Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Lewis Acid-Promoted Cyclization/Halogenation of Allenyl Ethenetricarboxylates and the Amides: Stereoselective Synthesis of Haloalkenyl Five-membered Heterocycles

Yugo Fukushima,^b Shoko Yamazaki,*^a and Akiya Ogawa^b

^aDepartment of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan, ^bDepartment of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan yamazaks@nara-edu.ac.jp

Graphical Abstract

Abstract: Lewis acid-promoted intramolecular reactions of allenyl ethenetricarboxylates and the corresponding amides have been examined. Reaction of allenyl ethenetricarboxylates and the amides with Lewis acids such as $AlCl_3$, $AlBr_3$ and ZnX_2 (X = Cl, Br, I) gave 3,4-*trans* haloalkenyl five-membered heterocycles stereoselectively. The stereochemistry was determined by NOE experiments and reduction of the cyclized products. Various transformations of the haloalkenyl functionalized cyclic compounds have also been performed.

Introduction

Development of new synthetic reactions utilizing allenes has attracted attention due to their structural features.¹ Transition metal catalyzed cyclization of allenes containing additional multiple bonds such as alkynes, alkenes, arynes, aldehydes and ketones have been recognized as efficient methods to prepare highly substituted carbocycles and heterocycles.²

Thermal,³ photochemical,⁴ reductive⁵ and base-promoted⁶ cyclization reactions of these allenes have been reported. Lewis acid-promoted carbon-carbon bond-forming cyclizations of allenyl-aldehyde actetals⁷ and aryl-allenes⁸ have also been studied. Few examples are known for the intramolecular Lewis acid-mediated cyclization of allenes containing electron-deficient alkenes (as Michael acceptors).

Snider and Roush reported that Lewis acid-promoted intramolecular reactions of alkenyl and alkynyl ethenetricarboxylates gave chlorinated γ -lactones.⁹ We have developed Lewis acid-promoted stereoselective cyclization of alkynyl ethenetricarboxylates with high generality ¹⁰ and Lewis acid-promoted 3,4-*trans* stereoselective cyclization of alkenyl ethenetricarboxylates has also been investigated (eq 1).¹¹

We have studied various Lewis acid-promoted intermolecular reactions of ethenetricarboxylate derivatives and reported that they function as highly electrophilic Michael acceptors.¹² The reaction of arylallenes and ethenetricarboxylate with SnCl₄ gave indene derivatives efficiently.¹³ In addition, the reactions of 1,1-dialkylallenes and ethenetricarboxylate with SnCl₄ gave γ -lactones.

In this work, Lewis acid-promoted intramolecular reactions containing allenes as an extension of the reaction of alkenyl substrates (eq 1) have been examined.¹⁴

Results and Discussion

Allenyl esters **3a-c** were prepared by the reaction of 1,1-diethyl 2-hydrogen ethenetricaboxylate **1** (prepared from 1,1-diethyl 2-*tert*-butyl ethenetricarboxylate upon treatment with CF_3CO_2H) with the corresponding allenyl alcohols **2a-c** in the presence of PPh₃ and DEAD (diethyl azodicarboxylate) (eq 2).

The reaction of allenyl ethenetricarboxylates **3a,b** with 1 equivalent of various Lewis acid such as AlCl₃, AlBr₃, SnCl₄, TiCl₄, FeCl₃, InCl₃, or InBr₃ in CH₂Cl₂ at room temperature gave 3,4-*trans* haloalkenyl tetrahydrofuran derivatives **4a-d** stereoselectively (eq 3, Table 1). Among these Lewis acids, AlCl₃ and AlBr₃ gave chlorinated and brominated cyclic products **4a-d** most efficiently. The reaction of **3a** with SnCl₄, TiCl₄ and TiBr₄ also gave **4a,b** along with 4-ethynyltetrahydrofuran derivative **5** as a by-product via Lewis acid-catalyzed ene-type reaction. Use of FeCl₃, InCl₃ and InBr₃ gave **4a,b** and the noncyclized H₂O adduct **6** as a byproduct (entries 6-8). Furthermore, the reaction of **3a** using ZnBr₂, BF₃·OEt₂, ZrCl₄, and Zn(OTf)₂ at room temperature gave the starting material **3a**. The reaction of **3a** with ZnBr₂, ZnI₂, Sc(OTf)₃, and Zn(OTf)₂ at 80 °C gave a complex mixture or the starting material **3a**.

Table 1. Reactions of Allenyl Esters 3a,b

Entry	3	R	MX _n	Time (h)	4	Х	Yield (%)	Byproduct (%)
1	3a	Н	AlCl ₃	18	4 a	Cl	75	
2	3a	Н	AlBr ₃	18	4b	Br	64	
3	3a	Η	SnCl ₄	3	4a	Cl	42	5 (ca. 19) ^a

Organic & Biomolecular Chemistry Accepted Manuscript

4	3a	Н	TiCl ₄	3	4a	Cl	58	5 (ca. 18) ^a
5	3a	Н	TiBr ₄	18	4b	Br	46	5 (30)
6	3a	Н	FeCl ₃	3	4a	Cl	36 ^b	6 (54) ^b
7	3a	Н	InCl ₃	18	4 a	Cl	12	6 (20), 3a (44%)
8	3a	Н	InBr ₃	18	4b	Br	40	6 (36)
7	3 b	Me	AlCl ₃	18	4 c	Cl	66	
8	3 b	Me	AlBr ₃	18	4d	Br	44	
9	3 b	Me	SnCl ₄	18	4 c	Cl	30	c

^a Small amounts of impurity could not be removed. ^b The yields were estimated by the NMR spectra of the mixture of **4a** and **6**. ^c Inseparable by-products were also produced.

The γ -lactone structure of **4a-d** was suggested by the presence of a characteristic C=O absorption (1780-1782 cm⁻¹) and disappearance of the 1958-1972 cm⁻¹ absorption for C=C=C allene moiety in **3a,b**. ¹H, ¹³C and 2D NMR spectra were in agreement with the fivemembered ring structure. The 3,4-stereochemistry of **4a-d** was examined by NOESY experiments. NOEs between H-3 and H-4 could be observed for both 3,4-*cis* and *trans* diastereomers. The following peaks were used for the assignment of haloalkenyl 2oxotetrahydrofurans **4a-d**. NOEs between H-3 and CX=CH*H* (X = Cl, Br)¹⁵ for **4a,b** and between H-4 and C*H*(CO₂Et)₂ for **4a-d** were observed. Thus, the 3,4-*trans* stereochemistry of **4a-d** was likely, similar to cyclic products in eq 1. On the other hand, NOESY spectra of byproduct 4-ethynyltetrahydrofuran **5** did not give enough information for the 3,4stereochemistry.

In order to support the assignment of the stereochemistry of 4a and determine the stereochemistry of the by-product 4-ethynyltetrahydrofuran 5, the following transformations have been carried out. Hydrogenolysis of the 4-chlorovinyl-2-oxotetrahydrofuran 4a gave 3,4-*trans*-4-ethyl-2-oxotetrahydrofuran 7t in 51% yield (Scheme 1). Hydrogenolysis of both carbon-chlorine bond and carbon-carbon double bond occurred. ¹⁶ 3,4-*Trans*-4-(1-chloroethyl)-2-oxotetrahydrofuran 8 is obtained by the Lewis acid promoted reaction of alkenyl ester 9 stereoselectively.¹¹ Dechlorination of compound 8 did not proceed under the conditions used for 4a. The reaction of 8 with Bu₃SnH and AIBN gave a dechlorinated tetrahydrofuran in 89% yield. This was identical to 7t obtained from 4a. Thus, the

stereochemistry of **7t** was assigned as 3,4-*trans*. The stereochemistry of **7t** was also determined by NOESY experiment. Next, hydrogenolysis of ethynyl group of **5** was conducted. The hydrogenated product **7c** is different from **7t** and could be assigned as 3,4-*cis*-4-ethyl-2-oxotetrahydrofuran. Therefore, the stereochemistry of **5** is determined as 3,4-*cis*.

Scheme 1. Reduction of 4a, 8, and 5

The Lewis acid-promoted reaction of 2-penta-3,4-dienyl ester 3c (shown in eq 2) was also examined. However, the reaction of 3c with 1 equivalent of AlCl₃, AlBr₃, and SnCl₄ gave complex mixtures. Six-membered ring formation was not an efficient process.

Next, allenyl amide substrates **11a-b** were prepared by the condensation reaction of 1,1-diethyl 2-hydrogen ethenetricaboxylate **1** with the corresponding allenyl amines **10a-b** in the presence of HOBT, EDCI and Et₃N (eq 4). Reaction of diethyl 2-((*N*-allenyl-*N*-benzylcarbamoyl)methylene)malonate (**11a**) with AlCl₃, ZnCl₂, ZnBr₂, and ZnI₂ at room temperature gave 3,4-*trans*-4-(1-chloro(or bromo/iodo)vinyl)-2-oxopyrrolidines **12a-c** in 55-76% yields (eq 5, Table 2). Reaction of *N*-allenyl-*N*-propylcarbamoyl derivative **11b** also gave 3,4-*trans* pyrrolidines **12d-f** in 64-68% yields. Reaction of **11a,b** with AlBr₃ also gave **12b,e** but lower yields than those of ZnBr₂ (16% for **12b**, ca. 50% (including a small amount of inseparable impurity) for **12e**). The γ -lactam structures of **12a-f** were suggested by the presence of a characteristic C=O absorption (1688-1698 cm⁻¹). ¹H, ¹³C and 2D NMR spectra were in agreement with the five-membered ring structure. The 3,4-*trans* stereochemistry was determined by NOEs. NOEs between H-3 and CX=CH*H* (X = Cl, Br, I)¹⁵ and between H-4 and C*H*(CO₂Et)₂ were observed.

Table 2. Reactions of Allenyl Amides 11

Entry	R	MX _n	(equiv.)	Х	12	Yield (%)
1	CH ₂ Ph	AlCl ₃	1	Cl	12a	55
2	CH ₂ Ph	$ZnCl_2^{\ a}$	1×2	Cl	12a	76
3	CH ₂ Ph	$ZnBr_2^{\ a}$	1×2	Br	12b	64
4	CH ₂ Ph	ZnI_2	2	Ι	12c	58
5	$CH_2CH_2CH_3$	AlCl ₃	1	Cl	12d	68
6	$CH_2CH_2CH_3$	$ZnBr_2^{a}$	1×2	Br	12e	64
7	$\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_3$	$ZnI_2^{\ a}$	1×2	Ι	12f	68

a. The reaction with ZnX_2 (1 equiv) for 18 h gave the crude products including impurities (possibly non-cyclized water-adducts) after work-up. The crude products were further treated with ZnX_2 (1 equiv) to give the products **12**.

In order to demonstrate the utility of the cyclization reaction, synthetic transformations of the products were examined. Oxidative cleavage of the double bond of tetrahydrofuran **4a** by NaIO₄-RuCl₃·xH₂O and a neutral work-up gave acid **13** in 98% yield (Scheme 2). Subsequent treatment of **13** with Me₃SiCHN₂ in methanol/benzene led to methyl ester **14** in 71% yield. The stereochemistry of **13** and **14** was determined as 3,4-*trans* by NOESY experiment. Derivatization of **13** with benzylamines gave functionalized 3-oxotetrahydrofurans **15a-b**.

Scheme 2. Transformation of 4a

Furthermore, Suzuki-coupling reaction of halogenovinyl heterocycles was performed. The reaction of iodovinyl pyrrolidines **12c**,**12f** with phenylboronic acid proceeds smoothly to give phenyl-substituted pyrrolidines (**16a**,**b**) (eq 6).

The reaction mechanism to give the halogenated five-membered heterocycles with 3,4-*trans* stereochemistry is proposed similar to that for the reaction of the allyl ester of ethenetrcarboxylates (eq 1)¹¹ and shown in Scheme 3. *Trans* precursor **A1** and *cis* precursor **A2** in Scheme 4 may be formed from **3** and Al_2Cl_6 reversibly. The reaction may start from the precursor **A1** consisting of **3** and Al_2Cl_6 . The C-C bond formation and Cl-C bond formation from **A1** may occur concertedly to lead to cyclized intermediate **B1**. Intermolecular Cl⁻ anti attack leading to 3,4-*trans* cyclized product can be explained by steric reason. One molecule of Lewis acid (AlCl₃) may work as a catalyst and could be released after the cyclization step. Protonation and removal of AlCl₂(OH) yield the product **4**.

In order to support the proposed mechanism, the structures of the intermediates and transition states of model compounds (the corresponding methyl esters and Al₂Cl₆) were calculated using B3LYP/6-31G*.^{17,18} TS geometry was characterized by vibrational analysis, which checked whether the obtained geometry has single imaginary frequencies (v^{\ddagger}). From TSs, reaction paths were traced by the intrinsic reaction coordinate (IRC) method¹⁹ to obtain the energy-minimum geometries. Relative Gibbs free energies were refined by single-point calculations of RB3LYP/6-311+G(d,p) SCRF = (PCM, solvent = CH₂Cl₂)²⁰ on the RB3LYP/6-31G* geometries and their thermal corrections (T = 298.15 K, P = 1 atm). ΔG^{\ddagger} for TS1 leading to 3,4-*trans* tetrahydrofuran is found to be lower than that of TS2 leading to 3,4-*cis* tetrahydrofuran (Schemes 3,4). Two conformational isomers, *trans* precursor **A1** and *cis* precursor **A2** were obtained. **A2** is 5.15 [1.28] kcal/mol more stable than **A1**. The energy difference may be small enough and they are considered to exist as interconverting forms. Although the barrier for conformational change has not been computed, the Curtin-Hammett principle²¹ may be applicable in this case. The calculation results are similar to those for allyl

ester + Al_2Cl_6 .¹¹ Thus, formation of 3,4-*trans* five-membered rings are lower energy process than that of 3,4-*cis*. The results support the assignment of 3,4-*trans* stereochemistry for the products **4**.

Calculations of 1:1 complex of the substrate and AlCl₃ were also examined (Supplementary Information). Although the concerted formations of both 3,4-*cis* and *trans* tetrahydrofuran rings by intramolecular Cl⁻ attack were calculated, they have higher activation energies (ΔG^{\ddagger}) than the systems of the substrate and Al₂Cl₆. In addition, the AlCl₃-promoted concerted process to form by-product, 3,4-*cis*-4-ethynyltetrahydrofuran **5** (Table 1, entries 3-5) as a model system for Scheme 5 was obtained. The activation energy (ΔG^{\ddagger}) for formation of **5** with AlCl₃ is also higher than the systems of the substrate and Al₂Cl₆. Further mechanistic studies are underway.

Scheme 3. Proposed reaction mechanism for cyclization of alleyl ester model compound 3m (R = Me) with Al₂Cl₆. Relative Gibbs free energies (T = 298.15 K and P = 1 atm) for intermediates and TSs (transition states) of the model compounds ($3m + Al_2Cl_6$) are obtained by B3LYP/6-31G* (without brackets) and [B3LYP/6-311+G(d,p) SCRF = (PCM, solvent = CH₂Cl₂) // B3LYP/6-31G*] (with square brackets []).

Scheme 4. The reaction pathway leading to 3,4-*cis* intermediate **B2** for model compounds $(3m + Al_2Cl_6)$. B3LYP/6-31G*-optimized structures of the model compounds are shown. The Gibbs free energies are relative to A1 (R = Me) in Scheme 3.

Scheme 5. Formation of by-product 5

Concerning the reactivity of the oxygen and nitrogen substrates, relatively weak Lewis acids such as zinc halides promote the cyclization of the amide substrates **11a,b**. The facile cyclization of amides compared to esters can be explained as follows. The conformations of model compounds of allenyl ester **3** and amide substrate **11** were calculated and compared. The s-*cis* and s-*trans* conformations about the 2-ester or amide carbonyl moiety are shown in Scheme 6. Ester **3** is 8.98 [7.67] kcal/mol more stable in s-*cis* conformation, probably because of the steric repulsion. On the other hand, the energy difference of s-*cis* and s-*trans* conformations of amide **11** is small. In order to cyclize, they must have s-*trans* conformations. The different reactivities of esters and amides may arise from their structural features.

Scheme 6. The model compounds, dimethyl esters with allenyl group 3m and 11m optimized by B3LYP/6-31G* and their relative energies ΔG° . ΔG° is the difference of Gibbs free energies (T = 298.15 K, P = 1 atom) of B3LYP/6-31G* (without brackets) and [B3LYP/6-311+G(d,p) SCRF = (PCM, solvent = CH₂Cl₂) // B3LYP/6-31G*] (with square brackets []), relative to that of s-*cis* conformations.

In summary, a Lewis acid-promoted reaction of allenyl ethenetricarboxylates **3a,b** and the amides **11a,b** to give haloalkenyl oxygen and nitrogen-contaning five-membered heterocycles has been found. The reaction gave 3,4-trans substituted cyclized products stereoselectively. AlCl₃ and AlBr₃ gave 2-oxotetrahydrofurans, and AlCl₃, ZnX_2 (X = Cl, Br, I) gave 2-oxopyrrolidines efficiently. The haloalkenyl five-membered heterocycles generated in this reaction should be versatile synthetic intermediates. Some transformations of the products utilizing the haloalkenyl functionality have also been demonstrated. Further elaboration of the products and studies on various alkyl substitution patterns of allenyl groups including chiral substrates are under investigation.

Organic & Biomolecular Chemistry Accepted Manuscript

Experimental Section

General Methods. ¹H Chemical shifts are reported in ppm relative to Me₄Si. ¹³C Chemical shifts are reported in ppm relative to CDCl₃ (77.1 ppm). ¹³C mutiplicities were determined by DEPT and HSQC. Peak assignments are made by 2D COSY, HSQC, NOESY, and HMBC spectra.

Allenyl alcohols **2a,b,c** were prepared according to the literature. ^{5a,22,23}

1,1-Diethyl 2-buta-2,3-dienyl ethene-1,1,2-tricarboxylate (**3a**) To a solution of 1,1-diethyl 2-hydrogen ethenetricarboxylate (432 mg, 2 mmol) (prepared from 1,1-diethyl 2-*tert*-butyl ethenetricarboxylate (545 mg, 2 mmol) upon treatment with CF_3CO_2H) in ether (2 mL) were added diethyl azodicarboxylate 40% in toluene (0.91 mL, 2 mmol), PPh₃ (525 mg, 2 mmol) and **2a** (210 mg, 3 mmol) at room temperature. The reaction mixture was stirred overnight. After removal of the solvent under reduced pressure, the residue was purified by column chromatography over silica gel with hexane–ether as eluent to give **3a** (333 mg, 62%).

3a: $R_f = 0.8$ (ether); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.32 (t, J = 7.1 Hz, 3H), 1.35 (t, J = 7.1 Hz, 3H), 4.30 (q, J = 7.1 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 4.69 (dt, J = 7.1, 2.3 Hz, 2H), 4.88 (dt, J = 6.6, 2.3 Hz, 2H), 5.30 (tt, J = 7.1, 6.6 Hz, 1H), 6.88 (s, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.91 (q), 13.96 (q), 62.13 (t), 62.54 (t), 63.48 (t), 76.96 (t), 85.57 (d), 129.63 (d), 139.29 (s), 162.21 (s), 163.27 (s), 164.18 (s), 210.08 (s); IR (neat) 2984, 1958, 1728, 1652, 1259, 1178, 1067 cm⁻¹; MS (EI) *m/z* 269 (M⁺, 29), 200 (90), 199 (93), 171 (95), 143 (100%); HRMS M⁺ 268.0945 (calcd for C₁₃H₁₆O₆ 268.0947); Anal. Calcd for C₁₃H₁₆O₆: C, 58.20; H, 6.01. Found: C, 58.05; H, 5.81.

3b: $R_f = 0.8$ (ether); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.32 (t, J = 7.1 Hz, 3H), 1.35 (t, J = 7.1 Hz, 3H), 1.70 (d, J = 2.9 Hz, 6H), 4.30 (q, J = 7.1 Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 4.62 (d, J = 7.0 Hz, 2H), 5.11 (m, 1H), 6.89 (s, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.98 (q), 14.01 (q), 20.19 (q), 62.13 (t), 62.54 (t), 64.73 (t), 83.99 (d), 97.73 (s), 129.98 (d), 139.10 (s), 162.33 (s), 163.36 (s), 164.30 (s), 203.87 (s); IR (neat) 2984, 1972, 1728, 1651, 1446, 1375, 1259, 1177, 1067 cm⁻¹; MS (EI) *m/z* 297 ((M+1)⁺, 16), 296

(M⁺, 5.6), 269 (24), 251 (100%); HRMS M⁺ 296.1260 (calcd for C₁₅H₂₀O₆ 296.1260); Anal. Calcd for C₁₅H₂₀O₆: C, 60.80; H, 6.80. Found: C, 60.88; H, 6.98.

3c: $R_f = 0.6$ (hexane-ether = 1 : 1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.32 (t, J = 7.1 Hz, 3H), 1.35 (t, J = 7.1 Hz, 3H), 2.37 (tdt, J = 6.8, 6.8, 3.1 Hz, 2H), 4.26 (t, J = 6.8 Hz, 2H), 4.30 (q, J = 7.1 Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 4.73 (dt, J = 6.8, 3.1 Hz, 2H), 5.10 (tt, J = 6.8, 6.8 Hz, 1H), 6.87 (s, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.98 (q), 14.02 (q), 27.44 (t), 62.16 (t), 62.57 (t), 64.81 (t), 75.84 (t), 85.55 (d), 129.86 (d), 139.19 (s), 162.34 (s), 163.58 (s), 164.27 (s), 209.10 (s); IR (neat) 2984, 1957, 1728, 1373, 1345, 1261, 1180, 1066, 1023 cm⁻¹; MS (EI) *m/z* 282 (M⁺, 3.2), 236 (24), 208 (45), 171 (90), 143 (100%); HRMS M⁺ 282.1102 (calcd for C₁₄H₁₈O₆ 282.1103); Anal. Calcd for C₁₄H₁₈O₆: C, 59.57; H, 6.43. Found: C, 59.59; H, 6.55.

Typical experimental procedure (eq 3, Table 1, entry 1). To a solution of **3a** (148 mg, 0.55 mmol) in CH_2Cl_2 (2.2 mL) was added AlCl₃ (73 mg, 0.55 mmol). The mixture was stirred at room temperature for 18 h. The reaction mixture was poured into saturated aqueous NaHCO₃ solution. The mixture was extracted with dichloromethane and the organic phase was dried (Na₂SO₄), and evaporated *in vacuo*. The residue was filtered through Florisil eluting with dichloromethane to give **4a** (126 mg, 75%).

Diethyl 2-[*trans*-4-(1-chlorovinyl)-2-oxotetrahydrofuran-3-yl]malonate (4a): $R_f = 0.7$ (ether); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.29 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 3.43 (dd, J = 9.9, 4.8 Hz, 1H), 3.97 (ddd, J = 9.9, 8.8, 8.8 Hz, 1H), 4.00 (d, J = 4.8 Hz, 1H), 4.13-4.28 (m, 5H), 4.52 (dd, J = 8.9, 8.9 Hz, 1H), 5.32 (dd, J = 1.6, 0.4 Hz, 1H), 5.38 (d, J = 1.6 Hz, 1H). Selected NOEs are between δ 3.43 (H-3) and δ 5.38 (=CH*H*).; ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.93 (q), 13.97 (q), 41.85 (d), 46.09 (d), 49.68 (d), 62.06 (t), 62.17 (t), 68.74 (t), 117.20 (t), 138.72 (s), 167.12 (s), 167.45 (s), 175.17 (s). Selected HMBC correlations are between δ 3.97 (H-4) and δ 41.85 (C-3), 68.74 (C-5), between δ 3.43 (H-3) and δ 46.09 (C-4), 138.72 (*C*Cl=), δ 4.52 (H-5b) and δ 41.85 (C-3), 138.72 (*C*Cl=), and between δ 5.32, 5.38 (=*CH*₂) and δ 46.09 (C-4), 138.72 (*C*Cl=); IR (neat)

2984, 1781, 1734, 1633, 1476, 1373, 1264, 1240, 1181, 1032 cm⁻¹; MS (FAB) *m/z* 307, 305 [M+H]⁺; HRMS [M+H]⁺ 305.0795 (calcd for C₁₃H₁₈ClO₆ 305.0792).

Diethyl 2-[*trans*-4-(1-bromovinyl)-2-oxotetrahydrofuran-3-yl]malonate (4b): $R_f = 0.5$ (hexane-ether = 1 : 1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.29 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 3.40 (dd, J = 9.8, 4.7 Hz, 1H), 3.87 (ddd, J = 9.8, 8.8, 8.8 Hz, 1H), 4.00 (d, J = 4.7 Hz, 1H), 4.11-4.28 (m, 5H), 4.49 (dd, J = 9.0, 9.0 Hz, 1H), 5.57 (d, J = 2.0 Hz, 1H), 5.82 (dd, J = 2.0, 0.4 Hz, 1H). Selected NOEs are between δ 3.40 (H-3) and 5.82 (=CH*H*).; ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 14.00 (q), 42.87 (d), 47.42 (d), 49.65 (d), 62.08 (t), 62.19 (t), 69.62 (t), 121.67 (t), 131.71 (s), 167.13 (s), 167.48 (s), 175.08 (s). Selected HMBC correlations are between δ 3.87 (H-4) and δ 42.87 (C-3), 121.67 (=*C*H₂), between δ 3.40 (H-3) and δ 47.42 (C-4), 131.71 (*C*Br=), δ 4.49 (H-5b) and δ 42.87 (C-3), 131.71 (*C*Br=), and between δ 5.57, 5.82 (=C*H*₂) and δ 47.42 (C-4), 131.71 (*C*Br=); IR (neat) 2983, 1780, 1733, 1627, 1475, 1373, 1179, 1032 cm⁻¹; MS (CI) *m*/z 351, 349 [M+H]⁺; HRMS [M+H]⁺ 349.0285, 351.0261 (calcd for C₁₃H₁₈BrO₆ 349.0287, 351.0266).

Diethyl 2-(*cis***-4-ethynyl-2-oxotetrahydrofuran-3-yl)malonate** (**5**): $R_f = 0.5$ (hexane-ether = 1 : 1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.29 (t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H), 2.29 (d, J = 2.6 Hz, 1H), 3.55 (dd, J = 10.4, 8.3 Hz, 1H), 3.76 (dddd, J = 8.3, 4.4, 3.4, 2.6 Hz, 1H), 3.87 (d, J = 10.4 Hz, 1H), 4.22-4.33 (m, 4H), 4.40 (d, J = 4.4 Hz, 1H), 4.41 (d, J = 3.4 Hz, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 14.01 (q), 14.04 (q), 31.58 (d), 42.70 (d), 50.94 (d), 62.28 (t), 62.30 (t), 71.19 (t), 74.57 (d), 79.22 (s), 167.07 (s), 167.13 (s), 174.14 (s); ¹H NMR (400 MHz, C₆D₆) δ (ppm) 0.890 (t, J = 7.1 Hz, 3H), 1.06 (t, J = 7.1 Hz, 3H), 1.63 (d, J = 2.6 Hz, 1H), 3.15 (dddd, J = 8.2, 5.7, 2.6, 1.5 Hz, 1H), 3.25 (dd, J = 8.9, 5.7 Hz, 1H), 3.42 (dd, J = 10.8, 8.2 Hz, 1H), 3.68 (dd, J = 8.9, 1.5 Hz, 1H), 2.92 (q, J = 7.1 Hz, 2H), 4.09 (d, J = 10.8 Hz, 1H), 4.11-4.25 (m, 2H). Selected NOEs are between δ 3.15 (H-4) and δ 3.42 (H-3), 3.25 (H-5a) and between δ 3.42 (H-3) and δ 4.09 (C $H(CO_2Et)_2$); ¹³C NMR (100.6 MHz, C₆D₆) δ (ppm) 13.83 (q), 13.93 (q), 31.79 (d), 43.07 (d), 51.41 (d), 61.92 (t), 62.12 (t), 70.46 (t), 74.16 (d), 79.65 (s), 167.38 (s), 167.44 (s), 173.81 (s). Selected HMBC correlations are between δ 3.42 (H-3) and δ 51.41 (CH(CO_2Et)_2), 31.79 (C-4), 79.65 (C≡CH), between δ 3.15 (H-4) and δ 43.07 (C-3), 79.65

Organic & Biomolecular Chemistry Accepted Manuscript

(*C*=CH), 74.16 (C=*C*H), between δ 3.68 (H-5b) and δ 31.79 (C-4), 43.07 (C-3), 79.65 (*C*=CH) and between δ 3.25 (H-5a) and δ 79.65 (*C*=CH).; IR (neat) 3275, 2982, 1781, 1734, 1467, 1447, 1370, 1283, 1249, 1163, 1096, 1029 cm⁻¹; MS (EI) *m/z* 269 ([M+H]⁺, 83), 223 (100%); HRMS [M+H]⁺ 269.1029 (calcd for C₁₃H₁₇O₆ 269.1025).

6: $R_f = 0.3$ (hexane-ether = 1 : 1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.29 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 3.54 (d, J = 7.0 Hz, 1H), 3.96 (d, J = 4.1 Hz, 1H), 4.21-4.30 (m, 4H), 4.70 (dtd, J = 7.2, 2.3, 1.3 Hz, 1H), 4.74 (dd, J = 7.0, 4.1 Hz, 1H), 4.87 (dt, J = 6.6, 2.2 Hz, 2H), 5.29 (tt, J = 7.0, 6.6 Hz, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 14.01 (q), 14.04 (q), 55.14 (d), 62.05 (t), 62.09 (t), 63.89 (t), 69.75 (d), 76.92 (t), 85.67 (d), 166.99 (s), 167.19 (s), 171.45 (s), 210.13 (s); IR (neat) 3491, 2984, 1958, 1739, 1466, 1446, 1373, 1267, 1178, 1033 cm⁻¹; MS (CI) *m*/*z* 287 [M+H]⁺; HRMS [M+H]⁺ 287.1130 (calcd for C₁₃H₁₉O₇ 287.1131).

Diethyl 2-[*trans*-4-(1-chloro-2-methylprop-1-enyl)-2-oxotetrahydrofuran-3-yl]malonate (4c): R_f = 0.4 (hexane-ether = 1 : 1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.28 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.79 (s, 3H), 1.86 (s, 3H), 3.56 (dd, J = 10.4, 4.8 Hz, 1H), 3.96 (d, J = 4.6 Hz, 1H), 4.01-4.26 (m, 5H), 4.39 (dd, J = 8.6, 8.6 Hz, 1H), 4.49 (ddd, J = 10.4, 8.9, 8.9 Hz, 1H). Selected NOEs are between δ 4.49 (H-4) and δ 3.96 ($CH(CO_2Et)_2$).; ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.94 (q), 14.01 (q), 20.82 (q), 22.65 (q), 41.08 (d), 42.53 (d), 49.28 (d), 61.98 (t), 62.03 (t), 68.53 (t), 123.71 (s), 134.30 (s), 167.51 (s), 167.70 (s), 175.61 (s). Selected HMBC correlations are between δ 4.49 (H-4) and δ 42.53 (C-3), 68.53 (C-5), and between δ 1.79, 1.86 (=C(CH₃)₂) and δ 123.71 (*C*Cl=).; IR (neat) 2983, 2920, 1782, 1738, 1466, 1446, 1374, 1239, 1179, 1027 cm⁻¹; MS (EI) m/z 334 (M⁺, 5.6), 332 (M⁺, 16), 173 (20), 160 (19), 85 (81), 83 (100%); HRMS M⁺ 332.1026, 334.1010 (calcd for C₁₅H₂₁CIO₆ 332.1027, 334.0997).

Diethyl 2-[*trans*-4-(1-bromo-2-methylprop-1-enyl)-2-oxotetrahydrofuran-3-yl]malonate (4d): $R_f = 0.5$ (hexane-ether = 1 : 1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.29 (t, J = 7.1 Hz, 6H), 1.82 (s, 3H), 1.89 (s, 3H), 3.58 (dd, J = 9.9, 4.7 Hz, 1H), 3.96 (d, J =

4.7 Hz, 1H), 4.01-4.27 (m, 5H), 4.35-4.43 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.98 (q), 14.02 (q), 21.36 (q), 26.41 (q), 42.17 (d), 43.81 (d), 49.22 (d), 62.00 (t), 62.03 (t), 69.49 (t), 119.05 (s), 137.31 (s), 167.51 (s), 167.73 (s), 175.52 (s); ¹H NMR (400 MHz, C₆D₆) δ (ppm) 0.892 (t, *J* = 7.1 Hz, 3H), 0.907 (t, *J* = 7.1 Hz, 3H), 1.53 (s, 3H), 1.57 (s, 3H), 3.51 (dd, *J* = 10.7, 4.9 Hz, 1H), 3.69-4.00 (m, 6H), 4.08 (d, *J* = 4.9 Hz, 1H), 4.44 (ddd, *J* = 10.7, 8.9, 8.9 Hz, 1H). Selected NOEs are between δ 4.44 (H-4) and δ 4.08 (*CH*(CO₂Et)₂).; ¹³C NMR (100.6 MHz, C₆D₆) δ (ppm) 13.77 (q), 13.78 (q), 21.06 (q), 25.78 (q), 42.35 (d), 44.01 (d), 49.55 (d), 61.61 (t), 61.78 (t), 69.89 (t), 119.68 (s), 136.80 (s), 167.66 (s), 168.00 (s), 174.81 (s). Selected HMBC correlations are between δ 3.51 (H-3) and δ 49.55 (*C*H(CO₂Et)₂), 42.35 (C-4), between δ 4.44 (H-4) and δ 49.55 (*C*H(CO₂Et)₂), 44.01 (C-3), 69.89 (C-5), between δ 4.08 (*C*H(CO₂Et)₂) and δ 44.01 (C-3), 42.35 (C-4), and between δ 1.53, 1.57 (=C(*C*H₃)₂) and δ 119.68 (*C*Br=).; IR (neat) 2983, 2913, 1781, 1735, 1446, 1373, 1297, 1265, 1236, 1187, 1027 cm⁻¹; MS (EI) *m*/z 378 (M⁺, 9.3), 376 (M⁺, 9.3), 333 (14), 331 (14), 297 (100%); HRMS M⁺ 376.0519, 378.0499 (calcd for C₁₅H₂₁BrO₆ 376.0522, 378.0501).

Diethyl 2-(*trans*-**4-**ethyl-**2-**oxotetrahydrofuran-**3-**yl)malonate (**7**t). A mixture of **4a** (168 mg, 0.55 mmol) and 10% Pd–C (59 mg, 10 mol%) in methanol (5.5 mL) was stirred in a hydrogen atmosphere for 18 h at room temperature. The catalyst was removed by filtration (Celite) and washed with methanol. The filtrate was concentrated in vacuo. The residue was purified by column chromatography over silica gel with hexane–ether as eluent to give **7t** (76 mg, 51%).

7t: $R_f = 0.4$ (hexane-ether = 1 : 1); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.917 (t, J = 7.5 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H), 1.37-1.50 (m, 1H), 1.61-1.71 (m, 1H), 2.60 (dddd, J = 9.2, 9.0, 8.4, 7.9, 4.6 Hz, 1H), 2.87 (dd, J = 9.0, 4.8 Hz, 1H), 3.90 (d, J = 4.8 Hz, 1H), 3.92 (dd, J = 9.0, 7.9 Hz, 1H), 4.20-4.30 (m, 4H), 4.52 (dd, J = 9.0, 8.4 Hz, 1H). Selected NOEs are between δ 2.87 (H-3) and δ 0.917 (CH₂CH₃), 1.37-1.50, 1.61-1.71 (CH₂CH₃), and between δ 2.60 (H-4) and δ 3.90 (CH(CO₂Et)₂, overlapped).; ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 11.12 (q), 14.01 (q), 14.05 (q), 26.23 (t), 39.34 (d), 44.79

(d), 51.04 (d), 62.01 (t), 62.07 (t), 71.91 (t), 167.49 (s), 167.71 (s), 176.76 (s). Selected HMBC correlations are between δ 1.37-1.50, 1.61-1.71 (CH₂CH₃) and δ 44.79 (C-3), 39.34 (C-4), 71.91 (C-5) and between δ 0.917 (CH₂CH₃) and δ 39.34 (C-4).; IR (neat) 2980, 1778, 1733, 1465, 1372, 1300, 1264, 1235, 1178, 1026 cm⁻¹; MS (EI) *m/z* 273 ([M+H]⁺, 3.8), 272 (M⁺, 1.9), 227 (51), 160 (100%); HRMS [M+H]⁺ 273.1331 (calcd for C₁₃H₂₁O₆ 273.1338), M⁺ 272.1259 (calcd for C₁₃H₂₀O₆ 272.1260).

Transformation of 8 to 7t. A solution of compound 8^{11} (113 mg, 0.37 mmol), Bu₃SnH (215 mg, 199 µL, 0.74 mmol), and AIBN (12.2 mg, 0.074 mmol) in benzene (2.3 mL) was heated at reflux for 3 h and cooled to room temperature. The reaction mixture was concentrated under reduced presure. The residue was purified by column chromatography over silica gel with hexane-ether as the eluent to give **7t** (89 mg, 89%). ¹H NMR spectra of the product is identical with those of **7t** obtained from **4a**.

Diethyl 2-(*cis***-4-ethyl-2-oxotetrahydrofuran-3-yl)malonate** (**7c**). A mixture of **5** (146 mg, 0.54 mmol) and 10% Pd–C (58 mg, 10 mol%) in methanol (5.5 mL) was stirred in a hydrogen atmosphere for 18 h at room temperature. The catalyst was removed by filtration (Celite) and washed with methanol. The filtrate was concentrated in vacuo. The residue was purified by column chromatography over silica gel with hexane–ether as eluent to give **7c** (115 mg, 78%).

7c: $R_f = 0.3$ (hexane-ether = 1 : 1); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.951 (t, J = 7.3 Hz, 3H), 1.19-1.33 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H), 1.34-1.44 (m, 1H), 2.63-2.70 (m, 1H), 3.57-3.58 (m, 2H), 4.19-4.32 (m, 6H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 11.36 (q), 13.97 (q), 14.04 (q), 20.34 (t), 39.63 (d), 43.83 (d), 49.37 (d), 62.16 (t), 70.13 (t), 167.28 (s), 167.38 (s), 175.86 (s); ¹H NMR (400 MHz, C₆D₆) δ (ppm) 0.451 (t, J = 7.4 Hz, 3H), 0.698-0.814 (m, 1H), 0.881 (t, J = 7.1 Hz, 3H), 0.918-1.02 (m, 1H), 1.06 (t, J = 7.1 Hz, 3H), 2.18 (m, 1H), 3.49 (ddd, J = 9.3, 5.3, 1.1 Hz, 1H), 3.56 (dd, J = 11.4, 7.3 Hz, 1H), 3.57 (dd, J = 9.3, 1.3 Hz, 1H), 3.65 (d, J = 11.4 Hz, 1H), 3.86-3.93 (m, 2H), 4.10-4.23 (m, 2H). Selected NOEs are between δ 3.65 (*CH*(CO₂Et)₂) and δ 0.698-0.814, 0.918-1.02 (*CH*₂CH₃).;¹³C NMR (100.6 MHz, C₆D₆) δ (ppm) 11.08 (q), 13.86 (q), 13.96 (q),

20.27 (t), 39.60 (d), 44.11 (d), 49.76 (d), 61.78 (t), 61.97 (t), 69.47 (t), 167.51 (s), 167.61 (s), 175.46 (s). Selected HMBC correlations are between δ 3.65 (*CH*(CO₂Et)₂), 3.49 (H-5) and δ 44.11 (C-3), between δ 0.451 (*CH*₂*CH*₃), 0.698-0.814 (*CH*HCH₃) and δ 39.60 (C-4), and between δ 0.698-0.814, 0.918-1.02 (*CH*₂CH₃) and δ 69.47 (C-5).; IR (neat) 2979, 1777, 1752, 1737, 1465, 1369, 1284, 1166, 1030 cm⁻¹; MS (EI) *m/z* 272 (M⁺, 1.9), 271 (11), 226 (100%); HRMS M⁺ 272.1273 (calcd for C₁₃H₂₀O₆ 272.1260).

Allenylamine **10a** was prepared according to the literature.²⁴ **10b** was prepared according to the literature procedure.

10b; pale yellow oil; bp. 43 °C/50 mmHg; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.925 (t, J = 7.3 Hz, 3H), 1.38 (bs, 1H), 1.52 (qt, J = 7.3, 7.3 Hz, 2H), 2.61 (t, J = 7.3 Hz, 2H), 3.25 (dt, J = 6.4, 3.1 Hz, 2H), 4.76 (dt, J = 6.6, 3.1 Hz, 2H), 5.22 (tt, J = 6.6, 6.4 Hz, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 11.87 (q), 23.22 (t), 47.92 (t), 51.19 (t), 75.92 (t), 89.44 (d), 208.35 (s); IR (neat) 3301, 2958, 2931, 2874, 1955, 1458, 1127, 842 cm⁻¹; MS (CI) *m/z* 112 [M+H]⁺; HRMS [M+H]⁺ 112.1132 (calcd for C₇H₁₄N 112.1126).

Preparation of Substrates 11a-b. То a solution of 1,1-diethyl 2-hydrogen ethenetricarboxylate (432 mg, 2 mmol) (prepared from 1,1-diethyl 2-tert-butyl ethenetricarboxylate (545 mg, 2 mmol) upon treatment with CF₃CO₂H) in THF (2.8 mL) were added allenylamine 10a (326 mg, 2 mmol), Et₃N (0.28 mL, 202 mg, 2 mmol), HOBt (1-hydroxybenzotriazole) (540 mg, 4 mmol) and EDCI (1-[3-(dimethylamino)propyl]-3ethylcarbodiimide hydrochloride) (399 mg, 2.08 mmol) at 0 °C. The reaction mixture was stirred for 1 h at 0 °C, and was allowed to warm to room temperature and stirred overnight. The reaction mixture was concentrated under reduced pressure and the residue was diluted with CH₂Cl₂. The organic phase was washed with saturated aqueous NaHCO₃ solution, 2M aqueous citric acid, saturated aqueous NaHCO₃ and water, dried (Na₂SO₄), and evaporated in vacuo. The residue was purified by column chromatography over silica gel eluting with hexane-ether (1 : 1) to give **11a** (375 mg, 53%).

11a: $R_f = 0.3$ (hexane-ether = 1 : 1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (2 rotamers, ratio 1.5 : 1) δ (ppm) 1.29 (t, J = 7.1, $3H \times 0.4$, minor rotamer) 1.31 (t, J = 7.1 Hz, $3H \times 0.6$, major rotamer), 1.32 (t, J = 7.1 Hz, $3H \times 0.6$), 1.35 (t, J = 7.1 Hz, $3H \times 0.4$), 3.85 (dt, J = 6.0, 3.1 Hz, $1H \times 0.6$), 4.00 (dt, J = 6.8, 2.5 Hz, $1H \times 0.4$), 4.24-4.39 (m, 4H), 4.57 (s, $2H \times 0.4$), 4.65 (s, $2H \times 0.6$), 4.78 (dt, J = 6.6, 2.6 Hz, $2H \times 0.4$), 4.88 (dt, J = 6.6, 3.1 Hz, $2H \times 0.6$), 5.07 (tt, J = 6.6, 6.0 Hz, $1H \times 0.6$); 5.15 (tt, J = 6.8, 6.6 Hz, $1H \times 0.4$), 7.22-7.43 (m, 5H), 7.34 (s, $1H \times 0.4$), 7.36 (s, $1H \times 0.6$); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 14.01 (q), 14.03 (q), 14.05 (q), 14.10 (q), 43.85 (t), 45.88 (t), 48.37 (t), 51.01 (t), 61.95 (t), 62.25 (t), 76.58 (t), 78.11 (t), 85.59 (d), 86.58 (d), 127.22 (d), 127.75 (d), 128.10 (d), 128.57 (d), 128.72 (d), 129.05 (d), 134.19 (d), 134.28 (d), 135.20 (s), 135.54 (s), 135.71 (s), 136.46 (s), 162.97 (s), 163.08 (s), 164.26 (s), 164.34 (s), 164.52 (s), 164.59 (s), 208.90 (s), 209.69 (s); IR (neat) 2983, 1956, 1732, 1652, 1496, 1446, 1373, 1255, 1199, 1069, 1022 cm⁻¹; MS (EI) *m/z* 357 (M⁺, 67), 312 (24), 158 (30), 143 (73), 91 (100%); HRMS M⁺ 357.1577 (calcd for C₂₀H₂₃NO₅ 357.1576).

11b (82%): $R_f = 0.3$ (hexane-ether = 1 : 1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) (2 rotamers, ratio 1 : 1) δ (ppm) 0.909 (t, J = 7.4 Hz, $3H \times 0.5$), 0.930 (t, J = 7.4 Hz, $3H \times 0.5$), 1.318 (t, J = 7.1 Hz, $3H \times 0.5$), 1.320 (t, J = 7.1 Hz, $3H \times 0.5$), 1.322 (t, J = 7.1 Hz, $3H \times 0.5$), 1.324 (t, J = 7.1 Hz, $3H \times 0.5$), 1.55-1.68 (m, 2H), 3.30 (dd, J = 7.6, 7.6 Hz, $2H \times 0.5$), 3.34-3.38 (m, $2H \times 0.5$), 3.94 (ddd, J = 6.1, 3.1, 3.1 Hz, $2H \times 0.5$), 4.02 (ddd, J = 6.6, 2.7, 2.7 Hz, $2H \times 0.5$), 4.26-4.36 (m, 4H), 4.80 (dt, J = 6.6, 2.7 Hz, $2H \times 0.5$), 4.89 (dt, J = 6.6, 3.1 Hz, $2H \times 0.5$), 5.12-5.20 (m, 1H), 7.32 (s, $1H \times 0.5$), 7.33 (s, $1H \times 0.5$); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 11.21 (q), 11.36 (q), 13.95 (q×2), 14.01 (q), 14.03 (q), 20.68 (t), 22.12 (t), 44.37 (t), 47.01 (t), 47.73 (t), 49.59 (t), 61.78 (t×2), 62.11 (t), 62.19 (t), 76.47 (t), 78.06 (t), 86.07 (d), 87.08 (d), 133.94 (d), 134.55 (d), 134.60 (s), 135.05 (s), 163.08 (s), 163.11 (s), 163.62 (s), 163.91 (s), 164.58 (s), 164.62 (s), 208.74 (s), 209.33 (s); IR (neat) 2967, 2937, 1956, 1729, 1652, 1466, 1445, 1430, 1374, 1256, 1210, 1068 cm⁻¹; MS (EI) *m/z* 309 (M⁺, 43), 199 (48), 171 (63), 143 (100%); HRMS M⁺ 309.1581 (calcd for C₁₆H₂₃NO₅ 309.1576). rganic & Biomolecular Chemistry Accepted Manuscript

Drganic & Biomolecular Chemistry Accepted Manuscript

Experimental procedure (eq 5, Table 2, entry 2). To a solution of **11a** (179 mg, 0.5 mmol) in CH_2Cl_2 (2 mL) was added ZnCl₂ (68.2 mg, 0.5 mmol). The mixture was stirred at room temperature for 18 h. The reaction mixture was quenched by water and then saturated aqueous NaHCO₃. The mixture was extracted with dichloromethane and the organic phase was dried (Na₂SO₄), and evaporated *in vacuo*. The crude product included impurities (possibly non-cyclized water-adducts). To a solution of the crude product in CH_2Cl_2 (2 mL) was added ZnCl₂ (68.2 mg, 0.5 mmol). The mixture was stirred at room temperature for 18 h. The reaction mixture was extracted with dichloromethane and the organic phase was added ZnCl₂ (68.2 mg, 0.5 mmol). The mixture was stirred at room temperature for 18 h. The reaction mixture was quenched by water and then saturated aqueous NaHCO₃. The mixture was extracted with dichloromethane and the organic phase was dried (Na₂SO₄), and evaporated *in vacuo*. The residue was purified by column chromatography over silica gel with hexane-ether (1 : 2) as eluent to give **12a** (148 mg, 76%).

Diethyl 2-(1-benzyl-*trans*-4-(1-chlorovinyl)-2-oxopyrrolidin-3-yl)malonate (12a): $R_f =$ 0.3 (hexane-ether = 1 : 1); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.275 (t, J = 7.1 Hz, 3H), 1.279 (t, J = 7.1 Hz, 3H), 3.29 (dd, J = 9.7, 7.1 Hz, 1H), 3.36 (dd, J = 9.0, 4.7Hz, 1H), 3.36 (dd, J = 9.0, 4.7 Hz, 1H), 3.41 (dd, J = 9.7, 9.4 Hz, 1H), 3.72 (ddd, J = 9.4, 9.0, 1H)7.1 Hz, 1H), 4.06 (d, J = 4.7 Hz, 1H), 4.11-4.25 (m, 4H), 4.40 (d, J = 14.9 Hz, 1H), 4.58 (d, J= 14.9 Hz, 1H), 5.19 (d, J = 1.5 Hz, 1H), 5.25 (d, J = 1.5 Hz, 1H), 7.24-7.36 (m, 5H). Selected NOEs are between δ 3.36 (H-3) and δ 5.25 (=CH*H*) and between δ 3.72 (H-4) and δ 4.06 (CH(CO₂Et)₂).; ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.98 (q), 14.04 (q), 42.64 (d), 44.58 (d), 46.76 (t), 48.64 (t), 50.09 (d), 61.67 (t), 61.69 (t), 115.41 (t), 127.72 (d), 128.05 (d), 128.76 (d), 135.80 (s), 141.52 (s), 167.98 (s), 168.14 (s), 171.88 (s). Selected HMBC correlations are between δ 3.36 (H-3) and δ 50.09 (CH(CO₂Et)₂), 42.64 (C-4), between δ 3.72 (H-4) and δ 50.09 (CH(CO₂Et)₂), 44.58 (C-3), between δ 3.29, 3.41 (H-5a,5b) and δ 141.52 (CCl=CH₂), and between δ 4.06 (CH(CO₂Et)₂) and δ 44.58 (C-3), 42.64 (C-4).; IR (neat) 2982, 2935, 1732, 1697, 1632, 1491, 1446, 1373, 1261, 1175, 1032 cm⁻¹; MS (EI) m/z395 (M⁺, 8.8), 393 (M⁺, 26), 234 (54), 91 (100%); HRMS M⁺ 393.1341, 395.1317 (calcd for C₂₀H₂₄ClNO₅ 393.1345, 395.1314).

Diethyl 2-(1-benzyl-*trans***-4-(1-bromovinyl)-2-oxopyrrolidin-3-yl)malonate (12b)**: $R_f = 0.6$ (ether); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.28 (t, J = 7.1 Hz, 3H),

Drganic & Biomolecular Chemistry Accepted Manuscript

1.29 (t, J = 7.1 Hz, 3H), 3.26 (dd, J = 9.8, 7.1 Hz, 1H), 3.34 (dd, J = 8.7, 4.7 Hz, 1H), 3.39 (dd, J = 9.8, 9.1 Hz, 1H), 3.63 (ddd, J = 9.1, 8.7, 7.1 Hz, 1H), 4.07 (d, J = 4.7 Hz, 1H), 4.11-4.25 (m, 4H), 4.40 (d, J = 14.9 Hz, 1H), 4.59 (d, J = 14.9 Hz, 1H), 5.43 (d, J = 1.8 Hz, 1H), 5.70 (d, J = 1.8 Hz, 1H), 7.25-7.36 (m, 5H). Selected NOEs are between δ 3.34 (H-3) and δ 5.70 (=CH*H*) and between δ 3.63 (H-4) and δ 4.07 (C*H*(CO₂Et)₂).; ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 14.01 (q), 14.04 (q), 43.97 (d), 45.50 (d), 46.76 (t), 49.54 (t), 49.99 (d), 61.68 (t), 61.70 (t), 119.86 (t), 127.71 (d), 128.06 (d), 128.75 (d), 134.80 (s), 135.77 (s), 168.00 (s), 168.11 (s), 171.78 (s). Selected HMBC correlations are between δ 3.34 (H-3) and δ 43.97 (C-4), between δ 3.63 (H-4) and δ 49.99 (*C*H(CO₂Et)₂), 45.50 (C-3), between δ 3.26, 3.39 (H-5a,5b) and δ 134.80 (*C*Br=CH₂), and between δ 4.07 (*CH*(CO₂Et)₂) and δ 45.50 (C-3), 43.97 (C-4).; IR (neat) 2982, 1733, 1699, 1627, 1490, 1446, 1373, 1290, 1263, 1176, 1030 cm⁻¹; MS (EI) *m/z* 439 (M⁺, 34), 437 (M⁺, 38), 358 (23), 239 (34), 205 (62), 91 (100%); HRMS M⁺ 437.0835, 439.0826 (calcd for C₂₀H₂₄BrNO₅ 437.0838, 439.0817).

Diethyl 2-(1-benzyl-*trans*-4-(1-iodovinyl)-2-oxopyrrolidin-3-yl)malonate (12c): $R_f = 0.6$ (hexane-ether = 1 : 4); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.28 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 3.10-3.17 (m, 2H), 3.21 (dd, J = 8.6, 4.5 Hz, 1H), 3.35 (m, 1H), 4.06 (d, J = 4.5 Hz, 1H), 4.08-4.25 (m, 4H), 4.39 (d, J = 14.8 Hz, 1H), 4.59 (d, J = 14.8 Hz, 1H)1H), 5.74 (d, J = 1.6 Hz, 1H), 6.19 (dd, J = 1.6, 0.4 Hz, 1H), 7.25-7.30 (m, 3H), 7.32-7.36 (m, 2H); 13 C NMR (100.6 MHz, CDCl₃) δ (ppm) 14.02 (q), 14.06 (q), 46.08 (d), 46.72 (t), 47.11 (d), 49.87 (d), 51.12 (t), 61.64 (t), 61.66 (t), 115.84 (s), 127.69 (d), 128.08 (d), 128.54 (t), 128.70 (d), 135.73 (s), 167.98 (s), 168.03 (s), 171.63 (s); ¹H NMR (400 MHz, C_6D_6) δ (ppm) 0.934 (t, J = 7.1 Hz, 3H), 0.955 (t, J = 7.1 Hz, 3H), 2.86 (dd, J = 9.8, 7.1 Hz, 1H), 2.98 (dd, *J* = 9.8, 8.8 Hz, 1H), 3.20 (ddd, *J* = 8.8, 8.8, 7.1 Hz, 1H), 3.30 (dd, *J* = 8.8, 4.9 Hz, 1H), 3.83-4.08 (m, 4H), 4.06 (d, J = 15.0 Hz, 1H), 4.31 (d, J = 4.9 Hz, 1H), 4.51 (d, J = 15.0 Hz, 1H), 5.41 (d, J = 1.6 Hz, 1H), 5.81 (dd, J = 1.6, 0.6 Hz, 1H), 7.04-7.09 (m, 1H), 7.14-7.21 (m, 4H). Selected NOEs are between δ 3.30 (H-3) and δ 5.81 (=CHH) and between δ 3.20 (H-4) and δ 4.31 (CH(CO₂Et)₂).; ¹³C NMR (100.6 MHz, C₆D₆) δ (ppm) 13.90 (q), 13.95 (q), 46.45 (d), 46.54 (t), 47.24 (d), 50.23 (d), 50.83 (t), 61.39 (t), 61.48 (t), 116.56 (s), 127.69 (d), 128.31 (d), 128.38 (t), 128.81 (d), 136.69 (s), 168.15 (s), 168.29 (s), 171.23 (s). Selected

HMBC correlations are between δ 3.30 (H-3) and δ 50.23 (*C*H(CO₂Et)₂), 46.45 (C-4), between δ 3.20 (H-4) and δ 50.23 (*C*H(CO₂Et)₂), 47.24 (C-3), between δ 2.86, 2.98 (H-5a,5b) and δ 116.56 (*C*I=CH₂), and between δ 4.31 (*C*H(CO₂Et)₂) and δ 47.24 (C-3), 46.45 (C-4).; IR (neat) 2980, 2934, 1733, 1699, 1612, 1488, 1445, 1372, 1287, 1261, 1175, 1030 cm⁻¹; MS (FAB) *m*/*z* 508 [M+Na]⁺, 486 [M+H]⁺; HRMS [M+H]⁺ 486.0779 (calcd for C₂₀H₂₅INO₅ 486.0778).

Diethyl 2-(*trans***-4-(1-chlorovinyl)-1-propyl-2-oxopyrrolidin-3-yl)malonate** (**12d**): $R_f = 0.5$ (hexane-ether = 1 : 2); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.912 (t, *J* = 7.3 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.57 (qt, *J* = 7.3, 7.3 Hz, 2H), 3.21-3.33 (m, 3H), 3.40 (dd, *J* = 9.7, 7.0 Hz, 1H), 3.54 (dd, *J* = 9.7, 9.4 Hz, 1H), 3.74 (ddd, *J* = 8.8, 8.8, 7.0 Hz, 1H), 4.01 (d, *J* = 4.6 Hz, 1H), 4.09-4.25 (m, 4H), 5.22 (d, *J* = 1.5 Hz, 1H), 5.30 (d, *J* = 1.5 Hz, 1H). Selected NOEs are between δ 3.21-3.33 (H-3, overlapped) and δ 5.30 (=CH*H*) and between δ 3.74 (H-4) and δ 4.01 (*CH*(CO₂Et)₂).; ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 11.18 (q), 13.95 (q), 13.99 (q), 20.32 (t), 42.57 (d), 44.37 (t), 44.71 (d), 49.15 (t), 50.12 (d), 61.56 (t), 61.62 (t), 115.22 (t), 141.81 (s), 167.97 (s), 168.22 (s), 171.63 (s). Selected HMBC correlations are between δ 3.21-3.33 (H-3, overlapped) and δ 50.12 (*C*H(CO₂Et)₂), 42.57 (C-4), between δ 3.74 (H-4) and δ 50.12 (*C*H(CO₂Et)₂), 44.71 (C-3), between δ 3.40, 3.54 (H-5a,5b) and δ 141.81 (*C*Cl=CH₂), and between δ 4.01 (*CH*(CO₂Et)₂) and δ 44.71 (C-3), 42.57 (C-4).; IR (neat) 2966, 2936, 1733, 1696, 1632, 1491, 1446, 1373, 1264, 1175, 1034 cm⁻¹; MS (FAB) *m*/*z* 370 [M+Na]⁺, 368 [M+Na]⁺, 348 [M+H]⁺, 346 [M+H]⁺; HRMS [M+H]⁺ 346.1421, 348.1392 (calcd for C₁₆H₂₅CINO₅ 346.1421, 348.1392).

Diethyl 2-(*trans*-4-(1-bromovinyl)-1-propyl-2-oxopyrrolidin-3-yl)malonate (12e): $R_f = 0.6$ (ether); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.915 (t, J = 7.3 Hz, 3H), 1,27 (t, J = 7.1 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H), 1.57 (qt, J = 7.3, 7.3 Hz, 1H), 3.20-3.34 (m, 3H), 3.38 (dd, J = 9.7, 6.8 Hz, 1H), 3.53 (dd, J = 9.7, 8.7 Hz, 1H), 3.65 (ddd, J = 8.7, 8.7, 6.8 Hz, 1H), 4.01 (d, J = 4.6 Hz, 1H), 4.09-4.25 (m, 4H), 5.47 (d, J = 1.8 Hz, 1H), 5.74 (dd, J = 1.8, 0.4 Hz, 1H). Selected NOEs are between δ 3.20-3.34 (H-3, overlapped) and δ 5.74 (=CH*H*) and between δ 3.65 (H-4) and δ 4.01 (C*H*(CO₂Et)₂).; ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 11.18 (q), 13.98 (q×2), 20.31 (t), 43.90 (d), 44.36 (t), 45.63 (d), 50.04 (d), 50.08 (t),

ganic & Biomolecular Chemistry Accepted Manuscript

61.55 (t), 61.61 (t), 119.64 (t), 135.10 (s), 167.96 (s), 168.17 (s), 171.53 (s). Selected HMBC correlations are between δ 3.20-3.34 (H-3, overlapped) and δ 50.04 (*C*H(CO₂Et)₂), between δ 3.65 (H-4) and δ 50.04 (*C*H(CO₂Et)₂), 45.63 (C-3), between δ 3.38, 3.53 (H-5a,5b) and δ 135.10 (*C*Br=CH₂), and between δ 4.01 (*C*H(CO₂Et)₂) and δ 45.63 (C-3), 43.90 (C-4).; IR (neat) 2966, 2935, 1733, 1698, 1627, 1490, 1446, 1372, 1287, 1264, 1160, 1043 cm⁻¹; MS (EI) *m*/*z* 391 (M⁺, 38), 389 (M⁺, 36), 346 (27), 344 (29), 310 (100) 232 (96), 230 (99%); HRMS M⁺ 389.0836, 391.0811 (calcd for C₁₆H₂₄BrNO₅ 389.0838, 391.0817).

Diethyl 2-(*trans*-4-(1-iodovinyl)-1-propyl-2-oxopyrrolidin-3-yl)malonate (12f): $R_f = 0.6$ (hexane-ether = 1 : 4); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.921 (t, J = 7.3 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 1.57 (qt, J = 7.3, 7.3 Hz, 2H), 3.11-3.34 (m, 5H), 3.49 (ddd, J = 9.4, 8.4, 1.0 Hz, 1H), 4.01 (d, J = 4.4 Hz, 1H), 4.08-4.25 (m, 5H)4H), 5.77 (d, J = 1.6 Hz, 1H), 6.23 (dd, J = 1.6, 0.5 Hz, 1H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 11.24 (q), 13.98 (q), 14.04 (q), 20.32 (t), 44.36 (t), 46.00 (d), 47.26 (d), 49.92 (d), 51.71 (t), 61.56 (t), 61.62 (t), 116.18 (s), 128.36 (t), 167.99 (s), 168.14 (s), 171.43 (s); ¹H NMR (400 MHz, C_6D_6) δ (ppm) 0.758 (t, J = 7.3 Hz, 3H), 0.914 (t, J = 7.1 Hz, 3H), 0.945 (t, J = 7.1 Hz, 3H), 1.27 (qt, J = 7.3, 7.3 Hz, 2H), 2.92 (dd, J = 9.7, 6.8 Hz, 1H), 3.01-3.10 (m, 3H), 3.22 (dd, J = 8.4, 4.8 Hz, 1H), 3.27 (dddd, J = 8.4, 8.1, 6.8, 0.5 Hz, 1H), 3.84-4.04 (m, 4H), 4.28 (d, J = 4.8 Hz, 1H), 5.47 (d, J = 1.6 Hz, 1H), 5.93 (dd, J = 1.6, 0.5 Hz, 1H). Selected NOEs are between δ 3.22 (H-3, overlapped) and δ 5.93 (=CHH) and between δ 3.27 (H-4, overlapped) and δ 4.28 (CH(CO₂Et)₂).; ¹³C NMR (100.6 MHz, C₆D₆) δ (ppm) 11.26 (q), 13.88 (q), 13.95 (q), 20.50 (t), 44.18 (t), 46.33 (d), 47.42 (d), 50.29 (d), 51.48 (t), 61.36 (t), 61.39 (t), 117.08 (s), 128.11 (t), 168.27 (s), 168.29 (s), 171.10 (s). Selected HMBC correlations are between δ 3.22 (H-3) and δ 50.29 (CH(CO₂Et)₂), 117.08 (CI=CH₂), between δ 3.27 (H-4) and δ 51.48 (C-5), between δ 2.92, 3.01-3.10 (H-5a,5b) and δ 46.33 (C-4), and between δ 4.28 (CH(CO₂Et)₂) and δ 47.42 (C-3), 46.33 (C-4).; IR (neat) 2966, 2934, 1733, 1695, 1612, 1489, 1446, 1372, 1287, 1175, 1112, 1043 cm⁻¹; MS (EI) m/z 437 (M⁺, 38), 392 (38), 310 (100%); HRMS M^+ 437.0697 (calcd for C₁₆H₂₄INO₅ 437.0699).

Trans-3-(di(ethoxycarbonyl)methyl)-2-oxotetrahydrofuran-4-carboxylic acid (13): Compound 4a (84 mg, 0.28 mmol) was dissolved in a mixture of CH_3CN (1.4 mL), CCl_4 (1.4 mL), and H_2O (1.4 mL). $NaIO_4$ (385 g, 1.8 mmol) was then added followed by $RuCl_3 \cdot xH_2O$ (5.2 mg, ca. 0.025 mmol). After 1 h of stirring at room temperature, the solution was diluted with CH_2Cl_2 . The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 three times. The combined organic layers were dried (Na_2SO_4) and concentrated in vacuo. The residue was filtered through a short plug of Cerite that was washed with ether to give 13 (78 mg, 98%).

13: $R_f = 0.4$ (hexane-ether = 1 : 4); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.28 (t, *J* = 7.1 Hz, 3H), 1.29 (t, *J* = 7.1 Hz, 3H), 3.52 (dd, *J* = 9.2, 4.4 Hz, 1H), 3.82 (ddd, *J* = 9.2, 9.2, 7.9 Hz, 1H), 4.07 (d, *J* = 4.4 Hz, 1H), 4.18-4.27 (m, 4H), 4.37 (dd, *J* = 9.2, 7.9 Hz, 1H), 4.69 (dd, *J* = 9.7, 9.2 Hz, 1H), 9.10 (bs, 1H). Selected NOEs are between δ 3.82 (H-4) and δ 4.07 (*CH*(CO₂Et)₂).; ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.89 (q), 13.91 (q), 41.82 (d), 42.66 (d), 50.56 (d), 62.39 (t), 62.50 (t), 67.75 (t), 167.25 (s), 167.47 (s), 175.04 (s), 176.02 (s). Selected HMBC correlations are between δ 3.52 (H-3) and δ 176.02 (*CO*₂H), 42.66 (C-4), between δ 3.82 (H-4) and δ 50.56 (*C*H(CO₂Et)₂), 41.82 (C-3), between δ 4.37, 4.69 (H-5a,5b) and δ 176.02 (*CO*₂H), and between δ 4.07 (*CH*(CO₂Et)₂) and δ 41.82 (C-3), 42.66 (C-4).; IR (neat) 3536, 2985, 1774, 1739, 1469, 1447, 1373, 1207, 1032 cm⁻¹; MS (EI) *m/z* 288 (M⁺, 8.9), 270 (13), 243 (100), 197 (94), 160 (91), 125 (70%); HRMS M⁺ 288.0842 (calcd for C₁₂H₁₆O₈ 288.0845).

Methyl *trans*-3-(di(ethoxycarbonyl)methyl)-2-oxotetrahydrofuran-4-carboxylate (14): To a solution of 13 (200 mg, 0.69 mmol) in methanol (0.28 mL)–benzene (1.1 mL) was added (CH₃)₃SiCHN₂ (ca. 10% hexane solution, 1.5 mL) at room temperature. The mixture was stirred for 30 min at room temperature and concentrated. The residue was purified by column chromatography over silica gel with hexane–ether as eluent to give 14 (149 mg, 71%).

14: $R_f = 0.4$ (hexane-ether = 1 : 1); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.28 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H), 3.53 (dd, J = 9.5 Hz, 4.4 Hz, 1H), 3.76 (s, 3H), 3.80 (ddd, J = 9.7, 9.5, 8.2 Hz, 1H), 4.05 (d, J = 4.4 Hz, 1H), 4.17-4.27 (m, 4H), 4.28 (dd, J = 7.1 Hz, 3H), 4.05 (d, J = 4.4 Hz, 1H), 4.17-4.27 (m, 4H), 4.28 (dd, J = 7.1 Hz, 3H), 4.17-4.27 (m, 4H), 4.17-4.27 (m, 4H),

Organic & Biomolecular Chemistry Accepted Manuscript

9.2, 8.2 Hz, 1H), 4.65 (dd, J = 9.7, 9.2 Hz, 1H). Selected NOEs are between δ 3.80 (H-4) and δ 4.05 (*CH*(CO₂Et)₂).; ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.94 (q), 41.97 (d), 42.75 (d), 50.48 (d), 52.81 (q), 62.23 (t), 62.32 (t), 67.86 (t), 167.23 (s), 167.38 (s), 171.72 (s), 174.96 (s). Selected HMBC correlations are between δ 3.53 (H-3) and δ 171.72 (*CO*₂CH₃), 42.75 (C-4), between δ 3.80 (H-4) and δ 50.48 (*C*H(CO₂Et)₂), 41.97 (C-3), between δ 4.28, 4.65 (H-5a,5b) and δ 171.72 (*CO*₂CH₃), and between δ 4.05 (*CH*(CO₂Et)₂) and δ 41.97 (C-3), 42.75 (C-4).; IR (neat) 2986, 1784, 1741, 1439, 1372, 1248, 1210, 1179, 1032 cm⁻¹; MS (EI) *m*/*z* 302 (M⁺, 7.5), 271 (17), 257 (64), 160 (100%); HRMS M⁺ 302.1001 (calcd for C₁₃H₁₈O₈ 302.1002); Anal. Calcd for C₁₃H₁₈O₈: C, 51.65; H, 6.00. Found: C, 51.44; H, 5.88.

Preparation of 15a-b. To a solution of **13** (144 mg, 0.5 mmol) in THF (0.7 mL) were added benzylamine (54 mg, 0.5 mmol), Et₃N (70 μ L, 54 mg, 0.5 mmol), HOBt (1hydroxybenzotriazole) (135 mg, 1 mmol) and EDCI (1-[3-(dimethylamino)propyl]-3ethylcarbodiimide hydrochloride) (100 mg, 0.52 mmol) at 0 °C. The reaction mixture was was allowed to warm to room temperature and stirred for 18 h. The reaction mixture was concentrated under reduced pressure and the residue was diluted with CH₂Cl₂. The organic phase was washed with saturated aqueous NaHCO₃ solution, 2M aqueous citric acid, saturated aqueous NaHCO₃ and water, dried (Na₂SO₄), and evaporated *in vacuo*. The residue was purified by column chromatography over silica gel eluting with hexane-ether (1 : 4) to give **15a** (110 mg, 58%).

15a: R_f = 0.3 (hexane-ether = 1 : 4); colorless needles; mp 119-121 °C (AcOEt-hexane); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.24 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H), 3.51 (dd, J = 8.7, 4.0 Hz, 1H), 3.61 (ddd, J = 8.9, 8.7, 7.5 Hz, 1H), 4.00-4.21 (m, 5H), 4.42 (d, J = 5.9 Hz, 2H), 4.45 (dd, J = 8.8, 7.5 Hz, 1H), 4.52 (dd, J = 8.9, 8.8 Hz, 1H), 6.48 (br, 1H), 7.26-7.35 (m, 5H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.94 (q), 42.64 (d), 44.10 (t), 44.14 (d), 50.35 (d), 62.38 (t), 68.88 (t), 127.74 (d), 127.89 (d), 128.81 (d), 137.65 (s), 167.54 (s), 168.28 (s), 170.14 (s), 175.52 (s). Selected HMBC correlations are between δ 3.51 (H-3) and δ 170.14 (CONH), 44.14 (C-4), between δ 3.61 (H-4) and δ 50.35 (*C*H(CO₂Et)₂), 42.64 (C-3), and between δ 4.45, 4.52 (H-5a,5b) and δ 170.14 (CONH).; IR (KBr) 3302, 2979, 1783,

1770, 1731, 1646, 1540, 1371, 1258, 1189, 1142, 1044, 1012, 701 cm⁻¹; MS (EI) m/z 377 (M⁺, 15), 279 (28), 200 (67), 149 (77), 91 (100%); HRMS M⁺ 377.1479 (calcd for C₁₉H₂₃NO₇ 377.1475). **15b**: R_f = 0.5 (hexane-ether = 1 : 4); colorless needles; mp 118-120 °C (benzene); ¹H NMR

(400 MHz, CDCl₃) δ (ppm) 1.240 (t, J = 7.1 Hz, 3H), 1.244 (t, J = 7.1 Hz, 3H), 3.51 (dd, J = 8.6, 4.0 Hz, 1H), 3.63 (ddd, J = 8.9, 8.6, 7.6 Hz, 1H), 3.99-4.19 (m, 5H), 4.35 (dd, J = 14.9, 5.8 Hz, 1H), 4.39 (dd, J = 14.9, 6.0 Hz, 1H), 4.39 (dd, J = 8.8, 7.6 Hz, 1H), 4.52 (dd, J = 8.9, 8.8 Hz, 1H), 6.73 (broad t, J = 5.8 Hz, 1H), 7.20-7.23 (m, 2H), 7.27-7.31 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.89 (q), 42.48 (d), 43.27 (t), 44.09 (d), 50.31 (d), 62.36 (t), 62.39 (t), 68.85 (t), 128.83 (d), 129.23 (d), 133.43 (s), 136.33 (s), 167.53 (s), 168.22 (s), 170.24 (s), 175.62 (s). Selected HMBC correlations are between δ 3.51 (H-3) and δ 170.24 (CONH), 44.09 (C-4), between δ 3.63 (H-4) and δ 50.31 (CH(CO₂Et)₂), 42.48 (C-3), and between δ 4.39, 4.52 (H-5a,5b) and δ 170.24 (CONH).; IR (KBr) 3291, 2979, 1784, 1771, 1744, 1645, 1541, 1370, 1261, 1189, 1016 cm⁻¹; MS (EI) *m/z* 413 (M⁺, 4.3), 411 (M⁺, 13), 366 (13), 243 (44), 140 (100%); HRMS M⁺ 411.1084, 413.1062 (calcd for C₁₉H₂₂CINO₇ 411.1085, 413.1055); Anal. Calcd for C₁₉H₂₂CINO₇: C, 55.41; H, 5.38; N, 3.40. Found: C, 55.26; H, 5.15; N, 3.32.

Preparation of 16a-b (eq 6). To a mixture of phenylboronic acid (39 mg, 0.323 mmol), 12c (155 mg, 0.307 mmol), K_2CO_3 (106 mg, 0.769 mmol) were added acetone (0.61 ml), water (0.77 mL), and Pd(OAc)₂ (4.0 mmol/L acetone solution, 0.31 mL, 1.24 µmol), successively. The mixture was heated at 65 °C for 18 h. The reaction mixture was extracted with dichloromethane (4×20 mL) and the organic phase was washed with brine, dried (Na₂SO₄), and evaporated *in vacuo*. The residue was purified by column chromatography over silica gel eluting with hexane-ether to give **16a** (78 mg, 58%).

16a: $R_f = 0.6$ (hexane-ether = 1 : 4); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 1.19 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H), 3.00 (dd, J = 9.6, 7.6 Hz, 1H), 3.40 (dd, J = 9.2, 5.1 Hz, 1H), 3.48 (dd, J = 9.6, 9.2 Hz, 1H), 3.77 (dddd, J = 9.2, 9.2, 7.6, 0.9 Hz, 1H), 3.96 (d, J = 5.1 Hz, 1H), 4.07-4.25 (m, 4H), 4.40 (d, J = 14.8 Hz, 1H), 4.51 (d, J = 14.8 Hz, 1H), 5.13 (d, J = 0.9 Hz, 1H), 5.27 (s, 1H), 7.22-7.33 (m, 10H). Selected NOEs are between δ 3.40 (H-3) and δ 5.13 (=*CH*H), and between δ 3.77 (H-4) and δ 3.96 (*CH*(CO₂Et)₂).; ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 13.97 (q), 14.02 (q), 39.38 (d), 45.71 (d), 46.82 (t), 51.01 (d), 51.75 (t), 61.65 (t×2), 113.10 (t), 126.74 (d), 127.63 (d), 127.93 (d), 128.14 (d), 128.54 (d), 128.71 (d), 136.04 (s), 140.62 (s), 148.69 (s), 168.08 (s), 168.23 (s), 172.77 (s). Selected HMBC correlations are between δ 3.40 (H-3) and δ 51.01 (*C*H(CO₂Et)₂), 39.38 (C-4), between δ 3.77 (H-4) and δ 51.01 (*C*H(CO₂Et)₂), 45.71 (C-3), between δ 3.00, 3.48 (H-5a,5b) and δ 148.69 (*C*Ph=CH₂), and between δ 3.96 (*CH*(CO₂Et)₂) and δ 45.71 (C-3), 39.38 (C-4).; IR (neat) 2982, 2936, 1732, 1695, 1495, 1444, 1370, 1261, 1176, 1030 cm⁻¹; MS (EI) *m*/*z* 435 (M⁺, 5), 276 (11), 220 (26), 205 (100%); HRMS M⁺ 435.2042 (calcd for C₂₆H₂₉NO₅ 435.2046).

16b: R_f = 0.4 (hexane-ether = 1 : 4); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 0.877 (t, *J* = 7.4 Hz, 3H), 1.19 (t, *J* = 7.1 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.51 (qt, *J* = 7.4, 7.4 Hz, 2H), 3.10 (dd, *J* = 9.3, 7.4 Hz, 1H), 3.23 (t-like, *J* = 7.4 Hz, 2H), 3.36 (dd, *J* = 9.1, 5.3 Hz, 1H), 3.59 (dd, *J* = 9.3, 9.2 Hz, 1H), 3.79 (dddd, *J* = 9.2, 9.1, 7.4, 0.9 Hz, 1H), 3.92 (d, *J* = 5.3 Hz, 1H), 4.06-4.24 (m, 4H), 5.16 (d, *J* = 0.9 Hz, 1H), 5.30 (s, 1H), 7.28-7.35 (m, 5H). Selected NOEs are between δ 3.36 (H-3) and δ 5.16 (=C*H*H), 7.28-7.35 (Ph), and between δ 3.79 (H-4) and δ 3.92 (*CH*(CO₂Et)₂).; ¹³C NMR (100.6 MHz, CDCl₃) δ (ppm) 11.24 (q), 13.96 (q), 14.00 (q), 20.39 (t), 39.37 (d), 44.46 (t), 45.86 (d), 51.09 (d), 52.32 (t), 61.56 (t), 61.60 (t), 112.85 (t), 126.75 (d), 127.95 (d), 128.57 (d), 140.79 (s), 149.01 (s), 168.09 (s), 168.32 (s), 172.57 (s). Selected HMBC correlations are between δ 3.36 (H-3) and δ 51.09 (*C*H(CO₂Et)₂), 45.85 (C-3), and between δ 3.92 (*CH*(CO₂Et)₂) and δ 45.85 (C-3), 39.37 (C-4).; IR (neat) 2965, 2934, 1732, 1695, 1493, 1444, 1370, 1264, 1177, 1148, 1033 cm⁻¹; MS (EI) *m/z* 387 (M⁺, 16), 342 (9.3), 228 (100%); HRMS M⁺ 387.2036 (caled for C₂₂H₂₉NO₅ 387.2046).

Acknowledgment

This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government. We thank Nara Institute of Science and Technology (NAIST) and Prof. K. Kakiuchi (NAIST) for mass spectra.

Electronic supplementary information (ESI) available: The optimized geometries, and ¹H and ¹³C NMR spectral data.

References

¹ (a) *The Chemistry of Allenes*; Landor, S. R., Ed.; Academic: London, 1982; Vol. 1. (b) *Modern Allene Chemistry*; N. Krause and A. S. K. Hashmi, Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vols. 1 and 2. (c) S. Ma, *Palladium-Catalyzed Two- or Three-Component Cyclization of Functionalized Allenes in Palladium in Organic Synthesis*; J. Tsuji, Ed.; Springer: Berlin, Germany, 2005; pp 183-210. (d) S. Ma, *Acc. Chem. Res.*, 2009, 42, 1679. (e) R. Zimmer, C. U. Dinesh, E. Nandanan and F. A. Khan, *Chem. Rev.*, 2000, 100, 3067. (f) S. Ma, *Chem. Rev.*, 2005, 105, 2829. (g) S. Ma, *Acc. Chem. Res.*, 2003, 36, 701. (h) L. K. Sydnes, *Chem. Rev.*, 2003, 103, 1133. (i) H. H. A. M. Hassan, *Curr. Org. Synth.*, 2007, 4, 413.

² For some recent examples, see: (a) K. M. Brummond, H. Chen, K. D. Fisher, A. D. Kerekes, B. Rickards, P. C. Sill and S. J. Geib, *Org. Lett.*, 2002, 4, 1931. (b) C. Mukai, I. Nomura, K. Yamanishi and M. Hanaoka, *Org. Lett.*, 2002, 4, 1755. (c) M. A. Tarselli and M. R. Gagné, *J. Org. Chem.*, 2008, 73, 2439. (d) K. M. Brummond and D. Chen, *Org. Lett.*, 2008, 10, 705. (e) H. Tsukamoto and Y. Kondo, *Org. Lett.*, 2008, 10, 2633. (f) J. Mo and P. H. Lee, *Org. Lett.*, 2010, 12, 2570. (g) M. Murakami, S. Kadowaki and T. Matsuda, *Org. Lett.*, 2005, 7, 3953.

³ (a) M. Bertrand, M.-L. Roumestant and P. Sylvestre-Panthet, J. Chem. Soc., Chem. Commun., **1979**, 529. (b) R. Hayashi, J. B. Feltenberger and R. P. Hsung, Org. Lett., 2010,

12, 1152. (c) A. Padwa, H. Lipka, S. H. Watterson and S. S. Murphree, *J. Org. Chem.*, 2003, 68, 6238.

⁴ (a) W. G. Dauben, G. Shapiro and L. Luders *Tetrahedron Lett.*, 1985, **26**, 1429. (b) B. T. B.

Hue, J. Dijkink, S. Kuiper, K. K. Larson, F. S. Guziec, Jr., K. Goubitz, J. Fraanje, H. Schenk,

J. H. van Maarseveen and H. Hiemstra, *Org. Biomol. Chem.*, 2003, **1**, 4364. (c) M. S. Shepard and E. M. Carreira, *J. Am. Chem. Soc.*, 1997, **119**, 2597.

⁵ (a) G. A. Molander and E. P. Cormier, *J. Org. Chem.*, 2005, **70**, 2622. (b) L. Xu and X. Huang, *Tetrahedron Lett.*, 2008, **49**, 500.

⁶ S. Kitagaki, S. Teramoto and C. Mukai, Org. Lett., 2007, 9, 2549.

⁷ S.-K. Kang, Y.-M. Kim, Y.-H. Ha, C.-M. Yu, H. Yang and Y. Lim, *Tetrahedron Lett.*, 2002, **43**, 9105.

⁸ G. Lemière, B. Cacciuttolo, E. Belhassen and E. Duñach, Org. Lett., 2012, 14, 2750.

⁹ B. B. Snider and D. M. Roush, J. Org. Chem., 1979, 44, 4229.

¹⁰ S. Yamazaki, K. Yamada, S. Yamabe and K. Yamamoto, J. Org. Chem., 2002, 67, 2889.

¹¹ S. Yamazaki, K. Fujinami, Y. Maitoko, K. Ueda and K. Kakiuchi, *J. Org. Chem.*, 2013, **78**, 8405.

¹² (a) S. Yamazaki and M. Takebayashi, *J. Org. Chem.*, 2011, **76**, 6432. (b) S. Yamazaki, M. Takebayashi and K. Miyazaki, *J. Org. Chem.*, 2010, **75**, 1188. (c) S. Morikawa, S. Yamazaki, M. Tsukada, S. Izuhara, T. Morimoto and K. Kakiuchi, *J. Org. Chem.*, 2007, **72**, 6459. (d) S. Yamazaki and Y. Iwata, *J. Org. Chem.*, 2006, **71**, 739.

¹³ S. Yamazaki, Y. Yamamoto, Y. Fukushima, M. Takebayashi, T. Ukai and Y. Mikata, J. Org. Chem., 2010, **75**, 5216.

¹⁴ Preliminary results were presented at the 13th Tetrahedron Conference Asia Edition, Taipei, 2012 and at the 93rd Annual Meeting of the Chemical Society of Japan, Shiga, 2013.
 ¹⁵ S.-K. Kang, S.-W. Lee, J. Jung and Y. Lim, *J. Org. Chem.*, 2002, **67**, 4376.

¹⁶ M. Hudlicky, In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, U.K., 1991; Vol. 8, pp 895.

¹⁷ (a) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648. (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1998, **37**, 785.

¹⁸ Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

¹⁹ (a) K. Fukui, *J. Phys. Chem.*, 1970, **74**, 4161. (b) C. Gonzalez and H. B. Schlegel, *J. Phys. Chem.*, 1989, **90**, 2154.

²⁰ (a) E. Cancès, B. Mennucci and J. Tomasi, *J. Chem. Phys.*, 1997, **107**, 3032. (b) M. Cossi,
V. Barone, B. Mennucci and J. Tomasi, *Chem. Phys. Lett.*, 1998, **286**, 253. (c) B. Mennucci and J. Tomasi, *J. Chem. Phys.*, 1997, **106**, 5151.

²¹ (a) D. Y. Curtin, *Rec. Chem. Prog.*, 1954, **15**, 111. (b) L. P. Hammett, *Physical Organic Chemistry*; McGraw-Hill, New York, 1970. Chapter 5. (c) J. I. Seeman, *Chem. Rev.*, 1983, **83**, 83.

²² L. Brandsma, Synthesis of Acetylenes, Allenes and Cumulenes: Methods and Techniques;
Elsevier, Amsterdam, 2004.

²³ B. M. Trost, A. B. Pinkerton and M. Seidel, J. Am. Chem. Soc., 2001, **123**, 12466.

²⁴ C. Sahlberg, S. B. Ross, I. Fagervall, A. L. Ask and A. Claesson, *J. Med. Chem.*, 1983, **26**, 1036.