Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Lewis Acid-Promoted Cyclization/Halogenation of Allenyl Ethenetricarboxylates and the Amides: Stereoselective Synthesis of Haloalkenyl Five-membered Heterocycles

Yugo Fukushima, ${ }^{\text {b }}$ Shoko Yamazaki,*a and Akiya Ogawa ${ }^{\text {b }}$

${ }^{a}$ Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan, ${ }^{b}$ Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan yamazaks@nara-edu.ac.jp

Graphical Abstract

Abstract

Lewis acid-promoted intramolecular reactions of allenyl ethenetricarboxylates and the corresponding amides have been examined. Reaction of allenyl ethenetricarboxylates and the amides with Lewis acids such as $\mathrm{AlCl}_{3}, \mathrm{AlBr}_{3}$ and $\mathrm{ZnX}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ gave 3,4-trans haloalkenyl five-membered heterocycles stereoselectively. The stereochemistry was determined by NOE experiments and reduction of the cyclized products. Various transformations of the haloalkenyl functionalized cyclic compounds have also been performed.

Introduction

Development of new synthetic reactions utilizing allenes has attracted attention due to their structural features. ${ }^{1}$ Transition metal catalyzed cyclization of allenes containing additional multiple bonds such as alkynes, alkenes, arynes, aldehydes and ketones have been recognized as efficient methods to prepare highly substituted carbocycles and heterocycles. ${ }^{2}$

Thermal, ${ }^{3}$ photochemical, ${ }^{4}$ reductive ${ }^{5}$ and base-promoted ${ }^{6}$ cyclization reactions of these allenes have been reported. Lewis acid-promoted carbon-carbon bond-forming cyclizations of allenyl-aldehyde actetals ${ }^{7}$ and aryl-allenes ${ }^{8}$ have also been studied. Few examples are known for the intramolecular Lewis acid-mediated cyclization of allenes containing electrondeficient alkenes (as Michael acceptors).

Snider and Roush reported that Lewis acid-promoted intramolecular reactions of alkenyl and alkynyl ethenetricarboxylates gave chlorinated γ-lactones. ${ }^{9}$ We have developed Lewis acid-promoted stereoselective cyclization of alkynyl ethenetricarboxylates with high generality ${ }^{10}$ and Lewis acid-promoted 3,4-trans stereoselective cyclization of alkenyl ethenetricarboxylates has also been investigated (eq 1). ${ }^{11}$

We have studied various Lewis acid-promoted intermolecular reactions of ethenetricarboxylate derivatives and reported that they function as highly electrophilic Michael acceptors. ${ }^{12}$ The reaction of arylallenes and ethenetricarboxylate with SnCl_{4} gave indene derivatives efficiently. ${ }^{13}$ In addition, the reactions of 1,1-dialkylallenes and ethenetricarboxylate with SnCl_{4} gave γ-lactones.

In this work, Lewis acid-promoted intramolecular reactions containing allenes as an extension of the reaction of alkenyl substrates (eq 1) have been examined. ${ }^{14}$

Results and Discussion

Allenyl esters 3a-c were prepared by the reaction of 1,1-diethyl 2-hydrogen ethenetricaboxylate 1 (prepared from 1,1-diethyl 2-tert-butyl ethenetricarboxylate upon treatment with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$) with the corresponding allenyl alcohols 2a-c in the presence of PPh_{3} and DEAD (diethyl azodicarboxylate) (eq 2).

The reaction of allenyl ethenetricarboxylates $\mathbf{3 a}, \mathbf{b}$ with 1 equivalent of various Lewis acid such as $\mathrm{AlCl}_{3}, \mathrm{AlBr}_{3}, \mathrm{SnCl}_{4}, \mathrm{TiCl}_{4}, \mathrm{FeCl}_{3}, \mathrm{InCl}_{3}$, or InBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature gave 3,4-trans haloalkenyl tetrahydrofuran derivatives 4a-d stereoselectively (eq 3, Table 1). Among these Lewis acids, AlCl_{3} and AlBr_{3} gave chlorinated and brominated cyclic products $\mathbf{4 a}$-d most efficiently. The reaction of $\mathbf{3 a}$ with $\mathrm{SnCl}_{4}, \mathrm{TiCl}_{4}$ and TiBr_{4} also gave $\mathbf{4 a}, \mathbf{b}$ along with 4-ethynyltetrahydrofuran derivative 5 as a by-product via Lewis acid-catalyzed ene-type reaction. Use of $\mathrm{FeCl}_{3}, \mathrm{InCl}_{3}$ and InBr_{3} gave 4a,b and the noncyclized $\mathrm{H}_{2} \mathrm{O}$ adduct $\mathbf{6}$ as a byproduct (entries 6-8). Furthermore, the reaction of 3 a using $\mathrm{ZnBr}_{2}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{ZrCl}_{4}$, and $\mathrm{Zn}(\mathrm{OTf})_{2}$ at room temperature gave the starting material 3a. The reaction of $3 \mathbf{a}$ with ZnBr_{2}, $\mathrm{ZnI}_{2}, \mathrm{Sc}(\mathrm{OTf})_{3}$, and $\mathrm{Zn}(\mathrm{OTf})_{2}$ at $80^{\circ} \mathrm{C}$ gave a complex mixture or the starting material 3a.

Table 1. Reactions of Allenyl Esters 3a,b

Entry	$\mathbf{3}$	R	MX_{n}	Time (h)	$\mathbf{4}$	X	Yield (\%)	Byproduct (\%)
1	$\mathbf{3 a}$	H	AlCl_{3}	18	$\mathbf{4 a}$	Cl	75	
2	$\mathbf{3 a}$	H	AlBr_{3}	18	$\mathbf{4 b}$	Br	64	
3	$\mathbf{3 a}$	H	SnCl_{4}	3	$\mathbf{4 a}$	Cl	42	$\mathbf{5}$ (ca. 19)

4	$\mathbf{3 a}$	H	TiCl_{4}	3	$\mathbf{4 a}$	Cl	58	$\mathbf{5}(\mathbf{c a .} 18)^{\mathrm{a}}$
5	$\mathbf{3 a}$	H	TiBr_{4}	18	$\mathbf{4 b}$	Br	46	$\mathbf{5}(30)$
6	$\mathbf{3 a}$	H	FeCl_{3}	3	$\mathbf{4 a}$	Cl	36^{b}	$\mathbf{6}(54)^{\mathbf{b}}$
7	$\mathbf{3 a}$	H	InCl_{3}	18	$\mathbf{4 a}$	Cl	12	$\mathbf{6}(20), \mathbf{3 a}(44 \%)$
8	$\mathbf{3 a}$	H	InBr_{3}	18	$\mathbf{4 b}$	Br	40	$\mathbf{6}(36)$
7	$\mathbf{3 b}$	Me	AlCl_{3}	18	$\mathbf{4 c}$	Cl	66	
8	$\mathbf{3 b}$	Me	AlBr_{3}	18	$\mathbf{4 d}$	Br	44	
9	$\mathbf{3 b}$	Me	SnCl_{4}	18	$\mathbf{4 c}$	Cl	30	\mathbf{c}

${ }^{\text {a }}$ Small amounts of impurity could not be removed. ${ }^{\text {b }}$ The yields were estimated by the NMR spectra of the mixture of $\mathbf{4 a}$ and $6 .{ }^{\mathrm{c}}$ Inseparable by-products were also produced.

The $\boldsymbol{\gamma}$-lactone structure of $\mathbf{4 a - d}$ was suggested by the presence of a characteristic $\mathrm{C}=\mathrm{O}$ absorption (1780-1782 cm^{-1}) and disappearance of the 1958-1972 cm^{-1} absorption for $\mathrm{C}=\mathrm{C}=\mathrm{C}$ allene moiety in $\mathbf{3 a , b} .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and 2 D NMR spectra were in agreement with the fivemembered ring structure. The 3,4-stereochemistry of 4a-d was examined by NOESY experiments. NOEs between H-3 and H-4 could be observed for both 3,4-cis and trans diastereomers. The following peaks were used for the assignment of haloalkenyl 2oxotetrahydrofurans 4a-d. NOEs between $\mathrm{H}-3$ and $\mathrm{CX}=\mathrm{CHH}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})^{15}$ for $\mathbf{4 a , b}$ and between $\mathrm{H}-4$ and $\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$ for 4a-d were observed. Thus, the 3,4-trans stereochemistry of 4a-d was likely, similar to cyclic products in eq 1 . On the other hand, NOESY spectra of byproduct 4-ethynyltetrahydrofuran 5 did not give enough information for the 3,4stereochemistry.

In order to support the assignment of the stereochemistry of $\mathbf{4 a}$ and determine the stereochemistry of the by-product 4-ethynyltetrahydrofuran 5, the following transformations have been carried out. Hydrogenolysis of the 4-chlorovinyl-2-oxotetrahydrofuran 4a gave 3,4-trans-4-ethyl-2-oxotetrahydrofuran 7t in 51\% yield (Scheme 1). Hydrogenolysis of both carbon-chlorine bond and carbon-carbon double bond occurred. ${ }^{16}$ 3,4-Trans-4-(1-chloroethyl)-2-oxotetrahydrofuran $\mathbf{8}$ is obtained by the Lewis acid promoted reaction of alkenyl ester $\mathbf{9}$ stereoselectively. ${ }^{11}$ Dechlorination of compound $\mathbf{8}$ did not proceed under the conditions used for $\mathbf{4 a}$. The reaction of $\mathbf{8}$ with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN gave a dechlorinated tetrahydrofuran in 89% yield. This was identical to $7 \mathbf{t}$ obtained from 4a. Thus, the
stereochemistry of $\mathbf{7 t}$ was assigned as 3,4-trans. The stereochemistry of $\mathbf{7 t}$ was also determined by NOESY experiment. Next, hydrogenolysis of ethynyl group of 5 was conducted. The hydrogenated product $7 \mathbf{c}$ is different from $7 \mathbf{t}$ and could be assigned as $3,4-$ cis-4-ethyl-2-oxotetrahydrofuran. Therefore, the stereochemistry of 5 is determined as 3,4cis.

Scheme 1. Reduction of 4a, 8, and 5

The Lewis acid-promoted reaction of 2-penta-3,4-dienyl ester 3c (shown in eq 2) was also examined. However, the reaction of $\mathbf{3 c}$ with 1 equivalent of $\mathrm{AlCl}_{3}, \mathrm{AlBr}_{3}$, and SnCl_{4} gave complex mixtures. Six-membered ring formation was not an efficient process.

Next, allenyl amide substrates 11a-b were prepared by the condensation reaction of 1,1-diethyl 2-hydrogen ethenetricaboxylate $\mathbf{1}$ with the corresponding allenyl amines 10a-b in the presence of HOBT, EDCI and $\mathrm{Et}_{3} \mathrm{~N}$ (eq 4). Reaction of diethyl 2-((N-allenyl- N benzylcarbamoyl)methylene)malonate (11a) with $\mathrm{AlCl}_{3}, \mathrm{ZnCl}_{2}, \mathrm{ZnBr}_{2}$, and ZnI_{2} at room temperature gave 3,4-trans-4-(1-chloro(or bromo/iodo)vinyl)-2-oxopyrrolidines 12a-c in 55$76 \%$ yields (eq 5, Table 2). Reaction of N-allenyl- N-propylcarbamoyl derivative 11b also gave 3,4-trans pyrrolidines 12d-f in 64-68\% yields. Reaction of 11a,b with AlBr_{3} also gave 12b,e but lower yields than those of $\mathrm{ZnBr}_{2}(16 \%$ for $\mathbf{1 2 b}$, ca. 50% (including a small amount of inseparable impurity) for 12e). The γ-lactam structures of 12a-f were suggested by the presence of a characteristic $\mathrm{C}=\mathrm{O}$ absorption ($1688-1698 \mathrm{~cm}^{-1}$). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and 2D NMR spectra were in agreement with the five-membered ring structure. The 3,4-trans stereochemistry was determined by NOEs. NOEs between $\mathrm{H}-3$ and $\mathrm{CX}=\mathrm{CHH}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})^{15}$ and between $\mathrm{H}-4$ and $\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$ were observed.

Table 2. Reactions of Allenyl Amides 11

Entry	R	MX_{n}	(equiv.)	X	$\mathbf{1 2}$	Yield (\%)
1	$\mathrm{CH}_{2} \mathrm{Ph}$	AlCl_{3}	1	Cl	12a	55
2	$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathrm{ZnCl}_{2}{ }^{\mathrm{a}}$	1×2	Cl	12a	76
3	$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathrm{ZnBr}_{2}{ }^{\mathrm{a}}$	1×2	Br	$\mathbf{1 2 b}$	64
4	$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathrm{ZnI}_{2}{ }^{\mathrm{Ph}}$	2	I	$\mathbf{1 2 c}$	58
5	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	AlCl_{3}	1	Cl	$\mathbf{1 2 d}$	68
6	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathrm{ZnBr}_{2}{ }^{\mathrm{a}}$	1×2	Br	$\mathbf{1 2 e}$	64
7	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathrm{ZnI}_{2}{ }^{\mathrm{a}}$	1×2	I	$\mathbf{1 2 f}$	68

a. The reaction with ZnX_{2} (1 equiv) for 18 h gave the crude products including impurities (possibly non-cyclized water-adducts) after work-up. The crude products were further treated with ZnX_{2} (1 equiv) to give the products 12 .

In order to demonstrate the utility of the cyclization reaction, synthetic transformations of the products were examined. Oxidative cleavage of the double bond of tetrahydrofuran $4 \mathbf{4}$ by $\mathrm{NaIO}_{4}-\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ and a neutral work-up gave acid $\mathbf{1 3}$ in 98% yield (Scheme 2). Subsequent treatment of $\mathbf{1 3}$ with $\mathrm{Me}_{3} \mathrm{SiCHN}_{2}$ in methanol/benzene led to methyl ester $\mathbf{1 4}$ in 71% yield. The stereochemistry of 13 and 14 was determined as 3,4-trans by NOESY experiment. Derivatization of 13 with benzylamines gave functionalized 3oxotetrahydrofurans 15a-b.

Scheme 2. Transformation of 4a

Furthermore, Suzuki-coupling reaction of halogenovinyl heterocycles was performed. The reaction of iodovinyl pyrrolidines $\mathbf{1 2 c}, \mathbf{1 2 f}$ with phenylboronic acid proceeds smoothly to give phenyl-substituted pyrrolidines (16a,b) (eq 6).

The reaction mechanism to give the halogenated five-membered heterocycles with 3,4-trans stereochemistry is proposed similar to that for the reaction of the allyl ester of ethenetrcarboxylates (eq 1) ${ }^{11}$ and shown in Scheme 3. Trans precursor A1 and cis precursor A2 in Scheme 4 may be formed from 3 and $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ reversibly. The reaction may start from the precursor A1 consisting of $\mathbf{3}$ and $\mathrm{Al}_{2} \mathrm{Cl}_{6}$. The $\mathrm{C}-\mathrm{C}$ bond formation and $\mathrm{Cl}-\mathrm{C}$ bond formation from A1 may occur concertedly to lead to cyclized intermediate $\mathbf{B 1}$. Intermolecular Cl^{-}anti attack leading to 3,4-trans cyclized product can be explained by steric reason. One molecule of Lewis acid $\left(\mathrm{AlCl}_{3}\right)$ may work as a catalyst and could be released after the cyclization step. Protonation and removal of $\mathrm{AlCl}_{2}(\mathrm{OH})$ yield the product 4 .

In order to support the proposed mechanism, the structures of the intermediates and transition states of model compounds (the corresponding methyl esters and $\mathrm{Al}_{2} \mathrm{Cl}_{6}$) were calculated using B3LYP/6-31G*.${ }^{17,18}$ TS geometry was characterized by vibrational analysis, which checked whether the obtained geometry has single imaginary frequencies $\left(v^{\star}\right)$. From TSs, reaction paths were traced by the intrinsic reaction coordinate (IRC) method ${ }^{19}$ to obtain the energy-minimum geometries. Relative Gibbs free energies were refined by single-point calculations of RB3LYP/6-311+G(d,p) SCRF $=\left(\mathrm{PCM} \text {, solvent }=\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{20}$ on the RB3LYP/6-31G* geometries and their thermal corrections ($T=298.15 \mathrm{~K}, P=1 \mathrm{~atm}$). $\Delta \mathrm{G}^{\ddagger}$ for TS1 leading to 3,4-trans tetrahydrofuran is found to be lower than that of TS2 leading to 3,4-cis tetrahydrofuran (Schemes 3,4). Two conformational isomers, trans precursor A1 and cis precursor A2 were obtained. A2 is 5.15 [1.28] $\mathrm{kcal} / \mathrm{mol}$ more stable than A1. The energy difference may be small enough and they are considered to exist as interconverting forms. Although the barrier for conformational change has not been computed, the Curtin-Hammett principle ${ }^{21}$ may be applicable in this case. The calculation results are similar to those for allyl
ester $+\mathrm{Al}_{2} \mathrm{Cl}_{6} .{ }^{11}$ Thus, formation of 3,4-trans five-membered rings are lower energy process than that of 3,4-cis. The results support the assignment of 3,4-trans stereochemistry for the products 4.

Calculations of $1: 1$ complex of the substrate and AlCl_{3} were also examined (Supplementary Information). Although the concerted formations of both 3,4-cis and trans tetrahydrofuran rings by intramolecular Cl^{-}attack were calculated, they have higher activation energies $\left(\Delta \mathrm{G}^{\dagger}\right)$ than the systems of the substrate and $\mathrm{Al}_{2} \mathrm{Cl}_{6}$. In addition, the AlCl_{3} promoted concerted process to form by-product, 3,4-cis-4-ethynyltetrahydrofuran 5 (Table 1, entries 3-5) as a model system for Scheme 5 was obtained. The activation energy ($\Delta \mathrm{G}^{*}$) for formation of 5 with AlCl_{3} is also higher than the systems of the substrate and $\mathrm{Al}_{2} \mathrm{Cl}_{6}$. Further mechanistic studies are underway.

Scheme 3. Proposed reaction mechanism for cyclization of alleyl ester model compound 3m $(\mathrm{R}=\mathrm{Me})$ with $\mathrm{Al}_{2} \mathrm{Cl}_{6}$. Relative Gibbs free energies ($T=298.15 \mathrm{~K}$ and $\left.P=1 \mathrm{~atm}\right)$ for intermediates and TSs (transition states) of the model compounds ($\mathbf{3 m}+\mathrm{Al}_{2} \mathrm{Cl}_{6}$) are obtained by B3LYP/6-31G* (without brackets) and [B3LYP/6-311+G(d,p)SCRF $=($ PCM, solvent $=$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) // B3LYP/6-31G*] (with square brackets []).

Scheme 4. The reaction pathway leading to 3,4-cis intermediate B2 for model compounds $\left(3 \mathrm{~m}+\mathrm{Al}_{2} \mathrm{Cl}_{6}\right)$. B3LYP/6-31G*-optimized structures of the model compounds are shown. The Gibbs free energies are relative to $\mathbf{A 1}(\mathrm{R}=\mathrm{Me})$ in Scheme 3 .

Scheme 5. Formation of by-product 5

Concerning the reactivity of the oxygen and nitrogen substrates, relatively weak Lewis acids such as zinc halides promote the cyclization of the amide substrates 11a,b. The facile cyclization of amides compared to esters can be explained as follows. The conformations of model compounds of allenyl ester $\mathbf{3}$ and amide substrate $\mathbf{1 1}$ were calculated and compared. The s-cis and s-trans conformations about the 2 -ester or amide carbonyl moiety are shown in Scheme 6. Ester 3 is 8.98 [7.67] $\mathrm{kcal} / \mathrm{mol}$ more stable in s-cis conformation, probably because of the steric repulsion. On the other hand, the energy difference of s-cis and s-trans conformarions of amide $\mathbf{1 1}$ is small. In order to cyclize, they must have s-trans conformations. The different reactivities of esters and amides may arise from their structural features.

$0 \mathrm{kcal} / \mathrm{mol}$ [$0 \mathrm{kcal} / \mathrm{mol}$]

+0.92 kcal/mol [-0.06 kcal/mol]

Scheme 6. The model compounds, dimethyl esters with allenyl group 3m and 11m optimized by B3LYP/6-31G* and their relative energies $\Delta \mathrm{G}^{\circ}$. $\Delta \mathrm{G}^{0}$ is the difference of Gibbs free energies ($T=298.15 \mathrm{~K}, P=1$ atom) of B3LYP/6-31G* (without brackets) and [B3LYP/6$311+\mathrm{G}(\mathrm{d}, \mathrm{p}) \mathrm{SCRF}=\left(\mathrm{PCM}\right.$, solvent $\left.=\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / / \mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{G}^{*}$] $($ with square brackets []), relative to that of s-cis conformations.

In summary, a Lewis acid-promoted reaction of allenyl ethenetricarboxylates 3a,b and the amides 11a,b to give haloalkenyl oxygen and nitrogen-contaning five-membered heterocycles has been found. The reaction gave 3,4-trans substituted cyclized products stereoselectively. AlCl_{3} and AlBr_{3} gave 2-oxotetrahydrofurans, and $\mathrm{AlCl}_{3}, \mathrm{ZnX} 2(\mathrm{X}=\mathrm{Cl}$, $\mathrm{Br}, \mathrm{I})$ gave 2-oxopyrrolidines efficiently. The haloalkenyl five-membered heterocycles generated in this reaction should be versatile synthetic intermediates. Some transformations of the products utilizing the haloalkenyl functionality have also been demonstrated. Further elaboration of the products and studies on various alkyl substitution patterns of allenyl groups including chiral substrates are under investigation.

Experimental Section

General Methods. ${ }^{1} \mathrm{H}$ Chemical shifts are reported in ppm relative to $\mathrm{Me}_{4} \mathrm{Si} .{ }^{13} \mathrm{C}$ Chemical shifts are reported in ppm relative to $\mathrm{CDCl}_{3}(77.1 \mathrm{ppm}) .{ }^{13} \mathrm{C}$ mutiplicities were determined by DEPT and HSQC. Peak assignments are made by 2D COSY, HSQC, NOESY, and HMBC spectra.

Allenyl alcohols 2a,b,c were prepared according to the literature. ${ }^{5 \mathrm{a}, 22,23}$
1,1-Diethyl 2-buta-2,3-dienyl ethene-1,1,2-tricarboxylate (3a) To a solution of 1,1-diethyl 2-hydrogen ethenetricarboxylate ($432 \mathrm{mg}, 2 \mathrm{mmol}$) (prepared from 1,1-diethyl 2-tert-butyl ethenetricarboxylate ($545 \mathrm{mg}, 2 \mathrm{mmol}$) upon treatment with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$) in ether (2 mL) were added diethyl azodicarboxylate 40% in toluene ($0.91 \mathrm{~mL}, 2 \mathrm{mmol}$), PPh_{3} ($525 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathbf{2 a}(210 \mathrm{mg}, 3 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred overnight. After removal of the solvent under reduced pressure, the residue was purified by column chromatography over silica gel with hexane-ether as eluent to give $\mathbf{3 a}$ ($333 \mathrm{mg}, 62 \%$).

3a: $\mathrm{R}_{\mathrm{f}}=0.8$ (ether); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{dt}, J=$ $7.1,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{dt}, J=6.6,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{tt}, J=7.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 13.91(\mathrm{q}), 13.96(\mathrm{q}), 62.13(\mathrm{t}), 62.54(\mathrm{t}), 63.48(\mathrm{t})$, 76.96 (t), 85.57 (d), 129.63 (d), 139.29 (s), 162.21 (s), 163.27 (s), 164.18 (s), 210.08 (s); IR (neat) 2984, 1958, 1728, 1652, 1259, 1178, $1067 \mathrm{~cm}^{-1}$; MS (EI) m/z $269\left(\mathrm{M}^{+}, 29\right), 200$ (90), 199 (93), 171 (95), 143 (100\%); HRMS M ${ }^{+} 268.0945$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}$ 268.0947); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{6}$: C, $58.20 ; \mathrm{H}, 6.01$. Found: C, $58.05 ; \mathrm{H}, 5.81$.

3b: $\mathrm{R}_{\mathrm{f}}=0.8$ (ether); pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 6 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 13.98(\mathrm{q}), 14.01(\mathrm{q}), 20.19(\mathrm{q}), 62.13(\mathrm{t}), 62.54(\mathrm{t}), 64.73(\mathrm{t}), 83.99(\mathrm{~d}), 97.73$ (s), 129.98 (d), 139.10 (s), 162.33 (s), 163.36 (s), 164.30 (s), 203.87 (s); IR (neat) 2984, 1972, 1728, 1651, 1446, 1375, 1259, 1177, $1067 \mathrm{~cm}^{-1}$; MS (EI) m/z $297\left((\mathrm{M}+1)^{+}, 16\right), 296$
$\left(\mathrm{M}^{+}, 5.6\right), 269$ (24), 251 (100\%); HRMS M ${ }^{+} 296.1260$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{6}$ 296.1260); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{6}$: C, $60.80 ; \mathrm{H}, 6.80$. Found: C, $60.88 ; \mathrm{H}, 6.98$.

3c: $\mathrm{R}_{\mathrm{f}}=0.6$ (hexane-ether $=1: 1$); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ $1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.37(\mathrm{tdt}, J=6.8,6.8,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{dt}, J=6.8,3.1 \mathrm{~Hz}$, $2 \mathrm{H}), 5.10(\mathrm{tt}, J=6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ $13.98(\mathrm{q}), 14.02(\mathrm{q}), 27.44(\mathrm{t}), 62.16(\mathrm{t}), 62.57(\mathrm{t}), 64.81(\mathrm{t}), 75.84(\mathrm{t}), 85.55(\mathrm{~d}), 129.86(\mathrm{~d})$, 139.19 (s), 162.34 (s), 163.58 (s), 164.27 (s), 209.10 (s); IR (neat) 2984, 1957, 1728, 1373, 1345, 1261, 1180, 1066, $1023 \mathrm{~cm}^{-1}$; MS (EI) m/z $282\left(\mathrm{M}^{+}, 3.2\right.$), 236 (24), 208 (45), 171 (90), 143 (100\%); HRMS M ${ }^{+} 282.1102$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6}$ 282.1103); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6}$: C, 59.57; H, 6.43. Found: C, 59.59; H, 6.55.

Typical experimental procedure (eq 3, Table 1, entry 1). To a solution of $\mathbf{3 a}$ (148 mg , $0.55 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$ was added AlCl_{3} ($73 \mathrm{mg}, 0.55 \mathrm{mmol}$). The mixture was stirred at room temperature for 18 h . The reaction mixture was poured into saturated aqueous NaHCO_{3} solution. The mixture was extracted with dichloromethane and the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was filtered through Florisil eluting with dichloromethane to give $\mathbf{4 a}$ ($126 \mathrm{mg}, 75 \%$).

Diethyl 2-[trans-4-(1-chlorovinyl)-2-oxotetrahydrofuran-3-yl]malonate (4a): $\mathrm{R}_{\mathrm{f}}=0.7$ (ether); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.30$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.43(\mathrm{dd}, J=9.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{ddd}, J=9.9,8.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.28(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{dd}, J=8.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=1.6,0.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$. Selected NOEs are between $\delta 3.43(\mathrm{H}-3)$ and $\delta 5.38$ $(=\mathrm{CHH}) . ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta(\mathrm{ppm}) 13.93$ (q), 13.97 (q), 41.85 (d), 46.09 (d), 49.68 (d), 62.06 (t , 62.17 (t$), 68.74$ (t$), 117.20$ (t$), 138.72$ (s$), 167.12$ (s$), 167.45$ (s$), 175.17$ (s). Selected HMBC correlations are between $\delta 3.97$ (H-4) and $\delta 41.85$ (C-3), 68.74 (C-5), between $\delta 3.43(\mathrm{H}-3)$ and $\delta 46.09(\mathrm{C}-4), 138.72(\mathrm{CCl}=), \delta 4.52(\mathrm{H}-5 \mathrm{~b})$ and $\delta 41.85(\mathrm{C}-3)$, $138.72(\mathrm{CCl}=)$, and between $\delta 5.32,5.38\left(=\mathrm{CH}_{2}\right)$ and $\delta 46.09(\mathrm{C}-4), 138.72(\mathrm{CCl}=)$; IR (neat)

2984, 1781, 1734, 1633, 1476, 1373, 1264, 1240, 1181, $1032 \mathrm{~cm}^{-1}$; MS (FAB) $\mathrm{m} / \mathrm{z} 307,305$ $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS $[\mathrm{M}+\mathrm{H}]^{+} 305.0795$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClO}_{6} 305.0792$).

Diethyl 2-[trans-4-(1-bromovinyl)-2-oxotetrahydrofuran-3-yl]malonate (4b): $\mathrm{R}_{\mathrm{f}}=0.5$ (hexane-ether = 1:1); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.29(\mathrm{t}, \mathrm{J}=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=9.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{ddd}, J=9.8,8.8,8.8$ Hz, 1H), $4.00(\mathrm{~d}, ~ J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.28(\mathrm{~m}, 5 \mathrm{H}), 4.49(\mathrm{dd}, J=9.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=2.0,0.4 \mathrm{~Hz}, 1 \mathrm{H})$. Selected NOEs are between $\delta 3.40(\mathrm{H}-3)$ and $5.82(=\mathrm{CHH}) . ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 14.00(\mathrm{q}), 42.87$ (d), 47.42 (d), 49.65 (d), 62.08 (t), $62.19(\mathrm{t}), 69.62(\mathrm{t}), 121.67(\mathrm{t}), 131.71(\mathrm{~s}), 167.13(\mathrm{~s}), 167.48(\mathrm{~s}), 175.08(\mathrm{~s})$. Selected HMBC correlations are between $\delta 3.87(\mathrm{H}-4)$ and $\delta 42.87(\mathrm{C}-3), 121.67\left(=\mathrm{CH}_{2}\right)$, between $\delta 3.40(\mathrm{H}-3)$ and $\delta 47.42(\mathrm{C}-4), 131.71(\mathrm{CBr}=), \delta 4.49(\mathrm{H}-5 \mathrm{~b})$ and $\delta 42.87(\mathrm{C}-3)$, $131.71(\mathrm{CBr}=)$, and between $\delta 5.57,5.82\left(=\mathrm{CH}_{2}\right)$ and $\delta 47.42(\mathrm{C}-4), 131.71(\mathrm{CBr}=)$; IR (neat) 2983, 1780, 1733, 1627, 1475, 1373, 1179, $1032 \mathrm{~cm}^{-1}$; MS (CI) m/z 351, $349[\mathrm{M}+\mathrm{H}]^{+}$; HRMS $[\mathrm{M}+\mathrm{H}]^{+}$349.0285, 351.0261 (calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BrO}_{6} 349.0287,351.0266$).

Diethyl 2-(cis-4-ethynyl-2-oxotetrahydrofuran-3-yl)malonate (5): $\mathrm{R}_{\mathrm{f}}=0.5$ (hexane-ether $=1: 1)$; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.32$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.29(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=10.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dddd}, J=$ 8.3, 4.4, 3.4, 2.6 Hz, 1H), 3.87 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.22-4.33 (m, 4H), $4.40(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 14.01$ (q), 14.04 (q), 31.58 (d), 42.70 (d), 50.94 (d), 62.28 (t), 62.30 (t), 71.19 (t), 74.57 (d), 79.22 (s$), 167.07$ (s), $167.13(\mathrm{~s}), 174.14(\mathrm{~s}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 0.890(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dddd}, J=8.2,5.7,2.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}$, $J=8.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=10.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=8.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.25(\mathrm{~m}, 2 \mathrm{H})$. Selected NOEs are between δ $3.15(\mathrm{H}-4)$ and $\delta 3.42(\mathrm{H}-3), 3.25(\mathrm{H}-5 \mathrm{a})$ and between $\delta 3.42(\mathrm{H}-3)$ and $\delta 4.09$ $\left.\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 13.83$ (q), 13.93 (q), 31.79 (d), 43.07 (d), 51.41 (d), 61.92 (t), 62.12 (t), 70.46 (t), 74.16 (d), 79.65 (s), 167.38 (s), 167.44 (s), 173.81 (s). Selected HMBC correlations are between $\delta 3.42(\mathrm{H}-3)$ and $\delta 51.41$ $\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 31.79(\mathrm{C}-4), 79.65(\mathrm{C} \equiv \mathrm{CH})$, between $\delta 3.15(\mathrm{H}-4)$ and $\delta 43.07(\mathrm{C}-3), 79.65$
$(C \equiv \mathrm{CH})$, $74.16(\mathrm{C} \equiv \mathrm{CH})$, between $\delta 3.68(\mathrm{H}-5 \mathrm{~b})$ and $\delta 31.79(\mathrm{C}-4), 43.07(\mathrm{C}-3), 79.65$ $(C \equiv \mathrm{CH})$ and between $\delta 3.25(\mathrm{H}-5 \mathrm{a})$ and $\delta 79.65$ ($\mathrm{C} \equiv \mathrm{CH}$).; IR (neat) 3275, 2982, 1781, 1734, 1467, 1447, 1370, 1283, 1249, 1163, 1096, $1029 \mathrm{~cm}^{-1}$; MS (EI) m/z $269\left([\mathrm{M}+\mathrm{H}]^{+}, 83\right), 223$ (100\%); HRMS [M+H] 269.1029 (calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{6}$ 269.1025).

6: $\mathrm{R}_{\mathrm{f}}=0.3$ (hexane-ether $=1: 1$); pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.29$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21-4.30(\mathrm{~m}, 4 \mathrm{H}), 4.70(\mathrm{dtd}, J=7.2,2.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=7.0,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.87(\mathrm{dt}, J=6.6,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.29(\mathrm{tt}, J=7.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 14.01 (q), $14.04(\mathrm{q}), 55.14(\mathrm{~d}), 62.05(\mathrm{t}), 62.09(\mathrm{t}), 63.89(\mathrm{t}), 69.75(\mathrm{~d}), 76.92(\mathrm{t}), 85.67$ (d), 166.99 (s), 167.19 (s), 171.45 (s), 210.13 (s); IR (neat) 3491, 2984, 1958, 1739, 1466, 1446, 1373, 1267, 1178, $1033 \mathrm{~cm}^{-1} ;$ MS (CI) m/z $287[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS $[\mathrm{M}+\mathrm{H}]^{+} 287.1130$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{7}$ 287.1131).

Diethyl 2-[trans-4-(1-chloro-2-methylprop-1-enyl)-2-oxotetrahydrofuran-3-yl]malonate

 (4c): $\mathrm{R}_{\mathrm{f}}=0.4$ (hexane-ether $=1: 1$); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dd}, J=$ $10.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-4.26(\mathrm{~m}, 5 \mathrm{H}), 4.39(\mathrm{dd}, J=8.6,8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.49 (ddd, $J=10.4,8.9,8.9 \mathrm{~Hz}, 1 \mathrm{H})$. Selected NOEs are between $\delta 4.49(\mathrm{H}-4)$ and $\delta 3.96$ $\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right) \cdot:{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 13.94(\mathrm{q}), 14.01(\mathrm{q}), 20.82(\mathrm{q}), 22.65$ (q), 41.08 (d), 42.53 (d), 49.28 (d), 61.98 (t), 62.03 (t), 68.53 (t), 123.71 (s), 134.30 (s), 167.51 (s), 167.70 (s), 175.61 (s). Selected HMBC correlations are between $\delta 4.49(\mathrm{H}-4)$ and $\delta 42.53(\mathrm{C}-3), 68.53(\mathrm{C}-5)$, between $\delta 3.56(\mathrm{H}-3)$ and $\delta 41.08(\mathrm{C}-4), 123.71(\mathrm{CCl}=), \delta 4.39$ $(\mathrm{H}-5 \mathrm{~b})$ and $\delta 42.53(\mathrm{C}-3), 68.53(\mathrm{C}-5)$, and between $\delta 1.79,1.86\left(=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$ and $\delta 123.71$ (CCl=).; IR (neat) 2983, 2920, 1782, 1738, 1466, 1446, 1374, 1239, 1179, $1027 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 334\left(\mathrm{M}^{+}, 5.6\right), 332\left(\mathrm{M}^{+}, 16\right), 173$ (20), 160 (19), 85 (81), 83 (100\%); HRMS M ${ }^{+}$ 332.1026, 334.1010 (calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClO}_{6} 332.1027,334.0997$).Diethyl 2-[trans-4-(1-bromo-2-methylprop-1-enyl)-2-oxotetrahydrofuran-3-yl]malonate (4d): $\mathrm{R}_{\mathrm{f}}=0.5$ (hexane-ether $=1: 1$); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{dd}, J=9.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=$
4.7 Hz, 1H), 4.01-4.27 (m, 5H), 4.35-4.43 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 13.98 (q), 14.02 (q), 21.36 (q), 26.41 (q), 42.17 (d), 43.81 (d), 49.22 (d), $62.00(\mathrm{t}), 62.03(\mathrm{t})$, 69.49 (t), 119.05 (s), 137.31 (s), 167.51 (s), 167.73 (s), 175.52 (s$) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 0.892(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.907(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H})$, $3.51(\mathrm{dd}, J=10.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-4.00(\mathrm{~m}, 6 \mathrm{H}), 4.08(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{ddd}, J=$ 10.7, 8.9, $8.9 \mathrm{~Hz}, 1 \mathrm{H})$. Selected NOEs are between $\delta 4.44(\mathrm{H}-4)$ and $\delta 4.08\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$.; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(\mathrm{ppm}) 13.77$ (q), 13.78 (q), 21.06 (q), 25.78 (q), 42.35 (d), 44.01 (d), 49.55 (d), 61.61 (t), 61.78 (t), 69.89 (t), 119.68 (s), 136.80 (s), 167.66 (s), 168.00 (s), 174.81 (s). Selected HMBC correlations are between $\delta 3.51(\mathrm{H}-3)$ and $\delta 49.55$ $\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 42.35(\mathrm{C}-4)$, between $\delta 4.44(\mathrm{H}-4)$ and $\delta 49.55\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$, $44.01(\mathrm{C}-3)$, $69.89(\mathrm{C}-5)$, between $\delta 4.08\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$ and $\delta 44.01(\mathrm{C}-3), 42.35(\mathrm{C}-4)$, and between $\delta 1.53,1.57\left(=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$ and $\delta 119.68(\mathrm{CBr}=) . ;$ IR (neat) 2983, 2913, 1781, 1735, 1446, 1373, 1297, 1265, 1236, 1187, $1027 \mathrm{~cm}^{-1}$; MS (EI) m/z $378\left(\mathrm{M}^{+}, 9.3\right), 376\left(\mathrm{M}^{+}, 9.3\right), 333$ (14), 331 (14), 297 (100\%); HRMS M ${ }^{+}$376.0519, 378.0499 (calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrO}_{6}$ 376.0522, 378.0501).

Diethyl 2-(trans-4-ethyl-2-oxotetrahydrofuran-3-yl)malonate (7t). A mixture of 4a (168 $\mathrm{mg}, 0.55 \mathrm{mmol}$) and $10 \% \mathrm{Pd}-\mathrm{C}(59 \mathrm{mg}, 10 \mathrm{~mol} \%)$ in methanol $(5.5 \mathrm{~mL})$ was stirred in a hydrogen atmosphere for 18 h at room temperature. The catalyst was removed by filtration (Celite) and washed with methanol. The filtrate was concentrated in vacuo. The residue was purified by column chromatography over silica gel with hexane-ether as eluent to give $\mathbf{7 t}$ (76 $\mathrm{mg}, 51 \%$).

7t: $\mathrm{R}_{\mathrm{f}}=0.4$ (hexane-ether $=1: 1$); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 0.917$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.61-$ $1.71(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{dddd}, J=9.2,9.0,8.4,7.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=9.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.30(\mathrm{~m}, 4 \mathrm{H}), 4.52(\mathrm{dd}, J=9.0$, $8.4 \mathrm{~Hz}, 1 \mathrm{H})$. Selected NOEs are between $\delta 2.87(\mathrm{H}-3)$ and $\delta 0.917\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.37-1.50, 1.61-1.71 $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and between $\delta 2.60(\mathrm{H}-4)$ and $\delta 3.90\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right.$, overlapped).; ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 11.12(\mathrm{q}), 14.01(\mathrm{q}), 14.05(\mathrm{q}), 26.23(\mathrm{t}), 39.34(\mathrm{~d}), 44.79$
(d), $51.04(\mathrm{~d}), 62.01(\mathrm{t}), 62.07(\mathrm{t}), 71.91(\mathrm{t}), 167.49(\mathrm{~s}), 167.71(\mathrm{~s}), 176.76(\mathrm{~s})$. Selected HMBC correlations are between δ 1.37-1.50, 1.61-1.71 $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $\delta 44.79(\mathrm{C}-3), 39.34$ (C-4), 71.91 (C-5) and between $\delta 0.917\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $\delta 39.34$ (C-4).; IR (neat) 2980, 1778, 1733, 1465, 1372, 1300, 1264, 1235, 1178, $1026 \mathrm{~cm}^{-1}$; MS (EI) m/z 273 ([M+H] ${ }^{+}, 3.8$), 272 $\left(\mathrm{M}^{+}, 1.9\right), 227$ (51), 160 (100\%); HRMS $[\mathrm{M}+\mathrm{H}]^{+} 273.1331$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{6}$ 273.1338), $\mathrm{M}^{+} 272.1259$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{6} 272.1260$).

Transformation of $\mathbf{8}$ to $7 \mathbf{t}$. A solution of compound $\boldsymbol{8}^{11}(113 \mathrm{mg}, 0.37 \mathrm{mmol}), \mathrm{Bu}_{3} \mathrm{SnH}(215$ $\mathrm{mg}, 199 \mu \mathrm{~L}, 0.74 \mathrm{mmol}$), and AIBN ($12.2 \mathrm{mg}, 0.074 \mathrm{mmol}$) in benzene (2.3 mL) was heated at reflux for 3 h and cooled to room temperature. The reaction mixture was concentrated under reduced presure. The residue was purified by column chromatography over silica gel with hexane-ether as the eluent to give $7 \mathbf{t}(89 \mathrm{mg}, 89 \%) .{ }^{1} \mathrm{H}$ NMR spectra of the product is identical with those of $7 \mathbf{t}$ obtained from $\mathbf{4 a}$.

Diethyl 2-(cis-4-ethyl-2-oxotetrahydrofuran-3-yl)malonate (7c). A mixture of 5 (146 mg, 0.54 mmol) and $10 \% \mathrm{Pd}-\mathrm{C}(58 \mathrm{mg}, 10 \mathrm{~mol} \%$) in methanol (5.5 mL) was stirred in a hydrogen atmosphere for 18 h at room temperature. The catalyst was removed by filtration (Celite) and washed with methanol. The filtrate was concentrated in vacuo. The residue was purified by column chromatography over silica gel with hexane-ether as eluent to give 7c ($115 \mathrm{mg}, 78 \%$).

7c: $\mathrm{R}_{\mathrm{f}}=0.3$ (hexane-ether $=1: 1$); colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 0.951$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-$ $1.44(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.70(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.58(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.32(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 11.36(\mathrm{q}), 13.97$ (q), 14.04 (q), 20.34 (t), 39.63 (d), 43.83 (d), 49.37 (d), 62.16 (t), 70.13 (t), 167.28 (s), 167.38 (s$), 175.86$ (s$) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ (ppm) $0.451(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.698-0.814(\mathrm{~m}, 1 \mathrm{H}), 0.881(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.918-1.02$ $(\mathrm{m}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{ddd}, J=9.3,5.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}$, $J=11.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.93(\mathrm{~m}$, $2 H), 4.10-4.23(\mathrm{~m}, 2 \mathrm{H})$. Selected NOEs are between $\delta 3.65\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$ and $\delta 0.698-0.814$, 0.918-1.02 ($\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) . ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 11.08(\mathrm{q}), 13.86(\mathrm{q}), 13.96(\mathrm{q})$,
20.27 (t), 39.60 (d), 44.11 (d), 49.76 (d), 61.78 (t), 61.97 ($t), 69.47$ (t), 167.51 (s$), 167.61$ (s), 175.46 (s). Selected HMBC correlations are between $\delta 3.65\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 3.49(\mathrm{H}-5)$ and δ $44.11(\mathrm{C}-3)$, between $\delta 0.451\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.698-0.814\left(\mathrm{CHHCH}_{3}\right)$ and $\delta 39.60(\mathrm{C}-4)$, and between $\delta 0.698-0.814,0.918-1.02\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $\delta 69.47$ (C-5).; IR (neat) 2979, 1777, 1752, 1737, 1465, 1369, 1284, 1166, $1030 \mathrm{~cm}^{-1}$; MS (EI) m/z 272 ($\mathrm{M}^{+}, 1.9$), 271 (11), 226 (100\%); HRMS M ${ }^{+} 272.1273$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{6} 272.1260$).

Allenylamine 10a was prepared according to the literature. ${ }^{24} \mathbf{1 0 b}$ was prepared according to the literature procedure.

10b; pale yellow oil; bp. $43{ }^{\circ} \mathrm{C} / 50 \mathrm{mmHg} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 0.925(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{bs}, 1 \mathrm{H}), 1.52(\mathrm{qt}, J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{dt}, J$ $=6.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{dt}, J=6.6,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{tt}, J=6.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 11.87(\mathrm{q}), 23.22(\mathrm{t}), 47.92(\mathrm{t}), 51.19(\mathrm{t}), 75.92(\mathrm{t}), 89.44(\mathrm{~d})$, 208.35 (s); IR (neat) 3301, 2958, 2931, 2874, 1955, 1458, 1127, $842 \mathrm{~cm}^{-1}$; MS (CI) m/z 112 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS $[\mathrm{M}+\mathrm{H}]^{+} 112.1132$ (calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N} 112.1126$).

Preparation of Substrates 11a-b. To a solution of 1,1-diethyl 2-hydrogen ethenetricarboxylate (432 mg, 2 mmol) (prepared from 1,1-diethyl 2-tert-butyl ethenetricarboxylate ($545 \mathrm{mg}, 2 \mathrm{mmol}$) upon treatment with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$) in THF (2.8 mL) were added allenylamine 10a ($326 \mathrm{mg}, 2 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.28 \mathrm{~mL}, 202 \mathrm{mg}, 2 \mathrm{mmol})$, HOBt (1-hydroxybenzotriazole) ($540 \mathrm{mg}, 4 \mathrm{mmol}$) and EDCI (1-[3-(dimethylamino)propyl]-3ethylcarbodiimide hydrochloride) ($399 \mathrm{mg}, 2.08 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, and was allowed to warm to room temperature and stirred overnight. The reaction mixture was concentrated under reduced pressure and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with saturated aqueous NaHCO_{3} solution, 2 M aqueous citric acid, saturated aqueous NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography over silica gel eluting with hexane-ether ($1: 1$) to give 11a ($375 \mathrm{mg}, 53 \%$).

11a: $\mathrm{R}_{\mathrm{f}}=0.3$ (hexane-ether $=1: 1$); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (2 rotamers, ratio $1.5: 1) \delta(\mathrm{ppm}) 1.29(\mathrm{t}, J=7.1,3 \mathrm{H} \times 0.4$, minor rotamer) $1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H} \times 0.6$, major rotamer), $1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.6), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.4)$, $3.85(\mathrm{dt}$, $J=6.0,3.1 \mathrm{~Hz}, 1 \mathrm{H} \times 0.6), 4.00(\mathrm{dt}, J=6.8,2.5 \mathrm{~Hz}, 1 \mathrm{H} \times 0.4), 4.24-4.39(\mathrm{~m}, 4 \mathrm{H}), 4.57(\mathrm{~s}$, $2 \mathrm{H} \times 0.4$), $4.65(\mathrm{~s}, 2 \mathrm{H} \times 0.6), 4.78(\mathrm{dt}, J=6.6,2.6 \mathrm{~Hz}, 2 \mathrm{H} \times 0.4), 4.88(\mathrm{dt}, J=6.6,3.1 \mathrm{~Hz}$, $2 \mathrm{H} \times 0.6$), $5.07(\mathrm{tt}, J=6.6,6.0 \mathrm{~Hz}, 1 \mathrm{H} \times 0.6), 5.15(\mathrm{tt}, J=6.8,6.6 \mathrm{~Hz}, 1 \mathrm{H} \times 0.4), 7.22-7.43(\mathrm{~m}$, 5 H), $7.34(\mathrm{~s}, 1 \mathrm{H} \times 0.4), 7.36(\mathrm{~s}, 1 \mathrm{H} \times 0.6)$; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 14.01$ (q), $14.03(\mathrm{q}), 14.05(\mathrm{q}), 14.10(\mathrm{q}), 43.85(\mathrm{t}), 45.88(\mathrm{t}), 48.37(\mathrm{t}), 51.01(\mathrm{t}), 61.95(\mathrm{t}), 62.25(\mathrm{t})$, 76.58 (t), 78.11 (t), 85.59 (d), 86.58 (d), 127.22 (d), 127.75 (d), 128.10 (d), 128.57 (d), 128.72 (d), 129.05 (d), 134.19 (d), 134.28 (d), 135.20 (s), 135.54 (s), 135.71 (s), 136.46 (s), 162.97 (s), 163.08 (s), 164.26 (s), 164.34 (s), 164.52 (s), 164.59 (s), 208.90 (s), 209.69 (s); IR (neat) 2983, 1956, 1732, 1652, 1496, 1446, 1373, 1255, 1199, 1069, $1022 \mathrm{~cm}^{-1}$; MS (EI) m/z $357\left(\mathrm{M}^{+}, 67\right), 312(24), 158(30), 143$ (73), 91 (100\%); HRMS M 357.1577 (calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{5} 357.1576$).

11b (82%) : $\mathrm{R}_{\mathrm{f}}=0.3$ (hexane-ether $\left.=1: 1\right)$; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(2$ rotamers, ratio $1: 1) \delta(\mathrm{ppm}) 0.909(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H} \times 0.5), 0.930(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H} \times 0.5)$, $1.318(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.5), 1.320(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.5), 1.322(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.5)$, $1.324(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} \times 0.5), 1.55-1.68(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H} \times 0.5), 3.34-$ $3.38(\mathrm{~m}, 2 \mathrm{H} \times 0.5), 3.94(\mathrm{ddd}, J=6.1,3.1,3.1 \mathrm{~Hz}, 2 \mathrm{H} \times 0.5), 4.02(\mathrm{ddd}, J=6.6,2.7,2.7 \mathrm{~Hz}$, $2 \mathrm{H} \times 0.5$), 4.26-4.36 (m, 4H), $4.80(\mathrm{dt}, J=6.6,2.7 \mathrm{~Hz}, 2 \mathrm{H} \times 0.5), 4.89(\mathrm{dt}, J=6.6,3.1 \mathrm{~Hz}$, $2 \mathrm{H} \times 0.5$), $5.12-5.20(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H} \times 0.5), 7.33(\mathrm{~s}, 1 \mathrm{H} \times 0.5) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 11.21(\mathrm{q}), 11.36(\mathrm{q}), 13.95(\mathrm{q} \times 2), 14.01(\mathrm{q}), 14.03(\mathrm{q}), 20.68(\mathrm{t}), 22.12(\mathrm{t})$, $44.37(\mathrm{t}), 47.01(\mathrm{t}), 47.73(\mathrm{t}), 49.59(\mathrm{t}), 61.78(\mathrm{t} \times 2), 62.11(\mathrm{t}), 62.19(\mathrm{t}), 76.47(\mathrm{t}), 78.06(\mathrm{t})$, 86.07 (d), 87.08 (d), 133.94 (d), 134.55 (d), 134.60 (s), 135.05 (s), 163.08 (s), 163.11 (s), 163.62 (s), 163.91 (s), 164.58 (s), 164.62 (s), 208.74 (s), 209.33 (s); IR (neat) 2967, 2937, 1956, 1729, 1652, 1466, 1445, 1430, 1374, 1256, 1210, $1068 \mathrm{~cm}^{-1}$; MS (EI) m/z $309\left(\mathrm{M}^{+}\right.$, 43), 199 (48), 171 (63), 143 (100\%); HRMS M 309.1581 (calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{5} 309.1576$).

Experimental procedure (eq 5, Table 2, entry 2). To a solution of 11 a ($179 \mathrm{mg}, 0.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathrm{ZnCl}_{2}(68.2 \mathrm{mg}, 0.5 \mathrm{mmol})$. The mixture was stirred at room temperature for 18 h . The reaction mixture was quenched by water and then saturated aqueous NaHCO_{3}. The mixture was extracted with dichloromethane and the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The crude product included impurities (possibly non-cyclized water-adducts). To a solution of the crude product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathrm{ZnCl}_{2}(68.2 \mathrm{mg}, 0.5 \mathrm{mmol})$. The mixture was stirred at room temperature for 18 h . The reaction mixture was quenched by water and then saturated aqueous NaHCO_{3}. The mixture was extracted with dichloromethane and the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography over silica gel with hexane-ether $(1: 2)$ as eluent to give 12a ($148 \mathrm{mg}, 76 \%$).

Diethyl 2-(1-benzyl-trans-4-(1-chlorovinyl)-2-oxopyrrolidin-3-yl)malonate (12a): $\mathrm{R}_{\mathrm{f}}=$ 0.3 (hexane-ether = 1:1); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.275(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.279(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.29(\mathrm{dd}, J=9.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=9.0,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=9.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=9.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{ddd}, J=9.4,9.0$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.25(\mathrm{~m}, 4 \mathrm{H}), 4.40(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J$ $=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 5 \mathrm{H})$. Selected NOEs are between $\delta 3.36(\mathrm{H}-3)$ and $\delta 5.25(=\mathrm{CHH})$ and between $\delta 3.72(\mathrm{H}-4)$ and δ $4.06\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right) \cdot ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 13.98(\mathrm{q}), 14.04(\mathrm{q}), 42.64(\mathrm{~d})$, 44.58 (d), 46.76 (t), 48.64 (t), 50.09 (d), 61.67 (t), 61.69 (t), 115.41 (t), 127.72 (d), 128.05 (d), 128.76 (d), 135.80 (s), 141.52 (s), 167.98 (s), 168.14 (s), 171.88 (s). Selected HMBC correlations are between $\delta 3.36(\mathrm{H}-3)$ and $\delta 50.09\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 42.64(\mathrm{C}-4)$, between δ $3.72(\mathrm{H}-4)$ and $\delta 50.09\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 44.58(\mathrm{C}-3)$, between $\delta 3.29,3.41(\mathrm{H}-5 \mathrm{a}, 5 \mathrm{~b})$ and δ $141.52\left(\mathrm{CCl}=\mathrm{CH}_{2}\right)$, and between $\delta 4.06\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$ and $\delta 44.58(\mathrm{C}-3), 42.64(\mathrm{C}-4)$.; IR (neat) 2982, 2935, 1732, 1697, 1632, 1491, 1446, 1373, 1261, 1175, $1032 \mathrm{~cm}^{-1}$; MS (EI) m / z $395\left(\mathrm{M}^{+}, 8.8\right), 393\left(\mathrm{M}^{+}, 26\right), 234(54), 91$ (100\%); HRMS M ${ }^{+} 393.1341,395.1317$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClNO}_{5} 393.1345$, 395.1314).

Diethyl 2-(1-benzyl-trans-4-(1-bromovinyl)-2-oxopyrrolidin-3-yl)malonate (12b): $\mathrm{R}_{\mathrm{f}}=$ 0.6 (ether); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$,
$1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.26(\mathrm{dd}, J=9.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=8.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39$ (dd, $J=9.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{ddd}, J=9.1,8.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-$ $4.25(\mathrm{~m}, 4 \mathrm{H}), 4.40(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.70(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.36(\mathrm{~m}, 5 \mathrm{H})$. Selected NOEs are between $\delta 3.34(\mathrm{H}-3)$ and δ $5.70(=\mathrm{CHH})$ and between $\delta 3.63(\mathrm{H}-4)$ and $\delta 4.07\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right) \cdot ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 14.01$ (q), 14.04 (q), 43.97 (d), 45.50 (d), 46.76 (t), 49.54 (t), 49.99 (d), 61.68 (t), 61.70 (t), 119.86 (t$), 127.71$ (d), 128.06 (d), 128.75 (d), 134.80 (s), 135.77 (s), $168.00(\mathrm{~s}), 168.11$ (s), 171.78 (s). Selected HMBC correlations are between $\delta 3.34$ (H-3) and $\delta 43.97(\mathrm{C}-4)$, between $\delta 3.63(\mathrm{H}-4)$ and $\delta 49.99\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 45.50(\mathrm{C}-3)$, between $\delta 3.26$, $3.39(\mathrm{H}-5 \mathrm{a}, 5 \mathrm{~b})$ and $\delta 134.80\left(\mathrm{CBr}=\mathrm{CH}_{2}\right)$, and between $\delta 4.07\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$ and $\delta 45.50(\mathrm{C}-$ 3), 43.97 (C-4).; IR (neat) 2982, 1733, 1699, 1627, 1490, 1446, 1373, 1290, 1263, 1176, $1030 \mathrm{~cm}^{-1}$; MS (EI) m/z $439\left(\mathrm{M}^{+}, 34\right), 437\left(\mathrm{M}^{+}, 38\right), 358$ (23), 239 (34), 205 (62), 91 (100\%); HRMS M ${ }^{+} 437.0835,439.0826$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BrNO}_{5} 437.0838$, 439.0817).

Diethyl 2-(1-benzyl-trans-4-(1-iodovinyl)-2-oxopyrrolidin-3-yl)malonate (12c): $\mathrm{R}_{\mathrm{f}}=0.6$ (hexane-ether $=1: 4)$; yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.10-3.17(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{dd}, J=8.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H})$, $4.06(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.25(\mathrm{~m}, 4 \mathrm{H}), 4.39(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=1.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.36$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 14.02(\mathrm{q}), 14.06(\mathrm{q}), 46.08(\mathrm{~d}), 46.72(\mathrm{t})$, 47.11 (d), 49.87 (d), 51.12 (t), 61.64 (t), 61.66 (t), 115.84 (s), 127.69 (d), 128.08 (d), 128.54 (t), 128.70 (d), 135.73 (s), 167.98 (s), 168.03 (s), 171.63 (s); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ (ppm) $0.934(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.955(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.86(\mathrm{dd}, J=9.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (dd, $J=9.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{ddd}, J=8.8,8.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=8.8,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.83-4.08 (m, 4H), $4.06(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.41(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=1.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.21$ $(\mathrm{m}, 4 \mathrm{H})$. Selected NOEs are between $\delta 3.30(\mathrm{H}-3)$ and $\delta 5.81(=\mathrm{CHH})$ and between $\delta 3.20$ (H-4) and $\delta 4.31\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right) \cdot ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 13.90(\mathrm{q}), 13.95$ (q), 46.45 (d), 46.54 (t), 47.24 (d), 50.23 (d), 50.83 (t), 61.39 (t), 61.48 ($t), 116.56$ ($s), 127.69$ (d), 128.31 (d), 128.38 (t), 128.81 (d), 136.69 (s), 168.15 (s), 168.29 (s), 171.23 (s). Selected

HMBC correlations are between $\delta 3.30(\mathrm{H}-3)$ and $\delta 50.23\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 46.45(\mathrm{C}-4)$, between $\delta 3.20(\mathrm{H}-4)$ and $\delta 50.23\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 47.24(\mathrm{C}-3)$, between $\delta 2.86,2.98(\mathrm{H}-$ $5 \mathrm{a}, 5 \mathrm{~b})$ and $\delta 116.56\left(\mathrm{CI}=\mathrm{CH}_{2}\right)$, and between $\delta 4.31\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$ and $\delta 47.24(\mathrm{C}-3), 46.45$ (C-4).; IR (neat) 2980, 2934, 1733, 1699, 1612, 1488, 1445, 1372, 1287, 1261, 1175, 1030 cm^{-1}; MS (FAB) m/z $508[\mathrm{M}+\mathrm{Na}]^{+}, 486[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS $[\mathrm{M}+\mathrm{H}]^{+} 486.0779$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{INO}_{5}$ 486.0778).

Diethyl 2-(trans-4-(1-chlorovinyl)-1-propyl-2-oxopyrrolidin-3-yl)malonate (12d): $\mathrm{R}_{\mathrm{f}}=$ 0.5 (hexane-ether $=1: 2$); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 0.912(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{qt}, J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 3.21-3.33 (m, 3H), $3.40(\mathrm{dd}, J=9.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=9.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{ddd}, J$ $=8.8,8.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.25(\mathrm{~m}, 4 \mathrm{H}), 5.22(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.30(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$. Selected NOEs are between $\delta 3.21-3.33$ (H-3, overlapped) and δ $5.30(=\mathrm{CHH})$ and between $\delta 3.74(\mathrm{H}-4)$ and $\delta 4.01\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right) \cdot ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 11.18$ (q), 13.95 (q), 13.99 (q), 20.32 (t), 42.57 (d), 44.37 (t), 44.71 (d), 49.15 (t), 50.12 (d), 61.56 (t), 61.62 (t), 115.22 (t), 141.81 ($s), 167.97$ (s), 168.22 (s$), 171.63$ (s). Selected HMBC correlations are between δ 3.21-3.33 (H-3, overlapped) and $\delta 50.12$ $\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 42.57(\mathrm{C}-4)$, between $\delta 3.74(\mathrm{H}-4)$ and $\delta 50.12\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 44.71(\mathrm{C}-3)$, between $\delta 3.40,3.54(\mathrm{H}-5 \mathrm{a}, 5 \mathrm{~b})$ and $\delta 141.81\left(\mathrm{CCl}=\mathrm{CH}_{2}\right)$, and between $\delta 4.01\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$ and $\delta 44.71$ (C-3), 42.57 (C-4).; IR (neat) 2966, 2936, 1733, 1696, 1632, 1491, 1446, 1373, 1264, 1175, $1034 \mathrm{~cm}^{-1}$; MS (FAB) m/z $370[\mathrm{M}+\mathrm{Na}]^{+}, 368[\mathrm{M}+\mathrm{Na}]^{+}, 348[\mathrm{M}+\mathrm{H}]^{+}, 346$ $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS $[\mathrm{M}+\mathrm{H}]^{+} 346.1421,348.1392$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{ClNO}_{5} 346.1421,348.1392$).

Diethyl 2-(trans-4-(1-bromovinyl)-1-propyl-2-oxopyrrolidin-3-yl)malonate (12e): $\mathrm{R}_{\mathrm{f}}=$ 0.6 (ether); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 0.915(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1,27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{qt}, J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.34(\mathrm{~m}$, $3 \mathrm{H}), 3.38(\mathrm{dd}, J=9.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=9.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=8.7,8.7,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.25(\mathrm{~m}, 4 \mathrm{H}), 5.47(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74$ (dd, $J=$ $1.8,0.4 \mathrm{~Hz}, 1 \mathrm{H}$). Selected NOEs are between $\delta 3.20-3.34$ (H-3, overlapped) and $\delta 5.74$ $(=\mathrm{CHH})$ and between $\delta 3.65(\mathrm{H}-4)$ and $\delta 4.01\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right) \cdot ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 11.18(\mathrm{q}), 13.98(\mathrm{q} \times 2), 20.31(\mathrm{t}), 43.90(\mathrm{~d}), 44.36(\mathrm{t}), 45.63(\mathrm{~d}), 50.04(\mathrm{~d}), 50.08(\mathrm{t})$,
61.55 (t), 61.61 (t), 119.64 (t), 135.10 (s), 167.96 (s$), 168.17$ (s$), 171.53$ (s$)$. Selected HMBC correlations are between $\delta 3.20-3.34\left(\mathrm{H}-3\right.$, overlapped) and $\delta 50.04\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$, between δ $3.65(\mathrm{H}-4)$ and $\delta 50.04\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 45.63(\mathrm{C}-3)$, between $\delta 3.38,3.53(\mathrm{H}-5 \mathrm{a}, 5 \mathrm{~b})$ and δ $135.10\left(\mathrm{CBr}=\mathrm{CH}_{2}\right)$, and between $\delta 4.01\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$ and $\delta 45.63(\mathrm{C}-3), 43.90(\mathrm{C}-4)$.; IR (neat) $2966,2935,1733,1698,1627,1490,1446,1372,1287,1264,1160,1043 \mathrm{~cm}^{-1}$; MS (EI) m/z $391\left(\mathrm{M}^{+}, 38\right), 389\left(\mathrm{M}^{+}, 36\right), 346$ (27), 344 (29), 310 (100) 232 (96), 230 (99\%); HRMS M ${ }^{+}$389.0836, 391.0811 (calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BrNO}_{5} 389.0838$, 391.0817).

Diethyl 2-(trans-4-(1-iodovinyl)-1-propyl-2-oxopyrrolidin-3-yl)malonate (12f): $\mathrm{R}_{\mathrm{f}}=0.6$ (hexane-ether $=1: 4)$; yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 0.921(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{qt}, J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-$ $3.34(\mathrm{~m}, 5 \mathrm{H}), 3.49(\mathrm{ddd}, J=9.4,8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.25(\mathrm{~m}$, $4 \mathrm{H}), 5.77(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=1.6,0.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 11.24(\mathrm{q}), 13.98(\mathrm{q}), 14.04(\mathrm{q}), 20.32(\mathrm{t}), 44.36(\mathrm{t}), 46.00(\mathrm{~d}), 47.26(\mathrm{~d}), 49.92(\mathrm{~d})$, 51.71 (t), 61.56 (t), 61.62 (t$), 116.18$ (s$), 128.36$ (t), 167.99 (s$), 168.14$ (s$), 171.43$ (s$) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta(\mathrm{ppm}) 0.758(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.914(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.945(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{qt}, J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{dd}, J=9.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-3.10(\mathrm{~m}$, 3 H), 3.22 (dd, $J=8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dddd}, J=8.4,8.1,6.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-4.04(\mathrm{~m}$, $4 \mathrm{H}), 4.28(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dd}, J=1.6,0.5 \mathrm{~Hz}, 1 \mathrm{H})$. Selected NOEs are between $\delta 3.22$ (H-3, overlapped) and $\delta 5.93(=\mathrm{CHH})$ and between $\delta 3.27$ (H-4, overlapped) and $\delta 4.28\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right) . ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta(\mathrm{ppm}) 11.26$ (q), 13.88 (q), $13.95(\mathrm{q}), 20.50(\mathrm{t}), 44.18(\mathrm{t}), 46.33(\mathrm{~d}), 47.42(\mathrm{~d}), 50.29(\mathrm{~d}), 51.48(\mathrm{t}), 61.36$ (t), 61.39 (t), 117.08 (s), 128.11 (t), 168.27 (s), 168.29 (s), 171.10 (s). Selected HMBC correlations are between $\delta 3.22(\mathrm{H}-3)$ and $\delta 50.29\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 117.08\left(\mathrm{CI}=\mathrm{CH}_{2}\right)$, between $\delta 3.27(\mathrm{H}-4)$ and $\delta 51.48(\mathrm{C}-5)$, between $\delta 2.92,3.01-3.10(\mathrm{H}-5 \mathrm{a}, 5 \mathrm{~b})$ and $\delta 46.33(\mathrm{C}-4)$, and between $\delta 4.28\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$ and $\delta 47.42$ (C-3), 46.33 (C-4).; IR (neat) 2966, 2934, 1733, 1695, 1612, 1489, 1446, 1372, 1287, 1175, 1112, $1043 \mathrm{~cm}^{-1}$; MS (EI) m/z $437\left(\mathrm{M}^{+}, 38\right), 392$ (38), 310 (100%); $\mathrm{HRMS} \mathrm{M}^{+} 437.0697$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{INO}_{5} 437.0699$).

Trans-3-(di(ethoxycarbonyl)methyl)-2-oxotetrahydrofuran-4-carboxylic acid (13): Compound $4 \mathbf{4}(84 \mathrm{mg}, 0.28 \mathrm{mmol})$ was dissolved in a mixture of $\mathrm{CH}_{3} \mathrm{CN}(1.4 \mathrm{~mL}), \mathrm{CCl}_{4}(1.4$ mL), and $\mathrm{H}_{2} \mathrm{O}(1.4 \mathrm{~mL}) . \mathrm{NaIO}_{4}(385 \mathrm{~g}, 1.8 \mathrm{mmol})$ was then added followed by $\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ $(5.2 \mathrm{mg}$, ca. 0.025 mmol). After 1 h of stirring at room temperature, the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was filtered through a short plug of Cerite that was washed with ether to give $\mathbf{1 3}$ (78 mg, 98\%).

13: $\mathrm{R}_{\mathrm{f}}=0.4$ (hexane-ether $=1: 4$); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.28$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.52(\mathrm{dd}, J=9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{ddd}, J=9.2$, $9.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.27(\mathrm{~m}, 4 \mathrm{H}), 4.37(\mathrm{dd}, J=9.2,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.69(\mathrm{dd}, J=9.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.10(\mathrm{bs}, 1 \mathrm{H})$. Selected NOEs are between $\delta 3.82(\mathrm{H}-4)$ and δ $4.07\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right) . ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 13.89(\mathrm{q}), 13.91(\mathrm{q}), 41.82(\mathrm{~d})$, 42.66 (d), 50.56 (d), 62.39 (t), $62.50(\mathrm{t}), 67.75$ (t), 167.25 (s$), 167.47$ (s), 175.04 (s$), 176.02$ (s). Selected HMBC correlations are between $\delta 3.52(\mathrm{H}-3)$ and $\delta 176.02\left(\mathrm{CO}_{2} \mathrm{H}\right), 42.66(\mathrm{C}-$ 4), between $\delta 3.82(\mathrm{H}-4)$ and $\delta 50.56\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 41.82(\mathrm{C}-3)$, between $\delta 4.37,4.69(\mathrm{H}-$ $5 \mathrm{a}, 5 \mathrm{~b})$ and $\delta 176.02\left(\mathrm{CO}_{2} \mathrm{H}\right)$, and between $\delta 4.07\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$ and $\delta 41.82(\mathrm{C}-3), 42.66(\mathrm{C}-$ 4).; IR (neat) 3536, 2985, 1774, 1739, 1469, 1447, 1373, 1207, $1032 \mathrm{~cm}^{-1}$; MS (EI) m/z 288 $\left(\mathrm{M}^{+}, 8.9\right), 270(13), 243$ (100), 197 (94), 160 (91), 125 (70\%); HRMS M 288.0842 (calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{8}$ 288.0845).

Methyl trans-3-(di(ethoxycarbonyl)methyl)-2-oxotetrahydrofuran-4-carboxylate (14): To a solution of $\mathbf{1 3}(200 \mathrm{mg}, 0.69 \mathrm{mmol})$ in methanol $(0.28 \mathrm{~mL})$-benzene $(1.1 \mathrm{~mL})$ was added $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCHN}_{2}$ (ca. 10% hexane solution, 1.5 mL) at room temperature. The mixture was stirred for 30 min at room temperature and concentrated. The residue was purified by column chromatography over silica gel with hexane-ether as eluent to give $\mathbf{1 4}(149 \mathrm{mg}$, 71\%).

14: $\mathrm{R}_{\mathrm{f}}=0.4$ (hexane-ether $=1: 1$); colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.28$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.53(\mathrm{dd}, J=9.5 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.80(\mathrm{ddd}, J=9.7,9.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.27(\mathrm{~m}, 4 \mathrm{H}), 4.28(\mathrm{dd}, J=$
$9.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=9.7,9.2 \mathrm{~Hz}, 1 \mathrm{H})$. Selected NOEs are between $\delta 3.80(\mathrm{H}-4)$ and $\delta 4.05\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right) . ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 13.94$ (q), 41.97 (d), 42.75 (d), 50.48 (d), 52.81 (q), 62.23 (t), 62.32 (t), 67.86 (t), 167.23 (s), 167.38 (s), 171.72 (s), 174.96 (s). Selected HMBC correlations are between $\delta 3.53(\mathrm{H}-3)$ and $\delta 171.72\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $42.75(\mathrm{C}-4)$, between $\delta 3.80(\mathrm{H}-4)$ and $\delta 50.48\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 41.97(\mathrm{C}-3)$, between $\delta 4.28$, $4.65(\mathrm{H}-5 \mathrm{a}, 5 \mathrm{~b})$ and $\delta 171.72\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, and between $\delta 4.05\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$ and $\delta 41.97(\mathrm{C}-$ 3), 42.75 (C-4).; IR (neat) 2986, 1784, 1741, 1439, 1372, 1248, 1210, 1179, $1032 \mathrm{~cm}^{-1}$; MS (EI) $m / z 302\left(\mathrm{M}^{+}, 7.5\right), 271$ (17), 257 (64), 160 (100\%); HRMS M ${ }^{+} 302.1001$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{8}$ 302.1002); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{8}$: C, 51.65; H, 6.00. Found: C, 51.44; H, 5.88.

Preparation of 15a-b. To a solution of $\mathbf{1 3}(144 \mathrm{mg}, 0.5 \mathrm{mmol})$ in THF $(0.7 \mathrm{~mL})$ were added benzylamine ($54 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(70 \mu \mathrm{~L}, 54 \mathrm{mg}, 0.5 \mathrm{mmol}$), HOBt (1hydroxybenzotriazole) ($135 \mathrm{mg}, 1 \mathrm{mmol}$) and EDCI (1-[3-(dimethylamino)propyl]-3ethylcarbodiimide hydrochloride) ($100 \mathrm{mg}, 0.52 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was was allowed to warm to room temperature and stirred for 18 h . The reaction mixture was concentrated under reduced pressure and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with saturated aqueous NaHCO_{3} solution, 2 M aqueous citric acid, saturated aqueous NaHCO_{3} and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography over silica gel eluting with hexane-ether $(1: 4)$ to give 15a (110 mg, 58\%).

15a: $\mathrm{R}_{\mathrm{f}}=0.3$ (hexane-ether $=1: 4$); colorless needles; mp 119-121 ${ }^{\circ} \mathrm{C}$ (AcOEt-hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.51(\mathrm{dd}$, $J=8.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (ddd, $J=8.9,8.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-4.21(\mathrm{~m}, 5 \mathrm{H}), 4.42(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.45(\mathrm{dd}, J=8.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=8.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{br}, 1 \mathrm{H}), 7.26-$ $7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 13.94(\mathrm{q}), 42.64(\mathrm{~d}), 44.10(\mathrm{t}), 44.14$ (d), 50.35 (d), 62.38 (t), 68.88 (t), 127.74 (d), 127.89 (d), 128.81 (d), 137.65 ($s), 167.54$ (s), $168.28(\mathrm{~s}), 170.14(\mathrm{~s}), 175.52(\mathrm{~s})$. Selected HMBC correlations are between $\delta 3.51(\mathrm{H}-3)$ and $\delta 170.14(\mathrm{CONH}), 44.14(\mathrm{C}-4)$, between $\delta 3.61(\mathrm{H}-4)$ and $\delta 50.35\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 42.64(\mathrm{C}-$ 3), and between $\delta 4.45,4.52$ (H-5a,5b) and $\delta 170.14$ (CONH).; IR (KBr) 3302, 2979, 1783,

1770, 1731, 1646, 1540, 1371, 1258, 1189, 1142, 1044, 1012, $701 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 377$ $\left(\mathrm{M}^{+}, 15\right), 279$ (28), 200 (67), 149 (77), 91 (100\%); HRMS $\mathrm{M}^{+} 377.1479$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{7} 377.1475$).

15b: $\mathrm{R}_{\mathrm{f}}=0.5$ (hexane-ether $=1: 4$); colorless needles; mp 118-120 ${ }^{\circ} \mathrm{C}$ (benzene); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 1.240(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.244(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=$ 8.6, 4.0 Hz, 1H), 3.63 (ddd, $J=8.9,8.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99-4.19 (m, 5H), 4.35 (dd, $J=14.9$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=14.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=8.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=8.9$, $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\operatorname{broad} \mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta(\mathrm{ppm}) 13.89(\mathrm{q}), 42.48(\mathrm{~d}), 43.27$ (t), 44.09 (d), 50.31 (d), 62.36 (t), 62.39 (t), 68.85 (t), 128.83 (d), 129.23 (d), 133.43 (s$), 136.33$ (s), 167.53 (s), 168.22 (s), $170.24(\mathrm{~s}), 175.62(\mathrm{~s})$. Selected HMBC correlations are between $\delta 3.51$ (H-3) and $\delta 170.24$ (CONH), $44.09(\mathrm{C}-4)$, between $\delta 3.63(\mathrm{H}-4)$ and $\delta 50.31\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 42.48(\mathrm{C}-3)$, and between $\delta 4.39,4.52(\mathrm{H}-5 \mathrm{a}, 5 \mathrm{~b})$ and $\delta 170.24$ (CONH).; IR (KBr) 3291, 2979, 1784, 1771, 1744, 1645, 1541, 1370, 1261, 1189, $1016 \mathrm{~cm}^{-1}$; MS (EI) m/z $413\left(\mathrm{M}^{+}, 4.3\right), 411\left(\mathrm{M}^{+}, 13\right)$, 366 (13), 243 (44), 140 (100\%); HRMS M ${ }^{+} 411.1084,413.1062$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}_{7}$ 411.1085, 413.1055); Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}_{7}$: C, 55.41 ; H, 5.38; N, 3.40. Found: C, 55.26; H, 5.15; N, 3.32.

Preparation of 16a-b (eq 6). To a mixture of phenylboronic acid ($39 \mathrm{mg}, 0.323 \mathrm{mmol}$), 12c ($155 \mathrm{mg}, 0.307 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(106 \mathrm{mg}, 0.769 \mathrm{mmol})$ were added acetone $(0.61 \mathrm{ml})$, water $(0.77 \mathrm{~mL})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(4.0 \mathrm{mmol} / \mathrm{L}$ acetone solution, $0.31 \mathrm{~mL}, 1.24 \mu \mathrm{~mol})$, successively. The mixture was heated at $65{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was extracted with dichloromethane $(4 \times 20 \mathrm{~mL})$ and the organic phase was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by column chromatography over silica gel eluting with hexane-ether to give $\mathbf{1 6 a}(78 \mathrm{mg}, 58 \%$).

16a: $\mathrm{R}_{\mathrm{f}}=0.6$ (hexane-ether $=1: 4$); pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=9.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=$ $9.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=9.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (dddd, $J=9.2,9.2,7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.96(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.25(\mathrm{~m}, 4 \mathrm{H}), 4.40(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=14.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.13(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.33(\mathrm{~m}, 10 \mathrm{H})$. Selected NOEs are between $\delta 3.40(\mathrm{H}-3)$ and $\delta 5.13(=\mathrm{CHH})$, and between $\delta 3.77(\mathrm{H}-4)$ and $\delta 3.96\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right) \cdot ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 13.97$ (q), 14.02 (q), 39.38 (d), 45.71 (d), 46.82 (t), 51.01 (d), 51.75 (t$), 61.65(\mathrm{t} \times 2), 113.10(\mathrm{t}), 126.74$ (d), 127.63 (d), 127.93 (d), 128.14 (d), 128.54 (d), 128.71 (d), 136.04 (s), 140.62 (s), 148.69 (s), 168.08 (s), 168.23 (s), 172.77 (s). Selected HMBC correlations are between $\delta 3.40(\mathrm{H}-3)$ and $\delta 51.01\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 39.38(\mathrm{C}-4)$, between $\delta 3.77(\mathrm{H}-4)$ and $\delta 51.01\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 45.71(\mathrm{C}-3)$, between $\delta 3.00,3.48(\mathrm{H}-$ $5 \mathrm{a}, 5 \mathrm{~b})$ and $\delta 148.69\left(\mathrm{CPh}=\mathrm{CH}_{2}\right)$, and between $\delta 3.96\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$ and $\delta 45.71(\mathrm{C}-3)$, 39.38 (C-4).; IR (neat) 2982, 2936, 1732, 1695, 1495, 1444, 1370, 1261, 1176, $1030 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 435\left(\mathrm{M}^{+}, 5\right), 276(11), 220(26), 205(100 \%)$; $\mathrm{HRMS} \mathrm{M} ~ 435.2042$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{5}$ 435.2046).

16b: $\mathrm{R}_{\mathrm{f}}=0.4$ (hexane-ether $=1: 4$); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ $0.877(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{qt}, J=7.4$, $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{dd}, J=9.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{t}-\mathrm{like}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{dd}, J=9.1$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=9.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dddd}, J=9.2,9.1,7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}$, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.24(\mathrm{~m}, 4 \mathrm{H}), 5.16(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 5 \mathrm{H})$. Selected NOEs are between $\delta 3.36(\mathrm{H}-3)$ and $\delta 5.16(=\mathrm{CHH})$, 7.28-7.35 (Ph), and between δ $3.79(\mathrm{H}-4)$ and $\delta 3.92\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right) \cdot ;{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 11.24(\mathrm{q})$, $13.96(\mathrm{q}), 14.00(\mathrm{q}), 20.39(\mathrm{t}), 39.37$ (d), 44.46 (t), 45.86 (d), 51.09 (d), 52.32 (t), 61.56 (t), 61.60 (t), 112.85 (t , 126.75 (d), 127.95 (d), 128.57 (d), 140.79 (s$), 149.01$ (s$), 168.09$ (s), 168.32 (s), 172.57 (s). Selected HMBC correlations are between $\delta 3.36$ (H-3) and $\delta 51.09$ $\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 39.37(\mathrm{C}-4)$, between $\delta 3.79(\mathrm{H}-4)$ and $\delta 51.09\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 45.85(\mathrm{C}-3)$, and between $\delta 3.92\left(\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right)$ and $\delta 45.85(\mathrm{C}-3), 39.37$ (C-4).; IR (neat) 2965, 2934, 1732, 1695, 1493, 1444, 1370, 1264, 1177, 1148, $1033 \mathrm{~cm}^{-1}$; MS (EI) m/z $387\left(\mathrm{M}^{+}, 16\right), 342$ (9.3), 228 (100%); HRMS M ${ }^{+} 387.2036$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{5} 387.2046$).

Acknowledgment

This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government. We thank Nara Institute of Science and Technology (NAIST) and Prof. K. Kakiuchi (NAIST) for mass spectra.

Electronic supplementary information (ESI) available: The optimized geometries, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data.

References

${ }^{1}$ (a) The Chemistry of Allenes; Landor, S. R., Ed.; Academic: London, 1982; Vol. 1. (b) Modern Allene Chemistry; N. Krause and A. S. K. Hashmi, Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vols. 1 and 2. (c) S. Ma, Palladium-Catalyzed Two- or Three-Component Cyclization of Functionalized Allenes in Palladium in Organic Synthesis; J. Tsuji, Ed.; Springer: Berlin, Germany, 2005; pp 183-210. (d) S. Ma, Acc. Chem. Res., 2009, 42, 1679. (e) R. Zimmer, C. U. Dinesh, E. Nandanan and F. A. Khan, Chem. Rev., 2000, 100, 3067. (f) S. Ma, Chem. Rev., 2005, 105, 2829. (g) S. Ma, Acc. Chem. Res., 2003, 36, 701. (h) L. K. Sydnes, Chem. Rev., 2003, 103, 1133. (i) H. H. A. M. Hassan, Curr. Org. Synth., 2007, 4, 413.
${ }^{2}$ For some recent examples, see: (a) K. M. Brummond, H. Chen, K. D. Fisher, A. D. Kerekes, B. Rickards, P. C. Sill and S. J. Geib, Org. Lett., 2002, 4, 1931. (b) C. Mukai, I. Nomura, K. Yamanishi and M. Hanaoka, Org. Lett., 2002, 4, 1755. (c) M. A. Tarselli and M. R. Gagné, J. Org. Chem., 2008, 73, 2439. (d) K. M. Brummond and D. Chen, Org. Lett., 2008, 10, 705. (e) H. Tsukamoto and Y. Kondo, Org. Lett., 2008, 10, 2633. (f) J. Mo and P. H. Lee, Org. Lett., 2010, 12, 2570. (g) M. Murakami, S. Kadowaki and T. Matsuda, Org. Lett., 2005, 7, 3953.
${ }^{3}$ (a) M. Bertrand, M.-L. Roumestant and P. Sylvestre-Panthet, J. Chem. Soc., Chem. Commun., 1979, 529. (b) R. Hayashi, J. B. Feltenberger and R. P. Hsung, Org. Lett., 2010,

12, 1152. (c) A. Padwa, H. Lipka, S. H. Watterson and S. S. Murphree, J. Org. Chem., 2003, 68, 6238.
${ }^{4}$ (a) W. G. Dauben, G. Shapiro and L. Luders Tetrahedron Lett., 1985, 26, 1429. (b) B. T. B. Hue, J. Dijkink, S. Kuiper, K. K. Larson, F. S. Guziec, Jr., K. Goubitz, J. Fraanje, H. Schenk, J. H. van Maarseveen and H. Hiemstra, Org. Biomol. Chem., 2003, 1, 4364. (c) M. S. Shepard and E. M. Carreira, J. Am. Chem. Soc., 1997, 119, 2597.
${ }^{5}$ (a) G. A. Molander and E. P. Cormier, J. Org. Chem., 2005, 70, 2622. (b) L. Xu and X. Huang, Tetrahedron Lett., 2008, 49, 500.
${ }^{6}$ S. Kitagaki, S. Teramoto and C. Mukai, Org. Lett., 2007, 9, 2549.
${ }^{7}$ S.-K. Kang, Y.-M. Kim, Y.-H. Ha, C.-M. Yu, H. Yang and Y. Lim, Tetrahedron Lett., 2002, 43, 9105.
${ }^{8}$ G. Lemière, B. Cacciuttolo, E. Belhassen and E. Duñach, Org. Lett., 2012, 14, 2750.
${ }^{9}$ B. B. Snider and D. M. Roush, J. Org. Chem., 1979, 44, 4229.
${ }^{10}$ S. Yamazaki, K. Yamada, S. Yamabe and K. Yamamoto, J. Org. Chem., 2002, 67, 2889.
${ }^{11}$ S. Yamazaki, K. Fujinami, Y. Maitoko, K. Ueda and K. Kakiuchi, J. Org. Chem., 2013, 78, 8405.
${ }^{12}$ (a) S. Yamazaki and M. Takebayashi, J. Org. Chem., 2011, 76, 6432. (b) S. Yamazaki, M. Takebayashi and K. Miyazaki, J. Org. Chem., 2010, 75, 1188. (c) S. Morikawa, S. Yamazaki, M. Tsukada, S. Izuhara, T. Morimoto and K. Kakiuchi, J. Org. Chem., 2007, 72, 6459. (d) S. Yamazaki and Y. Iwata, J. Org. Chem., 2006, 71, 739.
${ }^{13}$ S. Yamazaki, Y. Yamamoto, Y. Fukushima, M. Takebayashi, T. Ukai and Y. Mikata, J. Org. Chem., 2010, 75, 5216.
${ }^{14}$ Preliminary results were presented at the 13 th Tetrahedron Conference Asia Edition, Taipei, 2012 and at the 93rd Annual Meeting of the Chemical Society of Japan, Shiga, 2013. ${ }^{15}$ S.-K. Kang, S.-W. Lee, J. Jung and Y. Lim, J. Org. Chem., 2002, 67, 4376.
${ }^{16}$ M. Hudlicky, In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, U.K., 1991; Vol. 8, pp 895.
${ }^{17}$ (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648. (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1998, 37, 785.
${ }^{18}$ Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
${ }^{19}$ (a) K. Fukui, J. Phys. Chem., 1970, 74, 4161. (b) C. Gonzalez and H. B. Schlegel, J. Phys. Chem., 1989, 90, 2154.
${ }^{20}$ (a) E. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032. (b) M. Cossi, V. Barone, B. Mennucci and J. Tomasi, Chem. Phys. Lett., 1998, 286, 253. (c) B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 106, 5151.
${ }^{21}$ (a) D. Y. Curtin, Rec. Chem. Prog., 1954, 15, 111. (b) L. P. Hammett, Physical Organic Chemistry; McGraw-Hill, New York, 1970. Chapter 5. (c) J. I. Seeman, Chem. Rev., 1983, 83, 83.

[^0]${ }^{24}$ C. Sahlberg, S. B. Ross, I. Fagervall, A. L. Ask and A. Claesson, J. Med. Chem., 1983, 26, 1036.

[^0]: ${ }^{22}$ L. Brandsma, Synthesis of Acetylenes, Allenes and Cumulenes: Methods and Techniques; Elsevier, Amsterdam, 2004.
 ${ }^{23}$ B. M. Trost, A. B. Pinkerton and M. Seidel, J. Am. Chem. Soc., 2001, 123, 12466.

