Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012,
Accepted 00th January 2012
DOI: 10.1039/x0xx00000x
www.rsc.org/

'Clickable’ 2,5-diketopiperazines as scaffolds for ligation of biomolecules: use in A β inhibitor's assembly

E. Dufour, ${ }^{\text {a }}$ L. Moni, ${ }^{\text {b }}$ L. Bonnat, ${ }^{\text {a }}$ S. Chierici* ${ }^{* a}$ and J. Garcia ${ }^{\text {a }}$

Abstract

The synthesis of $1,3,6$-trisubstituted-2,5-diketopiperazine scaffolds bearing up to three 'clickable' sites for further oxime bond or alkyne-azide cycloaddition ligations is described. The orthogonally Boc/Alloc protected DKPs precursors prepared from L-lysine residues and an aminohexyl arm, are efficiently prepared in gram scale by sequentially using Fukuyama-Mitsunobu alkylation, dipeptide coupling and diketopiperazine ring formation as key steps. These scaffolds, with their glyoxylyl, aminooxy, alkynyl or azido functions, are "ready-to-use" platforms for biomolecular assembly. Their potentiality in this field is proved through the chemoselective ligation of $A \beta$ binding motifs, the KLVFFA peptide and the curcumin molecule. The inhibitory effect of these conjugates on $A \beta$ amyloid fibril formation is reported using Thioflavin T fluorescence assays and AFM observation.

Introduction

2,5-diketopiperazines (DKPs), derived from the condensation of two α-amino acids with functionalized side chains, are attractive scaffolds for molecular assembly design and they have been extensively used for the rational design of drugs and peptidomimetics. ${ }^{1,2}$ DKPs in which additional functional groups are introduced at the lactam nitrogen positions can display up to four functionalities in a well-defined spatial manner. In this context, DKPs bearing functionalities such as an amine (e.g. derived from Lys or Orn) and/or a carboxylic acid (e.g. derived from Asp or Glu) are of particular interest. Considering the variety of orthogonal protecting groups for amines and the chemical orthogonality between amine and carboxylic acid functions, they can be regioselectively and diversely addressed. G. Gellerman et al. have used this strategy to construct a DKP library for combinatorial chemistry. ${ }^{3,4}$ Orthogonal chemical reactions can also be used to modify a DKP core. One example is reported by M. Tullberg et al. with a DKP scaffold bearing reaction sites for hydroxylation, Heck reaction, and Huisgen cycloaddition. ${ }^{5}$ However, to the best of our knowledge, no 'ready-to-use' DKP for chemoselective ligation of biomolecules has been yet reported. ${ }^{6}$ Our research group being interest in this field, ${ }^{7}$ we focused on such DKPs (Fig. 1). We prepared then a series of DKPs allowing oxime bond or alkyne-
azide cycloaddition ligations which are commonly used for conjugation of biomolecules such as peptides. ${ }^{8}$

Fig. 1 Chemoselective addressable DKPs targeted in this study.

We chose a cyclo(Lys-Lys) as scaffold to benefit from the chemical addressable amino side chains and then easily introduce diverse 'clickable' functionalities. In addition, the use of natural lysines as starting materials is a way to control the
spatial orientation of the conjugated molecules in a cis position. The 'clickable' DKPs such as DKPs A can be used to ligate two copies of the selected biomolecule possessing the complementary 'clickable' functionality. The aminohexyl arm at the N1-position of DKPs \mathbf{A} is to improve the solubility in the aqueous media in whose are usually performed chemoselective ligation of biomolecules. This amino arm may also be used as an additional orthogonally 'clickable' site, as shown in the DKPs B, to introduce a detecting agent or other functionalities depending on the desired application.
In this paper, we report the synthesis of these new DKPs via orthogonally protecting group strategy from DKPs 1 as precursors (Fig. 1). We also investigate, through the ligation of well-known A β-binding motifs (the KLVFFA peptide and the curcumin molecule $)^{9}$, their potentiality as scaffolds in $\mathrm{A} \beta$ inhibitor assembly.

Results and discussion

Synthesis of the DKP precursors

We first prepared the orthogonally protected DKPs 1a and 1b ($\mathrm{P}_{1}, \mathrm{P}_{2}=$ Boc or Alloc, Scheme 1). The strategy used is a solution-phase synthesis; i.e $N \alpha$-alkylation of the first lysine partner (2a or $\mathbf{2 b}$), condensation in solution of this $N \alpha-$ alkylated $N \varepsilon$-protected aminoester ($\mathbf{5 a}$ or $\mathbf{5 b}$) with the second $N \alpha, \varepsilon-$ protected lysine partner, then intramolecular cyclization of the resulting dipeptide. This strategy has been proved for the synthesis of such head-to-tail DKPs. ${ }^{1,3,4,10,11}$ Very similar DKP scaffolds resulting from the condensation of two orthogonally protected lysine residues with Alloc, CBz or Fmoc groups and bearing a carboxymethyl group in N1-position have been reported. ${ }^{3 a}$ In this case as in most cases, reductive amination using aldehydes (e.g. glyoxylic aldehyde) is employed for $N \alpha-$ alkylation of the first amino acid partner. In our case, a Fukuyama-Mitsunobu reaction ${ }^{12,13}$ is applied for the $N \alpha-$ monoalkylation of the first lysine partner using hydroxyl derivatives instead of aldehydes as alkylating agents. The nitrobenzenesulfonyl (Ns) group used both as a protecting and activating group on the primary amines ensures the conversion into the secondary amines and prevents the formation of the tertiary amines often produced as by-products under reductive amination conditions with no sterically hindered agents.

Thus, the easily prepared $N \varepsilon$-Alloc protected lysine methyl ester 2a was first protected as 2 -nitrobenzenesulfonamide with a slight excess of 2-nitrobenzenesulfonyl chloride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$. The sulphonamide intermediate 3a, which was obtained in 91% yield, was then alkylated under the Mitsunobu conditions (DIAD, PPh_{3}) using the 6 -aminohexanol derivative, BocHN($\left.\mathrm{CH}_{2}\right)_{6} \mathrm{OH}$. After removal of the Ns group via aromatic nucleophilic substitution by thiophenol in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$, the $\mathrm{N} \mathrm{\alpha}$-alkylated lysine aminoester $5 \mathbf{a}$ was obtained in 90% yield from 3a after chromatography purification. The same sequence was applied to the
commercially available $N \varepsilon$-Boc protected lysine aminoester 2b using AllocHN($\left.\mathrm{CH}_{2}\right)_{6} \mathrm{OH}$ as alkylating agent to obtain $\mathbf{5 b}$ with a similar yield (88% from $\mathbf{2 b}$).

In the literature, $N \alpha$-Boc protected amino acids are often used as second partners. The cyclization is then realized under basic conditions after removal of the $N \alpha$-Boc group under acidic conditions. We chose to use commercially available $N \alpha-$ Fmoc protected lysine residues. The coupling of the Fmoc-Lys(Alloc)-OH to the $\mathrm{N} \alpha$-alkylated lysine aminoester 5a was carried out using HATU as coupling agent which is known to be efficient for coupling of secondary amines. The dipeptide 6 a was thus efficiently obtained in 83% yield. Finally, removal of the Fmoc group and intramolecular cyclization of $\mathbf{6 a}$ were realized in one-pot using a mixture of piperidine in dichloromethane ${ }^{14}$ to afford the DKP precursor 1a in 87% yield. The DKP 1b was obtained in the same manner from Fmoc-Lys(Boc)-OH and 5b in 78\% yield (two steps).

The strategy developed yielded to the orthogonally protected DKPs 1a and 1b in gram scale in more than 60% overall yield. The protected amino alcohol arms $\mathbf{4 a}$ and $\mathbf{4 b}$ used to introduce the additional functionality in the N1-position of the DKP core were easily prepared from the commercial 6aminohexanol and the corresponding chloroformates. Starting from commercially available or readily prepared amino acids, this approach may be applied to the synthesis of other
orthogonally protected DKPs with Dde or CBz groups. In addition, by using Fmoc-Lys(Dde)-OH as second lysine partner from 5a or 5b, DKPs with three orthogonally protecting sites can be also obtained.

Synthesis of the 'clickable' DKPs

The orthogonally protected DKP 1a was used as common precursor of the 'clickable' DKPs 9, 11, 13, 15 bearing glyoxylyl, aminooxy, alkynyl, or azido functions, respectively (Scheme 2). Except for 15, these functions were easily introduced by N-acylation of the Alloc deprotected intermediate $7 \mathbf{a}^{15}$ using the activated carboxylic acids 8, 10 and 12. We preferred to use N-hydroxysuccimide esters as 'ready-to-use' activated species but the formation in situ of the activated species can also been realized.

Scheme 2 Synthesis of the 'clickable' DKPs from 1a.

In 9, the glyoxylyl functions were introduced by coupling the $\operatorname{Boc}-\operatorname{Ser}(t \mathrm{Bu})$-OSu N-hydroxysuccinimide ester 8 on the free lysine residues of $\mathbf{7 a}$. $\operatorname{Boc}-\mathrm{Ser}(t \mathrm{Bu})-\mathrm{OH}$ residue is commonly used as masked glyoxylic acid equivalent in peptide chemistry to attach glyoxylyl groups to the N-terminus or to $N \varepsilon$-lysine residues of peptides. Indeed, after removal of the Boc and $t \mathrm{Bu}$ groups, the periodate oxidation of the serine residue is a simple
way to obtain the desired α-oxo aldehyde group. ${ }^{16}$ The DKP 9 was then obtained in 26% overall yield (three steps). Losses of product during the last RP-HPLC purification step (only 42% yield) explain this modest yield, while the HPLC analysis of the oxidation reaction mixture shows a total conversion to 9 .

For DKP 11, the aminooxy functions were incorporated as Bocprotected aminooxyacetyl ester $\mathbf{1 0}^{17}$ with 76% yield. We preferred for storage keeping the protecting groups due to the high reactivity of the free aminooxy functions towards electrophilic agents. Further oxime ligation being performed in acidic conditions in the presence of aldehydes, removal of the Boc acid sensitive protecting groups of $\mathbf{1 1}$ will be accompanied by in situ ligation reactions. The DKP $\mathbf{1 3}$ was similarly obtained from 7a and 4-pentynoic acid succinimidyl ester 12, after Boc removal of its N-aminohexyl arm, in 78% yield after purification.

Finally, DKP 15 bearing azido functions was efficiently obtained (62% yield) by converting the free amino lysine residues of $\mathbf{7 a}$ into azides using the hydrogen chloride salt of imidazole-1-sulfonyl azide $\mathbf{1 4}$ as stable diazotransfer reagent, ${ }^{18,19}$ followed by Boc removal.

The DKP 1b was employed to access an orthogonally 'clickable' DKP that presents one azido group and two aminooxy precursors (compound 16, Scheme 3).

(i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{PhSiH}_{3}, \mathrm{DCM}$, (ii) $14, \mathrm{ZnCl}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DCM} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(2: 2: 1)$, (iii) TFA/DCM (1:1), (iv) 10, DMF, DIEA

Scheme $\mathbf{3}$ Synthesis of an orthogonally 'clickable' DKP from 1b.

Removal of the Alloc group of $\mathbf{1 b}$ was performed, as for $\mathbf{1 a}$, using the $\mathrm{Pd}^{0} / \mathrm{PhSiH}_{3}{ }^{15}$ procedure affording the DKP 7b in more than satisfactory yield (91%). The free amino function of 7b was then converted in azide as mentioned above for $\mathbf{1 5}$. Then, the aminooxy functions were introduced, as Bocaminooxyacetic acid succinimide ester (compound 10), on the lysine side chains after removal of their $N \varepsilon$-Boc protecting groups. The DKP 16 was obtained in three steps with 57% yield. It is worth noting that the same strategy may be applied from 7a to obtain the DKP bearing one aminooxy and two azido groups tethered on the lysine side chains.

$A \beta$ inhibitor assembly

Synthesis. The 'clickable' DKPs 11, 15 and 16 were applied in biomolecular assembly design through the ligation of A β-binding motifs, the KLVFFA peptide and the curcumin molecule (Scheme 4). Our research group is interested in the field of Alzheimer's disease inhibitors. In a previous work, we showed that ligation of two copies of KLVFFA or curcumin on a cyclodecapeptide scaffold leads to more potent inhibitors than the $\mathrm{A} \beta$-binding motifs alone. ${ }^{20}$ Built to present at least two ligation sites, we were interested in evaluating our DKPs in this field.

Scheme 4 Chemoselective ligation of $A \beta$ inhibitors.

To assemble the KLVFFA sequence, we chose the oxime bond ligation method from the DKP $\mathbf{1 1}$ that presents two masked aminooxy sites. The KLVFFA sequence bearing as complementary function a glyoxylyl group at its N-terminus, has been first prepared (compound 17, Scheme 4). The SKLVFFA intermediate was assembled on solid support and its N -terminus serine residue was oxidized in solution phase using
sodium periodate. The ligation was performed in the presence of 50% TFA in a mixture of water/acetonitrile to ensure the solubility of both precursors and limit the aggregation of $\mathbf{1 7}$. The removal of Boc protecting groups from the aminooxy moieties of $\mathbf{1 1}$ was accompanied by concomitant removal of the Boc group at $N-1$ position and by in situ ligation of the KLVFFA peptides leading to $\mathbf{1 8}$ in 55% yield. The reaction was monitored by RP-HPLC analysis and a total conversion of $\mathbf{1 1}$ was obtained after 1 h reaction at $37^{\circ} \mathrm{C}$.

In order to obtain 20, two copies of the curcumin alkynyl derivative $\mathbf{1 9}^{21}$ were attached on "azido" DKP $\mathbf{1 5}$ using the $\mathrm{Cu}(\mathrm{I})$-catalyzed alkyne-azide cycloaddition (CuAAC). We employed the classical CuAAC combination of copper sulfate and sodium ascorbate as reductive agent. To avoid the precipitation of 19 due to its strong hydrophobicity, we performed the reaction in presence of DMF as organic solvent. We also added THPTA ${ }^{22}$ as water-soluble Cu^{1}-stabilizing ligand. Under this condition, however, the ligation product $\mathbf{2 0}$ was obtained in only 9\% yield after RP-HPLC purification. The ligation followed by RP-HPLC showed a total conversion rate of $\mathbf{1 9}$ after only 1 h and the low yield is due to losses of product during the purification step.

The orthogonally 'clickable' DKP $\mathbf{1 6}$ was employed to prepare the mixed KLVFFA/curcumin DKP 21. Two copies of the KLVFFA sequence 17 was first ligated via oxime bond followed by CuAAC ligation of one copy of the curcumin derivative 19. If the first ligation step of peptides was realized with a satisfactory yield of 47%, the second ligation step gave 21 in only 23% yield after purification justifying the 10% overall yield obtained. As mentioned above for 20, the bad solubility of the product after the ligation of curcumin molecule in the solvents used for RP-HPLC purification could be involved.

In vitro inhibition studies of $\mathbf{A} \boldsymbol{\beta}_{\mathbf{4 0}}$ fibril formation. Inhibitory effect on $\mathrm{A} \beta_{40}$ fibril formation of DKPs 18, 20 and 21 was evaluated using Thioflavin T (ThT) fluorescence assay. Synthetic fibrils made from $\mathrm{A} \beta_{40}$ monomers and ThT, a specific dye of the characteristic cross- β-sheet structure of fibrils, are commonly used in vitro for screening inhibitors. ${ }^{23} \mathrm{~A} \beta_{40}$ peptide $(50 \mu \mathrm{M})$ and $\mathrm{ThT}(10 \mu \mathrm{M})$ were co-incubated in phosphate buffer at $37^{\circ} \mathrm{C}$ with a concentration range of each DKP (1 to 50 $\mu \mathrm{M}$) and the ThT fluorescence at 485 nm was measured each day during a period of two weeks (see ESI). Results summarized in figure 2 show the relative change of ThT fluorescence (as compared to $\mathrm{A} \beta$ with no inhibitor) after 7 days of incubation, from what a maximum of fluorescence was observed. DKP 1b with no ligand, and the ligands alone (KLVFFA peptide and curcumin) were also tested in the same conditions.
At a $10 \mu \mathrm{M}$ concentration, scaffold $\mathbf{1 b}$ and KLVFFA peptide did not significantly reduced ThT fluorescence signal whereas the DKP 18 bearing two copies of the KLVFFA peptides showed a strong inhibitory activity for a 10 -fold lower ratio.

Indeed, at a $1 \mu \mathrm{M}$ concentration, the fluorescence signal was reduced of about 80% in presence of $\mathbf{1 8}$.

Fig. $2 \mathrm{~A} \beta_{40}(50 \mu \mathrm{M})$ co-incubated with DKPs and controls at the indicated molar concentration. Values are the maximal ThT fluorescence intensity at 485 nm obtained after 7 days compared to that of the control ($A \beta_{40}$ with no inhibitor). Results are the mean \pm standard deviation of three experiments.

This anti-amyloidogenic effect of $\mathbf{1 8}$ is consistent with the atomic force microscopy (AFM) observation (Fig. 3). If in the control sample of $A \beta_{40}$ with no inhibitor (Fig. 3A), numerous and long fibrils were formed, in the presence of $\mathbf{1 8}$ at a $10 \mu \mathrm{M}$ concentration, only few and shorter fibers were observed (Fig. 3B). The benefit of the dimeric presentation of the KLVFFA motif in DKP $\mathbf{1 8}$ is in concordance with previous studies demonstrating the increased efficiency of KLVFFA multimers against $\mathrm{A} \beta$ peptide aggregation. ${ }^{20,24,25}$ Especially, the activity of conjugate 18 has a similar activity than a cyclodecapeptide scaffold presenting two KLVFFA copies for which we had obtained 90% of inhibition of $A \beta_{40}$ fibril formation for the same $A \beta /$ compound molar ratio. ${ }^{20}$

Fig. 3 AFM images (height data) of protofilaments from $\mathrm{A} \beta_{40}(50 \mu \mathrm{M})$ after 8 days of incubation at $37^{\circ} \mathrm{C}$ with: (A) no inhibitor, (B) $10 \mu \mathrm{M}$ of $\mathbf{1 8}$, and (C) $10 \mu \mathrm{M}$ of $\mathbf{2 0}$.

For the curcumin conjugate $\mathbf{2 0}$, the inhibitory activity was much lower compared to $\mathbf{1 8}$ since only 60% of inhibition was observed for a 10 -fold higher concentration (Fig. 2). This result was confirmed by the AFM image (Fig. 3C). We had obtained a similar inhibition when two curcumin ligands were ligated onto a cyclodecapeptide scaffold. ${ }^{20}$ Moreover, compared to the inhibitory effect of the curcumin ligand alone at the same concentration of $10 \mu \mathrm{M}, \mathbf{2 0}$ presents only a slight benefit. With the mixed DKP 21 at $10 \mu \mathrm{M}$, surprisingly, no inhibitory effect on $\mathrm{A} \beta_{40}$ fibril formation was shown by ThT assay (Fig. 2). A 5fold higher concentration was necessary to obtain 50% of inhibition (see ESI). In this case, we assume that the assay is affected by the very low solubility of $\mathbf{2 1}$ in the aqueous phosphate buffer used.
Through these results, especially through conjugate 18, the interest of the DKP scaffold to build efficient in vitro $\mathrm{A} \beta$ fibril
inhibitors is highlighted. This scaffold is of particular interest in this field considering its potentiality to cross the blood brain barrier. ${ }^{26}$ In dimers of ligands as 20, for which the inhibition is quite similar to the ligand alone, the DKP core may be of special interest as cargo to transport the ligands into the brain.

Experimental

Materials and methods

Protected amino acids, especially $\mathrm{H}-\mathrm{Lys}(\mathrm{Boc})-\mathrm{OMe} 2 \mathrm{~b}$, PyBOP $^{\circledR}$ and HATU ${ }^{\circledR}$ were purchased from CalbiochemNovabiochem and 2-chlorotritylchloride ${ }^{\circledR}$ resin from Advanced ChemTech Europe. Other reagents were obtained from SigmaAldrich or Acros Organics.
N-hydroxysuccinimide esters $\mathbf{8}, \mathbf{1 0}$ and $\mathbf{1 2}$ were synthesized as previously described. ${ }^{17,7 a}$ Curcumin derivative 19 was prepared as reported in the literature from curcumin and propargyl bromide. ${ }^{21}$ Imidazole-1-sulfonyl azide hydrochloride 14 was synthesized as reported. ${ }^{18}$
Silica plated aluminum sheets (Silica gel 60 F254) were used for thin-layer chromatography (TLC) and spots were detected by UV (254 nm) or by a solution of 1% ninhydrine in EtOH. For flash chromatography, silica gel 60 (230-400 mesh) was used. RP-HPLC analyses and purifications were performed on Waters equipment consisting of a Waters 600E controller, a Waters 2487 Dual Absorbance Detector, and a Waters In-Line Degasser. UV absorbance was monitored at 214 nm and 250 nm simultaneously. The analytical column (Nucleosil C18, particles size $3 \mu \mathrm{~m}$, pore size $120 \AA, 30 \times 4 \mathrm{~mm}^{2}$) was operated at $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$ using linear A-B gradients in 20 min run time (solvent $\mathrm{A}, \mathrm{H}_{2} \mathrm{O}$ containing 0.1% trifluoroacetic acid (TFA); solvent $\mathrm{B}, \mathrm{CH}_{3} \mathrm{CN}$ containing $9.9 \% \mathrm{H}_{2} \mathrm{O}$ and 0.1% TFA). The preparative column (Delta-Pak ${ }^{\text {TM }} 300 \AA 15 \mu \mathrm{~m}$ C18 particles, $200 \times 25 \mathrm{~mm}^{2}$) was operated at $22 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$ using linear A-B gradients in 30 min run time.
Mass spectra were obtained by electrospray ionization (ESIMS) on an Esquire 3000 (Bruker) spectrometer in positive mode. The multiply charged data produced by the mass spectrometer on the m / z scale were converted to the molecular weight. High resolution mass spectra (HRMS) were performed by the ICOA (Orléans, France) on a Q-Tof MaXis in positive mode.
NMR spectra were recorded on BRUKER Avance 400 and Avance III 500 spectrometers. Chemical shifts are expressed in ppm and calculated taking the solvent peak as an internal reference. Coupling constants are in Hz and signals are described using the usual abbreviations: br (broad), s (singulet), d (doublet), t (triplet), q (quartet), m (multiplet)... 1D and 2D NMR techniques such as COSY and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC have been used for spectral assignments.
In vitro inhibition studies of $\mathrm{A} \beta_{40}$ fibril formation were performed using Thioflavin T (ThT) assays and atomic force microscopy (AFM) as described previously. ${ }^{20}$
N^{α}-Allyloxycarbonyl-L-lysine methyl ester or H-Lys(Alloc)OMe (2a). Boc-Lys-OH ($3.0 \mathrm{~g}, 12.20 \mathrm{mmol}$) was dissolved in 120 mL of water/dioxane (1:1) and $\mathrm{Et}_{3} \mathrm{~N}$ ($3.40 \mathrm{~mL}, 24.50$ mmol) was added. The solution is cooled in an ice bath and allylchloroformate $(1.95 \mathrm{~mL}, \quad 18.20 \mathrm{mmol})$ was added dropwise. After 3 h of stirring at $\mathrm{rt}, 50 \mathrm{~mL}$ of water was added and the pH was adjusted at 2 with 1 M HCl . The mixture was extracted three times with EtOAc and the combined organic phases were washed with water, with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration of the solvent under vacuum, the residue Boc-Lys(Alloc)-OH was dissolved in 20 mL of MeOH and chlorotrimethylsilane ($4 \mathrm{~mL}, 31.50 \mathrm{mmol}$) was added dropwise. ${ }^{27}$ The solution was stirred overnight at rt and concentrated under vacuum. The residue was triturated with diethyl ether to afford the hydrochloride salt of $\mathbf{2 a}$ (3.10 g , 92%). ESI-MS calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} 244.29$; found 245.1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.01-5.82$ (ddt, ${ }^{3} J=5.5 \mathrm{~Hz},{ }^{3} J=$ $10.5 \mathrm{~Hz},{ }^{3} J=17 \mathrm{~Hz}, 1 \mathrm{H},=$ CHallyl), $5.29\left(\mathrm{dd},{ }^{2} J=1.5 \mathrm{~Hz},{ }^{3} J=\right.$ $17 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}$ allyl $), 5.20\left(\mathrm{dd},{ }^{2} J=1.5 \mathrm{~Hz},{ }^{3} J=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $=\mathrm{CH}_{2}$ allyl), $4.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH} \varepsilon), 4.55\left(\mathrm{~d},{ }^{3} J=5.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, OCH_{2} allyl), 3.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $3.46\left(\mathrm{dd},{ }^{3} J=6.0\right.$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH} \alpha), 3.18\left(\mathrm{dd},{ }^{3} J=7.0\right.$ and $\left.13.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \varepsilon\right), 1.83-1.35(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{CH}_{2} \beta, \mathrm{CH}_{2} \gamma, \mathrm{CH}_{2} \delta\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $170.02,157.17,132.88,117.71,65.86,53.53,53.27,50.35$, 40.40, 29.69, 28.84, 21.98 .
$N^{\alpha}(\mathbf{N s}) L y s(A l l o c)-O M e \quad$ (3a). A solution of o nitrobenzosulfonyl chloride ($3.20 \mathrm{~g}, 14.46 \mathrm{mmol}$) in 4 mL of dioxane was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of $\mathbf{2 a}(2.9 \mathrm{~g}$, $10.33 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(4.3 \mathrm{~mL}, 30.10 \mathrm{mmol})$ in 100 mL of water/dioxane (1:1) cooled in an ice bath. The solution was stirred for 30 min at $0^{\circ} \mathrm{C}$ and overnight at rt . Water was added and the pH was adjusted at 2 with 1 M HCl . The mixture was extracted three times with EtOAc and the combined organic phases were washed twice with a saturated aqueous solution of NaHCO_{3}, once with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under vacuum, 3a was obtained ($4.03 \mathrm{~g}, 91 \%$) as a yellow oil. ESI-MS calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S} 429.44$; found 430.1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11-8.01$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{HAr}$), 7.97-7.88 (m, 1H, HAr), 7.80-7.65 (m, 2H, 2xHAr), 6.13 (d, ${ }^{3} J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH} \alpha), 5.99-5.83\left(\mathrm{ddt},{ }^{3} J=5.5 \mathrm{~Hz},{ }^{3} J=10.5 \mathrm{~Hz}\right.$, ${ }^{3} J=17.0 \mathrm{~Hz}, 1 \mathrm{H},=$ CHallyl), $5.29\left(\mathrm{dd},{ }^{2} J=1.5 \mathrm{~Hz},{ }^{3} J=17.0\right.$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}$ allyl), $5.20\left(\mathrm{dd},{ }^{2} J=1.5 \mathrm{~Hz},{ }^{3} J=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $=\mathrm{CH}_{2}$ allyl), 4.79 (br s, $1 \mathrm{H}, \mathrm{NH} \varepsilon$), $4.55\left(\mathrm{~d},{ }^{3} J=5.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, OCH_{2} allyl), $4.16\left(\mathrm{td},{ }^{3} J=5.0 \mathrm{~Hz},{ }^{3} J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \alpha\right), 3.47$ $(\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}), 3.17-3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \varepsilon\right), 1.90-1.72(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \beta$), $1.57-1.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \gamma, \mathrm{CH}_{2} \delta\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 171.54,156.49,147.84,134.24,133.79,132.98$, $130.61,125.79,117.80,65.68,60.54,56.69,52.50,40.57$, 32.73, 29.36, 22.25.
$\boldsymbol{N}^{\boldsymbol{\alpha}} \mathbf{(N s) - L y s (A l l o c) - O M e ~ (3 b) . ~ T h e ~ p r o c e d u r e ~ d e s c r i b e d ~ a b o v e ~}$ for 3a was applied from $\mathbf{2 b}(2.1 \mathrm{~g}, 7.08 \mathrm{mmol})$ to give $\mathbf{3 b}$ (3.09 $\mathrm{g}, 98 \%$ yield) as an oil. ESI-MS calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S} 445.48$, found 446.1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10-8.00(\mathrm{~m}, 1 \mathrm{H}$, HAr), 7.95-7.85 (m, 1H, HAr), 7.77-7.66 (m, 2H, 2xHAr),
$6.11\left(\mathrm{~d},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH} \alpha\right.$), 4.57 (br s, $1 \mathrm{H}, \mathrm{NH} \varepsilon$), $4.20-4.08$ (m, 1H, CH α), $3.46(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.09-3.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \varepsilon\right), 1.84-$ $172\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \beta\right), 1.53-1.35\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{CH}_{2} \gamma, \mathrm{CH}_{2} \delta, t \mathrm{Bu}\right)$.

6-(N-tert-Butyloxycarbonyl)aminohexan-1-ol (4a). To a solution of 6-aminohexan-1-ol ($5 \mathrm{~g}, 42.70 \mathrm{mmol}$) in 200 mL of MeOH , di-tert-butyl dicarbonate ($10.83 \mathrm{~g}, 49.80 \mathrm{mmol}$) was added. After 8 h of stirring at rt , the solution was concentrated under vacuum. The residue was dissolved in DCM (250 ml), washed with an aqueous solution brought to pH 3 with 1 M HCl and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The residue was then precipitated in diethyl ether to afford $\mathbf{4 a}(7.91 \mathrm{~g}, 85 \%$ yield) as a white powder. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NH), 3.71-3.59 (m, 2H, CH2OH), 3.16-3.09 (m, 2H, CH ${ }_{2} \mathrm{NH}$), $1.63-1.32\left(\mathrm{~m}, 17 \mathrm{H}, 4 \mathrm{xCH}_{2}, t \mathrm{Bu}\right)$.

6-(N-Allyloxycarbonyl)aminohexan-1-ol (4b). To a solution of 6-aminohexan-1-ol (3 g, 25.65 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(9 \mathrm{~mL}, 64.05$ mmol) in DCM (120 mL) was added slowly at $0{ }^{\circ} \mathrm{C}$ allylchloroformate ($4.60 \mathrm{~mL}, 43.70 \mathrm{mmol}$). The mixture was then stirred overnight at rt and washed with water, with an aqueous solution brought to pH 2 with 1 M HCl , and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give $\mathbf{4 b}(4.68 \mathrm{~g}, 91 \%) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.91$ (ddt, ${ }^{3} J=5.5 \mathrm{~Hz},{ }^{3} J=10.5 \mathrm{~Hz},{ }^{3} J=17 \mathrm{~Hz}$, $1 \mathrm{H},=$ CHallyl), $5.29\left(\mathrm{dd},{ }^{2} J=1.5 \mathrm{~Hz},{ }^{3} J=17 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $=\mathrm{CH}_{2}$ allyl), $5.20\left(\mathrm{dd},{ }^{2} J=1.5 \mathrm{~Hz},{ }^{3} J=10.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right.$ allyl $)$, $4.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right.$ allyl), $3.63(\mathrm{t}$, $\left.{ }^{3} J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.18-3.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 1.61-$ $1.45\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right), 1.43-1.28\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right)$.
$\left.\boldsymbol{N}^{\boldsymbol{\alpha}} \mathbf{(N - B o c (a m i n o h e x y l}\right)$)-Lys(Alloc)-OMe (5a). To a solution of compound $\mathbf{3 a}(3.58 \mathrm{~g}, 8.33 \mathrm{mmol})$ in 50 mL anhydrous THF, $\mathrm{PPh}_{3}(3.50 \mathrm{~g}, 13.33 \mathrm{mmol}), 4 \mathrm{a}(2.90 \mathrm{~g}, 13.33 \mathrm{mmol})$ and DIAD ($2.62 \mathrm{~mL}, 13.33 \mathrm{mmol}$) were respectively added. The reaction was stirred at rt under argon and was monitored by TLC (EtOAc/cyclohexane, 2:1). After completion of reaction (3 h), the solvent was removed under vacuum and the residue was purified by column chromatography (30 to 40% EtOAc in cyclohexane) to obtain the desired compound from the Mitsunobu reaction in mixture with 4a. This mixture was dissolved in 80 mL anhydrous DMF and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.72 \mathrm{~g}, 48.66$ mmol) was added. The solution was degassed with argon during 10 min and $\mathrm{PhSH}(2.49 \mathrm{~mL}, 24.33 \mathrm{mmol})$ was introduced dropwise. After 3 h of stirring under argon, water was added and the reaction mixture was extracted three times with diethyl ether. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The residue was purified by column chromatography (50 to 100% EtOAc in cyclohexane) to provide $5 \mathrm{5a}$ ($3.32 \mathrm{~g}, 90 \%$). ESI-MS calcd for $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{6} 443.58$, found 444.3. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 5.91\left(\mathrm{ddt},{ }^{3} J=5.5 \mathrm{~Hz},{ }^{3} J=10.5 \mathrm{~Hz},{ }^{3} J=17 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $=$ CHallyl), 5.29 (dd, ${ }^{2} J=1.5 \mathrm{~Hz},{ }^{3} J=17 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}$ allyl), $5.19\left(\mathrm{dd},{ }^{2} J=1.5 \mathrm{~Hz},{ }^{3} J=10.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right.$ allyl), $4.85(\mathrm{br} \mathrm{s}$,
$1 \mathrm{H}, \mathrm{NH} \varepsilon$), 4.62-4.50 (m, $3 \mathrm{H}, \mathrm{OCH}_{2}$ allyl, NHBoc), 3.73 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{Me})$, $3.26-3.14\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} \alpha, \mathrm{CH}_{2} \varepsilon\right), 3.13-3.06(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NHBoc}$), 2.63-2.53 (m, 1H, CH2NH α), 2.53-2.41 (m, 1 H , $\left.\mathrm{CH}_{2} \mathrm{NH} \alpha\right), 1.74-1.6\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \beta\right), 1.60-1.24(\mathrm{~m}, 21 \mathrm{H}$, $\left.6 \mathrm{xCH}_{2}, t \mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.72,156.42$, $156.15,133.17,117.69,79.12,68.11,65.57,61.44,51.92$, 48.23, 40.88, 32.96, 30.12, 29.95, 29.81, 28.58, 26.70, 23.06, 21.17.
$N^{\alpha}(N$-Alloc(aminohexyl))-Lys(Boc)-OMe (5b). The procedure described for $\mathbf{5 a}$ was applied from $\mathbf{3 b}(2.5 \mathrm{~g}, 5.60 \mathrm{mmol})$ and 4b $(1.80 \mathrm{mg}, 8.95 \mathrm{mmol})$ to afford after column chromatography (40 to 50% EtOAc in cyclohexane) the compound from the Mitsunobu reaction in mixture with $\mathbf{4 b}$. Nosyl removal of the compound from the Mitsunobu reaction was realized on this mixture as described below to give after column chromatography (50 to 100% EtOAc in cyclohexane) the compound $\mathbf{5 b}\left(2.2 \mathrm{~g}, 90 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 5.98-5.91\left(\mathrm{~m}, 1 \mathrm{H},=\right.$ CHallyl), $5.29\left(\mathrm{~d},{ }^{3} J=17.0 \mathrm{~Hz}\right.$, $1 \mathrm{H},=\mathrm{CH}_{2}$ allyl), $5.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right.$ allyl), $4.73(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH} \varepsilon)$, $4.60-4.50\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2}\right.$ allyl, NHBoc), 3.71 (s, $3 \mathrm{H}, \mathrm{Me}$), 3.27-3.13 (m, $3 \mathrm{H}, \mathrm{CH} \alpha, \mathrm{CH}_{2} \varepsilon$), 3.12-3.04 (m, 2 H , $\mathrm{CH}_{2} \beta$), 2.62-2.48 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH} \alpha$), 2.48-2.33 (m, 1 H , $\left.\mathrm{C} \mathrm{H}_{2} \mathrm{NH} \alpha\right), 1.65-1.27\left(\mathrm{~m}, 23 \mathrm{H}, 7 \mathrm{xCH}_{2}, t \mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.05,156.29,155.96,133.05,117.55,79.02$, $65.42,61.45,51.66,48.11,40.97,40.36,33.18,30.05,29.91$, 29.88, 28.44, 26.22, 26.52, 23.08.
$N^{\alpha}($ Fmoc $)-L y s(A l l o c)-N^{(,) \alpha}(N$-Boc(aminohexyl))-Lys(Alloc)OMe (6a). To a mixture of Fmoc-Lys(Alloc)-OH (5.78 g, $12.78 \mathrm{mmol})$ and HATU ($4.86 \mathrm{~g}, 12.78 \mathrm{mmol}$) in anhydrous DCM (60 mL) was added DIEA ($3.56 \mathrm{~mL}, 20.44 \mathrm{mmol}$). The solution was stirred for 30 min under argon, and then a solution of $5 \mathrm{a}(2.27 \mathrm{~g}, 5.11 \mathrm{mmol})$ in 20 mL anhydrous DCM was added. The solution was stirred under argon and the completion of the reaction was monitored by TLC (EtOAc/cyclohexane, 2:1). The mixture was diluted with DCM and was washed with a saturated aqueous solution of NaHCO_{3}, water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under vacuum and the residue purified by column chromatography (40 to $50 \% \mathrm{EtOAc}$ in cyclohexane) to give $\mathbf{6 a}$ ($3.73 \mathrm{~g}, 83 \%$). RP-HPLC (5 to 100% solvent B) $t_{\mathrm{R}}=18.4 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{47} \mathrm{H}_{67} \mathrm{~N}_{5} \mathrm{O}_{11}$ 878.06, found 878.4. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76\left(\mathrm{~d},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xHAr}\right), 7.59(\mathrm{~d}$, $\left.{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xHAr}\right), 7.40\left(\mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xHAr}\right), 7.31$ (t, $\left.{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xHAr}\right), 5.98-5.81(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{x}=$ CHallyl), $5.62\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=7.0 \mathrm{~Hz}, \mathrm{NH} \alpha\right), 5.27\left(\mathrm{dd}, 2 \mathrm{H},{ }^{2} J=1.5 \mathrm{~Hz},{ }^{3} J=\right.$ $17.0 \mathrm{~Hz}, 2 \mathrm{x}=\mathrm{CH}_{2}$ allyl), 5.18 (dd, $2 \mathrm{H},{ }^{2} J=1.5 \mathrm{~Hz},{ }^{3} J=10.5 \mathrm{~Hz}$, $2 \mathrm{x}=\mathrm{CH}_{2}$ allyl), 4.99 (br s, $2 \mathrm{H}, 2 \mathrm{NH} \varepsilon$), 4.69 (br s, $1 \mathrm{H}, \mathrm{NHBoc}$), $4.63-4.56(\mathrm{~m}, ~ 1 \mathrm{H}, \mathrm{CH} \alpha), 4.53\left(\mathrm{~d},{ }^{3} J=5.5 \mathrm{~Hz}, 4 \mathrm{H}\right.$, $2 \mathrm{xOCH}_{2}$ allyl), 4.47-4.30 (m, 3H, CH, $\mathrm{CH}_{2} \mathrm{Fmoc}$), $4.21\left(\mathrm{t},{ }^{3} J\right.$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHFmoc}), 3.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.46-3.28(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), 3.26-3.01 (m, $\left.6 \mathrm{H}, 2 \mathrm{xCH}_{2} \varepsilon, \mathrm{CH}_{2} \mathrm{NHBoc}\right), 2.14-2.02$ (m, 1H, CH2N), 1.86-1.30 (m, 29H, 10xCH,$t \mathrm{Bu})$.
$N^{\alpha}($ Fmoc $)-L y s($ Boc $)-N^{(,) \alpha}(N$-Alloc(aminohexyl))-Lys(Boc)-
OMe (6b).The procedure described for $\mathbf{6 a}$ was applied to Fmoc-Lys(Boc)-OH ($4.86 \mathrm{~g}, 10.36 \mathrm{mmol}$) and 5b $(1.84 \mathrm{~g}, 4.14$ $\mathrm{mmol})$ to give $\mathbf{6 b}(3.5 \mathrm{~g}, 95 \%)$ after column chromatography (50 to 60% EtOAc in cyclohexane). RP-HPLC (5 to 100% solvent B) $t_{\mathrm{R}}=18.9 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{48} \mathrm{H}_{71} \mathrm{~N}_{5} \mathrm{O}_{11}$ 894.11, found 894.6. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78\left(\mathrm{~d},{ }^{3} J\right.$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xHAr}), 7.62\left(\mathrm{~d},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xHAr}\right), 7.42$ (t, $\left.{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xHAr}\right), 7.33\left(\mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{xHAr}\right)$, 6.03-5.81 (m, 1H, =CHallyl), $5.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH} \alpha), 5.31-5.22$ $\left(\mathrm{m}, 1 \mathrm{H},=\mathrm{CH}_{2}\right.$ allyl $), 5.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right.$ allyl $), 5.05$ (br s, $1 \mathrm{H}, \mathrm{NHAlloc}), 4.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \varepsilon), 4.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \varepsilon)$, 4.69-4.58 (m, 1H, CH $), 4.57-4.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right.$ allyl), 4.494.31 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH} \alpha, \mathrm{CH}_{2} \mathrm{Fmoc}$), $4.24\left(\mathrm{t},{ }^{3} \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHFmoc), $3.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.49-3.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.27-$ 3.01 ($\mathrm{m}, 6 \mathrm{H}, 2 \mathrm{xCH}_{2} \varepsilon, \mathrm{CH}_{2} \mathrm{NHAlloc}$), $2.15-2.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{~N}\right)$, $1.91-1.31\left(\mathrm{~m}, 38 \mathrm{H}, 10 \mathrm{xCH}_{2}, 2 \mathrm{x} t \mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 171.36,156.37,156.08,143.20,141.33,133.10$, 127.73, 127.07, 125.18, 120.00, 117.46, 79.09, 67.07, 65.37, $53.42,52.29,51.00,47.18,40.74,40.34,33.33,29.84,28.69$, 28.46, 26.32, 26.09, 23.84, 22.32.
c[N^{ε}-allyloxycarbonyl-L-lysinyl- $N^{(\cdot) \alpha}((N$-tert-butyloxycarbonyl)aminohexyl)- N^{ε}-allyloxycarbonyl-Llysinyl] or DKP (1a). Compound 6a ($4.0 \mathrm{~g}, 4.56 \mathrm{mmol}$) was dissolved in 25 mL of a piperidine/DCM solution, $1: 4$. The mixture was stirred for 2 h at rt . After addition of DCM, the organic layer was washed twice with 10% citric acid solution, once with water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude was purified on column chromatography (2 to 10% MeOH in DCM) to afford compound 1a ($2.47 \mathrm{~g}, 87 \%$). RPHPLC (5 to 100% solvent B) $t_{\mathrm{R}}=13.6 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{8} 623.78$, found 624.3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.54$ (br s, $1 \mathrm{H}, \mathrm{NH}_{\text {lactame }}$), $5.99-5.83$ (m, $2 \mathrm{H}, 2 \mathrm{x}=$ CHallyl), $5.29\left(\mathrm{dd},{ }^{2} J=1.5 \mathrm{~Hz},{ }^{3} J=17 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{x}=\mathrm{C} H_{2}\right.$ allyl), $5.20\left(\mathrm{dd},{ }^{2} J\right.$ $=1.5 \mathrm{~Hz},{ }^{3} J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{x}=\mathrm{CH}_{2}$ allyl), $5.00(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{xNH} \varepsilon)$, 4.60-4.50 ($\mathrm{m}, 5 \mathrm{H}, 2 \mathrm{xOCH}_{2}$ allyl, NHBoc), $3.95-3.86(\mathrm{~m}, 2 \mathrm{H}$, $2 x \mathrm{CH} \alpha), 3.86-3.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.25-3.15(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \mathrm{XCH}_{2} \varepsilon\right)$, 3.14-3.00 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHBoc}\right), 2.90-2.79(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.03-1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \beta\right), 1.68-1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \beta\right)$, 1.58-1.27 (m, 25H, 8xCH2, tBu). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.49,166.20,156.43,155.99,133.01,117.34,78.84,65.30$, $59.34,55.33,53.43,44.72,40.58,35.41,32.65,29.80,29.59$, 29.16, 28.35, 26.81, 26.41, 26.29, 22.70, 22.39.
c [$N^{\mathrm{\varepsilon}}$-tert-butyloxycarbonyl-L-lysinyl- $N^{(,) \alpha}((N$ -allyloxycarbonyl)aminohexyl)- N^{ε}-tert-butylcarbonyl-L-
lysinyl] or DKP (1b). The same procedure as described above for $\mathbf{1 a}$ was applied from $\mathbf{6 b}(2.5 \mathrm{~g}, 2.80 \mathrm{mmol})$ to give $\mathbf{1 b}(1.49$ $\mathrm{g}, 83 \%$) after purification by column chromatography (2 to 5% MeOH in DCM). RP-HPLC (5 to 100% solvent B) $t_{\mathrm{R}}=14.5$ min. ESI-MS calcd for $\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{8}$ 639.82, found 640.5. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{\text {lactame }}\right), 5.96-5.87$ (m, 1H, =CHallyl), $5.30\left(\mathrm{dd},{ }^{2} J=1.5 \mathrm{~Hz},{ }^{3} J=17.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $=\mathrm{CH}_{2}$ allyl), $5.20\left(\mathrm{dd},{ }^{3} J=10.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right.$ allyl $), 4.81(\mathrm{~s}, 1 \mathrm{H}$,

NH), 4.75-4.60 (br s, $2 \mathrm{H}, 2 \mathrm{xNH}$), 4.55 (d, ${ }^{3} J=4.9 \mathrm{~Hz}, 2 \mathrm{H}$, OCH_{2} allyl), 3.93-3.74 (m, 3H, $2 \mathrm{xCH} \alpha, \mathrm{CH}_{2} \mathrm{~N}$), $3.20-3.05(\mathrm{~m}$, $6 \mathrm{H}, 2 \mathrm{xCH}_{2} \varepsilon, \mathrm{CH}_{2} \mathrm{NHAlloc}$), $2.89-2.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.04-$ $1.26(\mathrm{~m}, 38 \mathrm{H}, 10 \mathrm{xCH} 2,2 \mathrm{x} t \mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 167.96, 166.10, 156.42, 156.20, 133.17, 117.68, 79.35, 79.27, $65.54,59.56,55.87,44.81,40.95,40.23,35.75,32.86,29.91$, 28.56, 26.95, 26.50, 26.37, 23.11, 22.66.
c[L-lysinyl- $N^{(,) \alpha}((N$-tert-butyloxycarbonyl)aminohexyl)-L-
lysinyl] or DKP (7a). To a solution of $\mathbf{1 a}(2.12 \mathrm{~g}, 3.40 \mathrm{mmol})$ in 120 mL of anhydrous DCM under argon, $\mathrm{PhSiH}_{3}(8.4 \mathrm{~mL}, 68$ $\mathrm{mmol})$ followed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(79 \mathrm{mg}, 68 \mu \mathrm{~mol})$ were added. The mixture was stirred for 2 h under inert atmosphere, and then 10 mL of MeOH was added. The solvent was removed under vacuum and the crude was purified by column chromatography (2 to $20 \% \mathrm{MeOH}$ in DCM in the presence of $5 \% \mathrm{Et}_{3} \mathrm{~N}$) to give 7 a ($1.38 \mathrm{~g}, 89 \%$) as a white powder. RPHPLC (5 to 100% solvent B) $t_{\mathrm{R}}=9.3 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{4} 455.64$, found 456.4. RMN ${ }^{1} \mathrm{H}(400 \mathrm{MHz}$, DMSOd6): $\delta 8.30$ (s, $1 \mathrm{H}, \mathrm{NH}_{\text {lactame }}$), 6.74 (s, $\left.1 \mathrm{H}, \mathrm{NHBoc}\right), 3.83-3.80$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH} \alpha), 3.76-3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \alpha), 3.65-3.57(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), 2.91-2.85 (m, 3H, CH2NHBoc, $\mathrm{CH}_{2} \mathrm{~N}$), 2.61-2.54 (m, $\left.4 \mathrm{H}, 2 \mathrm{xCH}_{2} \varepsilon\right), 1.88-1.47\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{xCH}_{2} \beta\right), 1.46-1.15(\mathrm{~m}, 25 \mathrm{H}$, $\left.8 \mathrm{xCH}_{2}, t \mathrm{Bu}\right)$. RMN ${ }^{1} \mathrm{H}(125 \mathrm{MHz}$, DMSO-d6): $\delta 166.72$, $165.95,155.57,77.29,58.98,54.46,43.97,35.11,32.10,31.17$, $30.79,29.38,28.28,26.52,26.04,25.98,22.34,22.15$.
c[$N^{\mathrm{\varepsilon}}$-tert-butyloxycarbonyl-L-lysinyl- $N^{(,) \alpha}(N$-aminohexyl)-$N^{\mathfrak{E}}$-tert-butylcarbonyl-L-lysinyl] or DKP (7b). The same procedure described above for $\mathbf{7 a}$ was applied from $\mathbf{1 b}(1.2 \mathrm{~g}$, 1.84 mmol) to give 7b ($930 \mathrm{mg}, 91 \%$) after purification (5 to $10 \% \mathrm{MeOH}$ in DCM in the presence of 1% of $\mathrm{Et}_{3} \mathrm{~N}$). RP-HPLC (5 to 100% solvent B) $t_{\mathrm{R}}=11.6 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{28} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{6} 555.75$, found 556.3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.61\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{\text {lactame }}\right), 4.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHBoc}), 4.68(\mathrm{~s}, 1 \mathrm{H}$, NHBoc), 3.98-3.78 (m, $3 \mathrm{H}, 2 \mathrm{xCH}, \mathrm{CH}_{2} \mathrm{~N}$), $3.21-3.02(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \mathrm{xCH}_{2} \varepsilon\right), 2.91-2.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.76-2.59(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 1.97-1.22\left(\mathrm{~m}, 38 \mathrm{H}, 10 \mathrm{xCH}_{2}, 2 \mathrm{x} t \mathrm{Bu}\right)$.

DKP (9). Compound 7a ($46 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in 1 mL of DCM and the pH was adjusted to 9 with DIEA. Compound 8 ($79 \mathrm{mg}, 0.22 \mathrm{mmol}$) was added and the mixture was stirred at rt. The reaction was monitored by analytical RPHPLC. After 3 h of stirring, the mixture was diluted with AcOEt. The organic layer was washed once with 10% citric acid solution, water and brine. The organic layer was dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated on vacuum. The residue was purified by column chromatography (2 to $5 \% \mathrm{MeOH}$ in DCM) to afford the intermediate DKP ($79 \mathrm{mg}, 84 \%$) in which two Boc- $\operatorname{Ser}(\mathrm{tBu})$ are ligated on the lysine residues. RP-HPLC (5 to 100% solvent B) $t_{\mathrm{R}}=16.6 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{47} \mathrm{H}_{87} \mathrm{~N}_{7} \mathrm{O}_{12}$ 942.24, found 942.7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.82$ (br s, $1 \mathrm{H}, \mathrm{NH}_{\text {lactame }}$), 6.71-6.68 (m, 2H, 2xNHz), 5.46 (br s, 2 H , $2 \mathrm{xNH}_{\text {serine }}$), 4.62 (br s, $1 \mathrm{H}, \mathrm{NHBoc}$), $4.18-4.11$ (br s, 2 H ,
$\left.2 \mathrm{xCH}_{\text {serine }}\right), 3.91-3.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {lysine }}\right), 3.85-3.79(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{\text {lysine }}, \mathrm{CH}_{2} \mathrm{~N}$), 3.77-3.69 (m, $\left.2 \mathrm{H}, 2 \mathrm{xCH}_{2} \beta_{\text {serine }}\right), 3.43-3.33$ ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{xCH}_{2} \beta_{\text {serine }}$), $3.31-3.19\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \varepsilon\right), 3.07\left(\mathrm{t},{ }^{3} J=\right.$ $\left.6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHBoc}\right), 2.85-2.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.04-1.88$ (m, $2 \mathrm{H}, 2 \mathrm{xCH}_{2} \beta_{\text {lysine }}$), 1.84-1.62 (m, $2 \mathrm{H}, 2 \mathrm{xCH}_{2} \beta_{\text {lysine }}$), 1.61$1.24\left(\mathrm{~m}, 43 \mathrm{H}, 8 \mathrm{xCH}_{2}, 3 \mathrm{xBoc}\right), 1.17\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{O} t \mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.82,170.72,167.68,165.97$ $156.03,155.55,79.99,79.07,73.87,73.84,61.95,61.91,59.39$, 55.61, 54.38, 44.76, 40.57, 38.99, 35.52, 32.68, 29.90, 29.19, $29.04,28.43,28.34,27.46,26.89,26.48,26.37,22.95,22.60$.

This intermediate DKP ($79 \mathrm{mg}, 0.084 \mathrm{mmol}$) was dissolved in a mixture of TFA/DCM $(1: 1,8 \mathrm{~mL})$. The solution was stirred for 2 h at rt and the solvents were removed under vacuum. The residue was taken up in water and lyophilized to give the deprotected DKP, in which serine residues are ligated on the lysine side chains, as TFA salt ($53 \mathrm{mg}, 73 \%$). RP-HPLC (5 to 40% solvent B) $t_{\mathrm{R}}=4.5 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{24} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{O}_{6} 529.67$, found 530.5. This DKP ($27 \mathrm{mg}, 0.031$ mmol) was dissolved in 4 mL of a $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} /$ TFA (3:1.9:0.1). $\mathrm{NaIO}_{4}(200 \mathrm{mg}, 0.93 \mathrm{mmol})$ was added and the mixture was stirred for 45 min at rt . The solution was purified by preparative RP-HPLC (5 to 40% solvent B) to give 9 (8 mg , 42%) after lyophilization, as TFA salt. RP-HPLC (5 to 40% solvent B) $t_{\mathrm{R}}=5 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{6}, 2 \mathrm{H}_{2} \mathrm{O}$ 503.59, found 504.4.

DKP (11). Compound $7 \mathbf{7 a}(50 \mathrm{mg}, 0.11 \mathrm{mmol})$ was dissolved in 4 mL of DMF and the pH was adjusted to 9 with DIEA. Compound 10 ($95 \mathrm{mg}, 0.33 \mathrm{mmol}$) was then added and the solution was stirred at rt for 3 h (completion of the reaction was checked by analytical RP-HPLC). The solvent was removed under reduced pressure and the residue was taken up in DCM, washed with a 5% aqueous NaHCO_{3} solution, with water and brine. The organic layer was dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated on vacuum. The crude was then purified by column chromatography (2 to $6 \% \mathrm{MeOH}$ in DCM) to afford 11 ($67 \mathrm{mg}, 76 \%$). RP-HPLC (5 to 100% solvent B) $t_{\mathrm{R}}=13.8 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{37} \mathrm{H}_{67} \mathrm{~N}_{7} \mathrm{O}_{12}$ 801.97, found 802.5. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.52$ (br s, $1 \mathrm{H}, \mathrm{ONH}$), 8.33 (br s, 1 H , $\mathrm{ONH}), 8.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH} \varepsilon), 7.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH} \varepsilon), 7.37$ (br s, $1 \mathrm{H}, \mathrm{NH}_{\text {lactame }}$), 4.66 (br s, $1 \mathrm{H}, \mathrm{NHBoc}$), 4.31 and 4.29 (2 s , $\left.2 \mathrm{x} 2 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{ONH}\right), 3.94-3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \alpha), 3.87-3.85(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH} \alpha)$, $3.81-3.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.28-3.32(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \mathrm{xCH}_{2} \varepsilon\right), 3.08-3.05\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHBoc}\right), 2.88-2.82$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 1.99-1.93 (m, 2H, $2 \mathrm{xCH}_{2} \beta$), 1.81-1.68 (m, 2 H , $2 \mathrm{xCH}_{2} \beta$), 1.68-1.27 (m, $\left.43 \mathrm{H}, 8 \mathrm{xCH}_{2}, 3 \mathrm{x} t \mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.36,169.30,168.13,166.21,158.03$, $156.21,82.95,82.82,79.19,76.08,76.03,59.47,55.61,44.86$, $40.52,38.65,38.52,35.33,32.45,30.00,28.74,28.54,28.26$, $26.98,26.59,26.46,22.82,22.44$.

DKP (13). Compound 7a ($40 \mathrm{mg}, 0.088 \mathrm{mmol}$) was dissolved in 2 mL of DMF and the pH was adjusted to 9 with DIEA. Compound 12 ($51 \mathrm{mg}, 0.264 \mathrm{mmol}$) was added and the solution
was stirred at rt. The solvent was removed after 3 h under reduced pressure and the residue was purified by column chromatography (0 to $6 \% \mathrm{MeOH}$ in DCM) to afford the DKP intermediate ($46 \mathrm{mg}, 85 \%$ yield). RP-HPLC (5 to 100% solvent B) $t_{\mathrm{R}}=11.9 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{6} 615.81$, found 616.3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=2.4 \mathrm{~Hz}\right.$, $\mathrm{NH}_{\text {lactame }}$), $6.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH} \varepsilon), 6.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH} \varepsilon), 4.66$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{NHBoc}), 5.00(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{xNH} \varepsilon), 3.92-3.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \alpha)$, $3.85-3.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \alpha), 3.80-3.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.28-3.24$ (m, $4 \mathrm{H}, 2 \mathrm{xCH}_{2} \varepsilon$), 3.10-3.02 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHBoc}$), 2.88-2.81 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.51-2.47\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{Csp}\right), 2.40-2.36(\mathrm{~m}$, $4 \mathrm{H}, 2 \mathrm{XCH}_{2} \mathrm{CO}$), 2.04-2.01 (m, 2H, $2 x$ CHalcyne), 1.98-1.90 (m, $\left.2 \mathrm{H}, 2 \mathrm{xCH}_{2} \beta\right), 1.81-1.67\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{xCH}_{2} \beta\right), 1.65-1.25(\mathrm{~m}, 25 \mathrm{H}$, $\left.8 \mathrm{xCH}_{2}, t \mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.57,171.52$, 168.43 , $166.19,156.20,83.19,83.15,79.21,69.65,69.59$, $59.49,55.68,44.81,40.65,39.28,35.55,35.38,35.36,32.60$, 29.99, 29.36, 29.12, 28.55, 26.98, 26.57, 26.46, 22.97, 22.55, $15.15,15.13$. Boc removal of this intermediate ($36 \mathrm{mg}, 0.058$ mmol) was then performed using a mixture of TFA/DCM (1:1, 3 mL) during 2 h . After removal of solvents under vacuum and trituration in diethyl ether, $\mathbf{1 3}$ ($34 \mathrm{mg}, 92 \%$ yield) was obtained as TFA salt. RP-HPLC (5 to 100% solvent B) $t_{\mathrm{R}}=8.6 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{4} 515.69$, found 516.4. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 3.94$ (dd, ${ }^{3} J=3.8$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \alpha$), $3.89\left(\mathrm{dd},{ }^{3} J=4.7\right.$ and $\left.6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \alpha\right), 3.75-3.69(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.25-3.18\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \varepsilon\right), 3.08-3.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 2.93 ($\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}$), 2.48-2.45 (m, 4H, $\left.2 \mathrm{xCH}_{2} \mathrm{Csp}\right), 2.40-2.36\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{CO}\right), 2.99\left(\mathrm{t},{ }^{3} J=2.4 \mathrm{~Hz}\right.$, $2 \mathrm{H}, 2 \mathrm{xCHalcyne}$), 2.03-1.39 (m, 20H, $10 \mathrm{xCH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 173.97,173.93,169.62,168.72,83.57$, 83.54, 70.48, 70.41, 61.11, 56.54, 46.05, 40.59, 40.04, 39.83, $36.63,36.09,36.08,33.51,29.99,29.93,28.37,27.74,27.24$, 26.94, 24.07, 23.59, 15.82, 15.80.

DKP (15). Compound $7 \mathbf{7 a}(73 \mathrm{mg}, 0.16 \mathrm{mmol})$ was dissolved in 4 mL of DCM , and $\mathrm{K}_{2} \mathrm{CO}_{3}(156 \mathrm{mg}, 1.14 \mathrm{mmol})$ dissolved in 2 mL of water, followed by $\mathrm{ZnCl}_{2}(4.4 \mathrm{mg}, 0.032 \mathrm{mmol})$ were added. Then compound $14^{18}(100 \mathrm{mg}, 0.48 \mathrm{mmol})$ dissolved in 4 mL of MeOH was added slowly. The mixture was stirred for 2 h at rt . The solvents were removed under vacuum and the residue was taken up in $\mathrm{H}_{2} \mathrm{O}$. The pH was adjusted to 2 with 1 M HCl and the aqueous phase was extracted three times with DCM. The organic layers were pooled, washed with water, brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration under vacuum, the crude material was purified by column chromatography (0 to $5 \% \mathrm{MeOH}$ in DCM) to afford the DKP intermediate ($64 \mathrm{mg}, 78 \%$ yield). RP-HPLC (5 to 100% solvent B) $t_{\mathrm{R}}=14.6 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{~N}_{9} \mathrm{O}_{4} 507.63$, found 508.3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24\left(\mathrm{~d},{ }^{3} J=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{NH}_{\text {lactame }}$), 4.56 (br s, $\left.1 \mathrm{H}, \mathrm{NHBoc}\right), 3.94-3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \alpha)$, 3.89-3.86 (m, 1H, CH α), 3.85-3.79 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.31-3.27 (m, $\left.4 \mathrm{H}, 2 \mathrm{xCH}_{2} \varepsilon\right), 3.09-3.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHBoc}\right), 2.86-2.79$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.03-1.93\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{xCH}_{2} \beta\right), 1.84-1.44(\mathrm{~m}$, $\left.14 \mathrm{H}, 7 \mathrm{xCH}_{2}\right), 1.42(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.36-1.24\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \gamma\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.06,165.94,156.17,79.25$, $59.45,55.66,51.25,51.22,44.90,40.66,35.62,32.64,30.04$,
28.72, 28.54, 28.46, 26.99, 26.61, 26.48, 23.11, 22.70. This intermediate ($50 \mathrm{mg}, 0.098 \mathrm{mmol}$) was dissolved in a TFA/DCM (1:1, 4 mL) mixture. After 2 h of stirring at rt , the solution was concentrated under reduced pressure and the crude was purified by preparative HLPC (5 to 80% solvent B in 20 min run time) to afford $\mathbf{1 5}(41 \mathrm{mg}, 0.078 \mathrm{mmol})$, as TFA salt, in 80% yield. RP-HPLC (5 to 100% solvent B) $t_{\mathrm{R}}=11.9 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{~N}_{9} \mathrm{O}_{2} 407.51$, found 408.4. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 3.98\left(\mathrm{dd},{ }^{3} J=3.8\right.$ and $\left.7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \alpha\right)$, 3.93 (dd, ${ }^{3} J=4.9$ and $\left.7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \alpha\right), 3.76-3.70(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), 3.36-3.33 (m, 4H, $2 \mathrm{xCH}_{2} \varepsilon$), 3.05-3.10 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $2.93\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \quad \mathrm{C} H_{2} \mathrm{NH}_{2}\right), 2.06-1.99(\mathrm{~m}, 1 \mathrm{H}$, $1 \mathrm{xCH} \beta$), 1.94-1.84 (m, $\left.2 \mathrm{H}, 2 \mathrm{xCH}_{2} \beta\right), 1.82-1.75(\mathrm{~m}, 1 \mathrm{H}$, $1 \mathrm{xCH} \beta$), 1.73-1.35 (m, $16 \mathrm{H}, 8 \mathrm{xCH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 169.56,168.69,61.09,56.48,52.23,52.18,46.07$, $40.60,36.35,33.25,29.57,29.47,28.41,27.76,27.28,26.97$, 23.97, 23.69.

DKP (16). The procedure described above for the synthesis of $\mathbf{1 5}$ was applied from $\mathbf{7 b}(120 \mathrm{mg}, 0.216 \mathrm{mmol})$ to afford the intermediate bearing one azido function and two free lysine residues ($112 \mathrm{mg}, 0.184 \mathrm{mmol}$) in 85% (TFA salt, 2 steps). RPHPLC (5 to 100% solvent B) $t_{\mathrm{R}}=8.16 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{~N}_{7} \mathrm{O}_{2} 381.52$, found 382.4. This intermediate $(110 \mathrm{mg}$, 0.181 mmol) was dissolved in 4 mL of DMF and pH was adjusted to 9 with DIEA. Compound $\mathbf{1 0}$ ($121 \mathrm{mg}, 0.42 \mathrm{mmol}$) was added and the solution was stirred at rt . The completion of the reaction was checked by analytical RP-HPLC and the solvent was removed under reduced pressure. The residue was dissolved in EtOAc and washed once with a 10% citric acid aqueous solution and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (0 to 5% MeOH in DCM) to afford $16(88 \mathrm{mg}, 0.121 \mathrm{mmol})$ in 57% yield. RP-HPLC (5 to 100% solvent B) $t_{\mathrm{R}}=14.2 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{~N}_{9} \mathrm{O}_{10}$ 727.85, found 728.5. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.38$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 8.19 ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}, 2 \mathrm{xNH} \varepsilon$), $8.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.32$ and $4.31(2 \mathrm{~d}$, $2 \mathrm{x} 2 \mathrm{H}, 2 \mathrm{xCH}_{2} \mathrm{ONH}$), $3.95-3.79\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{xCH} \mathrm{\alpha}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.88-$ $3.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.33-3.30\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2} \varepsilon\right), 3.25(\mathrm{t}, 2 \mathrm{H}$, $\left.{ }^{3} J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.88-2.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.05-1.93(\mathrm{~m}$, $2 \mathrm{H}, 2 \mathrm{xCH}_{2} \beta$), 1.85-1.68 (m, 2H, $2 \mathrm{xCH}_{2} \beta$), $1.65-1.23(\mathrm{~m}, 34 \mathrm{H}$, $\left.8 \mathrm{xCH}_{2}, 2 \mathrm{x} t \mathrm{Bu}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.46, $168.09,166.16,158.05,83.10,82.97,76.15,76.10,59.48$, 55.68, 51.45, 44.74, 38.69, 38.51, 35.30, 32.28, 28.84, 28.76, $28.28,26.98,26.55,26.51,22.85,22.29$.

Peptide (17). The protected $\mathrm{S}(\mathrm{tBu}) \mathrm{K}(\mathrm{Boc})$ LVFFA was automatically assembled on 2-chlorotritylchloride $\operatorname{resin}^{(8)}$ (200 $\mathrm{mg}, 0.6 \mathrm{mmol} . \mathrm{g}^{-1}$) using Fmoc $/ \mathrm{tBu}$ strategy on a Syro II synthesizer using PyBOP as coupling agent. The peptide was deprotected and released from the resin by treatment during 1 h with 5 mL of a TFA/TIS/ $\mathrm{H}_{2} \mathrm{O}(95 / 2.5 / 2.5)$ solution. The residue obtained after evaporation was precipitated in $\mathrm{DCM} / \mathrm{Et}_{2} \mathrm{O}$ and
the crude material was purified by preparative RP-HPLC (5 to 100% B) to afford the SKLVFFA peptide ($50 \mathrm{mg}, 0.048 \mathrm{mmol}$) in 40% yield (TFA salt). RP-HPLC (5 to 100% solvent B) $t_{\mathrm{R}}=$ 10.3 min. ESI-MS calcd for $\mathrm{C}_{41} \mathrm{H}_{62} \mathrm{~N}_{8} \mathrm{O}_{9} 810.98$, found 811.6 . The SKLVFFA peptide ($45 \mathrm{mg}, 43.3 \mu \mathrm{~mol}$) was dissolved in $800 \mu \mathrm{~L}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and water containing 0.1% TFA (1.2 mL), then $\mathrm{NaIO}_{4}(98 \mathrm{mg}, 45 \mu \mathrm{~mol})$ was added. The solution was stirred for 30 min at rt . The reaction mixture was directly purified by preparative RP-HPLC (20 to 70% solvent B) to give 17 ($31 \mathrm{mg}, 34.0 \mu \mathrm{~mol}$) in 79% yield (TFA salt). RP-HPLC (5 to 60% solvent B) $t_{\mathrm{R}}=14.2 \mathrm{~min}$. HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{57} \mathrm{~N}_{7} \mathrm{O}_{9}, \mathrm{H}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 798.4396$, found 798.4392.

DKP (18). To a solution of DKP $11(5.4 \mathrm{mg}, 7.3 \mu \mathrm{~mol})$ in 1.3 mL of $\mathrm{TFA} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ (5:3:2), peptide $\mathbf{1 7}$ (14 mg , 15.6 $\mu \mathrm{mol}$) was added and the mixture was heated 1 h at $37^{\circ} \mathrm{C}$. The mixture was injected in preparative RP-HLPC (20 to 80% solvent B) to give $\mathbf{1 8}(9.0 \mathrm{mg}, 4.0 \mu \mathrm{~mol})$ in 55% yield, as TFA salt. RP-HPLC (20 to $80 \% \mathrm{~B}$) $t_{\mathrm{R}}=12.1 \mathrm{~min}$. HRMS (ESI) calcd for $\mathrm{C}_{102} \mathrm{H}_{153} \mathrm{~N}_{21} \mathrm{O}_{22}[\mathrm{M}+2 \mathrm{H}]^{2+}$ 1013.0822, found 1013.0831.

DKP (20). DKP 15 ($3.4 \mathrm{mg}, 6.5 \mu \mathrm{~mol}$) and curcumin 19 (6.4 $\mathrm{mg}, 16 \mu \mathrm{~mol}$) were dissolved in $400 \mu \mathrm{~L}$ of DMF and the solution was degassed with argon (solution 1). To a degassed $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(3.2 \mathrm{mg}, 13.0 \mu \mathrm{~mol})$ solution in water $(100 \mu \mathrm{~L})$, THPTA ($12.9 \mathrm{mg}, 32.5 \mathrm{mmol}$) was added followed by sodium ascorbate ($13.0 \mathrm{mg}, 66.0 \mu \mathrm{~mol}$) previously dissolved in $300 \mu \mathrm{~L}$ of water (solution 2). The solution 2 was added to the solution 1 and the mixed solution was degassed and stirred at rt under argon. The reaction was followed by analytical RP-HPLC and the reaction mixture was purified by preparative HLPC (20 to 100% solvent B) to give 20 as TFA salt ($0.91 \mathrm{mg}, 0.68 \mu \mathrm{~mol}$) in 10% yield. RP-HPLC (15 to 100% solvent B) $t_{\mathrm{R}}=13.4 \mathrm{~min}$. HRMS (ESI) calcd for $\mathrm{C}_{66} \mathrm{H}_{77} \mathrm{~N}_{9} \mathrm{O}_{14}[\mathrm{M}+\mathrm{H}]^{+} 1220.5663$, found 1220.5662.

DKP (21). To a solution of DKP $16(3.3 \mathrm{mg}, 4.5 \mu \mathrm{~mol})$ in 1 mL of TFA/ $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(5: 3: 2)$, the peptide $17(10 \mathrm{mg}, 11 \mu \mathrm{~mol})$ was added and the mixture was heated at $37^{\circ} \mathrm{C}$. The reaction was monitored by analytical RP-HPLC and the reaction mixture was purified by preparative HLPC (5 to 100% solvent) to give, as TFA salt, the intermediate in which two peptides are ligated $(4.7 \mathrm{mg}, 2.1 \mu \mathrm{~mol}$) in 47% yield. RP-HPLC (5 to 100% solvent B) $t_{\mathrm{R}}=13.6 \mathrm{~min}$. ESI-MS calcd for $\mathrm{C}_{102} \mathrm{H}_{151} \mathrm{~N}_{23} \mathrm{O}_{22} 2051.44$, found 2051.4. This intermediate ($4.7 \mathrm{mg}, 2.1 \mu \mathrm{~mol}$) and curcumin 19 ($1 \mathrm{mg}, 2.52 \mu \mathrm{~mol}$) were 'clicked' using the same procedure as described for the synthesis of 20, and the DKP $\mathbf{2 1}$ $(1.2 \mathrm{mg}, 0.49 \mu \mathrm{~mol})$ was obtained after RP-HPLC purification (5 to 100% solvent B) in 23% yield. RP-HPLC (15 to 100% solvent B) $t_{\mathrm{R}}=13.9 \mathrm{~min}$. HRMS (ESI) calcd for $\mathrm{C}_{126} \mathrm{H}_{173} \mathrm{~N}_{23} \mathrm{O}_{28}$ $[\mathrm{M}+2 \mathrm{H}]^{2+}$ 1229.1483, found 1229.1504.

Conclusions

We have developed new "ready-to-use" DKP scaffolds for chemoselective ligations. They are prepared via orthogonally protecting group strategy from Boc/Alloc DKP precursors which are efficiently prepared in gram scale and which can be easily functionalized with 'clickable' functions. In addition, we have proved their interest for assembling peptides and organic molecules, through the synthesis of potential inhibitors of $A \beta$ amyloid aggregation; the DKP core being of particular interest in the A β 's target domain due to its potentiality to cross the blood brain barrier. Our current efforts are devoted to expand the functional diversity of these scaffolds, especially by exploring other chemoselective and orthogonal ligation protocols.

Acknowledgements

This work was supported by the 'Region Rhône-Alpes' and has been partially funded by the labex ARCANE (ANR-11-LABX-0003-01) and the 'Association France Alzheimer'. We are grateful to NanoBio (Grenoble) for the facilities of the Synthesis Platform, and to ICMG platforms (B. Gennaro for NMR, L. Fort and R. Guéret for mass spectroscopy).

Notes and references

${ }^{a}$ Département de Chimie Moléculaire, CNRS UMR 5250, ICMG FR 2607, Equipe I2BM, Université Joseph Fourier, 570 rue de la Chimie, BP 53, 38041 Grenoble cedex 09, France.
b Address here. Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, 16146 Genova, Italy.

Electronic Supplementary Information (ESI) available: [Kinetics of $A \beta_{40}$ fibril formation in presence of DKPs $\mathbf{1 b}, \mathbf{1 8}, 20$ and 21, copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, and copies of MS and HRMS]. See DOI: 10.1039/b000000x/

1 A. D. Borthwick, Chem. Rev., 2012, 112, 3641.
2 M. Marchini, M. Mingozzi, R. Colombo, I. Guzzetti, L. Belvisi, F. Vasile, D. Potenza, U. Piarulli, D. Arosio and C. Gennari, Chem. Eur. J., 2012, 18, 6195.

3 (a) G. Gellerman, E. Hazan, T. Brider, T. Traube, A. Albeck and S. Shatzmiler, Int. J. Pept. Res. Ther., 2008, 14, 183. (b) G. Gellerman, E. Hazan, M. Kovaliov, A. Albeck and S. Shatzmiler, Tetrahedron, 2009, 65, 1389.
4 G. Gellerman, US Pat., 20100210474 A1.
5 M. Tullberg, M. Grotli and K. Luthman, J. Org. Chem., 2007, 72, 195.

6 E. V. Dzyuba, L. Kaufmann, N. L. Löw, A. K. Meyer, H. D. F. Winkler, K. Rissanen and C. A. Schalley, Org. Lett., 2011, 13, 4838. In this paper, the synthesis of a N, N '-dipropargyl 2,5 diketopiperazine derived from glycine residues is reported to prepare by 'click chemistry' rotaxanes but this scaffold could be used to ligate biomolecules.
7 (a) G. M. Galibert, P. Dumy and D. Boturyn, Angew. Chem. Int. Ed., 2009, 48, 2576. (b) O. Renaudet, J. Garcia, D. Boturyn, N. Spinelli,
E. Defrancq, P. Labbé and P. Dumy, Int. J. Nanotechnology, 2010, 7, 738.

8 (a) M. Sletten and C. R. Bertozzi, Angew. Chem. Int. Ed., 2009, 48, 2. (b) J. Kalia and R. T. Raines, Curr. Org. Chem., 2010, 14, 138.

9 (a) M. A. Findeis, G. M. Musso, C. C. Arici-Muendel, H. W. Benjamin, A. M. Hundal, J. J. Lee, J. Chin, M. Kelley, J. Wakefield, N. J. Hayward and S. M. Molineaux, Biochemistry, 1999, 38, 6791. (b) Y. Porat, A. Abramowitz and E. Gazit, Chem. Biol. Drug. Des., 2006, 67, 27.
10 A. S. M. Ressurreição, A. Bordessa, M. Civera, L. Belvisi, C. Gennari and U. Piarulli, J. Org. Chem., 2008, 73, 652.
11 C. J. Dinsmore and D. C. Beshore, Tetrahedron, 2002, 58, 3297.
12 (a) T. Fukuyama, C. -K. Jow and M. Cheung, Tetrahedron Lett., 1995, 36, 6373. (b) T. Kan and T. Fukuyama, Chem. Commun., 2004, 353.

13 O. Demmer, I. Dijkgraaf, M. Schottelius, H. -J. Wester and H. Kessler, Org. Lett., 2008, 10, 2015.
14 P. Besada, L. Mamedova, C. J. Thomas, S. Costanzi and K. A. Jacobson, Org. Biomol. Chem., 2005, 3, 2016.
15 M. Dessolin, M. G. Guillerez, N. Thieriet, F. Guibé and A. Loffet, Tetrahedron Lett., 1995, 36, 5741.
16 O. El-Mahdi and O. Melnyk, Bioconjugate Chem., 2013, 24, 735.
17 S. Foillard, M. O. Rasmussen, J. Razkin, D. Boturyn and P. Dumy, J. Org. Chem., 2008, 73, 983.
18 E. D. Goddard-Borger and R. V. Stick, Org. Lett., 2007, 9, 3797 (Additions and Corrections to this article in Org. Lett. 2011, 13, 2514).

19 (a) For a more safe and at large-scale protocol than GoddardBorger's protocol to prepare imidazole-1-sulfonyl azide see: H. Ye, R. Liu, D. Li, Y. Liu, H. Yuan, W. Guo, L. Zhou, X. Cao, H. Tian, J. Shen and P. G. Wang, Org. Lett., 2013, 15, 18. (b) For more safe alternatives to the hydrogen chloride salt as the hydrogen sulfate salt see: N. Fischer, E. D. Goddard-Borger, R. Greiner, T. M. Klapötke, B. W. Skelton and J. Stierstorfer, J. Org. chem., 2012, 77, 1760.

20 M. Ouberai, P. Dumy, S. Chierici and J. Garcia, Bioconjugate Chem., 2009, 20, 2123.
21 W. Shi, S. Dolai, S. Rizk, A. Hussain, H. Tariq, S. Haverick, W. L'Amoreaux, A. El Idrissi, P. Banerjee and K. Raja, Org. Lett., 2007, 9, 5461.
22 (a) V. Hong, S. I. Presolski, C. Ma and M. G. Finn, Angew. Chem., 2009, 121, 10063. (b) C. Besanceney-Webler, H. Jiang, T. Zheng, L. Feng, D. Soriano del Amo, W. Wang, L. M. Klivansky, F. L. Marlow, Y. Liu and P. Wu, Angew. Chem. Int. Ed., 2011, 50, 8051.
23 (a) H. LeVine, Protein Sc., 1993, 2, 404. (b) H. LeVine, Methods Enzymol., 1999, 309, 274.
24 G. Zhang, M. J. Leibowitz, P. J. Sinko and S. Stein, Bioconjugate Chem., 2003, 14, 86.
25 S. M. Chafekar, H. Malda, M. Merkx, E. W. Meijer, D. Viertl, H. A. Lashuel, F. Baas and W. Scheper, ChemBioChem, 2007, 8, 1857.
26 M. Teixido, E. Zurita, M. malakoutikhah, T. Tarrago and E. Giralt, J. Am. Chem. Soc., 2007, 129, 11802.
27 (a) B. -C. Chen, A. P. Skoumbourdis, P. Guo, M. S. Bednarz, O. R. Kocy, J. E. Sundeen and G. D. Vite, J. Org. Chem., 1999, 64, 9294. (b) J. Li and Y. Sha, Molecules, 2008, 13, 1111.

