Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Design and synthesis of lipid-coupled inositol 1,2,3,4,5,6-hexakisphosphate derivatives exhibiting high-affinity binding for HIV-1 MA domain

Hiroshi Tateishi ${ }^{1}$, Kensaku Anraku ${ }^{2}$, Ryoko Koga 1, Yoshinari Okamoto ${ }^{1}$, Mikako Fujita ${ }^{3}$, and Masami Otsuka ${ }^{1}$

${ }^{1}$ Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
${ }^{2}$ Department of Medical Technology, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto 861-5598, Japan
${ }^{3}$ Research Institute for Drug Discovery, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan

E-mail: motsuka@gpo.kumamoto-u.ac.jp; Fax: +81-96-371-4620; Tel: +81-96-371-4620.
${ }^{1}$ H.T. and ${ }^{2}$ K.A. contributed equally to this work.

Table of contents entry

Lipid coupled $\mathrm{IP}_{\mathbf{6}}$: $\mathrm{Kd}=\mathbf{0 . 2 5} \boldsymbol{\mu \mathrm { M }}$ for HIV-1 MA
Lipid-coupled inositol 1,2,3,4,5,6-hexakisphosphate binds to HIV-1 MA tightly through both electrostatic and hydrophobic interactions.

Abstract

Precursor of Gag protein $\left(\operatorname{Pr} 55^{\mathrm{Gag}}\right)$ of human immunodeficiency virus, the principal structural component required for virus assembly, is known to bind D-myo-phosphatidylinositol 4,5-bisphosphate (PIP_{2}). The N-terminus of $\operatorname{Pr} 55^{\mathrm{Gag}}$, MA domain, plays a critical role in the binding of $\operatorname{Pr} 55^{\mathrm{Gag}}$ to the plasma membrane. Herein, we designed and synthesized myo-phosphatidylinositol 2,3,4,5,6-pentakisphosphate $\left(\mathrm{PIP}_{5}\right)$ derivatives comprising highly phosphorylated inositol and variously modified diacylglycerol to examine the MA-binding property. The inositol moiety was synthesized starting with myo-inositol and assembled with a hydrophobic glycerol moiety through a phosphate linkage. The $K \mathrm{~d}$ value for MA-binding of the PIP_{5} derivative $2(K \mathrm{~d}=0.25 \mu \mathrm{M})$ was the lowest (i.e., highest affinity) of all derivatives, i.e., 70 -fold lower than the $K \mathrm{~d}$ for the PIP_{2} derivative $1(K \mathrm{~d}=16.9 \mu \mathrm{M})$ and 100 -fold lower than the $K \mathrm{~d}$ for $\mathrm{IP}_{6}(K \mathrm{~d}=25.7 \mu \mathrm{M})$, suggesting the possibility of the PIP_{5} derivative to block the $\operatorname{Pr} 55^{\mathrm{Gag}}$ membrane binding by competing with PIP_{2} in the MA-binding.

1. Introduction

The development of anti-human immunodeficiency virus type 1 (HIV-1) drugs has achieved marked success in the past two decades as envisaged by reverse transcriptase inhibitors, protease inhibitors, entry inhibitors, and integrase inhibitors. However, because the use of these drugs has encountered limitations because of the emergence of resistant viral variants, the development of new drugs based on novel mechanisms has become urgent. This study focused on the membrane targeting of the HIV-1 precursor of Gag protein $\left(\operatorname{Pr} 55^{\mathrm{Gag}}\right)$ at the stage of virus assembly, exploiting the possibility to block the virus assembly by small molecules that compete at the membrane binding of Pr55 ${ }^{\text {Gag }}$.
HIV-1 genome-encoded Pr55 ${ }^{\text {Gag }}$ protein is the principal structural component required for virus assembly ${ }^{1,2}$. Following ribosomal synthesis, $\operatorname{Pr} 55^{\mathrm{Gag}}$ is directed to the plasma membrane, where it is assembled with other components to form immature budding virions. The N -terminus of $\operatorname{Pr} 55^{\mathrm{Gag}}$, the MA domain, plays a critical role in the binding of $\operatorname{Pr} 55^{\text {Gag }}$ to the plasma membrane ${ }^{3}$. Recent studies have shown that D-myo-phosphatidylinositol 4,5-bisphosphate $\left(\mathrm{PIP}_{2}\right)$ is the binding target of the basic patch of the MA domain ${ }^{4-6}$.

We previously developed a highly sensitive in vitro assay to determine the binding affinity of $\operatorname{Pr} 55^{\mathrm{Gag}} / \mathrm{MA}$ for phosphoinositide derivatives by employing a surface plasmon resonance (SPR) sensor in which a synthetic biotinylated inositol phosphate was immobilized ${ }^{7-9}$. The SPR experiments comparing the $\operatorname{Pr} 55^{\mathrm{Gag}} / \mathrm{MA}$ affinity of IP_{3} and PIP_{2} suggested that both the divalent phosphate groups and the acyl chains of PIP_{2} are essential for tight binding to $\mathrm{Pr} 55^{\mathrm{Gag}} / \mathrm{MA}$.
Because the PIP_{2}-binding region of the MA domain contains many basic residues that interact with acidic phosphate groups of the inositol ${ }^{2,10,11}$, the MA-binding affinity of phosphatidylinositol derivatives would be increased by increasing the number of phosphate groups. This, together with the several previously published studies ${ }^{2,10,11}$, would provide the basis for the molecular design of novel competitors that would block the $\mathrm{PIP}_{2}-\mathrm{Pr} 55^{\mathrm{Gag}}$ binding.
Herein, we performed SPR analysis of the MA domain binding of highly phosphorylated inositol phosphates, myo-inositol 1,2,3,4,5,6-hexakisphosphate (IP_{6}), D-myo-inositol 1,4,5-trisphosphate $\left(\mathrm{IP}_{3}\right)$, and a synthetic PIP_{2} derivative having non-natural C8 acyl chains 1 (Figure 1a) and found that IP_{6} bound MA strongly, demonstrating the significance of the number of the phosphate group. Further, we designed and synthesized lipid-coupled IP_{6} derivatives, namely
myo-phosphatidylinositol 2,3,4,5,6-pentakisphosphate $\left(\mathrm{PIP}_{5}\right)$ derivatives, expecting their MA binding would be stronger than PIP_{2} leading to the blockade of the Pr55 ${ }^{\mathrm{Gag}}$ membrane target.

2. Results and Discussion

2.1. SPR analysis of MA-interaction of $\mathrm{IP}_{3}, \mathrm{IP}_{\mathbf{6}}$, and $\mathrm{PIP}_{\mathbf{2}}$

To compare the relative MA-binding affinity of $\mathrm{IP}_{6}, \mathrm{IP}_{3}$, and the PIP_{2} derivative 1 (Figure 1a), we performed SPR assay that we previously constructed ${ }^{7}$. An expression vector for MA having a FLAG tag at the C-terminus was used. Proteins were purified from transfected 293T cells using anti-FLAG agarose beads employing the FLAG tag affinity method. Purified proteins were quantified by SDS-PAGE analysis, and their concentration was estimated by comparing the band intensity with that of the protein marker. After purification, the solution in which each protein was dissolved was exchanged with flow buffer in the SPR system through dialysis. Flow buffer was supplemented with $0.5 \mathrm{mg} / \mathrm{mL}$ BSA to inhibit non-selective binding to the biotin-modified control surface, followed by $2 \%(\mathrm{v} / \mathrm{v})$ glycerol to prevent protein destabilization ${ }^{12}$. Contrary to the previous SPR analysis ${ }^{7}, 5 \%$ dimethylsulfoxide was also supplemented with analysis buffer to dissolve complexes in this experiment (Supplementary Information 2). Association was followed for 3 min and dissociation was measured at a flow rate of $20 \mu 1 / \mathrm{min}$ at $25^{\circ} \mathrm{C}$, after which the surfaces were regenerated by injecting dilute NaOH solution. As shown in Figure 1b, the injection of 0.24, 0.48, 0.64, and 0.96 $\mu \mathrm{M}$ MA onto immobilized D-myo-inositol 1,3,4,5-tetrakisphosphate (IP_{4}) showed a concentration-dependent response unit (RU).
a

IP_{3}

${ }^{1 P}{ }_{6}$

Figure 1 Structures of $\mathrm{IP}_{3}, \mathrm{IP}_{6}$, and the PIP_{2} derivative 1 (a). Binding activity of $0.24,0.48,0.64$ and $0.96 \mu \mathrm{M}$ MA proteins to biotinylated IP_{4}. Each protein was injected over a biotinylated IP $_{4}$-immobilized sensor chip at flow rate of $20 \mu \mathrm{l} / \mathrm{min}$ for 180 s (b).

The dissociation constants (Kd) of MA-IP ${ }_{3}, \mathrm{MA}^{2} \mathrm{IP}_{6}$, and MA- $\mathbf{1}$ complexes were calculated via a competition assay. Solutions containing varying concentrations of each competitor were preincubated with MA and passed over the immobilized IP_{4} surface. The competition curves were obtained by setting the concentration of competitors upon the horizontal axis and the response of free MA, determined based on the concentration of MA bound to immobilized-IP 4 , upon the vertical axis. The RU curves for competition between MA and the various competitors are shown in Figure $\mathbf{2 a}, \mathbf{c}$, and \mathbf{e}; the corresponding $K \mathrm{~d}$ values are shown in Figure 2b, d, and \mathbf{f}. The $K \mathrm{~d}$ value for MA in competition with IP_{3} was $272 \mu \mathrm{M}$ (Figure 2b), indicating IP_{3} binds MA weakly. It was noteworthy that IP_{6} showed $K \mathrm{~d}(25.7 \mu \mathrm{M})($ Figure 2d) comparable to that of $\mathbf{1}(16.9 \mu \mathrm{M})$ (Figure 2f), although IP_{6} does not possess the diacylglycerol moiety. These findings suggested that the MA-affinity would be further increased by introducing a diacylglycerol into IP_{6}.

Figure 2 Competition assay and calculation of the equilibrium dissociation constants (Kd) for MA-competitor complexes. The equilibrium mixtures of MA and competitors $\operatorname{IP}_{3}(\mathbf{a}), \operatorname{IP}_{6}(\mathbf{c})$, and the PIP_{2} derivative 1 (e) were injected over the biotinylated IP_{4}-immobilized sensor chip at a flow rate of $20 \mu \mathrm{l} / \mathrm{min}$ for 180 s . The average response unit (RU) for the increasing concentration of each competitor was measured at $160-170 \mathrm{~s}$, and each RU datum was converted to a concentration of uncompetitive MA protein used for the construction of competition curves between uncompetitive MA and $\mathrm{IP}_{3}(\mathbf{b}), \mathrm{IP}_{6}(\mathbf{d})$, and the PIP_{2} derivative $\mathbf{1}(\mathbf{f})$. Calculated $K \mathrm{~d}$ values are shown. Each experiment was performed in duplicate.

2.2. Design and synthetic strategy of PIP $_{5}$ derivatives

We designed PIP_{5} derivatives having modified glycerol moiety (Figure 3). To compare the influence of the aliphatic chain structure of the glycerol group, both acyl (compound 2) and alkyl ether (compound 4) derivatives were designed. To confirm that the 2 '-acyl chain participates in PIP_{2}-MA binding and the 1^{\prime}-acyl does not 5, 1 '- O-methyl -2^{\prime}-acyl/alkyl derivatives (compound 3, compound 4) were designed. Our synthetic strategy for the PIP_{5} derivatives (Figure 3) was to differentiate the six hydroxyl groups of myo-inositol through the diacetal intermediate ${ }^{13}$, and the suitably protected intermediate was coupled with an acyl/alkyl-glycerol moiety by a bifunctional phosphorylating agent ${ }^{14}$. A 1,5-dihydro-2,4,3-benzodioxaphosphepin-3-yl group was employed for the synthesis of the acyl derivatives (i.e., 12), whereas 2 -cyanoethyl group was used for phosphorylating agent of the alkyl ether derivatives (i.e., 12).

2

4

3

5

15: $\mathrm{R}=\mathrm{P}(\mathrm{O})\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)_{2}$

Phosphoradiamidite Acyl deriv. $\mathrm{R}=\mathrm{Bn}$ Alkyl deriv. $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$

Glycerol moiety $\mathrm{R}_{1}=\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$, $\left.\mathrm{CH}_{3}, \mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$, ${ }_{\mathrm{R}_{2}=\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}}$ $\left.\mathrm{R}_{2}=\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$

Figure 3 Design and synthetic strategy of PIP_{5} derivatives

2.3. Syntheses of the IP $\mathbf{~}_{6}$ moiety

The syntheses of the IP_{6} moiety for acyl derivatives were performed as shown in Scheme 1. The starting material DL-3- O-benzyl-1,2:4,5-di- O-cyclohexylidene-myo-inositol $\mathbf{6}$ was prepared according to the method of Billington et al. ${ }^{13}$. Benzylation of the alcohol 6 provided 7, which was further treated with p-toluenesulfonic acid and $\mathrm{H}_{2} \mathrm{O}$ to give deacetalized $\mathbf{8}$ in 76% yield (for 2 steps). The cis-1,2-diol of $\mathbf{8}$ was regioselectively p-methoxybenzylated by means of the dibutyltin oxide procedure ${ }^{15,16}$. Thus, the tin complex of the 1,2 -diol was reacted with p-methoxybenzyl chloride in the presence of cesium fluoride to give regioselectively protected 9 in 89% yield. The selective deprotection of the benzyl group of $\mathbf{9}$ by the method of Oikawa et al. ${ }^{17}$ gave $\mathbf{1 0}$ in 45% yield. The 2,3,4,5,6-pentahydroxy compound $\mathbf{1 0}$ was converted to the corresponding pentakisphosphonate $\mathbf{1 1}$ by treatment with (1,5-dihydro-2,4,3-benzodioxaphosphepin-3-yl)diethylamine ${ }^{18}$ and 1 H -tetrazole and subsequent oxidation with MCPBA in 75% yield. Oxidative cleavage of p-methoxybenzyl group with CAN^{19} gave the desired IP_{6} fragment 12, accompanying a phosphate migration product 13 in which the O-xylyl protected phosphate group at the 2-phosphate group migrated to the 1-phosphate allocating a stable conformation of myo-inositols ${ }^{18}$. Because compounds $\mathbf{1 2}$ and 13 could not be separated, the mixture was used for the next coupling reaction without separation.

Scheme 1 Reagents and conditions: (i) benzyl bromide, NaH, DMF, rt, overnight, 94\%; (ii) TsOH, THF- $\mathrm{H}_{2} \mathrm{O}$, reflux, $5 \mathrm{~h}, 81 \%$; (iii) (a) $\mathrm{Bu}_{2} \mathrm{SnO}$, toluene, reflux, 3 h ; (b) CsF, MPM-Cl, DMF, $-40^{\circ} \mathrm{C}$ then $\mathrm{rt}, 48 \mathrm{~h}, 89 \%$; (iv) $\mathrm{H}_{2} / \mathrm{W}-2$ Raney-Ni, $\mathrm{MeOH}, 50^{\circ} \mathrm{C}, 3 \mathrm{~h}, 45 \%$; (v) (a) (1,5-dihydro-2,4,3-benzodioxaphosphepin-3-yl)diethylamine, 1 H -tetrazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, overnight; (b) MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}$ then $\mathrm{rt}, 1 \mathrm{~h}, 75 \%$; (x) CAN, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 1 \mathrm{~h}$.

The synthesis of the IP_{6} moiety for alkyl ether derivatives was performed as shown in Scheme 2. The $2,3,4,5,6$-pentahydroxy compound $\mathbf{1 0}$ was converted to the corresponding pentakisphosphonate 14 by treatment with bis(2-cyanoethyl)- N, N-diisopropylphosphoramidite ${ }^{20}$ and $1 H$-tetrazole and subsequent oxidation with MCPBA in 73% yield. Oxidative cleavage of p-methoxybenzyl group with CAN^{19} gave the IP_{6} fragment $\mathbf{1 5}$ in 68% yield.

Scheme

2
Reagents
and
conditions:
(i)
bis(2-cyanoethyl)- N, N-diisopropylaminophosphoramidite, 1 H -tetrazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1.5 \mathrm{~h}$; (b) MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ then rt, $5 \mathrm{~min}, 73 \%$; (ii) CAN, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 1.5 \mathrm{~h}, 68 \%$.

2.4. Syntheses of di/mono-acylglycerol, di/mono-alkylglycerol moiety

The syntheses of diacylglycerol and dialkylglycerol moiety were performed as shown in Scheme 3. The commercially available starting material (R)-3-benzyloxy-1,2-propanediol $\mathbf{1 6}$ was reacted with heptanoyl chloride under basic conditions to give compound $\mathbf{1 7}$ in 86% yield. The deprotection of the benzyl group of $\mathbf{1 7}$ gave $\mathbf{1 8}$ in 96% yield. Compound $\mathbf{2 0}$ was obtained by dialkylation of $\mathbf{1 6}$ followed by the benzyl deprotection in 59% yield (for 2 steps).

Scheme 3 Reagents and conditions: (i) heptanoyl chloride, DMAP, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, overnight, 86%; (ii) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, overnight, 96%; (iii) hexyl bromide, NaH , DMF, rt, overnight, 70%; (iv) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 24 \mathrm{~h}, 84 \%$.

The syntheses of the monoacylglycerol and monoalkylglycerol moieties were performed as shown in Scheme 4. The compound 16 was regioselectively methylated by means of the dibutyltin oxide procedure. The tin complex of the 1,2-diol was reacted with methyl iodide in the presence of cesium fluoride to give 21 in 71% yield, accompanying a small amount of 2-O-methyl product. Acylation of the 2-hydroxyl of $\mathbf{2 1}$ with heptanoyl chloride gave $\mathbf{2 2}$ in 93% yield. The deprotection of the benzyl group of $\mathbf{2 2}$ gave $\mathbf{2 3}$ in 93% yield. Alkylation of the 2-hydroxyl of $\mathbf{2 1}$ with hexyl chloride gave 24 in 92% yield. Finally, compound 24 was treated with $\mathrm{H}_{2} / 10 \%$ palladium carbon to afford the debenzylated product $\mathbf{2 5}$ in 89% yield.

(R)-3-Benzyloxy-1,2-propanediol 1621

Scheme 4 Reagents and conditions: (i) (a) $\mathrm{Bu}_{2} \mathrm{SnO}$, toluene, reflux, 3 h ; (b) CsF, methyl iodide, DMF, $-40{ }^{\circ} \mathrm{C}$ then rt, 2 days, 71%; (ii) heptanoyl chloride, DMAP, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, overnight, 93%; (iii) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, overnight, 93%; (iv) hexyl-Br, NaH , DMF, rt, overnight, 92%; (v) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 24 \mathrm{~h}, 89 \%$.

2.5. Coupling of IP_{6} and glycerol fragments

The coupling of acylated glycerol moieties and IP_{6} fragments was performed as shown in Scheme 5. The glycerol moiety $\mathbf{1 8}$ was reacted with benzyl- $N, N, N^{\prime}, N^{\prime}$ - tetraisopropylphosphoramidite ${ }^{14}$ and $1 H$-tetrazole and subsequently condensed with the IP_{6} fragment mixture $\mathbf{1 2}$ and $\mathbf{1 3}$. Oxidation with tert-BuOOH gave diheptanoyl glyceryl $\mathrm{IP}_{6} 26$ and 27 in 22% and 45% yield, respectively. Finally, the protecting groups were removed by hydrogenolysis with palladium carbon to give diheptanoyl glyceryl PIP_{5} derivatives. These PIP_{5} derivatives were purified by cation-exchange chromatography to give $\mathbf{2}$ and its isomer 2' as a triethylammonium salts in 34% and 35% yield, respectively. The
monoacylglycerol derivatives, $\mathbf{3}$ and its isomer $\mathbf{3}^{\prime}$ as triethylammonium salts, were synthesized by the same procedure.

Benzyl-N,N,N'N'-teraisopropyl phosphoramidite

Scheme 5 Reagents and conditions: (i) (a) Benzyl- N, N, N ', N '-tetraisopropylphosphoramidite, 1 H -tetrazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 15 min ; (b) $\mathbf{1 8}$ or 23, 1 H -tetrazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 24 h ; (c) tert- BuOOH , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 5 min , 26 (22\%), 27 (45%), 28 (63%), 29 (11%); (ii) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, t \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}, 24 \mathrm{~h}, 2$ (34\%), 2' ${ }^{\text {(}} 35 \%$), 3 (44\%), $\mathbf{3}^{\prime}$ (22\%).

The coupling reaction of the IP_{6} fragment and the alkylated glycerol moieties was performed as shown in Scheme 6. The glycerol moiety $\mathbf{2 0}$ or $\mathbf{2 5}$ was reacted with bifunctional phosphorylating agent (2-cyanoethyl)- $N, N, N^{\prime}, N^{\prime}$ - tetraisopropylphosphoramidite ${ }^{14}$ and $1 H$-tetrazole to yield a rather labile phosphoramidite. This compound was condensed with the IP_{6} fragment 20 or 25 without further purification. Oxidation of the condensed product with tert- BuOOH gave 1,2-O-dihexylglyceryl or 1-O-methyl-2-O-hexyl $\mathrm{IP}_{6} 30$ or 31 in 41% and 63% yield, respectively. Finally, protecting groups were removed by reaction with NH_{3} to give water-soluble PIP ${ }_{5}$ derivatives that were purified by reverse phase chromatography followed by cation-exchange chromatography to give $\mathbf{4}$ and 5 as a triethylammonium salts in 64% and 31% yield, respectively.
Scheme 6 Reagents and conditions: (i) (a) (2-cyanoethyl)- $N, \quad N$, N^{\prime},
N '-tetraisopropylphosphoramidite, 1 H -tetrazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 1.5 h ; (b) 20 or $\mathbf{2 5}$, 1 H -tetrazole,
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2 \mathrm{~h}$; (c) tert- $\mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 5 \mathrm{~min}, 30$ (41\%) and 31 (63\%); (ii) aq. $\mathrm{NH}_{3}, \mathrm{MeOH}$,
$55^{\circ} \mathrm{C}, 10 \mathrm{~h}, 4$ (64\%) and 5 (31\%).

2.6. SPR analysis of MA complexes of PIP $_{5}$ derivatives

$K \mathrm{~d}$ values of the MA complex of PIP_{5} derivatives were calculated by the competition assay as described above. The RU curves for competition between MA and the various competitors are shown in Figure 4a, c, e, g, i, and \mathbf{k}; the corresponding $K d$ values are shown in Figure 4b, d, f, h, j, and 1. As illustrated in Figure 5, which shows the $K d$ of the MA complex of $\mathrm{IP}_{3}, \mathrm{IP}_{6}$, the PIP_{2} derivative 1, and PIP_{5} derivatives with structure, the $K \mathrm{~d}$ values for MA in competition with $\mathbf{2}(\mathrm{Kd}=$ $0.25 \mu \mathrm{M})$ (Figure $\mathbf{4 b}$) was the lowest (i.e., highest affinity) of all PIP_{5} derivatives, which was 70 -fold lower than the K d for $1(16.9 \mu \mathrm{M})$ and 100 -fold lower than the $K \mathrm{~d}$ for $\mathrm{IP}_{6}(25.7 \mu \mathrm{M})$. Therefore, the K d value of the $2-\mathrm{MA}$ complex showed that PIP_{5} derivatives having both IP_{6} and diacylglycerol moiety interacts with MA tightly. The binding affinity of 2' was $7.60 \mu \mathrm{M}$ (Figure $\mathbf{4 d}$), which was 3 -fold lower than that of the $\mathbf{3}$-MA complex $(K \mathrm{~d}=2.04 \mu \mathrm{M})$ (Figure $\mathbf{4 f}$), and almost the same as that of the $\mathbf{2}^{\prime}$-MA complex $(K \mathrm{~d}=9.01 \mu \mathrm{M})$ (Figure $\left.\mathbf{4 h}\right)$. These data showed that the phosphate isomers 2' and 3' bound MA more weakly than 1-phosphate derivatives 2 and $\mathbf{3}$. In contrast, the MA-binding affinity of 4 having alkyl chain at glycerol moiety was $1.37 \mu \mathrm{M}$ (Figure $\mathbf{4 j}$), which was 18 -fold lower than that of the PIP $_{2}$ derivative 1 , and was 5 -fold higher than that of the diacyl derivative $2(K d=0.25 \mu \mathrm{M})$. These data revealed that the diacyl glycerol structure is better than the dialkyl glycerol structure in MA binding. The K d value for the $\mathbf{5}-\mathrm{MA}$ complex was 7.98
$\mu \mathrm{M}$ (Figure 4l), which was almost the same as that of 2' and 3'-MA complex. In SPR analyses, all PIP_{5} derivatives bound MA more tightly than the PIP_{2} derivative $\mathbf{1}^{1} \mathrm{IP}_{6}$ and IP_{3}. The order of K d was $\mathbf{2}<\mathbf{4}<\mathbf{3}<\mathbf{5}=\mathbf{2}^{\prime}<\mathbf{3}^{\prime}<\mathbf{1}<\mathrm{IP}_{6}<\mathrm{IP}_{3}$. The structure activity relationship of these compounds revealed that a highly phosphorylated inositol structure and diacyl (not monoacyl) glycerol at a 1-position of inositol are important for MA domain binding.

To confirm the regiochemistry of $\mathbf{2}$ and $\mathbf{2}^{\prime}$, we synthesized $\mathbf{2}$ again by an independent route using dibenzyl N, N-diethylphosphoramidite that does not cause phosphate migration. In fact, compound 2 was obtained as a sole product without the accompanying isomer 2'. The newly synthesized 2 showed a K d value virtually identical to that obtained before (scheme 5), verifying the regiochemistry of 2 (Supplementary Information 2).

TIME (s)

TIME (s)

Figure 4 Competition assay and calculation of the equilibrium dissociation constants (Kd) for MA-competitor complexes. The sensorgrams of MA and competitors, $\mathbf{2}(\mathbf{a}), \mathbf{2}^{\prime}(\mathbf{c}), \mathbf{3}(\mathbf{e}), \mathbf{3}^{\prime}(\mathbf{g}), 4$ (i), and $\mathbf{5}(\mathbf{k})$ are shown. The competition curves between uncompetitive MA and $\mathbf{2}(\mathbf{b}), \mathbf{2}^{\prime}(\mathbf{d}), \mathbf{3}(\mathbf{f}), \mathbf{3}^{\prime}$ (h), 4 (j), and 5 (l) are shown. Calculated $K d$ values are shown. Each experiment was performed in duplicate.

$\mathrm{IP}_{3} K \mathrm{~d}=\mathbf{2 7 2} \pm \mathbf{4 8} \mu \mathrm{M}$

$\mathrm{IP}_{6} K \mathrm{~d}=25.7 \pm 4.3 \mu \mathrm{M}$

PIP_{2} derivative $1 \mathrm{Kd}=\mathbf{1 6 . 9} \mathbf{\pm 1 . 3 \mu \mathrm { M }}$

Figure 5 Dissociation constant (Kd) of MA complexed with IPs, PI, and PIP_{5} derivatives.

2.7. Theoretical binding analysis of MA-1 or MA-2 complex

Molecular docking study (MOE) was adapted to the MA-1 and MA-2 complexes. The structures of complexes around the binding pocket are shown in Figure 6a and \mathbf{c}, and the detailed structures are shown in Figure 6 and d, wherein lime green lines (ionic interaction) and light blue lines with cylinder solid (H -acceptor) indicate the interaction between amino acid and $\mathbf{1}$ (or $\mathbf{2}$) shorter than 4.0
\AA, respectively. The surrounded binding pocket of the MA- 1 complex revealed that both inositol and 2^{\prime}-acyl group of $\mathbf{1}$ are accommodated in the MA binding pocket. In contrast, the 1^{\prime}-acyl chain is located outside the binding pocket (Figure 6a). Although a similar calculated result was obtained for the MA-2 complex, the outside orientation of the 1'-acyl chain was more pronounced (Figure 6c). As shown in Figure 6b, the 1-phosphate interacts with $\operatorname{Arg} 22$ ($2.9 \AA: \mathrm{NH}_{2}$, ionic; 3.0, $3.7 \AA$: NH, H-acceptor). The 4-phosphate interacts with Lys98 (2.6, 2.9, 3.8 $\AA: \mathrm{NH}_{2}$, ionic; $2.6 \AA: \mathrm{NH}_{2}$, H -acceptor), whereas the 5-phosphate interacts with $\operatorname{Arg} 76$ ($3.0 \AA \mathrm{NH}_{2}, 2.6,3.6,3.9 \AA$: NH, ionic; $3.0 \AA$: $\mathrm{NH}_{2}, 2.6 \AA$: NH, H-acceptor). In the case of 2 (Figure $\mathbf{6 d}$), the 2^{\prime}-acyl carbonyl oxygen of 2 interacts with Lys27 (2.9 $\AA: \mathrm{NH}_{2}, \mathrm{H}$-acceptor). The 1-phosphate interacts with $\operatorname{Arg} 22$ (2.8, $3.0 \AA$: $\mathrm{NH}_{2}, 3.5 \AA: \mathrm{NH}_{2}$, ionic; 3.0, 3.7 \AA : NH, H-acceptor). The 2-phosphate interacts with Arg22 (2.6, $3.5 \AA$: NH_{2}, ionic; $2.6 \AA \mathrm{NH}_{2}, 3.0 \AA$: $\mathrm{CH}_{2}, \mathrm{H}$-acceptor). The 3-phosphate interacts with Lys98 (2.7, $2.7 \AA: \mathrm{NH}_{2}$, ionic; 2.7, 2.7 $\AA: \mathrm{NH}_{2}, \mathrm{H}$-acceptor). The 4-phosphate interacts with Lys98 (2.6, $2.8 \AA$: NH_{2}, ionic; 2.6, $2.8 \AA: \mathrm{NH}_{2}, \mathrm{H}$-acceptor). The 5-phosphate interacts with $\operatorname{Arg} 76$ ($2.8 \AA: \mathrm{NH}_{2}, 2.6$, $3.4 \AA$: NH, ionic; $2.8 \AA: \mathrm{NH}_{2}, 2.6,3.4 \AA$: NH, H-acceptor). The MA-2 complex showed a greater number of amino acid interactions compared with MA-1, owing to the greater number of phosphates of 2. Although 1-, 4-, and 5-phosphate of both $\mathbf{1}$ and $\mathbf{2}$ interact with Arg22, Lys98, and $\operatorname{Arg} 76$, respectively, 2- and 3-phosphate of 2 additionally interact with $\operatorname{Arg} 22$ and Lys98, respectively. In this context, judging from the results of the docking score based on the electric interaction, van der Waals attraction and strain energy of the ligand, MA- 2 complex was more stable than MA-1 complex (-374.7 kcal and -250.2 kcal as the U_dock values, respectively). That is in agreement with SPR data ($0.25 \mu \mathrm{M}$ and $16.9 \mu \mathrm{M}$ as the $K \mathrm{~d}$ values, respectively).

Figure 6 Docking studies of MA-1 (\mathbf{a}, \mathbf{b}) and MA-2 (c, d) complexes. The lime green lines (ionic interaction) and light blue lines with cylinder solid (H-acceptor) indicate the interaction between amino acid and $\mathbf{1}$ (b) or $\mathbf{2}$ (d) shorter than $4.0 \AA$, respectively.

Saad et al. demonstrated an "extended lipid" conformation of the MA- $\mathbf{1}$ complex, in which the glycerol 2'-acyl chain is accommodated in the MA cleft and the glycerol 1'-acyl remains buried in the membrane ${ }^{5}$. Thus, the 1^{\prime}-acyl does not contribute to MA binding. However, in our study, although the MOE analysis of the MA-2 complex indicates that the 1 '-acyl was located outside the binding pocket, $\mathbf{3}$ (without the 1^{\prime}-acyl) did not bind MA ($K \mathrm{~d}=2.04 \mu \mathrm{M}$) as strongly as $2(K \mathrm{~d}=0.25$ $\mu \mathrm{M})$ did, as revealed by the SPR analysis. It is hypothesized that the difference of $K \mathrm{~d}$ values between $\mathbf{3}$ and $\mathbf{2}$ is caused not only by the interaction between the 2^{\prime}-acyl chain and hydrophobic region of MA but also by the interaction between primordial carbons of the 1 '-acyl chain of $\mathbf{2}$ and hydrophobic region of MA, which was not observed by MOE analysis.

Freed et al. ${ }^{2,21}$ demonstrated the role of the MA in the HIV-1 replication and mapped the
functional domains within this protein by site-directed mutagenesis to introduce over 80 single amino acid substitutions in MA and analyzed the effects on a variety of aspects of virus life cycles. They observed that a single amino acid mutation near the terminus of MA and vicinity of residue 55 and 85 caused virus assembly defects. Furthermore, they identified that a highly basic domain between MA residues 17 and 31 (16 and 30 in the MOE number) is implicated in the membrane binding. In this MOE analysis, not only Arg22 at a highly basic region but also the amino acids which have never been investigated, $\operatorname{Arg} 76$ and Lys98, are implicated in MA-1 binding.

HIV-1 is a retrovirus, which is a family of enveloped viruses that replicate in a host cell through the process of reverse transcription. Retroviruses have Gag, Pol, and Env proteins. Chan et al. ${ }^{22}$ examined the possible role of PIP_{2} in Gag-membrane interaction of the alpharetrovirus Rous sarcoma virus (RSV) and showed that neither membrane localization of RSV Gag-GFP nor release of virus-like particles was affected by phosphatase-mediated depletion of PIP_{2} in transfected avian cells. Furthermore, Inlora et al. ${ }^{23}$ determined the role of the MA-PIP 2 interaction in Gag localization and membrane binding of a deltaretrovirus, human T-lymphotropic virus type 1 (HTLV-1). They demonstrated that, unlike HIV-1 Gag, subcellular localization of Gag and virus-like particle released by HTLV-1 was minimally sensitive to polyphosphoinositide 5-phosphatase IV (5ptaseIV) overexpression. These results suggest that the interaction of HTLV-1 MA with PIP_{2} is not essential for HTLV-1 particle assembly. Accordingly, MA-PIP 2_{2} binding might be significant only in HIV-1 among retroviruses, and our findings of MA-binding of PIP_{5} derivatives may be HIV-1 specific.

Although PIP $_{5}$ derivatives bind MA tightly, highly charged these derivatives would not permeabilize the cell membrane in spite of the fact that the viral assembly occurs inside the cell. We intend to use a membrane carrier or synthesize a phosphate prodrug compound to improve cell membrane permeability in the future.

3. Materials and methods

3.1. General Methods

Chemicals were purchased from Aldrich, Fluka, Kanto Chemical, Nacalai tesque, and Wako. Thin layer chromatography (TLC) was performed on precoated plates (Merck TLC sheets silica $60 \mathrm{~F}_{254}$): products were visualized by spraying phosphomolybdic acid in EtOH, or basic potassium permanganate and heated at high temperature. Chromatography was carried out on Silica Gel 60 N (40-100 mesh). Reverse phase chromatography was performed using C_{18} column (Cole-Parmer, USA). Cation exchange chromatography was performed using Dowex 50WX8 ($\mathrm{H}^{+}, 100-200$ mesh $)$. NMR spectra (JEOL JNM-AL300) were referenced to SiMe_{4}, or (HDO). Infra-red spectra were recorded on a JASCO FT/IR-410. The samples were prepared as KBr discs, or thin films between sodium chloride discs. Microanalysis was carried out by Yanaco MT-5S. High resolution MS (HRMS) were recorded by a JEOL JMS-DX303HF by using positive and negative FAB with 3-nitrobenzyl alcohol (NBA) (containing HMPA or not) as the matrix.

3.2. DL-3,6-di- O-benzyl-1,2:4,5-di- O-cyclohexylidene-myo-inositol (7)

To a solution of DL-1,2:4,5-di-cyclohexylidene-myo-inositol 6 ($2.27 \mathrm{~g}, 6.67 \mathrm{mmol}$) in DMF (10 ml) was added $\mathrm{NaH}(0.676 \mathrm{~g}, 28.1 \mathrm{mmol})$ followed by benzyl bromide $(2.0 \mathrm{ml}, 16.9 \mathrm{mmol})$, and the resulting mixture was stirred at room temperature under argon for 24 h . The reaction was quenched with MeOH , and concentrated under reduced pressure, and the residue was diluted with AcOEt. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (Hexane:AcOEt=5:1) to afford $7(3.25 \mathrm{~g}, 94 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.25-1.69\left(20 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 10\right), 3.33(1 \mathrm{H}, \mathrm{t}, J=9.3 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}}), 3.62-3.67(1 \mathrm{H}, \mathrm{dd}$, $J=10.6,6.6 \mathrm{~Hz}, \mathrm{CH}), 3.71-3.76(1 \mathrm{H}, \mathrm{dd}, J=4.2,10.2 \mathrm{~Hz}, \mathrm{CH}), 3.98(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, \mathrm{C} \underline{H}), 4.02-4.06$ $(1 \mathrm{H}, \mathrm{d}, J=5.1,6.4 \mathrm{~Hz}, \mathrm{CH}), 4.33(1 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz}, \mathrm{C} \underline{H}), 4.78-4.90\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 7.22-7.43(10 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{6} \underline{\mathrm{H}}_{5} \times 2\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 23.9,24.2,24.3,24.4,25.4,25.5,35.7,36.9,37.8,72.0,72.3$, $75.0,76.6,77.2,79.1,80.3,81.0,110.8,113.1,127.8,128.1,128.4,128.5,128.6,128.7,138.5$, 138.7. IR (KBr) 3030, 2935, 2860, 1500, 1165, 1110, $850,830,740 \mathrm{~cm}^{-1}$. MS (FAB) $\mathrm{m} / \mathrm{z} 521$ $(\mathrm{M}+\mathrm{H})^{+} . \mathrm{Mp} .123{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{6}$: C, 73.82; H, 7.74. Found: C, 73.87; H, 7.98. TLC; $\mathrm{R}_{f} 0.42$ (Hexane: $\mathrm{AcOEt}=5: 1$).

3.3. DL-3,6-di-O-benzyl-myo-inositol (8)

To a solution of $7(3.95 \mathrm{~g}, 7.58 \mathrm{mmol})$ in THF- $\mathrm{H}_{2} \mathrm{O}(5: 1,60 \mathrm{ml})$ was added p-toluenesulfonic acid monohydrate $(1.90 \mathrm{~g}, 10.0 \mathrm{mmol})$. The resulting mixture was refluxed for 5 h , and then neutralized with $\mathrm{Et}_{3} \mathrm{~N}$, and concentrated under reduced pressure. The crude product was washed with a heated AcOEt , and the resulting crystals were filtered. Drying the crystal under reduce pressure afforded $\mathbf{8}$ $(2.22 \mathrm{~g}, 81 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR (DMSO) $\delta: 2.49(3 \mathrm{H}, \mathrm{bs}, \mathrm{OH} \times 3), 3.12(2 \mathrm{H}, \mathrm{t}, J=9.9 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}} \times 2), 3.28(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}$, $\mathrm{CH}), 3.59(2 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}} \times 2), 3.95(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 4.53-4.79\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 7.21-7.42(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \underline{\mathrm{H}}_{5} \times 2\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 69.8,70.8,71.4,72.3,73.4,75.0,79.8,81.8,126.9,127.1,127.5$, $127.8,128.0,139.3,139.9$. IR (KBr) 3750, 3030, 2905, 1500, 1450, 1110, $900,740 \mathrm{~cm}^{-1} . \mathrm{Mp}$. $204{ }^{\circ} \mathrm{C}$. MS (FAB) m/z $360(\mathrm{M}+\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}: \mathrm{C}, 66.65 ; \mathrm{H}, 6.71$. Found: C, 66.40; $\mathrm{H}, 6.83$. TLC; $\mathrm{R}_{f} 0.48\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=7: 1\right)$.

3.4. DL-3,6-di-O-benzyl-1-O-(p-methoxybenzyl)-myo-inositol (9)

A mixture of $8(2.10 \mathrm{~g}, 5.66 \mathrm{mmol})$ and dibutyltin oxide ($1.74 \mathrm{~g}, 7.00 \mathrm{mmol}$) in toluene (100 ml) was refluxed for 3 h in a Dean-Stark apparatus to remove water. The mixture was concentrated under reduced pressure. To the residue was added cesium fluoride ($1.06 \mathrm{~g}, 7.00 \mathrm{mmol}$), and the mixture was suspended in heated DMF (30 ml) at $100^{\circ} \mathrm{C}$. To the resulting suspension was added p-methoxybenzyl chloride $(0.887 \mathrm{ml}, 6.20 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature under argon for 48 h . After concentration of the reaction mixture under reduced pressure, the residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$ to afford 9 $(2.40 \mathrm{~g}, 89 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.48(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 2.65(2 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 3.19-3.23(1 \mathrm{H}, \mathrm{dd}, J=2.7,9.5 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}})$, $3.39(1 \mathrm{H}, \mathrm{t}, J=9.3 \mathrm{~Hz}, \mathrm{C} \underline{H}), 3.76-3.82\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{3}, \mathrm{CH}\right), 3.95(1 \mathrm{H}, \mathrm{t}, J=9.3 \mathrm{~Hz}, \mathrm{C} \underline{H}), 4.16(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C} \underline{\mathrm{H}})$, 4.61-4.70 ($\left.4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 4.75\left(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}(\mathrm{CH})\right), 4.93(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}(\mathrm{CH})\right), 6.85\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OC}_{6} \underline{H}_{4}(\mathrm{CH} \times 2)\right), 7.23-7.36\left(12 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right.$, $\left.\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{5}(\mathrm{CH} \times 2)\right) .{ }^{13} \mathrm{CNMR}^{\left(\mathrm{CDCl}_{3}\right)} \delta: 55.2,67.0,71.9,72.0,72.2,74.2,75.3,79.0,79.4,80.4$, 113.8, 127.6, 127.9, 127.9, 128.4, 128.5, 129.5, 129.9, 137.8, 137.9, 138.7, 159.4, 162.5. IR (KBr) $3460,2880,1610,1520,1450,1180,1100,810,750 \mathrm{~cm}^{-1} . \mathrm{Mp} .154{ }^{\circ} \mathrm{C} . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 503$
$(\mathrm{M}+\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{7}: \mathrm{C}, 69.98$; H, 6.71. Found: C, 70.02; H, 6.76. TLC; $\mathrm{R}_{f} 0.50$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$.

3.5. DL-1-O-(p-methoxybenzyl)-myo-inositol (10)

To a solution of $9(1.86 \mathrm{~g}, 3.87 \mathrm{mmol})$ in $\mathrm{MeOH}(25 \mathrm{ml})$ was added W-2 Raney Nickel ($0.20 \mathrm{~g}, 3.03$ mmol), and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ under hydrogen for 3 h . The mixture was filtered through a pad of celite, and concentrated under reduced pressure. The residue was washed with heated AcOEt, and the resulting crystals were filtered. Drying of the crystals under reduced pressure afforded $10(0.52 \mathrm{~g}, 45 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR (DMSO) $\delta: 2.91-2.94(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.03-3.06(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.33-3.36(1 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{H})$, 3.48-3.52 (1H, m, CH), $3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{C} \underline{H}), 3.91(1 \mathrm{H}, \mathrm{s}, \mathrm{C} \underline{H}), 4.36-4.57\left(7 \mathrm{H}, \mathrm{m}, \mathrm{OH} \times 5, \underline{\mathrm{H}}_{2}\right), 6.87$ ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OC}_{6} \underline{\mathrm{H}_{5}}(\mathrm{CH} \times 2)$), $7.31\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OC}_{6} \underline{\mathrm{H}}_{5}(\mathrm{CH} \times 2)\right) .{ }^{13} \mathrm{C}$ NMR (DMSO) 8: 55.0, 69.3, 70.3, 71.7, 72.0, 72.4, 75.4, 79.6, 113.4, 129.0, 131.2, 158.5. IR (KBr) 3390, $2910,1610,1590,1510,1250,1120,890,820 \mathrm{~cm}^{-1} . \mathrm{Mp} .183^{\circ} \mathrm{C} . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 299(\mathrm{M}-\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{7}$: C, 55.99; H, 6.71. Found: C, 56.06; H, 6.72. TLC; $\mathrm{R}_{f} 0.39$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=3: 1\right)$.

3.6.

DL-1- O-(p-methoxybenzyl)-2,3,4,5,6-penta- O-[(1,5-dihydro-2,4,3-benzodioxaphosphepin-3-yl) phosphoryl]-myo-inositol (11)

To a suspension of $\mathbf{1 0}(0.050 \mathrm{~g}, 0.166 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added MS4A, and the resulting suspension was stirred at room temperature under argon for 15 min . To the mixture was added (1,5-dihydro-2,4,3-benzodioxaphosphepin-3-yl)diethylamine ($0.358 \mathrm{ml}, 1.66 \mathrm{mmol}$) followed by $1 H$-tetrazole ($0.116 \mathrm{~g}, 1.66 \mathrm{mmol}$), the resulting mixture was stirred at room temperature under argon for overnight. To the mixture was added m-chloroperbenzoic acid ($0.336 \mathrm{~g}, 1.50 \mathrm{mmol}$) in small portions, and the resulting mixture was stirred at $-40^{\circ} \mathrm{C}$ to room temperature for 1 hr . The mixture was purified by silica gel column chromatography (AcOEt:Hexane=15:1) to afford $\mathbf{1 1}$ $(0.151 \mathrm{~g}, 75 \%)$ as a white yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.92(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}}), 4.52(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}, \mathrm{CH})$, 4.72-5.80 (26H, m, $\left.\mathrm{CH}_{2}, \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \times 5, \mathrm{C} \underline{\mathrm{H}} \times 4\right), 6.90\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OC}_{6} \underline{\mathrm{H}}_{4}(\mathrm{CH} \times 2)\right)$,
$6.96\left(20 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \underline{\mathrm{H}}_{4} \mathrm{x} 5\right), 7.46\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OC}_{6} \underline{H}_{4}(\mathrm{CH} \times 2)\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 55.1$, $68.0,68.9,69.2,74.4,75.4,76.6,77.0,77.2,77.4,113.5,128.4,128.5,128.6,128.7,128.8,128.8$, 129.0, 129.0, 129.2, 129.4, 129.8, 134.3, 135.1, 135.2, 135.5, 135.6, 159.1. IR (KBr) 1610, 1510, $1460,1380,1290,1020,860,730 \mathrm{~cm}^{-1} . \mathrm{Mp} 165{ }^{\circ} \mathrm{C}$. HRMS(FAB) m / z calcd for $\mathrm{C}_{54} \mathrm{H}_{56} \mathrm{O}_{22} \mathrm{P}_{5}$ $(\mathrm{M}+\mathrm{H})^{+}$1211.2022. Found:1211.1870. Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{56} \mathrm{O}_{22} \mathrm{P}_{5}$: C, 53.56; H, 4.58. Found: C, 53.21; H, 4.72. TLC; $\mathrm{R}_{f} 0.55\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$.

3.7.

DL-2,3,4,5,6-penta-O-[(1,5-dihydro-2,4,3-benzodioxaphosphepin-3-yl)phosphoryl]-myo-inosito I (12) and DL-1,3,4,5,6-penta-O-[(1,5-dihydro-2,4,3-benzodioxaphosphepin-3-yl)phosphoryl]-myo-inosito 1 (13)

To a solution of $\mathbf{1 1}(0.070 \mathrm{~g}, 0.0578 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1,5 \mathrm{ml})$ was added diammonium cerium(IV) nitrate $(0.158 \mathrm{~g}, 0.288 \mathrm{mmol})$ and the resulting mixture was stirred at room temperature for 1 hr . The mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$ to afford the mixture of $\mathbf{1 2}$ and 13. Compound $\mathbf{1 2}$ and $\mathbf{1 3}$ were used for next coupling reaction without further purification. R_{f} values of compound $\mathbf{1 2}$ and $\mathbf{1 3}$ were 0.37 and 0.29 , respectively $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$.

3.8. DL-1- O-(p-methoxybenzyl)-2,3,4,5,6-penta- O-[bis(2-cyanoethyl)phosphoryl]-myo-inositol (14)

To a suspension of $\mathbf{1 0}(0.050 \mathrm{~g}, 0.166 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added MS 4 A , and the resulting suspension was stirred at room temperature under argon for 15 min . To the mixture was added bis(2-cyanoethyl)- N, N-diisopropylphosphoramidite $\quad(0.383 \mathrm{ml}, \quad 1.50 \mathrm{mmol})$ followed by $1 H$-tetrazole ($0.105 \mathrm{~g}, 1.50 \mathrm{mmol}$), the resulting mixture was stirred at room temperature under argon for 4 h . To the mixture was added m-chloroperbenzoic acid ($0.336 \mathrm{~g}, 1.50 \mathrm{mmol}$) in small portions, and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ to room temperature for 1 hr . The mixture was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=7: 1\right)$ to afford $\mathbf{1 4}(0.15 \mathrm{~g}, 73 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta: 2.65-2.91\left(20 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{CN}\right.$ x 10$), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.95(1 \mathrm{H}, \mathrm{d}$,
$J=9.3 \mathrm{~Hz}, \mathrm{C} \underline{H}), 4.11-4.51\left(21 \mathrm{H}, \mathrm{m}, \underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{CN} \times 10, \mathrm{C} \underline{H}\right), 4.65-4.80\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{C} \underline{\mathrm{H}} \times 3\right)$), 5.36 $(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{C} \underline{H}), 6.84\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OC}_{6} \underline{H}_{5}(\underline{\mathrm{CH}} \mathrm{x} 2)\right), 7.39(2 \mathrm{H}, \mathrm{d}, J=8.63 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{OC}_{6} \underline{\mathrm{H}}_{\underline{-}}(\underline{\mathrm{H}} \times 2)\right)$. IR (KBr) 3300, 2890, 2255, 1610, 1470, 1415, 1280, 1040, 820, 795, 765 cm^{-1}. $\mathrm{HRMS}(\mathrm{FAB}) m / z$ calcd for $\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{~N}_{10} \mathrm{O}_{22} \mathrm{P}_{5}(\mathrm{M}+\mathrm{Na})^{+}$1253.2078. Found:1253.2029. TLC; R_{f} $0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$.

3.9. DL-2,3,4,5,6-penta-O-[bis(2-cyanoethyl)phosphoryl]-myo-inositol (15)

To a solution of $\mathbf{1 4}(0.073 \mathrm{~g}, 0.059 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1,10 \mathrm{ml})$ was added diammonium cerium(IV) nitrate $(0.208 \mathrm{~g}, 0.379 \mathrm{mmol})$ and the resulting mixture was stirred at room temperature for 1.5 h . The mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=7: 1\right.$ to $\left.3: 1\right)$ to afford $\mathbf{1 5}(0.055 \mathrm{~g}, 68 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}+\mathrm{D}_{2} \mathrm{O}\right) \delta: 2.93-3.02\left(20 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \underline{\mathrm{CH}_{2} \mathrm{CN} x} 10\right), 4.22(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 4.41-4.53$ ($20 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN} x 10$), 4.64-4.94 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{x} 4$), $5.20(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{C} \underline{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta: 19.8,19.9,19.9,20.0,20.0,63.9,64.0,64.1,64.2,64.3,64.3,64.6,68.8,74.5,76.1$, 76.8, 79.0, 79.2, 79.2, 118.3, 118.4, 118.6. IR (film) 3020, 2910, 2255, 1635, 1470, 1415, 1340, 1280, $1040 \mathrm{~cm}^{-1}$. HRMS(FAB) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{10} \mathrm{O}_{21} \mathrm{P}_{5}(\mathrm{M}+\mathrm{Na})^{+}$1133.1503. Found:1133.1545. $\mathrm{R}_{f} 0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=7: 1\right)$

3.10. (R)-1-benzyloxy-2,3-bis(heptanoyl)propane (17)

A mixture of (R)-3-benzyloxy-1,2-propandiol (16) $(0.10 \mathrm{~g}, 0.549 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added pyridine $(0.11 \mathrm{ml}, 1.37 \mathrm{mmol})$ followed by dimethylaminopyridine $(0.0036 \mathrm{~g}, 0.27 \mathrm{mmol})$ and the resulting mixture was cooled to $0^{\circ} \mathrm{C}$. To the mixture was added heptanoyl chloride $(0.20 \mathrm{ml}$, 1.26 mmol) and the resulting mixture was stirred at room temperature under argon for overnight. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$, and the resulting water phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with 2 M aqueous hydrogen chloride (20 ml) and $\mathrm{H}_{2} \mathrm{O}(25$ $\mathrm{ml})$. The resulting organic phase was further washed Brine (30 ml) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (Hexane:AcOEt=9:1) to afford $17(0.193 \mathrm{~g}, 86 \%)$ as a colorless oil
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.86-0.90\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\underline{3}} \times 2\right), 1.28-1.36\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 6\right), 1.54-1.66(4 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CH}_{2} \times 2\right), 2.25-2.34\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 3.59\left(2 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.15-4.22(1 \mathrm{H}, \mathrm{dd}$, $J=6.2,11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCO}$), $4.32-4.37\left(1 \mathrm{H}, \mathrm{dd}, J=3.8,11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCO}\right.$), 4.49-4.58 (2H, dd, $J=12.1$, $15.2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$), $5.20-5.27\left(1 \mathrm{H}, \mathrm{ddt}, J=3.9,5.1,6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right.$), $7.26-7.37\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \underline{H}_{5}\right.$). ${ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}\right)$
$\delta: 14.0,22.4,24.8,24.9,28.7,28.8,31.4,34.1,34.3,62.6,68.3,70.0,73.3,127.6,127.7,128.4,137$.7, 173.1, 173.4. IR (KBr) 2820, 1740, 1460, 1160, 1100, 740, $700 \mathrm{~cm}^{-1}$. HRMS(FAB) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$407.2797. Found: 407.2760. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{5}$: C, 70.90; H, 9.42. Found: C, 70.61 ; H, 9.62. TLC; $\mathrm{R}_{f} 0.35$ (Hexane:AcOEt=9:1).

3.11. 1,2-O-diheptanoyl-sn-glycerol (18)

To a solution of $\mathbf{1 7}(0.193 \mathrm{~g}, 0.475 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added $10 \% \mathrm{Pd}-\mathrm{C}(0.126 \mathrm{~g}, 0.119$ mmol), and the resulting mixture was stirred at room temperature under hydrogen for overnight. The mixture was filtered through a pad of celite, and the resulting filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (Hexane: $\mathrm{AcOEt}=2: 1$) to afford $\mathbf{1 8}(0.144 \mathrm{~g}, 96 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.89\left(6 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{\underline{3}} \times 2\right), 1.21-1.37\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 6\right), 1.50-1.68(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \times 2\right), 2.12(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 2.30-2.37\left(4 \mathrm{H}, \mathrm{dd}, J=7.1,14.5 \mathrm{~Hz}, \mathrm{CH}_{2} \times 2\right), 3.38\left(2 \mathrm{H}, \mathrm{bs}, \mathrm{HOCH}_{2}\right)$, $4.20-4.26(1 \mathrm{H}, \mathrm{dd}, J=5.7,11.9 \mathrm{~Hz}, \mathrm{OCOCHH}), 4.30-4.35(1 \mathrm{H}, \mathrm{dd}, J=4.6,11.9 \mathrm{~Hz}, \mathrm{OCOCH} \underline{H})$, 5.00-5.12 $\quad(1 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CH}) . \quad{ }^{13} \mathrm{C} \quad$ NMR $\quad\left(\mathrm{CDCl}_{3}\right)$ $\delta: 14.0,22.4,22.5,24.8,24.9,28.7,28.8,31.4,34.1,34.3,61.5,62.0,173.4,173.6$. IR (KBr) 3590, 3140, 2930, 2860, 1740, 1160, $1100 \mathrm{~cm}^{-1}$. HRMS(FAB) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{5}(\mathrm{M}+\mathrm{Na})^{+} 339.2147$. Found: 339.2154. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{5}$: C, 64.53 ; H, 10.19. Found: C, 64.33; H, 10.22. TLC; $\mathrm{R}_{f} 0.45$ (Hexane:AcOEt=2:1).

3.12. (R)-1-benzyloxy-2,3-bis(hexyloxy)propane (19)

A mixture of $16(0.366 \mathrm{~g}, 2.03 \mathrm{mmol})$ in DMF $(10 \mathrm{ml})$ was added $\mathrm{NaH}(0.406 \mathrm{~g}, 16.9 \mathrm{mmol})$ followed by bromohexane ($0.708 \mathrm{ml}, 5.0 \mathrm{mmol}$), and the resulting mixture was stirred at room temperature under argon for 24 h . The reaction was quenched with MeOH , and concentrated under reduced pressure, and then the residue was diluted with AcOEt. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure.

The crude product was purified by silica gel column chromatography (Hexane:AcOEt=5:1) to afford $19(0.506 \mathrm{~g}, 70 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.88\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\underline{3}} \times 2\right), 1.29\left(12 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{\underline{2}} \times 6\right), 1.52-1.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right)$, 3.40-3.59 (9H, m, $\left.\mathrm{CH}_{2} \mathrm{OCH}_{2} \times 3, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right), 7.25-7.34$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \underline{\mathrm{H}}_{5}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.0,22.5,25.7,25.7,29.5,30.0,31.6,70.2,70.5,70.6,71.6$, 73.2, 77.8, 127.4, 127.5, 128.2, 138.3. IR (KBr) 3070, 3030, 2970, 2850, 1600, 1455, 1380, 1270, 1115, 730, $700 \mathrm{~cm}^{-1}$. MS (FAB) $m / z 351(\mathrm{M}+\mathrm{H})^{+}$. $\mathrm{HRMS}(\mathrm{FAB}) m / z$ calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$ 351.2889. Found:351.2892. TLC; $\mathrm{R}_{f} 0.58$ (Hexane:AcOEt=5:1).

3.13. 1,2-O-dihexyl-sn-glycerol (20)

$19(0.406 \mathrm{~g}, 1.13 \mathrm{mmol})$ was allowed to react under the same condition as described for the preparation of $\mathbf{1 8}$ to give $\mathbf{2 0}(0.285 \mathrm{~g}, 84 \%)$ as a colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.87\left(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2\right), 1.30\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 6\right), 1.54-1.57(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \times 2$), $2.30(1 \mathrm{H}$, bs, OH$), 3.42-3.71\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \times 3, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta: 14.0,22.6,25.7,29.5,30.0,31.6,31.6,63.0,70.3,70.9,71.8,78.2$. IR (KBr) 3440 , 2960, 2930, 1465, 1380, $1120 \mathrm{~cm}^{-1}$. MS (FAB) $m / z 261(\mathrm{M}+\mathrm{H})^{+}$. HRMS(FAB) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$283.2249. Found:283.2252. TLC; $\mathrm{R}_{f} 0.53$ (Hexane:AcOEt=2:1).

3.14. (R)-1-benzyloxy-3-methoxypropan-2-ol (21)

A mixture of $16(0.50 \mathrm{~g}, 2.74 \mathrm{mmol})$ and dibutyltin oxide $(0.697 \mathrm{~g}, 2.80 \mathrm{mmol})$ in toluene (50 ml) was refluxed for 3 h in a Dean-Stark apparatus to remove water. The mixture was concentrated under reduced pressure. To the residue was added cesium fluoride ($0.759 \mathrm{~g}, 5.0 \mathrm{mmol}$), and the mixture was suspended in heated DMF (30 ml) at $100^{\circ} \mathrm{C}$. To the resulting suspension was added methyl iodide $(0.311 \mathrm{ml}, 10.0 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature under argon with light shielding for 48 h . After concentration of the reaction mixture under reduced pressure, the residue was purified by silica gel column chromatography (Hexane:AcOEt=1:2) to afford $21(0.386 \mathrm{~g}, 71 \%)$ as a colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.71(1 \mathrm{H}, \mathrm{bs}, \mathrm{O} \underline{H}), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.38-3.56\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OCH}_{2}, \mathrm{CH}_{2} \mathrm{OH}\right)$, $3.98\left(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 4.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right), 7.25-7.32\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \underline{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 59.0,69.2,71.2,73.3,73.7,127.6,128.3,137.8$. IR (KBr) 3450, 3060, 3030, 2890, 1500,
$1450,1360,1330,1200,1100,970,740,700 \mathrm{~cm}^{-1} . \operatorname{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 219.0997. Found:219.1012. TLC; $\mathrm{R}_{f} 0.58$ (Hexane:AcOEt=1:2).

3.15. (R)-1-benzyloxy-2-heptanoyl-3-methoxypropane (22)

$21(0.119 \mathrm{~g}, 0.608 \mathrm{mmol})$ was allowed to react under the same condition as described for the preparation of $\mathbf{1 7}$ to give $\mathbf{2 2}(0.175 \mathrm{~g}, 93 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.85-0.90\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.25-1.36\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3\right), 1.57-1.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.34\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.55-3.57\left(2 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OCH}_{2}\right), 3.61-3.62$ $\left(2 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 4.50-4.59\left(2 \mathrm{H}, \mathrm{dd}, J=12.1,12.3 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right), 5.16-5.22(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)$, 7.25-7.37 (5H, m, $\left.\mathrm{C}_{6} \underline{\mathrm{H}}_{5}\right) . \quad{ }^{13} \mathrm{C} \quad$ NMR $\quad\left(\mathrm{CDCl}_{3}\right)$ $\delta: 14.0,22.4,24.9,28.7,31.4,34.3,59.2,68.6,71.0,71.3,73.2,127.6,127.6,128.3,138.0,173.4$. IR (KBr) 3290, 2990, 2850, 1740, 1500, 1460, 1370, 1100, $740,700 \mathrm{~cm}^{-1} . \operatorname{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$309.2066. Found: 309.2068. TLC; $\mathrm{R}_{f} 0.23$ (Hexane:AcOEt=9:1).

3.16. 2-O-heptanoyl-1-O-methyl-sn-glycerol (23)

$22(0.390 \mathrm{~g}, 1.27 \mathrm{mmol})$ was allowed to react under the same condition as described for the preparation of $\mathbf{1 7}$ to give $\mathbf{1 8}(0.258 \mathrm{~g}, 93 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.88\left(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.26-1.35\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{x} 3\right), 1.59-1.65(2 \mathrm{H}, \mathrm{m}$, CH_{2}), 2.32-2.39 (3H, m, $\left.\mathrm{OH}, \mathrm{CH}_{2}\right), 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.55-3.60(1 \mathrm{H}, \mathrm{dd}, J=4.8,10.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{OCH}_{2}(\mathrm{CH})\right), 3.59-3.64\left(1 \mathrm{H}, \mathrm{dd}, J=4.9,10.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OCH}_{2}(\mathrm{CH})\right), 3.79(2 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right)$, 5.00-5.03 $(1 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CH}) . \quad{ }^{13} \mathrm{C} \quad$ NMR $\quad\left(\mathrm{CDCl}_{3}\right)$ $\delta: 14.0,22.4,24.9,28.7,31.4,34.3,59.3,62.5,71.6,72.7,173.7$. IR (KBr) 3630, 3240, 2810, 1735, $1460,1110 \mathrm{~cm}^{-1}$. $\mathrm{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$219.1596. Found: 219.1590. TLC; $\mathrm{R}_{f} 0.44$ (Hexane:AcOEt=1:1).

3.17. (R)-1-benzyloxy-2-hexyloxy-3-methoxypropane (24)

$21(0.120 \mathrm{~g}, 0.611 \mathrm{mmol})$ was allowed to react under the same condition as described for the preparation of $\mathbf{1 9}$ to give $\mathbf{2 4}(0.157 \mathrm{~g}, 92 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.88\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.29\left(6 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{2} \times 3\right), 1.53-1.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.35(3 \mathrm{H}$, s, OCH_{3}), 3.45-3.62 (7H, m, $\left.\mathrm{CH}_{3} \mathrm{OCH}_{2}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}, \mathrm{OCH}_{2}\right), 4.55(2 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right), 7.25-7.34\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \underline{\mathrm{H}}_{5}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.0,22.6,25.7,30.0,31.6,59.1,70.0$, $70.5,72.7,73.3,77.7,127.4,127.5,128.2,138.3$. IR (KBr) 3285, 3065, 2960, 1600, 1455, 1270, 1200, 1100, $700 \mathrm{~cm}^{-1}$. MS (FAB) m/z $281(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 72.82; H, 10.06. Found: C, 72.67; H, 10.28. TLC; $\mathrm{R}_{f} 0.58$ (Hexane:AcOEt=5:1).

3.18. 2-O-hexyl-1-O-methyl-sn-glycerol (25)

$24(0.153 \mathrm{~g}, 0.54 \mathrm{mmol})$ was allowed to react under the same condition as described for the preparation of $\mathbf{2 0}$ to give $\mathbf{2 5}(0.092 \mathrm{~g}, 89 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.89\left(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.30-1.37\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{x} 3\right), 1.54-1.61(2 \mathrm{H}, \mathrm{m}$, CH_{2}), $2.35(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH})$, $3.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.46-3.70\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OCH}_{2}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right.$, OCH_{2}). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.0,22.5,25.7,30.0,31.6,59.2,62.6,70.3,72.6,78.3$. IR (KBr) $3310,2935,1455,1104 \mathrm{~cm}^{-1}$. MS (FAB) $m / z 281(\mathrm{M}+\mathrm{H})^{+} . \mathrm{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+}$213.1467. Found:213.1466. TLC; $\mathrm{R}_{f} 0.58$ (Hexane:AcOEt=1:2).

3.19. DL-2, 3,4,5,6-penta-O-[(1,5-dihydro-2,4,3-benzodioxaphosphepin-3-yl)

 phosphoryl]-myo-inositol 1-\{[1,2-O-diheptanoyl-sn-glyceryl](benzyl)phosphate\} (26) DL-1,
3,4,5,6-penta-O-[(1,5-dihydro-2,4,3-benzodioxaphosphepin-3-yl)phosphoryl]-myo-inositol

2-\{[1,2-O-diheptanoyl-sn-glyceryl](benzyl)phosphate\} (27)

To a mixture of $18(0.117 \mathrm{~g}, 0.54 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added Benzyl- N, N, N, N '-tetraisopropylphosphoramidite $(0.20 \mathrm{ml}, 0.54 \mathrm{mmol})$ followed by MS4A (0.20 g), and the resulting mixture was stirred at room temperature under argon for 15 min . To the mixture was added $1 H$-tetrazole ($0.038 \mathrm{~g}, 0.54 \mathrm{mmol}$), and the resulting mixture was stirred at room temperature under argon for 10 min . To the mixture was added completely dissolved a mixture of compound $\mathbf{1 2}$ and $\mathbf{1 3}$ ($0.118 \mathrm{~g}, 0.108 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ with MS4A, followed by adding $1 H$-tetrazole $(0.076 \mathrm{~g}$, 1.08 mmol), and the resulting mixture was stirred at room temperature for further 24 h . To the mixture was added tert-butylhydroperoxide ($0.082 \mathrm{ml}, 0.818 \mathrm{mmol}$), and stirred at room temperature for further 5 min . The mixture was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=20: 1\right)$ to afford compound $26(0.056 \mathrm{~g}, 22 \%)$ as a white solid and compound 27 $(0.092 \mathrm{~g}, 45 \%)$ as a white solid.

Compound 26
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.70-0.80\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\underline{3}} \mathrm{x} 2\right), 1.01-1.18\left(12 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2} \times 6\right), 1.35-1.40(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\underline{2}} \times 2$), 1.91-2.14 (4H, m, $\underline{\mathrm{H}}_{\underline{2}} \times 2$), $3.97-4.03\left(2 \mathrm{H}, \mathrm{dd}, J=5.1,5.7 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{OP}\right), 4.16-4.33(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}, \mathrm{CH}_{2} \mathrm{OCO}\right), 4.68-5.69\left(28 \mathrm{H}, \mathrm{m}, \mathrm{CH} \times 5, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}, \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \times 5\right)$, 6.91-7.53 $\left(25 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \underline{\mathrm{H}}_{4} \times 5, \mathrm{C}_{6} \underline{H}_{5}\right) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta: 13.9,22.3,24.5,28.6,31.3,33.9,61.7,66.5,68.4$, $68.9,69.0,69.1,69.2,69.3,69.4,69.5,70.0,70.2,73.8,76.2,76.7,76.9,77.0,77.2,77.3,127.7$, 128.3, 128.4, 128.7, 128.8, 128.9, 129.0, 129.1, 129.2, 129.3, 129.4, 134.9, 135.1, 135.4, 135.6, 135.7, 172.6, 173.1. IR (KBr) 2930, 1740, 1460, 1380, 1300, 1160, 1020, 860, 770, $730 \mathrm{~cm}^{-1}$. HRMS(FAB) m / z calcd for $\mathrm{C}_{70} \mathrm{H}_{84} \mathrm{O}_{28} \mathrm{P}_{6} \mathrm{Na}$ 1581.3473. Found: $1581.3435(\mathrm{M}+\mathrm{Na})^{+} . \mathrm{Mp} 98{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$: C , 5.57; $\mathrm{H}, 53.92$. Found: C , 5.57; $\mathrm{H}, 54.37$. $\mathrm{R}_{f} 0.46$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$.

Compound 27
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.75-0.82\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \times 2\right), 1.12-1.19\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 6\right), 1.40-1.58(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \times 2$), 2.17-2.25 (4H, m, C $\underline{H}_{2} \times 2$), 3.99-4.37 ($6 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{H}} \times 2, \mathrm{C}_{2} \underline{\mathrm{OP}}^{2}, \mathrm{CH}_{2} \mathrm{OCO}$), 4.48-4.64 (2H, $\mathrm{m}, \mathrm{C} \underline{\mathrm{H}} \times 2$), 4.70-5.77 (25H, m, CH x 2, $\left.\mathrm{CH}_{2} \mathrm{CHCH}_{2}, \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \times 5, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 7.17-7.44 (25H, $\left.\mathrm{m}, \mathrm{C}_{6} \underline{H}_{4} \times 5, \mathrm{C}_{6} \underline{\mathrm{H}}_{5}\right) .{ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta: 14.1,22.6,24.8,28.9,31.6,34.1,61.8,61.9,65.8,67.1$, $67.2,69.3,69.6,69.7,69.8,70.4,70.9,71.0,73.5,76.3,76.7,77.4,128.0,128.3,128.4,128.5$, 128.6, 128.9, 129.0, 129.1, 129.2, 129.3, 129.4, 129.6, 129.7, 129.8, 134.7, 135.0, 135.1, 135.6, 135.7, 135.8, 135.9, 136.0, 173.0, 173.4.IR (KBr) 2930, 1740, 1460, 1300, 1020, 860, 770, 730 cm^{-1}. HRMS(FAB) m / z calcd for $\mathrm{C}_{70} \mathrm{H}_{84} \mathrm{O}_{28} \mathrm{P}_{6} \mathrm{Na}$ 1581.3473. Found: $1581.3490(\mathrm{M}+\mathrm{Na})^{+} . \mathrm{R}_{f} 0.67$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1\right)$.

3.20. DL-1-O-(1,2-O-diheptanoyl-sn-glyceryl) hydrogen phosphoryl]-myo-inositol

 2,3,4,5,6-pentakis(hydrogenphosphate): 2To a solution of $26(0.030 \mathrm{~g}, 0.019 \mathrm{mmol})$ in $t \mathrm{BuOH}(8 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{ml})$ was added $10 \% \mathrm{Pd}-\mathrm{C}$ $(0.15 \mathrm{~g}, 0.14 \mathrm{mmol})$, and the resulting mixture was stirred at room temperature under hydrogen for 24 h . The mixture was filtered through a pad of celite, and then washed the celite pad with $\mathrm{H}_{2} \mathrm{O}$. The resulting filtrate was lyophilized. The residue was dissolved $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$, and filtered through the cation-exchange resin. To the resulting filtrate $(0.009 \mathrm{~g}, 0.009 \mathrm{mmol})$ was added triethylamine ($0.014 \mathrm{ml}, 0.10 \mathrm{mmol}$), and concentrated under reduced pressure. The resulting residue was
dissolved in $\mathrm{H}_{2} \mathrm{O}$, and lyophilized to afford $2(0.010 \mathrm{~g}, 34 \%$ from compound 26$)$ as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta: 0.70\left(6 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{3} \mathrm{x} 2\right), 1.12\left(12 \mathrm{H}, \mathrm{bs}, \mathrm{C}_{\underline{H}}^{2} \times 6\right), 1.42\left(4 \mathrm{H}, \mathrm{bs}, \underline{C}_{\underline{H}}^{2} \times 2\right)$, 2.06-2.30 (4H, m, $\left.\mathrm{CH}_{2} \times 2\right), 3.96-4.47\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{H}} \times 6, \underline{\mathrm{H}}_{2} \mathrm{OP}, \mathrm{CH}_{2} \mathrm{OCO}\right), 5.22$ (1H, bs, $\mathrm{CH}_{2} \mathrm{CHCH}_{2}$). $\mathrm{HRMS}(\mathrm{FAB}) m / z$ calcd for $\mathrm{C}_{23} \mathrm{H}_{47} \mathrm{O}_{28} \mathrm{P}_{6} 957.0680$. Found: $957.0623(\mathrm{M}-\mathrm{H})^{+}$.

3.21. DL-2-O-(1,2-O-diheptanoyl-sn-glyceryl) hydrogen phosphoryl]-myo-inositol

1,3,4,5,6-pentakis(hydrogenphosphate): 2'

$27(0.045 \mathrm{~g}, 0.029 \mathrm{mmol})$ was allowed to react under the same condition as described for the preparation of $\mathbf{2}$ to give $\mathbf{2}^{\prime}\left(0.008 \mathrm{~g}, \mathbf{3 9 \%}\right.$ from an acid form of $\left.\mathbf{2}^{\prime}\right)$ as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta: 0.70\left(6 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{3} \times 2\right), 0.98-1.22\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 6\right), 1.43\left(4 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{2} \times 2\right)$,
 $\left.\mathrm{m}, \mathrm{C} \underline{\mathrm{H}} \times 3, \underline{\mathrm{C}}_{2} \mathrm{OP}, \mathrm{C}_{2} \mathrm{OCO}\right), 5.20\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta: 0.66-0.68\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \times 2\right), 1.03-1.24\left(111 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 6, \mathrm{NCH}_{2} \underline{\mathrm{H}}_{3} \times 33\right)$, 1.28-1.43 (4H, m, C늘 x 2), 1.90-2.28 (4H, m, $\left.\mathrm{CH}_{\underline{2}} \times 2\right), 2.86-3.05\left(66 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{3} \times 33\right)$, 3.57-3.59 (1H, m, Cㅐㅏ) , $3.82(1 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{C} \underline{H}), 3.99(2 \mathrm{H}, \mathrm{bs}, \mathrm{CH} \times 2), 4.08-4.16(4 \mathrm{H}, \mathrm{m}, \mathrm{CH} \times 2$, $\left.\mathrm{CH}_{2} \mathrm{OCO}\right), 4.26-4.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OP}\right), 5.13\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right) . \mathrm{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{47} \mathrm{O}_{28} \mathrm{P}_{6} 957.0680$. Found: $957.0756(\mathrm{M}-\mathrm{H})^{+}$.

3.22.

DL-2,

3,4,5,6-penta- O-[(1,5-dihydro-2,4,3-benzodioxaphosphepin-3-yl)phosphoryl]-myo-inositol

 1-\{[2-O-heptanoyl-1-O-methyl-sn-glyceryl] (benzyl)phosphate\} (28) DL-1,3,4,5,6-penta- O-[(1,5-dihydro-2,4,3-benzodioxaphosphepin-3-yl)phosphoryl]-myo-inositol 2-\{[2-O-heptanoyl-1-O-methyl-sn-glyceryl] (benzyl)phosphate\} (29)

22 ($0.117 \mathrm{~g}, 0.54 \mathrm{mmol}$) was allowed to react under the same condition as described for the preparation of 27 to give $28(0.098 \mathrm{~g}, 63 \%)$ as a white solid and compound $29(0.018 \mathrm{~g}, 11 \%)$ as a white solid.

Compound 28
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.77-0.88\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.19-1.28\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3\right), 1.42-1.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 2.21-2.27 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.17-3.31\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{3}, \mathrm{CHCH}_{2}\right), 3.45-4.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.25-4.38$
($2 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{H}} \times 2$), 4.88-5.75 (29H, m, C $\left.\underline{H} \times 4, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{2}-\mathrm{OP}, \mathrm{CH}_{2} \mathrm{CHCH}_{2},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5} \times 5\right)$, 7.14-7.48 ($25 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \underline{\mathrm{H}}_{4} \times 5, \mathrm{C}_{6} \underline{\mathrm{H}}_{5}$). IR (KBr) 2930, 1740, 1460, 1380, 1290, 1230, 860, 730, 700 cm^{-1}. $\mathrm{HRMS}(\mathrm{FAB}) m / z$ calcd for $\mathrm{C}_{64} \mathrm{H}_{74} \mathrm{O}_{27} \mathrm{P}_{6} \mathrm{Na} 1483.2741$. Found: $1483.2659(\mathrm{M}+\mathrm{Na})^{+} . \mathrm{R}_{f} 0.63$ ($\mathrm{AcOEt} \mathrm{CH} 2 \mathrm{Cl}_{2}: \mathrm{MeOH}=15: 5: 1$).

Compound 29

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.80-0.86\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.20-1.30\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{x} 3\right), 1.49-1.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 2.24-2.33 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.28-3.37 ($5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{3}, \mathrm{CHCH}_{2}$), $3.45-4.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.17-4.37$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{H}} \times 2$), 4.90-5.66 (27H, m, C $\left.\underline{H} \times 4, \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{2} \underline{\mathrm{OP}}, \mathrm{CH}_{2} \mathrm{CHCH}_{2},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5} \times 5\right)$, 7.16-7.52 ($25 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \underline{\mathrm{H}}_{4} \times 5, \mathrm{C}_{6} \underline{\mathrm{H}_{5}}$). IR (KBr) 3000, 2880, 1740, 1460, 1300, 1020, 860, $730 \mathrm{~cm}^{-1}$. HRMS(FAB) m / z calcd for $\mathrm{C}_{64} \mathrm{H}_{74} \mathrm{O}_{27} \mathrm{P}_{6} \mathrm{Na}$ 1483.2741. Found: $1483.2697(\mathrm{M}+\mathrm{Na})^{+} . \mathrm{R}_{f} 0.72$ ($\mathrm{AcOEt} \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=15: 5: 1$).

3.23. DL-1-O-[(2-O-heptanoyl-1-O-methyl-sn-glyceryl) hydrogen phosphoryl]-myo-inositol

2,3,4,5,6-pentakis(hydrogenphosphate): 3

$28(0.098 \mathrm{~g}, 0.0671 \mathrm{mmol})$ was allowed to react under the same condition as described for the preparation of $\mathbf{2}$ to give $\mathbf{3}(58.2 \mathrm{mg}, 44 \%)$ as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta: 0.22\left(3 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.42-0.66\left(60 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3, \mathrm{NCH}_{2} \mathrm{CH}_{3} \times 18\right), 0.98$ $\left(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.55-2.57\left(36 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{3} \times 18\right), 2.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.06\left(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.33\left(2 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.44-3.54(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.61-3.70(3 \mathrm{H}$, $\mathrm{m}, \mathrm{CH} \times 3$), 3.81-3.94 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{H}} \times 2$ 2), 4.55-4.64 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}$). HRMS(FAB) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{37} \mathrm{O}_{26} \mathrm{P}_{6} 858.9948$. Found: $859.0034(\mathrm{M}-\mathrm{H})^{+}$.

3.24. DL-2-O-[(2-O-heptanoyl-1-O-methyl-sn-glyceryl) hydrogen phosphoryl]-myo-inositol

 1,3,4,5,6-pentakis(hydrogenphosphate): 3'$29(0.018 \mathrm{~g}, 0.0121 \mathrm{mmol})$ was allowed to react under the same condition as described for the preparation of $\mathbf{2}$ to give $\mathbf{3}^{\prime}(0.0051 \mathrm{~g}, 22 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta: 0.74\left(3 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.05-1.18\left(114 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3, \mathrm{NCH}_{2} \mathrm{CH}_{3} \times 36\right), 1.50$ $\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.29-2.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.93-3.19\left(72 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{3} \times 36\right), 3.22-3.33(5 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.56-3.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.86-3.89(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.22-4.48(5 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{H}} \times 5)$, 5.03-5.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}$). HRMS(FAB) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{37} \mathrm{O}_{26} \mathrm{P}_{6}$ 858.9948. Found:
$858.9951(\mathrm{M}-\mathrm{H})^{+}$.
3.25. DL-2, 3,4,5,6-penta-O-[bis(2-cyanoethyl)phosphoryl]-myo-inositol 1-\{[1,2-O-dihexyl-sn-glyceryl] (2-cyanoethyl)phosphate\} (30)

To a solution of $20(0.098 \mathrm{~g}, 0.378 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added (2-cyanoethyl)- N, N, N^{\prime}, N '-tetraisopropylphosphoramidite $(0.150 \mathrm{ml}, 0.473 \mathrm{mmol})$ followed by MS4A $(0.10 \mathrm{~g})$, and the resulting mixture was stirred at room temperature under argon for 15 min . To the mixture was added $1 H$-tetrazole $(0.026 \mathrm{~g}, 0.378 \mathrm{mmol})$, and the resulting mixture was stirred at room temperature under argon for 10 min . To the mixture was added completely dissolved compound $\mathbf{1 2}$ (0.061 g , $0.0549 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{ml})$ with MS 4 A , followed by adding $1 H$-tetrazole $(0.035 \mathrm{~g}, 0.50 \mathrm{mmol})$, and the resulting mixture was stirred at room temperature for further 24 h . To the mixture was added tert-butylhydroperoxide $(0.058 \mathrm{ml}, 0.40 \mathrm{mmol})$, and stirred at room temperature for further 5 min . The mixture was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=7: 1\right.$ to $\left.5: 1\right)$ to afford crude compound $30(0.025 \mathrm{~g}, 31 \%)$ as a colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 0.79-0.84\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \times 2\right), 1.10-1.23\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 6\right), 1.47\left(4 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{2}\right.$ x 2), 2.51-2.89 ($22 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN} \times 11$), $3.34-3.71\left(7 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2} \times 3, \mathrm{CH}\right), 4.22-4.68(27 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN} \times 11, \mathrm{CH} \times 5\right), 4.68-4.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.33(1 \mathrm{H}, \mathrm{bs}, \mathrm{C} \underline{H}) . \operatorname{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{54} \mathrm{H}_{81} \mathrm{~N}_{11} \mathrm{O}_{26} \mathrm{P}_{6}$ 1508.3678. Found: 1508.3728. $(\mathrm{M}+\mathrm{Na})^{+}$. TLC; $\mathrm{R}_{f} 0.46\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=7: 1\right)$.

3.26. DL-1-O-(1,2-O-dihexyl-sn-glyceryl) hydrogen phosphoryl]-myo-inositol

2,3,4,5,6-pentakis(hydrogenphosphate): 4

To a solution of $\mathbf{3 0}(0.025 \mathrm{~g}, 0.0168 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{ml})$ was added $25 \% \mathrm{NH}_{4} \mathrm{OH}(5 \mathrm{ml}, 66.4$ mmol), and the resulting mixture was stirred at $55^{\circ} \mathrm{C}$ for 12 h . The mixture was concentrated under reduced pressure, and the residue was adapted to reverse phase chromatography $\left(\mathrm{C}_{18}\right.$ column, 5 g , $50 \% \mathrm{CH}_{3} \mathrm{CN}$ to $100 \% \mathrm{CH}_{3} \mathrm{CN}$). The resulting eluted fraction was concentrated under reduced pressure. The residue was dissolved $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$, and filtered through the cation-exchange resin. To the resulting filtrate was added triethylamine $(0.0460 \mathrm{ml}, 0.337 \mathrm{mmol})$, and concentrated under reduced pressure. The resulting residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$, and lyophilized to afford $4(0.016 \mathrm{~g}$, 64%) as a colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta: 0.76\left(6 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{3}\right), 1.14-1.19\left(66 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 6, \mathrm{NCH}_{2} \mathrm{CH}_{3} \times 18\right), 1.38-1.47(4 \mathrm{H}$,
$\mathrm{m}, \mathrm{CH}_{2} \times 2$), $3.05-3.12\left(36 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{3} \times 18\right), 3.41-3.67\left(7 \mathrm{H}, \mathrm{m}_{2} \mathrm{CH}_{2} \times 3, \mathrm{CH}\right), 3.92-4.19(5 \mathrm{H}$, $\mathrm{m}, \mathrm{C} \underline{H} \times 5)$, 4.43-4.88 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OP}, \mathrm{C} \underline{H}$). $\mathrm{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{47} \mathrm{O}_{26} \mathrm{P}_{6}$ 901.0781. Found: $901.0793(\mathrm{M}-\mathrm{H})^{+}$.
3.27. DL-2, 3,4,5,6-penta-O-[bis(2-cyanoethyl)phosphoryl]-myo-inositol

1-\{[2-O-hexyl-1-O-methyl-sn-glyceryl] (2-cyanoethyl)phosphate\} (31)

$25(0.090 \mathrm{~g}, 0.473 \mathrm{mmol})$ was allowed to react under the same condition as described for the preparation of $\mathbf{3 0}$ to give $\mathbf{3 1}(0.023 \mathrm{~g}, 41 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 0.87\left(3 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{3}\right), 1.10-1.30\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{x} 3\right), 1.56\left(2 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{2}\right), 2.99$ ($22 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{2} \mathrm{C}_{2} \underline{\mathrm{CN}} \mathrm{x} 11$), 3.29-3.74 ($10 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{3}, \mathrm{C}_{2} \mathrm{x} 3, \mathrm{C} \underline{H}$), 4.30-4.49 ($22 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN} x \mathrm{11}\right)$, 4.74-4.97 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{H}} \mathrm{x} 5$), $5.41(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$. HRMS(FAB) m / z calcd for $\mathrm{C}_{49} \mathrm{H}_{71} \mathrm{~N}_{11} \mathrm{O}_{26} \mathrm{P}_{6} 1438.2895$. Found: 1438.2861. $(\mathrm{M}+\mathrm{Na})^{+}$. TLC; $\mathrm{R}_{f} 0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=7: 1\right)$.

3.28. DL-1-O-[(2-O-hexyl-1-O-methyl-sn-glyceryl) hydrogen phosphoryl]-myo-inositol

 2,3,4,5,6-pentakis(hydrogenphosphate): $\mathbf{5}$$31(0.023 \mathrm{~g}, 0.0164 \mathrm{mmol})$ was allowed to react under the same condition as described for the preparation of 4 to give $5(0.0147 \mathrm{~g}, 63 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta: 0.72\left(3 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{3}\right), 1.11-1.16\left(60 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 3, \mathrm{NCH}_{2} \mathrm{CH}_{3} \times 18\right), 1.44(2 \mathrm{H}, \mathrm{bs}$, CH_{2}), 3.01-3.09 ($36 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{3} \times 18$), $3.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.43-3.65\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2, \mathrm{C} \underline{H}\right)$, 3.97-4.09 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{H}} \mathrm{x} 5$), 4.36-4.72 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OP}, \mathrm{C} \underline{H}$). HRMS(FAB) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{37} \mathrm{O}_{26} \mathrm{P}_{6} 830.9999$. Found: $830.9959(\mathrm{M}-\mathrm{H})^{+}$.

3.29. Plasmids, cells, and transfection

The designated pEF-Gag (p17) cFLAG was used for expression vectors of MA domain. 293T cells ${ }^{24}$ were cultured in Dulbecco's modified Eagle medium supplemented with 10% heat-inactivated FBS. The calcium phosphate coprecipitation method ${ }^{25}$ was used for the transfection of 293 T cells. Transfected cells were cultured at $37^{\circ} \mathrm{C}$ for 48 h before use in protein purification.

3.30. Protein purification

Vector-transfected 293T cells were lysed with TNE buffer (10 mM Tris- $\mathrm{HCl}, 150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$

EDTA, $1 \% \mathrm{NP}-40$, and $10 \mu \mathrm{~g} / \mathrm{mL}$ aprotinin, pH 7.8) containing 1 mM dithiothreitol (DTT). After centrifugation ($12000 \mathrm{rpm}, 4{ }^{\circ} \mathrm{C}$, 5 min), the supernatant was mixed with Sepharose CL-4B (Sigma-Aldrich, St. Louis, MO), and the resulting suspension was incubated for 2 h at $4^{\circ} \mathrm{C}$. This incubation was repeated twice, and the final supernatant was treated with mouse anti-FLAG M2 affinity gel (Sigma-Aldrich, St. Louis, MO) and $0.5 \mathrm{ng} / \mathrm{mL} 1 \times$ FLAG peptide (Sigma-Aldrich, St. Louis, MO), to remove nonspecific components interacting with the FLAG antibody, and incubated for 8 h at $4{ }^{\circ} \mathrm{C}$. The beads were washed five times with TNE buffer plus 1 mM DTT. A solution of $150 \mu \mathrm{~g} / \mathrm{mL} 3 \times$ FLAG peptide (Sigma-Aldrich, St. Louis, MO) in TBS buffer (50 mM Tris- HCl and $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.4$) with 1 mM DTT was loaded onto the beads and incubated for 30 min at $4^{\circ} \mathrm{C}$. Following centrifugation, the resulting supernatant was used for the SPR assay.

3.31. Protein quantification

The cFLAG proteins were resolved by SDS-PAGE followed by Coomassie Brilliant Blue (CBB) staining. Each gel band was quantified using ImageJ (version $1.38 \times$) software, and protein concentrations were determined by comparing the intensity of protein bands with the intensity of a protein marker.

3.32. SPR studies

A BIACORE2000 (GE Healthcare, BIACORE AB, Uppsala, Sweden) was used as the surface plasmon resonance biosensor. To prepare the IP_{4} immobilized sensor chip surface for the BIACORE, biotinylated $\mathrm{IP}_{4}{ }^{9}$ in HEPES buffer (50 mM HEPES, $500 \mathrm{mM} \mathrm{NaCl}, 3.4 \mathrm{mM}$ EDTA, and 0.005% Tween 20, pH 7.4) was injected over streptavidin covalently immobilized upon the sensor chip surface (Sensor Chip SA, GE Healthcare, BIACORE AB, Uppsala, Sweden) until a suitable level was achieved. The flow buffer contained 10 mM HEPES, $150 \mathrm{mM} \mathrm{NaCl}, 3.4 \mathrm{mM}$ EDTA, 0.005% Tween $20,2 \%(\mathrm{v} / \mathrm{v})$ glycerol, and $0.5 \mathrm{mg} / \mathrm{mL}$ BSA (pH 7.8). Purified proteins were dialyzed against flow buffer and injected over the immobilized IP_{4} sensor chip. Association was followed for 3 min , and dissociation was measured at a flow rate of $20 \mu \mathrm{~L} / \mathrm{min}$ at $25^{\circ} \mathrm{C}$. The surfaces were regenerated by injecting three 15 s pulses of 50 mM NaOH in 1 M NaCl , three 15 s pulses of 50 mM NaOH , and then a single 15 s pulse of $10 \mu \mathrm{M} \mathrm{IP}_{4}$. The resulting surfaces were post conditioned by injecting three 15 s pulses of 10 mM NaOH . Analysis of the response was performed using evaluation
software supplied with the instrument (BIAevaluation version 3.1). To eliminate small bulk refractive change differences at the beginning and end of each injection, binding responses were referenced by subtracting the response generated across a surface modified with biotin

3.33. Equilibrium-binding measurement

To determine $K \mathrm{~d}$ values, $1.96 \mu \mathrm{M}$ MA was mixed with various concentrations of inositol phosphates, phosphatidylinositols. After reaching equilibrium (less than 30 min in all cases at $25^{\circ} \mathrm{C}$), $60 \mu \mathrm{~L}$ of each mixture was injected over the IP_{4} surface at $20 \mu \mathrm{~L} / \mathrm{min}$ to quantify the free MA remaining in the equilibrium mixture. The K d was obtained by fitting the data to a solution affinity model using BIAevaluation 3.1: $\mathrm{A}_{\text {free }}=0.5(\mathrm{~B}-\mathrm{A}-K \mathrm{~d})+\left(0.25(\mathrm{~A}+\mathrm{B}+K \mathrm{~d})^{2}-\mathrm{AB}\right)^{0.5}$, where $A=$ initial concentration of proteins, $A_{\text {free }}=$ concentration of unbound proteins remaining in the equilibrium mixture, and $\mathrm{B}=$ initial concentration of IP_{4}.

3.34. Molecular docking methodology

Docking studies were performed using MOE 2012.10. Crystal structure of myr-MA (PDB code: $1 \mathrm{UPH})^{26}$ was obtained from the Protein Data Bank to prepare protein for docking studies. Docking procedure was followed using the standard protocol implemented in MOE 2012.10. To the structure was added hydrogen atom and electric charge by Protonate 3D, and the resulting structure was optimized by Amber12: EHT, and then the dummy atoms were disposed in the docking site by Site finder (Alpha Site Setting; Probe Radius 1: $1.4 \AA$, Probe Radius 2: 1.8 \AA, Isolated Donor/Acceptor: $3 \AA$, Connection Distance: $2.5 \AA$, Minimum size: $3 \AA$, and Radius: $2 \AA$). The docking simulation was carried out by ASEDock. The targeting ligands were assigned in ASEDock, and the conformations were integrated by LowModeMD based on the algorithm of conformation analysis (Step1; cutoff: $4.5 \AA$, RMS (root mean square) gradient: $10 \mathrm{kcal} / \mathrm{mol} / \AA$, energy threshold: 500 $\mathrm{kcal} / \mathrm{mol}$, Step2; optimize 5 lowest energy or 5 best score conformation, cutoff: $8 \AA$, RMS gradient: $0.1 \mathrm{kcal} / \mathrm{mol} / \AA$).

4. Conclusion

In this study, lipid-coupled myo-inositol 1,2,3,4,5,6-hexakisphopshate (IP_{6}) derivatives having both IP_{6} and diacylglycerol moiety that could interact with the HIV-1 MA domain, were designed and synthesized. These compounds, in fact, bound to MA domain more tightly than the PIP_{2} derivative 1 or IP_{6} does and may provide the structural basis of the molecular design of novel anti-HIV agents that block the membrane localization of $\operatorname{Pr} 55^{\mathrm{Gag}}$.

5. Acknowledgments

This work was supported in part by a Grant-in-Aid for Exploratory Research (B) (23390028) (to M.O.), and a Grant-in-Aid for Young Scientists (B) (24790124) (to K.A.), a Grant-in-Aid for Scientific Research (C) (19659025) (to M.F.) from the Japan Society for the Promotion of Science, and by the aid of a special fellowship for culture, education and science (to K.A.) granted by Kumamoto Health Science University.

6. References

1 J. W. Wills, R. C. Craven, $A I D S$ 1991, 5, 639-654.
2 E. O. Freed, Virology 1998, 251, 1-15
3 M. R. Conte, S. Matthews, Virology 1998, 246, 191-198.
4 A. Ono, S.D. Ablan, S. J. Lockett, K. Nagashima, and E. O. Freed. Proc. Natl. Acad. Sci. USA 2004, 101, 14889-14894.

5 J. S. Saad, J. Miller, J. Tai, A. Kim, R. H. Ghanam, and M. F. Summers, Proc. Natl. Acad. Sci. USA 2006, 103, 11364-11369.

6 N. Shkriabai, S. A. Datta, Z. Zhao, S. Hess, A. Rein, and M. Kvaratskhelia, Biochemistry 2006, 45, 4077-4083

7 K. Anraku, R. Fukuda, N. Takamune, S. Misumi, Y. Okamoto, M. Otsuka, and M. Fujita, Biochemistry 2010, 49, 5110-5116.

8 K. Anraku, T. Inoue, K. Sugimoto, Y. Okamoto, T. Morii, Y. Mori, M. Otsuka. Org. Biomol. Chem. 2008, 6, 1822-1830.

9 K. Anraku, T. Inoue, K. Sugimoto, K. Kudo, Y. Okamoto, T. Morii, Y. Mori, M. Otsuka. Bioorg. Med. Chem. 2011, 19, 6833-6841.

10 E. O. Freed, J. M. Orenstein, A. J. Buckler-White, M. A. Martin, J. Virol.1994, 68, 5311-5320.
11 W. Zhou, L. J. Parent, J. W. Wills, M. D. Resh, J. Virol.1994, 68, 2556-2569.
12 C. G. Ferguson, R. D. James, C. S. Bigman, D. A. Shepard, Y. Abdiche, P. S. Katsamba, D. G. Myszka, and G. D. Prestwich, Bioconjug. Chem. 2005, 16, 1475-1483.

13 D. C. Billington, R. Baker, J. J. Kulagowski, I. M. Mawer, J. Chem. Soc. Chem. Commun. 1987, 4, 314-316.

14 W. Bannwarth, A. Trzeciak, Helv. Chim. Acta 1987, 70, 175-186.
15 N. Nagashima, M. Ohno, Chem. Lett. 1987, 141-144.
16 C. Liu, B. L. Potter, J. Org. Chem. 1997, 62, 8335-8340.
17 Y. Oikawa, T. Tanaka, K. Horita, O. Yonemitsu, Tetrahedron Lett. 1984, 25, 5397-5400.
18 S. Ozaki, Y. Kondo, N. Shiotani, T. Ogasawara, Y. Watanabe, J. Chem. Soc., Perkin Trans. 1 1992, 729-737.

19 B. Classon, P. Garegg, B. Samuelsson, Acta chemica Scandinavica. Series B. Organic chemistry and biochemistry 1984, 38, 419-422.

20 E. Uhlmann, J. Engels, Tetrahedron Lett. 1986, 27, 1023-1026.
21 E. O. Freed, J. M. Orenstein, A. J. Buckler-White, M. A. Martin, J. Virol. 1994, 68, 5311-5320. 22 J. Chan, R. Dick, V. M. Vogt, J. Virol. 2011, 85, 10851-10860.

23 J. Inlora, V. Chukkapalli, D. Derse, A. Ono, J. Virol. 2011, 85, 3802-3810.
24 J. S. Lebkowski, S. Clancy, M. P. Calos, Nature 1985, 317, 169-171.
25 A. Adachi, H. E. Gendelman, S. Koenig, T. Folks, R. Willy, A. Rabson, M. A. Martin, J. Virol. 1986, 59, 284-291.

26 C. Tang, E. Loeliger, P. Luncsfold, I. Kinde, D. Beckett, M. F. Summers, Proc. Natl. Acad. Sci. USA 2004, 101, 517-522.

