous nitromethane $(4 \mathrm{~mL})$ as solvent, anhydrous $\mathrm{FeCl}_{3}(0.27 \mathrm{~g}$, 1.7 mmol equiv) was added and then the reaction mixture was stirred at $28{ }^{\circ} \mathrm{C}$ for 16 h . Yield 0.610 g , (72%); off-white solid; mp 186188; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2982, 1706, 1589, 1445, 1257, 1241, 1016, 969 ; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.58$ and 0.97 (two sets of triplet, $J=$ 7.1 Hz each, each 3 H$)$, 3.01-3.08 (m, 1H), 3.49-3.58 (m, 1H), 3.69$3.89(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{dd}, J=20.5$ and $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd} \rightarrow \mathrm{t}, J=$ 11.1 and $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.44-$ $7.54(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.77(\mathrm{~m}, 7 \mathrm{H}), 8.29-8.31(\mathrm{~m}, 2 \mathrm{H}), 8.46(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.7$ and $15.9(\mathrm{~d}, J \sim 6.0$ Hz each), 38.7 (d, $J=138.6 \mathrm{~Hz}), 57.4,62.0$ and $63.5(\mathrm{~d}, J=7.2 \mathrm{~Hz}$ each), 124.1, 124.7 (d, $J=3.3 \mathrm{~Hz}$), $125.9,126.6(\mathrm{~d}, J=4.7 \mathrm{~Hz})$, $128.2(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 128.5,128.6(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 128.9,129.4$, $130.7(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 132.6,132.65,133.2,133.7,133.9,136.8$, 137.0, $191.9(\mathrm{~d}, J=16.0 \mathrm{~Hz}), 193.2 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 27.1 (s); LC/MS m/z $501[\mathrm{M} \mathrm{+H}]^{+}$; Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{P} \mathrm{C}$, 71.99; H, 5.84. Found C, 72.13; H, 5.76. This compound is reported in the literature. ${ }^{\text {1d }}$
(\pm)-Diethyl
1-(naphthalene-1-yl)-3-oxo-3phenylpropylphosphonate (3q) This compound was synthesised using similar procedure and molar quantities as $\mathbf{3 b}$ for 8 h using the diketone 2a. Yield 0.610 g , (91%); viscous liquid; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1684, 1236, 1026, 959 ; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.78$ and 1.25 (two sets of triplet, $J \sim 8 \mathrm{~Hz}$ each, each 3 H), 3.35-3.44 (m, 1H), 3.68-3.76 (m, 1H), 3.90$3.93(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.91-4.95(\mathrm{~m}, \mathrm{br}, 1 \mathrm{H}), 7.39-$ $7.42(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.74$ $(\mathrm{m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.38$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.0$ and 16.4 (two sets of doublets, $J=5.5 \mathrm{~Hz}$ each), 32.7 (d, $J=135.5$ Hz), 40.2, 62.2 and 63.1 (two sets of doublets, $J=7.2 \mathrm{~Hz}$ each), $123.7,125.2,125.3,125.8,126.5,127.9,128.2,128.7,128.8$, $132.3(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 132.7(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 133.4,133.9$, 136.6, 196.6; ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.5 ; \mathrm{LC} / \mathrm{MS} \mathrm{m} / \mathrm{z}$ $397[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{P}$ C, 69.69; H, 6.36. Found C, $69.74 ; \mathrm{H}, 6.27$. This compound is also reported. ${ }^{5 \mathrm{~d}}$ The other diketones $\mathbf{2 c}$ and $\mathbf{2 d}$ also produced $\mathbf{3 q}$ in 80% yield under the same reaction conditions after 12 h .
(x) The reaction of phosphonate $1 e$ with diketones $2 a, 2 c$ and $2 d$: The reaction was performed in a manner analogous to the reaction for synthesizing $\mathbf{3 b}$ using similar molar quantities. The compound $\mathbf{3 r}$ (yield $0.540 \mathrm{~g}, 63 \%$; off-white solid. $\mathrm{mp} 170-172{ }^{\circ} \mathrm{C}$) was isolated followed by 3s (yield $0.180,27 \%$; viscous liquid) using column chromatography. In case of $\mathbf{2 c}$, reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 7 h to produce 3 t [Yield: 0.130 g , (18%), light brown solid] and 3s [Yield: 0.530 g , (78%); viscous liquid]. For 2d, the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 12 h to afford 3 s with isolated yield 0.610 g (91%).
(\pm)-Diethyl 2-benzoyl-1-(4-(dimethylamino)phenyl)-3-oxo-3phenylpropylphosphonate (3r) IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1696,1605$, 1522, 1253, 1050, 965; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 0.96$0.98(\mathrm{~m}, 6 \mathrm{H}), 2.84(\mathrm{~s}, 6 \mathrm{H}), 3.47-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.88(\mathrm{~m}$, $3 \mathrm{H}), 4.42(\mathrm{dd}, J=19.7$ and $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd} \rightarrow \mathrm{t}, J=12$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.38(\mathrm{~m}, 4 \mathrm{H})$, $7.56-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.23(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.9$ and $16.2(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}), 40.4,44.1(\mathrm{~d}, J=139.4 \mathrm{~Hz}), 56.8,61.7$ and $63.4(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}), 112.5,120.9(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 128.5,128.6,128.7$, 129.2, $130.6(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}), 133.1,133.4,137.0,149.7,192.3$ (d, $J=16.7 \mathrm{~Hz}$), 193.1; ${ }^{31} \mathrm{P}$ NMR ($212 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.8$ (s); LC/MS m/z $494[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{P}$ C, $68.14 ;$ H, $6.54 ;$ N, 2.84 ; Found C, 68.31 ; H, 6.32 ; N, 2.75.
(\pm)-Diethyl
1-(4-(dimethylamino)phenyl)-3-oxo-3phenylpropylphosphonate (3s) IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2934, 1733, 1690, 1523, 1257, 1027; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.12(\mathrm{t}, J \sim 7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.28(\mathrm{t}, J \sim 7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 6 \mathrm{H}), 3.60-3.76(\mathrm{~m}, 3 \mathrm{H}), 3.90-$ $3.95(\mathrm{~m}, 2 \mathrm{H}), 4.04-4.09(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.30$ $(\mathrm{m}, 2 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 2 H); Some unassigned peaks at $\delta 2.98(\mathrm{~s})$ and $6.87-6.95(\mathrm{~m})$ also appeared in the spectrum; ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.3$ and $16.4(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 37.9(\mathrm{~d}, J=140.6 \mathrm{~Hz}), 39.3,40.5,61.9$ and 63.0 (d, $J=7.4 \mathrm{~Hz}$ each $), 110.9,112.6,114.7,120.0,121.4,123.2(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}), 128.1,128.6,129.8(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 133.1,136.8,145.9$, $146.8,149.8(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 196.8(\mathrm{~d}, J=15.0 \mathrm{~Hz})$; Other peaks at δ 55.9 and in the region of 110.0-150.0 corresponds to unassigned peaks in ${ }^{1} \mathrm{H}$ NMR; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.0$ (s); LC/MS $\mathrm{m} / \mathrm{z} 390[\mathrm{M}+\mathrm{H}]^{+}$.
(\pm)-Diethyl
2-benzoyl-1-(4-(dimethylamino)phenyl)-3oxobutylphosphonate (3t) yield: 0.130 g , (18%); light brown solid; $\mathrm{mp} 172-174{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1696, 1605, 1522, 1448, 1253, 1050, $965 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99$ and $1.05(\mathrm{t}, J=7.1 \mathrm{~Hz}$ each, 6 H), $1.87(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 6 \mathrm{H}), 3.60-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.82$ $(\mathrm{m}, 3 \mathrm{H}), 4.29(\mathrm{dd}, J=21.5$ and $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd} \rightarrow \mathrm{t}, J=11.9$ and $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.51-$ $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.64(\mathrm{~m}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H})$; Some unassigned peaks at $\delta 2.98(\mathrm{~s})$ and 6.87-6.95 (m) also appeared in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.9$ and $16.1(\mathrm{~d}, J=6.6$ $\mathrm{Hz}), 27.1,40.4,43.3(\mathrm{~d}, J=138.1 \mathrm{~Hz}), 62.1$ and $62.9(\mathrm{~d}, J=7.1 \mathrm{~Hz})$, 63.6, 110.7, 112.6, 114.6, 120.1, 121.5, 128.7, 19.1, 130.7, 133.6, 136.8, 145.7, 146.6, 150.0, 193.6, 202.0 (d, $J=17.1 \mathrm{~Hz}$), The peaks at $\delta 55.9$ and extra peaks at the region of 110.0-150.0 correspond to the unassigned peas in ${ }^{1} \mathrm{H}$ NMR; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 25.6 (s); LC/MS m/z $432[\mathrm{M}+\mathrm{H}]^{+}$.
(xi) The reaction of phosphonate $1 e$ with diketone $2 b$: Synthesis of (\pm)-diethyl

2-acetyl-1-(4-(dimethylamino)phenyl)-3oxobutyl)phosphonate (3u) A method similar to the synthesis of $\mathbf{3 k}$ was used using similar molar quantities. Yield 0.570 g , (89%); offwhite solid; $\mathrm{mp} 198-200^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) $1698,1609,1517,1357$, 1236, 1160, 1050,; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.09$ and 1.24 (two sets of triplet, $J=7.2 \mathrm{~Hz}$ each, 6 H), $1.82(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $2.89(\mathrm{~s}, 6 \mathrm{H}), 3.63-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.99(\mathrm{~m}, 4 \mathrm{H}), 4.60(\mathrm{dd} \rightarrow \mathrm{t}, J \sim$ 11.6 Hz each, 1 H$), 6.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.2$ and 16.3 (two sets of doublets, J $=5.5 \mathrm{~Hz}$ each $), 28.1,30.7,40.5,42.9(\mathrm{~d}, J=139.3 \mathrm{~Hz}), 62.4$ and 63.2 (two sets of doublets, $J=7.1 \mathrm{~Hz}$ each), $69.6,112.7,120.1$ (d, J $=7.8 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 149.9,201.8,202.1(\mathrm{~d}, J=18.1$ $\mathrm{Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 26.0. LC/MS m/z $370[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{P} \mathrm{C}, \mathrm{58.53;} \mathrm{H}, \mathrm{7.64;} \mathrm{N}, \mathrm{3.79} .\mathrm{Found} \mathrm{C}$, 58.31; H, 7.43; N, 3.88.

Acknowledgements

We thank Department of Science and Technology-FAST TRACK for financial support. We also thank Research Initiation Grant (BITS, Pilani) for an additional financial support. Special thank goes to Dr. Samar K Das for additional support through UGC networking resources. We also thank Mr. Satish, Dr. E. Balaraman and Dr. Moloy Sarkar for helping in many ways.

Notes and references

${ }^{\text {a }}$ Department of Chemistry, Birla Institute of Technology and Sciences, Pilani Hyderabad Campus, Shamirpet, Hyderabad-500078, AP, India. Fax: : 91-040 6630 3998; Tel: 91-040 6630 3537; E-mail: manab@hyderabad.bitspilani.ac.in
${ }^{\mathrm{b}}$ Catalysis Division, CSIR-National Chemical Laboratory, Pune, Dr. Homi Bhabha Road, Pune-411008
${ }^{5}$ The ${ }^{31}$ P NMR spectrum for the crude reaction mixture obtained from the reaction of $\mathbf{1 a}$ with $\mathbf{2 c}$ showed the presence of compounds $\mathbf{3 b}$ and $\mathbf{3 d}$.
\dagger Along with $\mathbf{3 m}$, another type of compound $\mathbf{3 m a}$ was also isolated in 1:1 ratio. The primary investigations on the spectral data of pure crystallized 3ma (see experimental section for details) support the molecular structure as given below

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

1. For use as herbicide and fungicides see: (a) I. Mori, G. Iwasaki, A. Scheidegger, S. Koizumi, K. Hayakawa and J. Mano, PCT Int. Appl. WO 92JP485 920417; Chem. Abstr. 1993, 118, 124547; (b) For use as antihypertensive agents, see: D. S. Karanewsky and T. Dejneka, Eur. Pat. Appl. EP 87-104477 870326, 1987; US Appl. 844635, 1986; Chem. Abstr. 1988, 109, 129685; (c) For use in Osteoporosis, see: Y. Isomura, S. Sakamoto and T. Abe, Japan Patent Appl. JP 87-271433 871026; Chem. Abstr. 1989, 111, 174388; (d) C. F. Schwender, S. A. Beers, E. Malloy, K. Demarest, L. Minor and K. H. W Lau, Bioorganic \& Medicinal Chemistry Letters, 1995, 5, 180; (e) In synthesis see: H. Krawczyk, K. Wasek, J. Kędzia, J. Wojciechowski and W. M. Wolf, Org. Biomol. Chem. 2008, 6, 308.
2. For use as MMP-2 inhibitor see: (a) H. C. E. Kluender, G. H. H. H. Benz, D. R. Brittelli, W. H. Bullock, K. J. Combs, B. R. Dixon, S. Schneider, J. E. Wood, M. C. Vanzandt, D. J. Wolanin and S. M. Wilhelm, US Pat. Appl. US 95-539409 951106; Chem. Abstr. 1998, 129, 161412; As Kininogenase inhibitor (b) M. Szelke, D. M. Evans and D. M. Jones, PCT Int. Appl. WO 94-GB1887 940831; Chem. Abstr. 1995, 123, 257409.
3. (a) For use as natural products, see: M. Mikolajczyk and A. Zatorski J. Org. Chem. 1991, 56, 1217; (b) For γ-hydroxy, see: C. Meier and W. H. G. Laux, Tetrahedron Lett., 1996, 52, 589; For other important organophosphonates, see: (c) K. V Sajna, R. Kotikalapudi, M. Chakravarty, N. N. Bhuvan Kumar and K. C. Kumara Swamy, J. Org. Chem. 2011, 76, 920; (d) M. Phani Pavan, M. Chakravarty and K. C. Kumara Swamy, Eur. J. Org. Chem. 2009, 5927; (e) M. Chakravarty and K. C Kumara Swamy, J. Org. Chem. 2006, 71, 9128.
4. For α-unsubstituted γ-ketophosphonates, see: (a) V. Chudasama, M. Jenna Ahern, R. J. Fitzmaurice and S. Caddick, Tetrahedron Lett., 2011, 5, 21067; (b) N.-S. Li, S. Yu and G. W. Kabalka, Organometallics, 1999, 18, 1811; (c) C. K. McClure and K.-Y. Jung, J. Org. Chem. 1991, 56, 2326; (d) D. Liotta, U. Sunay and S. Ginsberg, J. Org. Chem. 1982, 47, 2229; (e) D. Gorenstein and F. H. Westheimer, J. Am. Chem. Soc. 1970, 92, 634; (f) G. H. Birum and Richardson, G. A. US Patent 3113 139, 1963; Chem. Abstr. 1964, 60, 5551d.
5. For α-substituted γ-ketophosphonates, see: (a) F. Wang, S. Wang, X. Zhu, S. Zhou, H. Miao, X. Gu, Y. Wei and Q. Yuan, Organometallics 2013, 32, 3920; (b) A. Zhang, L. Cai, Z. Yao, F. Xu and Q. Shen, Heteroat. Chem. 2013, 24, 345; (c) J.-J. Feng, X.-F. Chen, M. Shi, and W. L. Duan, J. Am. Chem. Soc. 2010, 132, 5562; (d) D. Zhao, Y. Yuan, A. S. C. Chan and R. Wang, Chem. Eur. J. 2009, 15, 2738; (e) A. C. Verbicky and C. K. Zercher, J. Org. Chem. 2000, 65, 5615; (f) L. S. Boulos, R. Shabana, and Y. M. Shaker, Heteroat. Chem. 2000, 11, 57; (g) P. Savignac, A. Breque, F. Mathey, J.-M. Varlet and N. Collignon, Synth. Commun. 1979, 9, 287.
6. (a) G. Pallikonda and M. Chakravarty, Eur. J. Org. Chem., 2013, 944. (b) G. Pallikonda, M. Chakravarty, RSC Adv., 2013, 3, 20503.
7. For benzylation of 1,3-diketones, see: using Bi(III) (a) M. Rueping, B. J. Nachtsheim and A. Kuenkel, Org Lett 2007, 9, 825; using Fe(III) (b) U. Jana, S. Biswas and S. Maiti, Tetrahedron Lett 2007, 48, 4065; (c) Y. Yuan, Z. Shi, X. Feng, X. Liu, Appl. Organometal. Chem. 2007, 21, 958; using rare earth elements (d) M. Noji, Y. Konno and K. Ishii, J. Org. Chem. 2007, 72, 5161. (e) For a comprehensive study, see: S. Biswas and J. S. M. Samec, Chemistry-An Asian Journal 2013, 8, 974.
8. For Indium catalysed reactions, see: (a) A. Kawata, K. Takata, Y. Kuninobu, and K. Takai Angew. Chem. Int. Ed. 2007, 46, 7793. Review article: (b) C. H. Jun, Chem. Soc. Rev., 2004, 33, 610; For Iron (III) catalyzed, see: (c) S. Biswas, S. Maiti and U. Jana, Eur. J. Org. Chem 2010, 2861. (d) C. B. Rao, D. C. Rao, D. C. Babu and Y. Venkateswarlu, Eur. J. Org. Chem 2010, 2861.
9. For α-hydroxyphosphonates, see: (a) K. S. Kumar, C. B. Reddy, M. V. Narayana Reddy, C. R. Rani, and C. Suresh Reddy Org. Commun., 2012, 5, 50. (b) M. Pandi, P. K. Chanani and S. Govindasamy, Applied Catalysis A General 2012, 441, 119. (c) S. Kumara Swamy, R. S. Selvi and K. C. Kumara Swamy Synthesis, 1997, 207.
10. R. Sanz, D. Miguel, A. Martnez, J. M. Alvarez-Gutiérrez and F. Rodriguez, Org Lett. 2007, 9, 2027
11. J.-I. Tateiwa, H. Horiuchi, K. Hashimoto, T. Yamauchi, S. Uemura J. Org. Chem., 1994, 59, 5901.
12. Considering 3d, using B3LYP/6-31G ${ }^{* *}$, the difference in energy for optimised structures of $\mathbf{X}(-1033773.793 \mathrm{kcal} / \mathrm{mol})$ and $\mathbf{Y}(-1033773.712$ $\mathrm{kcal} / \mathrm{mol}$) is only $0.081 \mathrm{kcal} / \mathrm{mol}$.
