Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

COMMUINCATION

Page 1 of Organic & **Biomolecular Chemistry**

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Palladium-catalyzed tandem reaction of 2-hydroxyarylacetonitriles with sodium sulfinates: one-pot synthesis of 2-arylbenzofurans

Jiuxi Chen,^{*a,b*} Jianjun Li^{*a*} and Weike Su^{*a*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

The first example of the palladium-catalyzed one-pot synthesis of 2-arylbenzofurans in moderate to excellent yields via a tandem reaction of 2-hydroxyarylacetonitriles with sodium sulfinates was reported. A plausible mechanism for

- 10 the formation of 2-arylbenzofurans involving desulfinative addition and intramolecular annulation reactions is proposed. Moreover, the present synthetic route to benzofurans could be readily scaled up to gram quantity without difficulty. Thus, the method represents a convenient and practical strategy for 15 synthesis of benzofuran derivatives.

The benzofuran ring is among the most prevalent heterocyclic structural motifs that occur in a wide variety of isolated natural products¹ and is extremely important in medicinal chemistry,² and functional materials.³ Among the numerous benzofuran 20 derivatives known, 2-arylbenzofurans have recently attracted

- considerable attention due to their versatile pharmaceutical activities, such as S1P₁ receptor agonists,⁴ antitumor,⁵ antiviral,⁶ antioxidative,⁷ and antifungal properties.⁸ Recently, Ono and Saji reported that ¹⁸F or ^{99m}Tc-labeled benzofuran derivatives were 25 investigated by positron emission tomography (PET) and single
- photon emission computed tomography (SPECT) imaging for β amyloid plaques in Alzheimer's brains.9 The importance of 2arylbenzofurans has resulted in the development of two types of synthetic methods. One type involves the introduction of
- 30 substituents by direct arylation of a preexisting benzofuran ring via the palladium-catalyzed cross-couplings of 2-halobenzofurans with arylmetallic reagents,¹⁰ or 2-benzofuryl organometallics with aryl halides.¹¹ Recently, Wang¹² and Rao¹³ independently reported palladium-catalyzed direct tandem reaction of 2-(gem-35 dibromovinyl)phenols with arylation reagents such as,
- phenyl(trialkoxy)silanes,12a sodium arylsulfinates,^{12b} and triarylbismuth.13 Whereas the other predominant type involves the assembly of the functionalized furan nucleus on a benzenoid scaffold, which mainly includes annulation of *o*-alkynylphenols,¹⁴ ⁴⁰ cyclization of *o*-halobenzyl ketones,¹⁵ cyclodehydration of *o*-
- ketones,¹⁶ Suzuki coupling/arylation,¹⁷ hydroxybenzyl decarboxylative/coupling of 3-arylcoumarin,¹⁸ C-H activation/oxidative cyclization of 2-(1-arylvinyl)phenols with iodobenzenes,¹⁹ oxidative cyclization of o-vinylphenols,²⁰ Wittig ⁴⁵ reaction,²¹ and [3,3]-sigmatropic rearrangement of oxime
- ethers.²² Recently, transition-metal-catalyzed direct tandem

- Transformations of nitriles play an important role in both the 50 laboratory and industry due to their well-recognized chemical versatility.24 However, the nitrile group is generally inert in organometallic reactions, and thus acetonitrile or benzonitrile usually participate as solvents or ligands²⁵ in metal-catalyzed reactions. The addition of arylpalladium species to the cyano
- 55 group, pioneered by Larock group²⁶ and elegantly employed in recent years,²⁷ provided a conceptual basis for our approach. The Lu's group²⁸ and our group²⁹ have also developed the palladiumcatalyzed one-pot synthesis of benzofurans by addition of organoboron reagents to functionalized nitriles.
- To the best of our knowledge, synthesis of benzofurans with 60 the use of sodium sulfinates as coupling partners has rarely been reported, 12b,30 even though sodium sulfinates generally used as the aryl source in transition-metal-catalyzed desulfinative reactions.³¹ As part of the continuing efforts in our laboratory toward the 65 development of novel transition metal-catalyzed coupling reactions with arylation reagents,³² herein we report a simple and efficient protocol for the synthesis of 2-arylbenzofurans by reaction palladium-catalyzed tandem 2of hydroxyarylacetonitriles with sodium sulfinates (Scheme 1).

F	CN +	ArSO ₂ Na	Pd(OAc) ₂ , bpy, <i>p</i> -NBSA 2-MeTHF/H ₂ O, N ₂ , 80 °C	Ar
D	1a: R = H 1b: R = 4-OMe 1c: R = 3-OMe 1d: R = 5-Me 1e: R = 5-Cl 1f: R = 5-Br	2a : $Ar = Ph$ 2b : $Ar = p-1$ 2c : $Ar = o-1$ 2d : $Ar = p-2$ 2e : $Ar = p-2$ 2f : $Ar = p-2$ 2g : $Ar = p-2$ 2h : $Ar = p-2$ 2i : $Ar = p-2$ 2j : $Ar = 2-r$	$MeC_{6}H_{4}$ $MeC_{6}H_{4}$ $DMeC_{6}H_{4}$ $BuC_{6}H_{4}$ $C_{6}H_{4}$ $CIC_{6}H_{4}$ $CIC_{6}H_{4}$ $CIC_{6}H_{4}$ $iF_{3}C_{6}H_{4}$ iaphthyl	3

Scheme 1 Palladium-catalyzed one-pot synthesis of 2-arylbenzofurans.

Our preliminary studies focused on the reaction between 2hydroxyphenylacetonitrile (1a) and sodium benzenesulfinate (2a) to obtain the optimal reaction conditions (Table 1). On the basis 75 of the previous addition protocol of organoborons to nitriles,^{29a} a test reaction with $Pd(O_2CCF_3)_2$ and 2,2'-bipyridine (L1) as the catalytic system was performed under an air atmosphere. To our

This journal is © The Royal Society of Chemistry [year]

reactions by the use of phenols as starting materials have been reported.23

Table 1 Optimization of the reaction conditions ^a						
Í	CN +	PhSO ₂ Na	Pd source, lig	and vent	—Ph	
	✓ OH 1a	2a	adultive, son	3a		
(R N	$ \xrightarrow{R} [\stackrel{H}{\sim}] $		
	L1	L2	L3 (R = Me),	L4 (R = OMe) I	5	
		к к >=<				
: (N=		L N		Ń-	
l	L6 L7 (R	= Me), L8 (R	= Ph) L	9 I	10	
entry	Pd source	ligand	additive	solvent	yield (%) ^b	
1	Pd(CF ₃ CO ₂) ₂	L1	CF ₃ CO ₂ H	2-MeTHF/H ₂ O	22	
2	PdCl ₂	L1	CF ₃ CO ₂ H	- 2-MeTHF/H₂O	19	
3	Pd(OAc) ₂	L1	CF ₃ CO ₂ H	2-MeTHF/H ₂ O	31	
4	Pd(OH) ₂	L1	CF ₃ CO ₂ H	- 2-MeTHF/H₂O	29	
5	PdCl ₂ (PPh ₃) ₂	L1	CF ₂ CO ₂ H	2-MeTHF/H₂O	12	
6	PdCl ₂ (Py) ₂	L1	CF ₃ CO ₂ H	2-MeTHF/H ₂ O	17	
7	PdCl ₂ (NH ₃) ₂	L1	CF ₃ CO ₂ H	2-MeTHF/H ₂ O	trace	
8	Pd(acac) ₂	L1	CF ₃ CO ₂ H	2-MeTHF/H ₂ O	26	
9	Pd(PPh ₃) ₄	L1	CF ₂ CO ₂ H	2-MeTHF/H₂O	trace	
10	PdCl ₂ (dppe)	L1	CF ₂ CO ₂ H	2-MeTHF/H ₂ O	0	
11	PdCl ₂ (cod)	L1	CF ₂ CO ₂ H	2-MeTHF/H ₂ O	0	
12	Pd ₂ (dba) ₃	L1	CF ₂ CO ₂ H	2-MeTHF/H ₂ O	18	
13	Pd(OAc) ₂	L1	CH ₂ CO ₂ H	2-MeTHF/H ₂ O	trace	
14	Pd(OAc) ₂	L1	PhCO ₂ H	2-MeTHF/H ₂ O	trace	
15	Pd(OAc) ₂	L1	p-TSA ^c	2-MeTHF/H ₂ O	74	
16	$Pd(OAc)_2$	L1	p-NBSA ^d	2-MeTHF/H ₂ O	79	
17	$Pd(OAc)_2$	 L1	MeSO ₂ H	2-MeTHF/H ₂ O	63	
18	Pd(OAc) ₂	L1	CF ₂ SO ₂ H	2-MeTHF/H ₂ O	52	
19	Pd(OAc) ₂	L1	H₂SO₄	2-MeTHF/H ₂ O	22	
20	Pd(OAc) ₂	L1	HCI	2-MeTHF/H ₂ O	trace	
21	Pd(OAc) ₂	L1	HNO ₂	2-MeTHF/H ₂ O	trace	
22	Pd(OAc) ₂	L2	p-NBSA	2-MeTHF/H ₂ O	62	
23	Pd(OAc) ₂	L3	p-NBSA	2-MeTHF/H ₂ O	61	
24	Pd(OAc) ₂	L4	p-NBSA	2-MeTHF/H ₂ O	31	
25	Pd(OAc) ₂	L5	p-NBSA	2-MeTHF/H ₂ O	trace	
26	Pd(OAc) ₂	L6	p-NBSA	2-MeTHF/H ₂ O	68	
27	Pd(OAc) ₂	L7	p-NBSA	2-MeTHF/H ₂ O	51	
28	Pd(OAc) ₂	 L8	p-NBSA	2-MeTHF/H ₂ O	17	
29	Pd(OAc) ₂	L9	p-NBSA	2-MeTHF/H ₂ O	71	
30	Pd(OAc) ₂	L10	p-NBSA	2-MeTHF/H ₂ O	14	
31	Pd(OAc) ₂	L1	p-NBSA	toluene/H ₂ O	37	
32	Pd(OAc) ₂	L1	p-NBSA	xvlene/H ₂ O	34	
33	Pd(OAc) ₂	L1	p-NBSA	dioxane/H ₂ O	51	
34	Pd(OAc)	 L1	p-NBSA	DMF/H ₂ O	trace	
35	Pd(OAc) ₂	 L1	p-NBSA	THF/H ₂ O	73	
36	Pd(OAc) ₂	L1	p-NBSA	ⁱ PrOH/H ₂ O	34	
37	Pd(OAc) ₂	L1	p-NBSA	H ₂ O	25	
38	Pd(OAc) ₂	L1	p-NBSA	2-MeTHF/H ₂ O	92 ^e	
	-(,			

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.6 mmol), indicated Pd source (10 mol %), ligand (20 mol %), additive (10 equiv), solvent (2 mL), H₂O (1 mL), 80 °C, 36 h, air. ^{*b*} Isolated yield. ^{*c*} *p*-TSA = *p*-toluenesulfonic acid. ^{*d*} *p*-NBSA = *p*-nitrobenzenesulfonic acid. ^{*e*} under a N₂ atmosphere.

delight, the desired product 2-phenylbenzofuran (**3a**) was isolated in 22% yield (entry 1). Encouraged by this promising result, reaction parameters including palladium sources, ligands, s additives, and solvents were adjusted. Among the palladium sources used, Pd(OAc)₂ exhibited the highest catalytic reactivity

in 31% yield (entries 1-12). Considering additives always played important roles in organic reactions. Subsequently, various additives were examined for this transformation (entries 3, 10 13-21). The reaction yield can be improved to 74% when ptoluenesulfonic acid (p-TSA) was used (entry 15). However, the best yield was obtained with p-nitrobenzenesulfonic acid (p-NBSA) as the additive (79%, entry 16). While MeSO₃H, CF₃SO₃H, and H₂SO₄ were less efficient, CH₃CO₂H, PhCO₂H, 15 HCl and HNO₃ were improper additives and prohibited the reaction. Replacement of 2,2'-bipyridine (L1) with other ligands, such as L2-L10, resulted in slightly lower yields (entries 16 and 22-30). The influence of the solvent on the reaction was also noteworthy. Screening revealed that use of THF or 2-MeTHF 20 greatly increased the yield of 3a (entries 16 and 31-37). 2-MeTHF³³ offers both economical and environmentally friendly advantages over THF. The yield of 3a can be improved to to 92% when the model reaction was performed under a N₂ atmosphere (entry 38).

25	Table 2	Reaction	of 1a	with	various	sodium	sulfinates
23	I able 2	reaction	01 14	vv i ti i	various	sourum	Summates

\bigwedge		Pd(OAc) ₂	L1, <i>p</i> -NBSA	
<u>لم</u>	2-Me 2	eTHF/H ₂ C	0, N₂, 80 °C, 36 h	
entry	ArSO ₂ Na (2)		product (3)	yield (%) ^b
1	SO ₂ Na	(2a)	3a	92
2		(2b)	3b	89
3	SO ₂ Na	(2c)	3c	62
4	MeO-SO ₂ Na	(2d)	3d	85
5	^t Bu-SO ₂ Na	(2e)	3e	84
6	F-SO ₂ Na	(2 f)	3f	76
7	CI-SO ₂ Na	(2g)	3g	81
8	SO ₂ Na	(2 h)	3h	41
9	F ₃ C-SO ₂ Na	(2i)	3i	56
10	SO ₂ N	la (2j)	3j	94

^a Reaction conditions: **1a** (0.3 mmol), **2** (0.6 mmol), Pd(OAc)₂ (10 mol %), **L1** (20 mol %), p-NBSA (10 equiv), 2-MeTHF (2 mL), H₂O (1 mL), 80 °C, 36 h, N₂. Isolated yield.

With the optimized reaction conditions in hand, the tandem reactions between 2-hydroxyphenylacetonitrile (**1a**) and various sodium arylsulfinates (**2a-2j**) were investigated (Table 2). The steric effects of substituents had an obvious impact on the yield ³⁰ of the reaction. For example, reaction of **1a** with *para*- and *ortho*-tolylsulfinate (**2b-2c**) provided 89% of **3b**, while the yield of **3c**

2 | Journal Name, [year], [vol], 00–00

This journal is © The Royal Society of Chemistry [year]

was decreased to 62% (entries 2–3). The same phenomenon was observed in the reaction of **1a** with *para-* and *ortho*-chlorobenzenesulfinate (**2g-2h**) (entries 7 and 8). The electronic properties of the substituents on the phenyl ring of the sodium

- s arylsulfinates affected the yields of the reaction to some extent. In general, the sodium arylsulfinates bearing an electron-donating substituent (e.g., -OMe and -'Bu) produced slightly higher yields than those analogues bearing an electron-withdrawing substituent (e.g., -F and -Cl) (entries 4-7). However, sodium arylsulfinates
- ¹⁰ bearing a strong electron-withdrawing substituent (e.g., -CF₃) at the *para* position, such as sodium 4-(trifluoromethyl)benzenesulfinate (2i), led to the corresponding 2-(4-(trifluoromethyl)benzofuran (3i) in slightly lower yield (entry 9). To specially mention, only trace amounts of 3i
- ¹⁵ was observed by GC/MS analysis when arylboronic reagents, such as (4-(trifluoromethyl)phenyl)boronic acid was used as the substrate under the same reaction conditions (see Scheme S1 in ESI[†]). It is noteworthy that excellent yield of 2-(naphthalen-2yl)benzofuran (**3j**) was observed when sodium naphthalene-2-

20 sulfinate (2j) was used as the substrate (entry 10).

^a Reaction conditions: 1 (0.3 mmol), 2a (0.6 mmol), Pd(OAc)₂ (10 mol %), L1 (20 mol %), p-NBSA (10 equiv), 2-MeTHF (2 mL), H₂O (1 mL), 80 °C, 36 h, N₂. Isolated yield was given in parenthesis.

We next turned our attention to the effect of the reactions of sodium benzenesulfinate (2a) with various 2-hydroxyarylacetonitriles (1a-1f) under the optimized conditions

- ²⁵ (Table 3). As expected, the groups on the phenyl ring of 2-hydroxyarylacetonitriles, such as methyl, methoxy, chloro, and bromo, were quite compatible. The electronic properties of the groups on the phenyl ring moiety of 2-hydroxyarylacetonitriles had some effects on the reaction. Generally, 2-30 hydroxyarylacetonitriles with an electron-donating substituent on the phenyl group gave slightly higher yields. Substrates **1b** and **1c** bearing a methoxy group, for example, was treated with **2a** to afford 90% and 93% yields of **3k** and **3l**, respectively (runs 2 and 3). While the yields of **3n** and **30** were decreased to 75% and
- ³⁵ 71% from **1e** and **1f** possessing a halogen group, respectively (runs 5 and 6).

It is noteworthy that the chloro, fluoro, and bromo moieties (commonly used for cross-coupling reactions) in substrates were all tolerated and afforded several halogen-containing products 3f-

⁴⁰ **3h** (Table 2, entries 6–8) and **3n–3o** (Table 3, runs 5-6) in moderate to good yields, leading to a useful handle for further cross-coupling reactions.

Finally, the present synthetic route to 2-arylbenzofurans could be readily scaled up to gram quantity without diffculty. For ⁴⁵ instance, the reaction at the 20 mmol scale afforded the corresponding product 2-phenylbenzofuran (**3a**) in 86% yield (Scheme 2).

Scheme 2. Gram-scale synthesis of 3a.

To elucidate the mechanism of formation of 2-50 arylbenzofurans, we performed control experiments (see Schemes S2-S4 in ESI[†]). Reaction of 2-phenylacetonitrile (4) with sodium benzenesulfinate (2a) was examined under the standard conditions, affording the corresponding product 1,2-55 diphenylethanone (5) in 89% yield. However, no desired product 4 was observed in the absence of palladium catalyst and ligand (see Scheme S2 in ESI⁺). The desired product 3a could not be detected and when 2-hydroxyphenylacetonitrile (1a) was treated with 2a in the absence of palladium catalyst 60 and ligand, almost 90% of **1a** was recovered (see Scheme S3 in ESI[†]). We found that **3a** was obtained in 89% yield when the intramolecular annulation of 2-(2-hydroxyphenyl)-1phenylethanone (6) was performed in the absence of palladium catalyst and ligand; while trace yield of desired 65 product 3a was observed in the absence of p-NBSA (see Scheme S4 in ESI[†]). These results showed that the addition reaction depends on the palladium catalyst and ligand. Whereas the intramolecular annulation is independent of the addition reaction and does not depend on the palladium 70 catalyst and ligand, but depend on the additive.

On the basis of the above experimental results, a plausible mechanism for the formation of 2-arylbenzofurans is proposed in ⁵ Scheme 3. The following key steps are included in the catalytic pathway: (i) coordination of Pd(OAc)₂ with arylsulfinic acid (or sodium arylsulfinate 2) to afford a palladium species A; (ii) the desulfination of the arylsulfinic acid to give aryl-palladium species **B**, which was followed by (iii) the coordination of 2-

This journal is © The Royal Society of Chemistry [2011]

hydroxyarylacetonitriles 1 to generate intermediate C; (iv) carbopalladation of the 2-hydroxyarylacetonitriles 1 to form the corresponding ketimine complex D; (v) protonation of the ketimine complex **D** by *p*-NBSA to afford the free ketimine,

5 which undergoes hydrolysis to the corresponding 2-(2hydroxyphenyl)-1-arylethanones E under acidic conditions and regenerates an active palladium species. Finally, intramolecular annulation of 2-(2-hydroxyphenyl)-1-arylethanones E under acidic conditions readily delivers 2-arylbenzofurans 3 as the 10 desired products.

In summary, we have developed a new strategy for constructing 2-arylbenzofurans in moderate to excellent yields from the palladium-catalyzed tandem reaction of 2hydroxyarylacetonitriles with sodium sulfinates. Further efforts to

15 extend this catalytic system to the preparation of other useful heterocycles are currently underway in our laboratories.

Financial support was provided by the National Natural Science Foundation of China (No. 21102105) and Zhejiang Provincial Natural Science Foundation (No. LY13B020015).

20 Notes and references

^a Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. E-mail: pharmlab@zjut.edu.cn

- 25^b College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
- † Electronic Supplementary Information (ESI) available: Analytical data and spectra (¹H, ¹³C NMR) for all products; See DOI: 10.1039/b000000x/
- 1 (a) T. Pacher, C. Seger, D. Engelmeier, S. Vajrodaya, O. Hofer and H. Greger, J. Nat. Prod., 2002, 65, 820; (b) M. Halabalaki, X. Alexi, 30 N. Aligiannis, M. N. Alexis and A.-L. Skaltsounis, J. Nat. Prod., 2008, 71, 1934; (c) M. Halabalaki, N. Aligiannis, Z. Papoutsi, S. Mitakou, C. Sekeris and A. J. Skaltsounis, J. Nat. Prod., 2000, 63, 1672; (d) I. Muhammad, X.-C. Li, M. R. Jacob, B. L. Tekwani, D. C.
- Dunbar and D. Ferreira, J. Nat. Prod., 2003, 66, 804; (e) G. Ni, Q. J. 35 Zhang, Z. F. Zheng, R. Y. Chen and D. Q. Yu, J. Nat. Prod., 2009, 72, 966; (f) N. T. Dat, X. J. Jin, K. Lee, Y. S. Hong, Y. H. Kim and J. J. Lee, J. Nat. Prod., 2009, 72, 39.
- (a) K. M. Zareba, Drugs Today, 2006, 42, 75; (b) B. Carlsson, B. N. 2
- Singh, M. Temciuc, S. Nilsson, Y.-L. Li, C. Mellin and J. Malm, J. 40 Med. Chem., 2002, 45, 623; (c) D. R. Howlett, A. E. Perry, F. Godfrey, J. E. Swatton, K. H. Jennings, C. Spitzfaden, H. Wadsworth, S. J. Wood and R. E. Markwell, Biochem. J. 1999, 340, 283
- (a) B. Walker, A. B. Tamayo, X.-D. Dang, P. Zalar, J. H. Seo, A. 45 3 Garcia, M. Tantiwiwat and T.-Q. Nguyen, Adv. Funct. Mater., 2009, 19, 3063; (b) H. Tsuji, C. Mitsui, L. Ilies, Y. Sato and E. Nakamura, J. Am. Chem. Soc., 2007, 129, 11902.
- A. K. Saha, X. Yu, J. Lin, M. Lobera, A. Sharadendu, S. Chereku, N. 4
- Schutz, D. Segal, Y. Marantz, D. McCauley, S. Middleton, J. Siu, R. 50 W. Bürli, J. Buys, M. Horner, K. Salyers, M. Schrag, H. M. Vargas, Y. Xu, M. McElvain and H. Xu, ACS Med. Chem. Lett., 2011, 2, 97.
- (a) K. Ando, Y. Kawamura, Y. Akai, J. Kunitomo, T. Yokomizo, M. 5 Yamashita, S. Ohta and T. Ohishi, Org. Biomol. Chem., 2008, 6,
- 296; (b) J. D. Lambert, R. O. Meyers, B. N. Timmermann and R. T. 55 Dorr, Cancer Lett., 2001, 171, 47; (c) B. L. Flynn, E. Hamel and M. K. Jung, J. Med. Chem., 2002, 45, 2670.
- 6 (a) S. A. Galal, A. S. Abd El-All, M. M. Abdallah and H. I. El Diwani, Bioorg. Med. Chem. Lett., 2009, 19, 2420; (b) G. A. Kraus and I. Kim, Org. Lett., 2003, 5, 1191. 60
- 7 (a) T. Miyase, M. Sano, H. Nakai, M. Muraoka, M. Nakazawa, M. Suzuki, K. Yoshino, Y. Nishihara and J. Tanai, Phytochemistry,

1999, 52, 303; (b) P. Erasto, G. Bojase-Moleta and R. R. T. Majinda, Phytochemistry, 2004, 65, 875.

- 65 8 S. N. Aslam, P. C. Stevenson, T. Kokubun and D. R. Hall, Microbiol. Res., 2009, 164, 191.
 - 0 (a) M. Ono, Y. Cheng, H. Kimura, M. Cui, S. Kagawa, R. Nishii and H. Saji, J. Med. Chem., 2011, 54, 2971; (b) Y. Cheng, M. Ono, H. Kimura, S. Kagawa, R. Nishii, H. Kawashima and H. Saji, ACS Med. Chem. Lett., 2010, 1, 321; (c) Y. Cheng, M. Ono, H. Kimura,
 - M. Ueda and H. Saji, J. Med. Chem., 2012, 55, 2279. 10 For selected examples, see: (a) M. L. N. Rao, D. K. Awasthi and J.

B. Talode, Tetrahedron Lett., 2012, 53, 2662; (b) N. T. Hung, M. Hussain, I. Malik, A. Villinger and P. Langer, Tetrahedron Lett.,

- 2010, 51, 2420; (c) C. A. James, A. L. Coelho, M. Gevaert, P. 75 Forgione and V. Snieckus, J. Org. Chem., 2009, 74, 4094; (d) S.-Y. Lin, C.-L. Chen and Y.-J. Lee, J. Org. Chem., 2003, 68, 2968; (e) G. S. Gill, D. W. Grobelny, J. H. Chaplin and B. L. Flynn, J. Org. Chem., 2008, 73, 1131.
- 80 11 For selected examples, see: (a) J. Yang, S. Liu, J. Zheng and J. Zhou, Eur. J. Org. Chem., 2012, 6248; (b) S. E. Denmark, R. C. Smith, W.-T. T. Chang and J. M. Muhuhi, J. Am. Chem. Soc., 2009, 131, 3104; (c) O. E. Bakouri, M. Fernández, S. Brun, A. Pla-Quintana and A. Roglans, Tetrahedron, 2013, 69, 9761; (d) S. Sévigny and P. Forgione, New J. Chem., 2013, 37, 589. 85
- 12 (a) J. Liu, W. Chen, Y. Ji, and L. Wang, Adv. Synth. Catal., 2012, 354, 1585; Sodium sulfinates as arylation reagents for the synthesis of 2-arylbenzofurans, see: (b) W. Chen, P. Li, T. Miao, L. Meng and L. Wang, Org. Biomol. Chem., 2013, 11, 420.
- 90 13 M. L. N. Rao, D. N. Jadhav and P. Dasgupta, Eur. J. Org. Chem., 2013, 781.
- 14 For Pd-catalyzed cyclization, see: (a) K. W. Anderson, T. Ikawa, R. E. Tundel and S. L. Buchwald, J. Am. Chem. Soc., 2006, 128, 10694; (b) D. Yue, T. Yao and R. C. Larock, J. Org. Chem., 2005, 70, 10292; (c) R. Sanz, M. P. Castroviejo, Y. Fernández and F. J. Fañanás, J. Org. Chem., 2005, 70, 6548; (d) R. Bernini, S. Cacchi, I. D. Salve, G. Fabrizi, Synthesis, 2007, 873; (e) J.-R. Wang and K. Manabe, J. Org. Chem., 2010, 75, 5340; (f) A. Ohtaka, T. Teratani, R. Fujii, K. Ikeshita, T. Kawashima, K. Tatsumi, O. Shimomura and R. Nomura, J. Org. Chem., 2011, 76, 4052; (g) S. Protti, M. Fagnoni 100 and A. Albini, J. Org. Chem., 2012, 77, 6473; (h) M. Yamaguchi, H. Katsumata and K. Manabe, J. Org. Chem., 2013, 78, 9270; (i) S. Ghosh, J. Das and F. Saikh, Tetrahedron Lett., 2012, 53, 5883; For Cu-catalyzed cyclization, see: (j) R. Wang, S. Mo, Y. Lu and Z. Shen, Adv. Synth. Catal., 2011, 353, 713; (k) D. Zhao, N. Wu, S. 105 Zhang, P. Xi, X. Su, J. Lan and J. You, Angew. Chem., Int. Ed., 2009, 48, 8729; (1) N. Matsuda, K. Hirano, T. Satoh and M. Miura, J. Org. Chem., 2012, 77, 617; (m) C. G. Bates, P. Saejueng, J. M. Murphy and D. Venkataraman, Org. Lett., 2002, 4, 4727; (n) W. Wang, B. Hu, C. Deng and X. Zhang, Tetrahedron Lett., 2014, 55, 110 1501; For other reagents, see: (o) N. Sakai, N. Uchida and T. Konakahara, Tetrahedron Lett., 2008, 49, 3437; (p) I. R. Siddiqui, M. A. Waseem, S. Shamim, Shireen, A. Srivastava and A. Srivastava, Tetrahedron Lett., 2013, 54, 4154; (q) R. M. Gay, F. Manarin, C. C. Schneider, D. A. Barancelli, M. D. Costa and G. 115 Zeni, J. Org. Chem., 2010, 75, 5701; (r) R. Cano, M. Yus and D. J. Ramón, Tetrahedron, 2012, 68, 1393; (s) N. Isono, M. Lautens, Org. Lett., 2009, 11, 1329; (t) F. Manarin, J. A. Roehrs, R. M. Gay, R.Brandão, P. H. Menezes, C. W. Nogueira and G. Zeni, J. Org. Chem., 2009, 74, 2153; (u) A. Fürstner and P. W. Davies, J. Am. Chem. Soc., 2005, 127, 15024; (v) I. Nakamura, Y. Mizushima and Y. Yamamoto, J. Am. Chem. Soc., 2005, 127, 15022. (a) M. C. Willis, D. Taylor and A. T. Gillmore, Org. Lett., 2004, 6,
 - 15 4755; (b) M. Carril, R. S. Martin, I. Tellitu and E. Domínguez, Org. Lett., 2006, 8, 1467; (c) C. Chen and P. G. Dormer, J. Org. Chem., 2005, 70, 6964; (d) J. Bonnamour, M. Piedrafita and C. Bolm, Adv. Synth. Catal., 2010, 352, 1577; (e) F. Churruca, R. SanMartin, I. Tellitu and E. Domínguez, Eur. J. Org. Chem., 2005, 2481; (f) L.

Journal Name, [year], [vol], 00-00

This journal is © The Royal Society of Chemistry [year]

120

125

70

Ackermann and L. T. Kaspar, *J. Org. Chem.*, 2007, **72**, 6149; (g) J. Faragó and A. Kotschy, *Synthesis*, 2009, 85.

- 16 (a) S. K. Murphy, A. Bruch and V. M. Dong, Angew. Chem., Int. Ed., 2014, 53, 2455; (b) S. K. Murphy, D. A. Petrone, M. M.
- Coulter and V. M. Dong, Org. Lett., 2011, 13, 6216; (c) C.
 Eidamshaus and J. D. Burch, Org. Lett., 2008, 10, 4211; (d) L. Ruan,
 M. Shi, S. Mao, L. Yu, F. Yang and J. Tang, Tetrahedron, 2014, 70, 1065.
- 17
 (a) L. M. Geary and P. G. Hultin, Org. Lett., 2009, 5, 5478; (b) L. M.

 10
 Geary and P. G. Hultin, Eur. J. Org. Chem., 2010, 5563.
- 18 W. Pu, G. Mu, G. Zhang and C. Wang, RSC Adv., 2014, 4, 903.
- L. Guo, F. Zhang, W. Hu, L. Li and Y. Jia, *Chem. Commun.*, 2014, 50, 3299.
- 20 (a) X. Duan, J. Zeng, Z. Zhang and G. Zi, J. Org. Chem., 2007, 72,
- 15 10283; (b) C. Pan, J. Yu, Y. Zhou, Z. Wang and M. Zhou, Synlett, 2006, 1657; (c) Lattanzi, A.; Senatore, A.; Massa, A.; Scettri, A. J. Org. Chem., 2003, 68, 3691; (d) L. Liao, G. Shen, X. Zhang and X. Duan, Green Chem., 2012, 14, 695.
- 21 (a) S. Ghosh and J. Das, Tetrahedron Lett., 2011, 52, 1112; (b) Y.
- Yuan, H.-B. Men and C. Lee, J. Am. Chem. Soc., 2004, 126, 14720;
 (c) C. Katerina, N. Miloslav, P. Pavel, S. Jiri, Collect. Czech. Chem. Commun., 2000, 65, 1939.
- (a) O. Miyata, N. Takeda and T. Naito, Org. Lett., 2004, 6, 1761; (b)
 N. Takeda, O. Miyata and T. Naito, Eur. J. Org. Chem., 2007, 1491.
- 25 23 (a) M. R. Kuram, M. Bhanuchandra and A. K. Sahoo, Angew. Chem., Int. Ed., 2013, 52, 4607; (b) W. Zeng, W. Wu, H. Jiang, L. Huang, Y. Sun, Z. Chen and X. Li, Chem. Commun., 2013, 49, 6611; (c) X. Guo, R. Yu, H. Li and Z. Li, J. Am. Chem. Soc., 2009, 131, 17387; (d) S. Wang, P. Li, L. Yu and L. Wang, Org. Lett., 2011, 13, 5968; (e) L. Arias, Y. Vara and F. P. Cossío, J. Org. Chem., 2012, 77, 266.
- 24 F. F. Fleming and Q. Wang, *Chem. Rev.*, 2003, **103**, 2035; (*b*) V. Y. Kukushkin and A. J. L. Pombeiro, *Chem. Rev.*, 2002, **102**, 1771.
- 25 S. F. Rach and F. E. Kühn, Chem. Rev., 2009, 109, 2061.
- (a) R. C. Larock, Q. Tian and A. A. Pletnv, J. Am. Chem. Soc., 1999, 121, 3238; (b) A. A. Pletnv, Q. Tian and R. C. Larock, J. Org. Chem., 2002, 67, 9276; (c) Q. Tian, A. A. Pletnv and R. C. Larock, J. Org. Chem., 2003, 68, 339; (d) A. A. Pletnv and R. C. Larock, Tetrahedron Lett., 2002, 43, 2133; (e) A. A. Pletnv, Q. Tian and R.
- C. Larock, R. C. J. Org. Chem., 2002, 67, 9428; (f) C. Zhou and R.
 C. Larock, J. Am. Chem. Soc., 2004, 126, 2302; (g) C. Zhou and R.
 C. Larock, J. Org. Chem., 2006, 71, 3551.
- 27 (a) G. Xia, X. Han and X. Lu, Adv. Synth. Catal., 2012, 354, 2701;
 (b) B. Zhao and X. Lu, Tetrahedron Lett., 2006, 47, 6765; (c) K.
- ⁴⁵ Ueura, T. Satoh and M. Miura, Org. Lett., 2005, 7, 2229; (d) Shimizu, H.; Murakami, M. Chem. Commun., 2007, 2855; (e) Yu, J.; Li, J.; Cui, M.; Wu, Y. Synlett, 2007, 3063; (f) Tsui, G. C.; Glenadel, Q.; Lau, C.; Lautens, M. Org. Lett., 2011, 13, 208; (g) Y.-C. Wong, K. Parthasarathy and C.-H. Cheng, Org. Lett., 2010, 12, 1736; (h) J.
- Lindh, P. J. R. Sjöberg and M. Larhed, Angew. Chem., Int. Ed., 2010, 49, 7733; (i) M. Behrends, J. Sävmarker, P. J. R.Sjöberg and M. Larhed, ACS Catal., 2011, 1, 1455; (j) J. Liu, X. Zhou, H. Rao, F. Xiao, C. Li and G. Deng, Chem. –Eur. J., 2011, 17, 7996; (k) T. Miao and G. Wang, Chem. Commun., 2011, 47, 9501; (l) J.-C.
 Hsieh, Y.-C. Chen, A. Cheng and H.-C. Tseng, Org. Lett., 2012, 14,
- 1282. 28 B. Zhao and X. Lu, *Org. Lett.*, 2006, **8**, 5987.
- (a) X. Wang, M. Liu, L. Xu, Q. Wang, J. Chen, J. Ding and H. Wu,
 J. Org. Chem., 2013, 78, 5273; (b) X. Wang, X. Wang, M. Liu, J.
 Ding, J. Chen and H. Wu, Synthesis, 2013, 45, 2241.
- 30 Sodium sulfinates as sulfonylation reagents for the synthesis of sulfonylbenzofurans, see: H. Li and G. Liu, *J. Org. Chem.*, 2014, **79**, 509.
- 31 (a) X. Zhou, J. Luo, J. Liu, S. Peng and G. Deng, *Org. Lett.*, 2011, 13, 1432; (b) M. Wu, J. Luo, F. Xiao, S. Zhang, G. Deng and H.
- 13, 1432; (b) M. Wu, J. Luo, F. Xiao, S. Zhang, G. Deng and H. Luo, Adv. Synth. Catal., 2012, 354, 335; (c) H. Rao, L. Yang, Q.

This journal is © The Royal Society of Chemistry [2011]

Shuai and C. Li, Adv. Synth. Catal., 2011, 353, 1701; (d) J. Chen, Y.
Sun, B. Liu, D. Liu and J. Cheng, Chem. Commun., 2012, 48, 449;
(e) B. Liu, Q. Guo, Y. Cheng, J. Lan and J. You, Chem. –Eur. J.,

- 2011, 17, 13415; (f) R. Chen, S. Liu, X. Liu, L. Yang and G. Deng, Org. Biomol. Chem., 2011, 9, 7675; (g) M. Wang, D. Li, W. Zhou and L. Wang, Tetrahedron, 2012, 68, 1926; (h) F. Zhao, Q. Tan, F. Xiao, S. Zhang and G. Deng, Org. Lett., 2013, 15, 1520.
- 32 (a) Y. Shen, J. Chen, M. Liu, J. Ding, W. Gao, X. Huang and H. Wu,
 75 Chem. Commun., 2014. in press (DOI: 10.1039/c3cc48767a); (b) J.
 75 Zhang, J. Chen, M. Liu, X. Zheng, J. Ding and H. Wu, Green Chem.,
 2012, 14, 912; (c) J. Chen, Y. Peng, M. Liu, J. Ding, W. Su and H.
 Wu, Adv. Synth. Catal., 2012, 354, 2117; (d) X. Zheng, J. Ding, J.
 Chen, W. Gao, M. Liu and H. Wu, Org. Lett., 2011, 13, 1726; (e) W.
 80 Lu, J. Chen, M. Liu, J. Ding, W. Gao and H. Wu, Org. Lett., 2011,
 13, 6114; (f) H. Zheng, Q. Zhang, J. Chen, M. Liu, S. Cheng, J.
- Ding, H. Wu and W. Su, J. Org. Chem., 2009, 74, 943; (g) C. Qin, H. Wu, J. Chen, M. Liu, J. Cheng, W. Su and J. Ding, Org. Lett., 2008, 10, 1537; (h) C. Qin, H. Wu, J. Cheng, X. Chen, M. Liu, W. Zhang, W. Su and J. Ding, J. Org. Chem., 2007, 72, 4102.
- 33 Selected examples for 2-MeTHF as a good solvent in organometallic reactions, see: (a) D. F. Aycock, Org. Process Res. Dev., 2007, 11, 156; (b) A. Kadam, M. Nguyen, M. Kopach, P. Richardson, F. Gallou, Z.-K. Wane and W. Zhang, Green Chem., 2013, 15, 1880; (c) S. D. Rampren, L. Hie, Y. Ye and N. K. Garg.
 - 2013, 15, 1880; (c) S. D. Ramgren, L. Hie, Y. Ye and N. K. Garg, Org. Lett., 2013, 15, 3950; (d) M. Smoleń, M. Kędziorek and K. Grela, Catal. Commun., 2014, 44, 80.