This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Asymmetric Synthesis of Substituted NH-Piperidines from Chiral Amines

Lekh Nath Gautam², Yijin Su², Novruz G. Akhmedov³, Jeffrey L. Petersen³ and Xiaodong Shi*²

Previously, we reported an efficient asymmetric synthesis of substituted piperidines through exocyclic chirality induced nitroalkene/amine/enone (NAE) condensation reaction. Effective protecting group strategy was developed herein to achieve enantio pure piperidines (yields up to 92%) with complete chirality retention (ee > 95%). Simple derivatization of the obtained piperidines gave thiourea catalysts, indicating the strong potential of this method in producing new amine-based dual functional organocatalyst for future development.

Polysubstituted piperidines and its derivatives are important compounds in biological and medicinal research.¹ Currently, over 12,000 piperidines have been used in clinical trials or preclinical studies.² Several biologically and medicinally active piperidines are shown in Scheme 1.³ As a result, new approaches that provide the stereoselective synthesis of chiral piperidines have been an important area in organic chemistry during the last decades.⁴

Scheme 1. Biologically active substituted piperidines.

(+)-Carpamic acid
(+)-Sedamine
(S)-Baiklain
(+)-Deoxynorjirimycin
(-)-Prosophyline
(-)-β-Conhydrine

According to the chemical literature, asymmetric syntheses of piperidine derivatives revolve around the following four strategies:⁵ (A) intramolecular S₈2 displacement of an amine to a precursor containing a leaving group;⁶ (B) reduction or addition to pyridine/piperidine derivatives;⁷ (C) ring expansion of prolinols,⁸ and; (D) ring closing-metathesis (RCM).⁹ Although considerable effort has been devoted to the preparation of these heterocycles, efficient, short, direct, multi-substituted and diversity-oriented asymmetric piperidine syntheses are rare and highly desirable.

We have previously demonstrated the step efficient diastereoselective synthesis of highly substituted piperidines.¹⁰ Herein we extend this to an asymmetric method that provides N-H piperidines (>95% ee) when followed by a new mild deprotection method. The key improvement was the use a commercially available chiral amine auxiliary that could also be readily cleaved under the mild conditions of trifluoroacetic acid (TFA). This approach is delineated here, and afforded the highly enantioenriched NH-piperidines with good to excellent yield and diastereoselectivity.

During the last four years, our group has been working on amine addition to the nitroalkene as a new reaction mode to facilitate complex heterocycle synthesis in a multi-component fashion under mild conditions. The stereochemical outcome can be controlled by the exocyclic stereogenic center. Thus, using amino acids as the amine nucleophile, the N-substituted piperidines were prepared in modest to good yields (50% to 85%) and decent stereoselectivity of 3:1 to 4:1 dr. One major limitation to this strategy is how to prepare the NH-piperidine, which will be more attractive in general. To further extend this strategy for the synthesis of enantio-enriched NH-piperidines, we initiated the investigation of various chiral amines and examined the N-substituent group deprotection process to achieve the asymmetric synthesis of NH-piperidine with high efficiency and excellent stereoselectivity.

Based on our previous report, we evaluated benzyl amines as alternative nucleophiles for this condensation reaction. Under the optimized conditions (THF solvent, 0.5M concentration, 1 equiv nitroalkene, 1.5 equiv amine, and 2.0 equiv MVK, rt), the desired N-benzyl-piperidines 3 were prepared in excellent yields (generally >90% with the combination of all stereoisomers Figure 1).¹⁰

Figure 1. Benzyl-amine in NAE reaction

3b: d.r. (5:1:0:0), 68% yield of major isomer; 3d: d.r. (16:3:1:0), 72% yield of major isomer
As shown in Figure 1, benzyl amines are suitable for this nitroalkene/amine/enone condensation (NAE), giving > 95% yields (combining all stereoisomers) in most of the cases. Notably, the reaction can be easily scaled up. The major isomer of piperidine 3a was synthesized on a 10 g scale. With enantiopure chiral amines, good stereoselectivity were observed (3b, 3d). Given that there are two stereogenic centers in the products, four isomers could be potentially formed. However, only two major products were observed for piperidine 3b (5:1 dr), and very little third stereoisomer observed in piperidine 3d (16:3:1). Notably, the absolute stereochemistry of 3d was assigned based on compound 3b, whose structure has been confirmed by X-ray crystallography as reported previously (see X-ray structure in supporting information). Subsequent deprotection of the amine (*vide infra*) confirmed that the two major stereoisomers in both cases as the pseudo-enantiomers (not the C-4 isomer). In all cases, the major stereoisomers were isolated with yields higher than 65%. Compared with benzyl amine, the p-OMe benzyl (PMB) amine gave slightly higher yield and better stereoselectivity, presumably a consequence of the improved nucleophilicity.

These results demonstrate that readily available chiral benzyl amine derivatives may be used as the amine source for this NAE condensation reaction. In view of our interest in developing an efficient synthesis of NH-piperidines, we then focused our investigation on the benzyl deprotection process. The major stereoisomers of piperidines 3a-3d were isolated and subjected to various deprotection conditions. The results are summarized in Table 1.

Table 1. Benzyl amine deprotection

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>3a (%)</th>
<th>3b (%)</th>
<th>3c (%)</th>
<th>3d (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Raney Ni, H₂, Ac-O, MeOH, 20-40 psi, 24 h</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>2</td>
<td>Pd(OH)₂, H₂, Boc-O, MeOH, 20-40 psi, 24 h</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>3</td>
<td>Pd/C, H₂, AcOH, MeOH, 20-40 psi, 24 h</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>4</td>
<td>Na, NH₃, -78°C THF, 12 h</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>5</td>
<td>Et₂SiH, HCOOH, 90°C, 12 h</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>6</td>
<td>CAN, AcOH/H₂O, rt, 12 h</td>
<td>37</td>
<td>29</td>
<td>42</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>DDQ, DCM/H₂O, rt, 12 h</td>
<td>39</td>
<td>30</td>
<td>43</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>TMSCI, DCM, rt, 12 h</td>
<td>nr</td>
<td>nr</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>HCl, Dioxane, RT-70°C, 12 h</td>
<td>nr</td>
<td>nr</td>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>TFA:DCM (1:1), rt, 12 h</td>
<td>nr</td>
<td>nr</td>
<td>48</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>TFA, rt, 12 h</td>
<td>nr</td>
<td>nr</td>
<td>30</td>
<td>48</td>
</tr>
</tbody>
</table>

*General reaction conditions: Pipiderines 3a-3d (1.0 eq.), reagents were used excess except for entry 4, 5, 6 & 7 (2.1 eq.). *Reactions were monitored by TLC/crude NMR till SM totally consumed. *Yield refers to crude NMR. *Isolated yield of product, nr = no reaction/inert.

The typical reduction conditions did not work well (entries 1-5) due to the rapid, preferential reduction of nitro group. Under the hydrogenation conditions (entries 1-3), only nitro reduction was observed. Reactions of piperidines 3a-3d with Na/NH₃ and Et₂SiH gave partial benzyl reduction products after an extended reaction time. However, the resulting diamines were unstable and hard to be isolated from the reaction mixtures. The oxidative conditions (entries 6-7), on the other hand, led to the decomposition of resulting amine, generating the NH amine in poor yields. To circumvent these problems, we focused on acidic conditions that target the benzyl amine over the nitro group. After exploring several typical acid deprotection conditions (entries 8-11), the 1:1 TFA:DCM solution was identified as the optimal pair of reagent, that gave the NH-piperidine in excellent yield (entry 10). Notably, the PMB was required for this deprotection and benzyl amine could not be deprotected under these conditions.

As summarized in Figure 2, the aromatic nitroalkene was generally suitable to NAE reaction. With the optimal conditions in hand, subsequently we evaluated the reaction scope. Good to excellent diastereoselectivities were observed with the major isomer being isolated in good yields. In contrast, aliphatic nitroalkenes do not work under this condition. This result may be due to the low reactivity of olefin with electron donating alky group and the undesired double bond rearrangement side reaction. Similar results were obtained when para-methoxy nitroalkene was used (3g). The reaction was extremely slow and a limited yield was noticed even after increasing the reaction time (72 h). The p-chloro-substituted nitroalkene reacted much faster and a higher yield was obtained. Indole and protected indole nitroalkene also did not work in this reaction due to the same reason. In addition, aromatic vinyl ketones did not work in this reaction, likely caused by the challenging cyclization due to the steric hindrance at the C-4 position. An unfavorable electronic effect was also observed in β-substituted enone, which gave no cyclization products even after extended reaction time. Despite this limitation, the fact that single enantiomer of substituted piperidines was produced in good yields in one step from...
simple starting materials emphasizes the high efficiency of this transformation.

With these chiral N-piperidines in hand, we explored the deprotection conditions described in Table 1. The goal was to evaluate whether or not racemization occurred during the process. Surprisingly, enantiomerically pure NH-piperidines were obtained (>95% ee) in all cases. The result is shown in Figure 3.

Figure 3. Preparation of enantiomeric pure NH-piperidine

![Diagram showing the preparation of enantiomeric pure NH-piperidine](image)

General reaction conditions: Substrate 3 (1eq.), TFA:DCM (1:1) at RT, 12-18h. The reactions were monitored by TLC, yield is both crude 1H NMR/ isolated, ee determined by chiral HPLC analysis; (+) & (-) determined from optical rotation.

The optimal deprotection conditions worked well for all these substrates, giving the NH-piperidine in excellent yields. The products were confirmed by 1H-NMR, 13C-NMR and HRMS. The ee were determined by HPLC analysis. With this new strategy, both piperidine enantiomers can be prepared from the corresponding chiral amines.

Figure 4. Piperidine as organocatalyst.

![Diagram showing the use of piperidine as organocatalyst](image)

“Yield of isolated product after chromatography. Absolute configuration was determined by comparing the specific rotation with that of literature data.”

Although our NAE condensation strategy suffers from limited substrate scope, one unique advantage of this reaction is the incorporation of NO2 and amine functional groups through simple steps. As shown in Figure 4, compound 3d can be readily converted to thiourea through amine nitro-reduction.16 The amine-thiourea 6 was prepared in excellent yields. Applying piperidine 6 as a dual functional organocatalyst gave the nitro methane Michael addition product in good yield with excellent ee.17 Exploration of other of applications this new class of organocatalyst is currently under investigation.

Conclusions

In conclusion, we report herein the asymmetric synthesis of NH-piperidines. With the application of chiral amine, the enantiomerically pure piperidines were achieved through the nitroalkene-amine-enone condensation. Further demonstration of these compounds in organocatalysis revealed a promising future for these compounds and highlighted the significance of this highly efficient asymmetric synthesis.

Experimental Section

General Information

All of the reactions dealing with air and/or moisture-sensitive reactions were carried out under an atmosphere of nitrogen using oven/flame-dried glassware and standard syringe/septa techniques. Unless otherwise noted, all commercial reagents and solvents were obtained from the commercial provider and used without further purification. 1H-NMR and 13C-NMR spectra were recorded on Varian 600 MHz spectrometers. Chemical shifts were reported relative to internal tetramethylsilane (δ 0.00 ppm) or CDCl3 (δ 7.26 ppm) for 1H-NMR and CDCl3 (δ 77.0 ppm) for 13C-NMR. Flash column chromatography was performed on 230-400 mesh silica gels. Analytical thin layer chromatography was performed with precoated glass baked plates (250µ) and visualized by fluorescence and by charring after treatment with potassium permanganate stain. Rf values were obtained by elution in the stated solvent ratios. Optical rotations were measured on a commercial automatic polarimeter and reported as follows: [α]D (c = g/100 mL, solvent). Melting points were measured on a Mel-Temp 1001D apparatus and uncorrected. HRMS were recorded on LTQ-FTUHRA spectrometer. Anhydrous tetrahydrofuran (THF) was purchased from Acros and distilled with sodium, immediately before use. Anhydrous dichlomethane (CH2Cl2) was distilled with CaH2.

General Procedure for the Preparation of Substituted N-protected Piperidine (3d-3j):

To a solution of nitroalkene 1a (149 mg, 1 mmol, 1 eq.) in dry THF (2 mL, 0.5 M), were added successively Chiral 4-methoxy-phenylethanamine (227 mg, 1.5 mmol, 1.5 eq.) and MVK (140 mg, 2.0 mmol, 2.0 eq.) under N2 atmosphere. The mixture was stirred at room temperature for 36 hr and monitored by TLC. After removing the solvent, the residue was purified by flash silica gel chromatography (Hexane-EtOAc v/v 8:1), which gave a major diastereomeric piperidine 3d (266 mg, 0.72 mmol, yield: 72%) as white solid.

General Procedure for the Preparation of NH-piperidine (4a-4g):

TFA was added dropwise to a stirred solution of the substrate 3d (266 mg, 0.72 mmol) in minimum amount of DCM and stirred at
room temperature 12-18hr (TFA:DCM = 1:1). After concentration in rotary evaporator, the residue was partitioned between saturated aqueous sodium bicarbonate solution (8ml) and Dichloromethane (8ml). The separated aqueous phase was extracted with Dichloromethane (3×8ml), and the combined organic extracts dried over sodium or magnesium sulfate for 2hr then filtered through the cotton plug. Finally, the dilute solution was concentrated in vacuo and the residue was purified by column chromatography using solvent system (Dichloromethane: Methanol from 200:1 to 50:1) to afford pipеридине 4a. Using the same mentioned procedure other NH-piperidines were prepared from 3d-3j.

Preparation of Thiourea-Based-Piperidine:

To a solution of 3d (major) (800 mg, 2.16 mmol, 1eq) were added 1N HCl in MeOH (25 ml, >10 eq) and Zn powder (2.20 g, 34.6 mmol, 15 eq.). The mixture was then stirred at room temperature and monitored by TLC. After the complete consummation of 3d, MeOH was completely evaporated followed by treatment with saturated aqueous NaHCO₃ until pH > 10, and CH₂Cl₂. Organic layer was extracted with CH₂Cl₂ (30 mL × 5). The combined organic layer was washed with brine and then dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was dissolved in minimum CH₂Cl₂ and purified by flash silica gel chromatography (CH₂Cl₂-MeOH v/v 100:1), which gave almost quantitative amount of 5 (700 mg, 2.0 mmol, yield 86%).

To a solution of amine 5 (700 mg, 2.0mmol) in 20 ml dichloromethane was added 3,5-di-trifluoromethyl-phenyl isothiocyanate (557 mg, 2.0 mmol, 1.0 eq.) and stirred for overnight. After, TLC showed the disappearance of 5, the solution was evaporated and the residue was chromatographed in solvent system (EtOAc: Hexane, v/v 5:1 to 1:1) to afford white solid 6 (1.07g, 1.78 mmol, yield: 86%).

Compound 6 was purified by flash silica gel chromatography (Hexane/EtOAc, v/v 5/1 to 1/1) as solid, 1.078g, yield 86 %. ¹H NMR (600 MHz, CDCl₃): δ 8.09 (s, 2H), 7.73 (t, J = 10.0 Hz, 1H), 7.65 (s, 1H), 7.49 (2H, 7.31 (d, J = 8.8 Hz, 2H), 7.25 (t, J = 7.2 Hz, 1H), 7.16 (t, J = 7.2 Hz, 1H), 6.87 (d, J = 8.4 Hz, 2H), 4.93 (s, 1H), 4.73 (s, 2H), 4.65 (t, J = 10.0 Hz, 1H), 3.73 (s, 3H), 3.70 (m, 1H), 3.60 (q, J = 6.85 Hz, 1H), 2.66 (m, 2H), 2.19 (m, 1H), 1.62 (m, 1H), 1.14 (s, 3H), 1.13 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 185.7, 162.8, 147.2, 145.2, 140.8, 135.7, 135.3, 135.0, 134.7, 133.4, 132.1, 129.7, 127.0, 126.3, 120.8, 118.4, 74.9, 70.3, 68.1, 60.1, 58.9, 43.4, 43.0, 32.9, 13.3. HRMS Calculated for C₃₀H₂₆N₆O₂S [M+H]⁺: 612.20747. Found: 612.20711.

Asymmetric Michael addition of Nitromethane to Chalcone with Chiral Organocatalysis:

To a solution of chalcone (1 mmol, 1.0 equiv) and nitromethane (915 mg/0.80 ml, 15 mmol, 15.0 equiv) was added thiourea-catalyst 6 (122 mg, 0.2 mmol, 20 mol%). The reaction mixture was stirred in capped vial for 6h at 50 °C. Then the volatiles were removed by concentration and the residue purified by silica gel flash column chromatography (ethyl acetate-petroleum ether 1:15 V/V) to afford the product as white solid (253 mg, 80% yield). Enantiomeric excess was determined by HPLC on Chiralpak AS-H column (n-hexane-isopropanol 90:10 V/V, flow rate 1.0 ml/min, 220 nm), major enantiomer t_R = 10.3 min, minor enantiomer t_S = 13.6 min, 88 % ee (R) [α]_D = + 26.7° (c = 0.1, CHCl₃, 88 % ee). ¹H NMR (400 MHz, CDCl₃): δ = 7.91–7.89 (m, 2H), 7.57–7.54 (m, 1H), 7.46–7.42 (m, 2H), 7.32–7.27 (m, 5H), 4.81 (dd, J = 12.5, 6.6 Hz, 1H), 4.68 (dd, J = 12.5, 8.0 Hz, 1H), 4.22 (ps quint, J = 7.1 Hz, 1H), 3.50–3.37 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 196.8, 139.1, 136.3, 133.5, 129.3, 129.1, 129.0, 128.7, 127.4, 79.5, 41.5, 39.2.

Acknowledgements

We thank NSF (CAREER-CHE-0844602).

Notes and references

