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Abstract

The contact angle of a cylindrical nanodrop on a nanorough solid surface is cal-

culated, for both hydrophobic and hydrophilic surfaces, using the density functional

theory. The emphasis of the paper is on the dependence of the contact angle on

roughness. The roughness is modeled by rectangular pillars of infinite length lo-

cated on the smooth surface of a substrate, with fluid-pillar interactions different in

strength from the fluid-substrate ones. It is shown that for hydrophobic substrates

the trend of the contact angle to increase with increasing roughness, which was

noted in all previous studies, is not universally valid, but depends on the fluid-pillar

interactions, pillar height, interpillar distance, as well as on the size of the drop.

For hydrophilic substrate, an unusual kink-like dependence of the contact angle on

the nanodrop size is found which is caused by the change in the location of the

leading edges of the nanodrop on the surface. It is also shown that the Wenzel and

Cassie-Baxter equations can not explain all the peculiarities of the contact angle of

a nanodrop on a nanorough surface.

1 Introduction

For more than two centuries, the behavior of a macroscopic liquid drop on a solid surface

was the object of great practical and theoretical interests. The three basic equations

employed are the Young equation [1]

γlv cos θ = γsv − γsl (1)
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for smooth surfaces as well as the Wenzel equation [2]

cos θW = r cos θ (2)

and Cassie-Baxter equation [3]

cos θCB = f cos θ + f − 1 (3)

for rough surfaces. In the above equations, θ, θW , and θCB are the contact angles on a

smooth surface, a rough surface in which the liquid penetrates into the space between

asperities (Wenzel regime), and a rough surface in which the space beneath the drop is

filled with air (Cassie-Baxter regime). In addition, γlv, γsv, and γsl are the liquid-vapor,

solid-vapor, and solid-liquid surface tensions, respectively, r is the roughness defined as

the ratio between the actual area of the rough surface and the projected area of this

surface onto a horizontal smooth one, and f is the roughness defined as the ratio between

the top area of asperities and the area of the surface free of asperities.

Because the surface tensions as well as r and f do not depend on the drop size and

shape, eqs 1, 2, and 3 predict that the contact angle of a macroscopic drop is independent

of the drop size. Another feature is related to the dependence of the contact angle on the

roughness of the surface. For both Wenzel and Cassie-Baxter regimes, the contact angle

increases with increasing roughness if the solid substrate is hydrophobic (θ > 90◦) and

decreases if it is hydrophilic (θ < 90◦). (Below, the terms hydrophobic and hydrophilic

will be used for any surface-fluid pairs, not only for the surface-water one).
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Even though in most cases eqs 1-3 provide correct descriptions of the experimental

data, some cases were identified for which the above mentioned characteristics are not

valid. First, it was observed that for small spherical drops (microdrops) on a smooth

surface the contact angle depends on the radius R of the contact line between drop and

surface. In this case, the Young equation has to be modified by introducing a term

involving the ratio between the line tension τ and radius R. The modified equation has

the form [4]

γlv cos θ = γsv − γsl −
τ

R
. (4)

Eq 4 coincides with eq 1 in the limit R → ∞ (large drop). However, for a cylindrical

(two-dimensional) drop, i.e. a drop which is elongated in a single direction, the last term

in eq 4 should not occur because the contact line between the drop and solid is a straight

line (R = ∞). Therefore, θ for a cylindrical drop does not depend on the drop size.

The situation becomes more complex when the drop size becomes of the order of a few

nanometers. In this case, the thickness of the liquid-fluid interface between the core of the

drop and surrounding vapors becomes comparable with the drop size and the macroscopic

concept of surface tension is no longer valid. For this reason, eqs 1-3 are not applicable

to such drops and microscopic considerations are required to describe a nanodrop on a

solid surface. Comparatively few studies of nanodrops on nanorough surfaces have been

carried out [5]-[11]. In Refs. [5, 10], the calculations were performed using a lattice DFT

approach, which is appropriate for three-dimensional nanodrops with heights of up to

about 100σff , where σff is the diameter of a fluid molecule. The off lattice DFT approach

was employed in Refs. [6, 8, 11]. Because of a large increase of the computational time
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for large nanodrops the heights of the considered cylindrical nanodrops were restricted to

the range 10σff -20σff . In Ref. [7, 9] molecular dynamic simulations were used for drops

with heights of several nanometers.

As expected, in many cases the behavior of the contact angles of nanodrops on na-

norough surfaces was different from that described by eqs 1-3. As an example, one can

mention the qualitative disagreement between the r-dependence of angle θ for a nanodrop

on a nanorough hydrophilic surface provided by the Wenzel equation and that provided

by molecular dynamics simulation [7] and DFT [8]. In the latter cases, θ increases with

increasing roughness, whereas eq 2 predicts the opposite behavior.

Porcheron et.al. [5] and Malanoski et.al [10], have noted that on a hydrophobic smooth

surface the contact angle increases with increasing size of the drop from about 10σff to

120σff , after which it remains constant. That behavior of θ was attributed to the line

tension. A nonmonotonous dependence of θ on the size of the cylindrical drop on a rough

hydrophilic surface was also noted [6].

Surprisingly, the behavior of the contact angle of a nanodrop on a nanorough hy-

drophobic surface agrees qualitatively with the predictions of eqs 1-3. In particular, in

Refs. [5]-[7], [10] was noted that on such surfaces angle θ increases with increasing rough-

ness, in agreement with eqs 2 and 3. However, in the cases presented in Refs. [5]-[7],

[10], the material of the pillars was selected the same as that of the substrate. Is this

conclusion also valid when the interactions between fluid and substrate and between fluid

and pillars are different? In this paper it is shown that in the latter cases the contact

angle of a nanodrop on a rough hydrophobic substrate depends on roughness differently
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from the predictions provided by the Wenzel and Cassie-Baxter equations. Along with

hydrophobic substrates, the hydrophilic ones are also considered.

2 Background

2.1 The system and interaction potentials

The considered system (see Figure 1) consists of a one-component fluid of fixed average

density ρav inside a rectangular box which has finite dimensions Lx and Lh + σfs in

the horizontal (x) and vertical (h) directions, respectively, and infinite dimension in the

y-direction perpendicular to the plane of the figure. (The length σfs is the hard core

diameter of the fluid-substrate interaction.) The system is in contact with a rough solid

surface which is composed of a semiinfinite uniform substrate having a smooth surface

decorated with evenly distributed rectangular pillars which model the roughness. The

material of the pillars can be different from that of the substrate. The pillars have heights

hp, widths dp, and distance between their centers Dp. The parameters of all materials

as well as the size of the pillars will be specified below. At the distance Lh + σfs from

the substrate, the system is limited by a hard wall which has no attractive interactions

with the fluid molecules. In the horizontal direction along the x axis, a periodic boundary

condition is assumed. It will be assumed that the fluid density distribution (FDD) ρf(r)

in the system is uniform in the y-direction and non-uniform in the x- and h-directions i.e.

ρf (r) ≡ ρf(x, h).

The interactions between fluid molecules, between fluid molecules and molecules of

6
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h

x

dp Dp

hp
Σfs

Lh

Lx

Figure 1: Schematic representation of the considered system. The distances between surfaces are

measured between the centers of the molecules forming the first layers.
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the substrate and those of the pillars are provided by the Lennard-Jones potential with

hard core repulsion

φα(r) =



















4ǫα

[

(

σα

r

)12
−
(

σα

r

)6
]

, r ≥ σα

∞, r < σα

(5)

where r = |r − r′|, r and r′ provide the locations of the interacting molecules, the sub-

scripts α are ff , fs, and fp for fluid-fluid, fluid-substrate, and fluid-pillar interactions,

respectively, ǫff , ǫfs, and ǫfp are energy parameters, and σff , σfs, and σfp are hard core

diameters.

For the fluid-fluid interaction, the energy parameter and hard core diameter were se-

lected as for argon (ǫff/kB = 119.76K, σff = 3.405Å) [12], where kB is the Boltzmann

constant. The substrate-fluid interaction ǫfs was selected 0.6ǫff and 1.28ǫff for hydropho-

bic and hydrophilic substrates, respectively, with the hard core diameter σfs = 3.727Å the

same for both substrates. (The contact angles for a nanodrop on smooth hydrophobic and

hydrophilic substrates were 121◦ and 44◦, respectively [13]). For fluid-pillar interaction

the hard core diameter was selected as for the fluid-substrate one (σfp = σfs), but the

energy parameter ǫfp was varied. The number densities of the substrate and pillars were

taken the same ρs = 1.91× 1028m−3. The temperature was selected T = 87.0K = 0.66Tc,

where Tc = 131.6K is the critical temperature of the bulk fluid [12].

The external potential Ufs generated by the solid (substrate plus pillars) does not

depend on the coordinate y, i.e. Ufs ≡ Ufs(x, h). This potential can be calculated

by integrating the Lennard-Jones potential (eq 5) for the fluid-substrate and fluid-pillar
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interactions over the volume of the substrate and pillars, respectively, and can be written

in the form

Ufs(r) =
∫

Vs

ρs(r
′)φfs(|r− r′|)dr′ +

∫

Vp

ρp(r
′)φfp(|r − r′|)dr′ (6)

where Vs and Vp are the volumes occupied by the substrate and pillars, respectively, ρs(r
′)

and ρp(r
′) are the densities of the substrate and pillars, respectively, which, in general,

depend on coordinates. For a uniform substrate (ρs(r
′) ≡ ρs =const) the first integral in

eq 6 has the form

∫

Vs

ρs(r
′)φfs(|r − r′|)dr′ =

2π

3
ǫfsρsσ

3
fs





2

15

(

σfs

σfs + h

)9

−

(

σfs

σfs + h

)3


 . (7)

The integration of the second part of eq 6 can be carried out analytically only over the

y-coordinate. The integration over the x- and h-coordinates was performed numerically.

Note that the origin of the coordinate system was selected at the distance σfs from the

substrate surface (see Figure 1).

2.2 Basic equation of DFT and its solution

The basic equation for the FDD ρf (r) was obtained by minimizing the Helmholtz free

energy of the system, F [ρf(r)]. An explicit expressions for F [ρf (r)] is provided in Ap-

pendix A.

As a result of minimization, one obtains the following Euler-Lagrange equation [6]

log[Λ3ρf (x, h)] − Qf(x, h) =
λ

kBT
(8)

9
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where the function Qf(x, h), which is a functional of ρf (x, h), is provided in Appendix A,

Λ = hP /(2πmkBT )1/2 is the thermal de Broglie wavelength, hP is the Planck constant,

m is the mass of a fluid molecule, and λ is a Lagrange multiplier which accounts for the

constraint of fixed average density of the fluid. This constraint provides the equation

ρav =
1

V

∫

V
drρf(r) (9)

where V is the volume occupied by the fluid. Eq 9 leads to the following expression for λ

[6]

λ = −kBT log

[

1

ρavV Λ3

∫

V
dreQf (x,h)

]

(10)

which after combining with eq 8 provides an integral Euler-Lagrange equation for the

FDD ρf (x, h). The latter equation can be solved numerically by iterations. The details

of the iteration procedure are presented in Appendix A. Here we emphasize only the

choice of the initial fluid density distribution (initial guess) used in the calculations. Due

to the symmetry of the system, it is natural to assume that a nanodrop on a rough

surface can exist only in two states which differ by the drop position with respect to

the pillars (see Figure 2 where those states are presented schematically). One of them

(D1) is symmetrical with respect to a vertical plane passing through the middle of the

pillar, the second one (D2) is symmetrical with respect to a vertical plane located midway

between pillars. For this reason, the initial density distribution was usually selected as

a cylindrical (two-dimensional) rectangular drop of a reasonable density elongated in the

10
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D1

HaL

D2

HbL

Figure 2: Schematic representation of two possible solutions of the Euler-Lagrange equation. The

dashed rectangles represent an initial guess for the iteration procedure. In the figure, the pillars have

white color.

y-direction which possesses the symmetry of one of the mentioned above drops. Note that

the location of the initial guess at any other position increases the time of calculation but

results, nevertheless, in one of the above mentioned two solutions.

As expected, depending on the selected parameters of the system, there are several

possible outcomes of the iterations. In the first case, the drop does not form. This occurs

when the amount of fluid in the system is too small to ensure a drop existence, or when

the solid-fluid interaction is so strong that the fluid molecules completely wet the surface.

In the second case, two initial guesses provide finally the same drop (D1 or D2). In the

last, third case, the initial guesses mentioned above converge to different drops, the free

energy of the system being different for the two drops. The drop corresponding to the

smaller free energy is considered as stable, the other one as metastable.

When using a numerical procedure to solve the Euler-Lagrange equation, one always

encounter the question whether the selected precision can ensure that the obtained so-

lution is not an intermediate step of the iteration procedure, which, in reality, leads to
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another solution. We do not have an exact answer to this question. In Appendix B a

qualitative approach is presented for handling this uncertain situation.

In conclusion of this section, let us note that the selected temperature, T = 87.0K, is

far enough from the critical temperature, Tc of the considered fluid (T/Tc = 0.66) for the

thermal fluctuations to be small. For this reason, the use of DFT, which is based on a

mean-field approximation for the fluid-fluid interactions, is justified.

2.3 Calculation of the contact angle

Because of the nonuniformity of the fluid in nanodrops, the drop profile needed to calculate

the contact angle, is not clearly defined. In this paper, a simple procedure is used in

which the drop profile is given by the line in the vapor-liquid interface which corresponds

to a local constant density ρdiv. The procedure how to determine ρdiv was described in

Ref. [14]. An example of a drop profile obtained in this way is presented in Figure 3.

On this figure and all similar figures below, the lighter areas correspond to higher fluid

densities. After the drop profile was obtained, its upper part was approximated by a circle

and extrapolated until it intersected the solid. The angle that this circle makes with the

solid was considered as the contact angle. This definition of the contact angle does not

account for the profile of the drop in the very vicinity of the solid. Close to the solid,

the fluid density in the drop has an oscillatory behavior and changes considerable. This

makes impossible the use of this region for meaningful contact angle calculations.

Note that in some cases the drop profile has the shape of a closed loop which does

not intersect the solid surface. In this case, the contact angle was considered to be 180◦.

12
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Figure 3: Example of the drop profile (solid line) obtained by the method described in Ref. [14]. The

dividing density ρdivσ3

ff = 0.375 in this example. The lighter areas correspond to higher densities.

Using the obtained drop profile one can calculate the number of molecules in the drop Nd

(per unit length) which will be used as a characteristic of the drop size.

3 Results and discussion

The characteristics of nanodrops (size, contact angle) were examined for 12 rough sur-

faces which differ in the distance between pillars and their height. Depending on those

parameters, the surfaces have different roughnesses, r, which were calculated using the

equation [8]

r = 1 +
2hp

Dp

. (11)

The notations which will be used to identify the surfaces are presented in Table 1 along

with their roughnesses. In most calculations, the total number Ntot of molecules of fluid

in the system per unit length in the y-direction was selected between Ntotσff = 80 and

13
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Table 1: Notations for selected surfaces and their roughnesses

Dp/σff hp/σff

1 2 3

14.0 S11 S12 S13

r=1.143 r=1.286 r=1.429

9.3 S21 S22 S23

r=1.215 r=1.430 r=1.645

7.5 S31 S32 S33

r=1.267 r=1.533 r=1.800

4.8 S41 S42 S43

r=1.417 r=1.833 r=2.250

Ntotσff = 180. The parameter ǫfp of the fluid-pillar interaction was varied between

ǫfp = 0.20ǫfs and ǫfp = 6.0ǫfs for a hydrophobic substrate and between ǫfp = 0.05ǫfs and

2.0ǫfs for a hydrophilic one. In all considered cases, the fluid penetrated into the space

between pillars (the Wenzel regime).

In Sec. 3.1 it is shown that, for some values of the interaction parameters and size

of the drop, the system can be in a stable or metastable state. The dependence of the

contact angle of a nanodrop on a rough surface on the drop size is examined in Sec. 3.2,

its dependence on the distance between pillars and their height is presented in Sec. 3.3.

Sec. 3.4 is concerned with the effect of fluid-pillar interactions.
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3.1 Stable and metastable solutions

As already mentioned, two solutions of the Euler-Lagrange equation were identified in

most cases. One of these solutions corresponds to a global minimum in the Helmholtz

free energy (stable state), and the other one corresponds to a local minimum (metastable

state). The formalism employed in the present paper allows one to calculate the free

energies of those minima and discriminate between stable and metastable states. However

it does not allow to obtain the height of the energy barrier, which separates the stable

from the metastable state. To make the considerations more general, it will be assumed

that the metastable states have enough long lifetimes and for this reason they will be

examined along with the stable states.

Because the Euler-Lagrange equation provides solutions corresponding to the ex-

tremum of the free energy (minimum or maximum) there is, in principle, the possibility

for the state with greater free energy to correspond to a local maximum of the free energy

which is, in fact, not metastable but unstable. Another possibility is that the numerically

obtained solution is only an intermediate step in the sequence of iterations which even-

tually lead to a stable solution if a higher calculation precision would have been used.

Those issues are examined in Appendix B.

The stability and metastability of the drops on rough surfaces depend on a number of

factors and it is difficult to formulate general rules for their identification. Some specific

results for drops D1 and D2 on a hydrophobic substrate with pillars of height hp = σff

and ǫfp = ǫfs are presented in Table 2 for Ntotσff between 80 and 180. In the examples
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Table 2: The dependence of the state of drops D1 and D2 on rough hydrophobic substrates

on the total number Ntot of fluid molecules per unit length of the system. In the considered

examples the substrate is decorated with pillars of the same material (ǫfp = ǫfs); hp = σff .

In the bistable states, the stable and metastable states have the same free energies.

Surface Ntotσff D1 D2

S11 80-180 metastable stable

S21 80-140 metastable stable

150-180 stable metastable

S31 80-110 metastable stable

120-180 stable metastable

S41 80-100 metastable stable

110 bistable bistable

120-180 stable metastable

listed in Table 2, both drops D1 and D2 are presented for all considered Ntot. However

for other choices of the fluid-pillar energy parameter ǫfp, there are cases in which only

drop D1 exists and drop D2 is unstable. This happens, for example, for the hydrophylic

surface S21 with Ntot ≤ 90 and ǫfp/ǫfs ≤ 0.75.

One can see from Table 2, that on surfaces S21, S31, and S41, the state of the drop

(stable or metastable) depends on the number of molecules in the system and as a conse-

quence, on the size of the drop. A possible reason for such a behavior is the change in the

location of the leading edges of the drops with respect to pillars. In Figure 4, the drops

D1 and D2 are presented for surface S21 and Ntotσff = 100 (first row) and 150 (second

row). In the first case, the leading edges of both drops are located on the pillars, with the

16
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Figure 4: Drops D1 (first column) and D2 (second column) for the systems with Ntotσff = 100 (first

row) and Ntotσff = 150 (second row) on the hydrophobic surface S21. ǫfp/ǫfs = 1.

free energy of drop D2 smaller (stable drop) than that of drop D1 (metastable drop). For

the greater Ntot, the leading edges of D1 are located between pillars where the attraction

by the substrate is larger, whereas those for D2 remain on the pillars. In this case, the

free energy of D1 is smaller than that of D2 and D1 is stable while D2 metastable. For

surface S11, for which the distance between pillars is larger than that for S21, and S31,

the leading edges of D2 are between pillars for all considered values of Ntot. The leading

edges of D1 are located either on the pillars or between them. In the latter case, the

contact area of D1 with the substrate was always less than that for D2. For this reason,

D1 is always metastable and D2 stable.

3.2 Size dependence of θ on rough surfaces

In this section, the dependence of the contact angle of a nanodrop on a nanorough surface

is examined as function of the size of the nanodrop expressed via the number Nd of fluid

17
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molecules in the drop per unit length in the y-direction. This number was calculated

using FDD and the drop profile extracted from FDD (see Sec. 2.3).

In Figure 5, the size dependence of the contact angle of the nanodrop on four hy-

drophobic surfaces is presented for drops D1 (Figure 5a) and D2 (Figure 5b). The size

of the drop was varied between Ndσff = 40 and Ndσff = 150. For drop D1, the contact

angles on surfaces S11 and S41 decrease monotonously with increasing size of the drop,

whereas for the drops on surfaces S21 and S31 this dependence passes through a minimum

after which the contact angle only slightly increases with increasing drop size. For drop

D2, the contact angles on surfaces S11 and S21 increase monotonously and for the surface

S41 it decreases with increasing size of the drop. For surface S31, the change in contact

angle with Nd is small. For both nanodrops, the contact angles are not constant, hence

in contradiction with the predictions of the traditional macroscopic theory. Note that

the line tension cannot explain the dependence of θ on the drop size because the leading

edges of the drop have infinite radius of curvature and the last term in eq 4 should not

be present.

All the peculiarities of contact angle behavior can be qualitatively explained consider-

ing the location of the leading edges for different drop sizes. As an example, in Figure 6

drops D1 and D2 of different sizes are present on the hydrophobic surface S21. In the

considered range of drop sizes, drop D2 has its leading edges pinned to the edges of neigh-

boring pillars. This pinning prevents the motion of the drop leading edges on the surface

of the pillars and causes a monotonous increase of the contact angle with increasing size

of the nanodrop (see the curve for S21 in Figure 5b). It is expected, that this increase
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Figure 5: Size dependence of the contact angle of a nanodrop on a rough hydrophobic substrate for

hp = ǫff for drops D1 (a) and D2 (b) when ǫfp = ǫfs. The points represent results of calculations, the

curves are guides for eye.
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D1 D2

Figure 6: Drops D1 and D2 of various sizes on the hydrophobic surface S21 with ǫfp = ǫfs = 0.6ǫff .
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will continue until the leading edges of the drop detach from the pillars edges and move

on the surface of a pillar toward the next edge of the pillar. For this reason, the width

of the drop base increases and the contact angle decreases. The change from the increase

of θ to its decrease means that there is a local maximum in the dependence of θ on the

drop size and suggests that the shape of the curve for S21 in Figure 5b should be convex.

Note that the suggested maximum is not present in Figure 5b because the required drop

size was not achieved in the calculations due to the small size of the system.

For the smallest size of drop D1, its leading edges are pinned to the edges of the pillar

on which the drop is sitting. When the size of the drop increases, the drop leading edges

will change their position by moving on the surface of the substrate where the attractive

drop-substrate interactions are stronger. This leads to the decrease of the contact angle

with increasing drop size until the leading edges become located close to the neighboring

pillars and are pinned to them. This is followed by a contact angle increase with increasing

drop size as it was in the case of drop D2. Hence, the size dependence of θ for drop

D1 should have a minimum (see the curve for S21 in Figure 5a) and the curve for S21

in Figure 5a is convex downward. Note that the changes in contact angle in the used

example are small and cannot by detected by eye in Figure 6.

The size dependence of the contact angle on a rough hydrophilic substrate presented

in Figure 7 demonstrates a more complex behavior. For drop D1 (Figure 7a), the contact

angles on surfaces S21 and S31 first increase with increasing size, then rapidly decrease

after which they increase again. As for hydrophobic surfaces, this behavior is related to

the change in the location of the leading edges of the drop profile on the surface. Before
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Figure 7: Size dependence of the contact angle of a nanodrop on a rough hydrophilic substrate with

hp = σff for drops D1 (a) and D2 (b) when ǫfp = ǫfs. The points represent results of calculations, the

lines are the guides for eye.
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Figure 8: Two characteristic shapes of nanodrop D1 on a rough hydrophilic surface.

θ decreases, the leading edges are located on the pillars (as shown in Figure 8a) and are

pinned to the edges of the pillars. As long as the size of the drop increases up to a critical

value, the contact angle increases because the pinning prevents the drop leading edges to

move to the space between pillars. At the critical size, the leading edges separate from

pillars edges and become located between pillars (Figure 8b). In this case, the contact

angle becomes considerably smaller than in the previous case thus explaining the kink-like

behavior.

A similar behavior of the contact angle occurs for drop D2 on surface S11 (see Fig-

ure 7b).

For drop D1 on the hydrophilic surfaces S11 and S41, as well as for drop D2 on surfaces

S12, S31, and S41 the leading edges of the drop are located either on the pillars or between

pillars for all considered drop sizes. For this reason, kink-like changes in the contact angle

dependence on Nd do not occur for those surfaces. Nevertheless, one can expect kinks

for larger drop sizes because of changes in the location of the leading edges. However the

sizes of these systems do not allow to perform calculations for large nanodrops to identify

those kinks.
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Note that the absence of such kinks for hydrophobic substrates (Figure 5) can be

explained by the lower drop-substrate and drop-pillar interactions compared with the

hydrophylic surfaces. As a result, the pinning force is smaller than for hydrophylic surfaces

and the change in the contact angle is much smoother when the drop leading edges move

from pillars to the space between them.

The dependence of the contact angle on drop size was also examined in connection with

the phenomenon of contact angle hysteresis in Ref. [15] by minimizing the free energy of

the system, (the latter involving the surface tension), and in Ref. [9] by molecular dynamic

simulations. In Ref. [15], the sizes of the considered two-dimensional drops were much

larger than the size of the pillars; in Ref. [9], where only three dimensional drops were

considered, the sizes of the droplets were comparable to those of the pillars and of the

order of a few nanometers. In both papers, kink-like changes in the contact angle with

increasing drop volume were identified in some cases that agree with our results obtained

by DFT.

Note in conclusion that for both hydrophilic and hydrophobic surfaces the size de-

pendence of the contact angle should be quasiperiodic because the drop leading edges

sequentially move along the upper surface of the pillars and along the surface of the sub-

strate, the contact angle being determined by the location of the leading edges of the

drop.
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3.3 Dependence of the contact angle on the distance between

pillars and on their height

Examples regarding the dependence of the contact angle of a nanodrop on the distance

Dp between pillars for drop D1 on rough hydrophobic substrate are presented in Figure 9

for surfaces with various pillar heights, hp, and strength ǫfp of the fluid-pillar interaction.

The roughnesses of the considered surfaces depend both on Dp and hp and are provided

above the horizontal axis. In each case, the contact angle first decreases with increasing

roughness (decreasing Dp) in contradiction with Wenzel equation, but then increases,

in qualitative agreement with that equation. Even though Dp-dependence of θ in all

considered cases is similar, there are some differences which should be emphasized. For

example, for hp/σff = 1 and hp/σff = 2, the Dp-dependencies of θ for ǫfp/ǫfs = 3.5 have

minima at different roughnesses 1.27 and 1.43, respectively (compare the dashed lines in

Figures 9 (a) and (b)). To explain this observation, let us examine the changes of the

drop profiles of drop D1 with changes in the distance between pillars (see Figure 10) for

both cases. Comparing the drop profiles for hp/σff = 1 and hp/σff = 2 one can see

that in both cases the contact angle decreases with increasing Dp as long as the leading

edges of the drop remain on the pillars. The contact angle acquires a minimum when

Dp approaches the critical value Dpc at which the leading edges of the drop ”jump” from

pillars into the area between pillars and the contact angle increases. For hp/σff = 1,

the distance Dpc is in the interval 7.5 < Dpc/σff < 9.3. For hp/σff = 2, Dpc is greater

(9.3 < Dpc/σff < 14) because the attraction between the leading edges of the drop and
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Figure 9: Dependence of the contact angle of drop D1 on a rough hydrophobic substrate on the distance

between pillars for ǫfp/ǫfs = 2.0, and 3.5 for pillars heights hp/σff = 1 (a) and hp/σff = 2 (b). In all

cases Ntotσff = 90. The points represent results of calculations, the lines are guides for eye.
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hp�Σff=1 hp�Σff=2

Figure 10: Drops of various sizes on various hydrophobic surfaces decorated with pillars of height

hp/σff = 1 (first column) and hp/σff = 2 (second column). The distances between pillars are 4.8σff

(first row), 7.5σff (second row), 9.3σff (third row), and 14σff (forth row). ǫfp/ǫfs = 3.5 for all cases.
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the pillars is greater for the larger pillars. For this reason, θ exhibits minima at various

Dp. From the above consideration, it is clear that the location of the mimimum in the

Dp-dependence of the contact angle depends on the size of the drop and on the strength

of fluid-pillar interaction.

Note that the deviation in the contact angle behavior from that predicted by Wenzel

equation was noted previously for a nanodrop on a hydrophilic surface [7, 8, 11]. It was,

in particular, shown [8] that the contact angle of a nanodrop on a hydrophilic surface

increases with increasing roughness, passes through a maximum and then decreases. The

latter behavior is in qualitative agreement with eq 2 and eq 3.

For a hydrophobic substrate, the dependence of θ on the height of the pillars is pre-

sented in Figure 11 for various distances between pillars, Dp, and energy parameters ǫfp.

For most of the considered cases, the contact angle decreases with increasing hp (increas-

ing roughness), again in contradiction with eqs 2 and 3. Such a monotonous behavior of θ

as function of r differs from that in Figure 9 in which the change in roughness was caused

by the change in the distance between pillars.

As expected, the larger ǫfp, the smaller is the contact angle, i.e. the surface be-

comes less hydrophobic with increasing ǫfp. For the largest ǫfp presented in Figure 11

(ǫfp/ǫfs = 3.5) the surface becomes even hydrophilic (θ < 90◦) even though the substrate

is hydrophobic. Note that for small distances between pillars (e.g. Dp/σff = 4.8 in Fig-

ure 11), the change in contact angle with the change in their height is much smaller than

for the larger values of Dp. This feature of the contact angle behavior can be understood

by taking into account that for small values of Dp the pillars are close to each other and

28

Page 28 of 40Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



1.42 1.83 2.25 r

Εfp�Εfs=1.0
Εfp�Εfs=2.0
Εfp�Εfs=3.5

hp�Σff

HaL

1 2 340

60

80

100

120

140

160

180

ΘHdegL

1.27 1.53 1.80 r

Εfp�Εfs=1.0
Εfp�Εfs=2.0
Εfp�Εfs=3.5

hp�Σff

HbL

1 2 340

60

80

100

120

140

160

180

ΘHdegL

1.22 1.43 1.65 r

Εfp�Εfs=1.0
Εfp�Εfs=2.0
Εfp�Εfs=3.5

hp�Σff

HcL

1 2 340

60

80

100

120

140

160

180

ΘHdegL

Figure 11: Dependence of the contact angle of drop D1 on a rough hydrophobic substrate on the height

of pillars for ǫfp/ǫfs = 1.0, 2.0, and 3.5 for several surfaces. The distances between pillars are 4.8σff (a),

7.5σff (b), and 9.3σff (c). The roughness r is provided above the horizontal axis. The points represent

results of calculations, the lines are guides for eye. In all cases, Ntotσff = 90.
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form a quasi smooth surface. The interaction of this surface with the fluid molecules is

only slightly dependent on the height of the pillars.

All the above considerations indicate that the roughness as defined by eq 11 cannot be

considered the appropriate unique characteristics of the wetting of a surface. To provide

additional evidence, the contact angle is plotted in Figure 12 as a function of roughness

for ǫfp/ǫfs = 3.5. One can see that different surfaces (e.g. S31 and S12), for which the

contact angles are very different (about 91◦ and 106◦, respectively) exhibit approximately

the same roughness (1.27 and 1.29, respectively). This is also true for surfaces S41 and

S22. For this reason, θ behaves irregularly as function of r in the range r ≃ 1.26 and

r = 1.44 (Figure 12).

3.4 Dependence of the contact angle on fluid-pillar interaction

Figure 13 presents the dependence of the contact angle on the strength ǫfp of the fluid-

pillar interaction for a hydrophobic substrate decorated with pillars of height hp = σff .

As expected, θ decreases with increasing ǫfp for both drops, D1 and D2. In both cases,

the change in contact angle when ǫfp is changed from ǫfp/ǫfs = 0.2 to ǫfp/ǫfs = 6.0 is

the smallest for surface S11, the change for D1 being smaller than for D2 (∆θ1 ≃ 15◦ and

∆θ2 ≃ 55◦, respectively). Such a difference between ∆θ1 and ∆θ2 occurs because in the

first case (D1) the leading edges of the drop are located on the substrate and the pillars

are beneath the drop (see Figure 6, left column). For drop D2, the leading edges of the

drop are on the pillars and for this reason the pillars affect the contact angle stronger than

for D1, especially for larger ǫfp/ǫfs. When the distance between pillars is the smallest
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Figure 12: Dependence of the contact angle on roughness for a drop on a rough hydrophobic substrate

for ǫfp/ǫfs = 3.5. The points represent results of calculations, the lines are guides for eye. The labels at

each point indicate the surface used in calculations. In all cases, Ntotσff = 90.
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Figure 13: Dependence of the contact angles of drops D1 (a) and D2 (b) on the ratio ǫfp/ǫfs for various

surfaces in the case of hydrophobic substrates. The points are results of calculations, the lines are guides

for eyes. In all cases, Ntotσff = 90.
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(surface S41), the number of pillars beneath the drop increases and this causes higher

changes in θ with changing ǫfp.

4 Conclusions

In contrast to macroscopic drops for which the contact angles on smooth and rough

surfaces are governed by eqs 1-3 and for which the dependence on drop size and roughness

of the surface have some universal features, the contact angle of nanodrops on nanorough

surfaces exhibits nonuniversalities both with respect to the drop size and roughness [5]-

[10].

In this paper it is shown that depending on the size of the drop as well as on the size

and position of the pillars, there is even less universality in the contact angle behavior

than it was found previously.

First, the contact angle depends on drop size and such a dependence is absent for

macrodrops. In Ref. [10] it was shown that on smooth as well as on rough hydrophobic

surfaces the contact angle increases with increasing drop size. Because the drop is three-

dimensional, one can assign this behavior to the existence of line tension (see eq 4). In

our calculations in which a two-dimensional drop of much smaller size is considered, both

an increase and a decrease in the contact angle with increasing drop size was identified.

This behavior cannot be related to the line tension because the latter plays no role for

two-dimensional drops. In addition, kink-like dependence of the contact angle on drop

size was found for rough hydrophilic substrates, which occur when the leading edges of the
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drop change their location with respect to the pillars. One can expect that such kinks can

repeat with increasing drop size when the leading edges of the drop change their location

from on the pillars to between pillars.

In Refs. [5]-[7],[10], the increase of θ with increasing roughness of a hydrophobic

surface was found to occur in all considered cases, in agreement with the behavior of

θ for macroscopic drops. Note that in those studies, the condition ǫfp = ǫfs was em-

ployed. However, for ǫfp > ǫfs, we have found cases when the contact angle first decreases

with increasing roughness and then increases, as well as cases when the contact angle

monotonously decreases with increasing roughness.

On the basis of the previous results and those obtained in the present paper, the

conclusion is that the roughness r alone cannot explain all the peculiarities of the contact

angle behavior of nanodrops on rough surfaces. Only a microscopic theory can provide

adequate results for any values of the interaction parameters.

In this paper, only the Wenzel regime was considered. To obtain a stable Cassie-Baxter

type drop, surfaces with higher hydrophobicity or pillars with larger heights should be

examined.

5 Appendix A Free energy contributions and solu-

tion of the Euler-Lagrange equation

Following Refs. [16, 17], the total Helmholtz free energy F [ρf (r)] of a considered system

can be represented as the sum of four contributions. The first one is the ideal gas free
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energy

Fid[ρf(r)] = kBT
∫

drρf(r){log[Λ3ρf(r)] − 1}, (A. 1)

where Λ = hP /(2πmkBT )1/2 is the thermal de Broglie wavelength, hP the Planck constant,

and m the mass of a fluid molecule. The second contribution is the free energy of a

reference system of hard spheres

Fhs[ρf (r)] =
∫

drρf(r)∆Ψhs(r) (A. 2)

where

∆Ψhs(r) = kBTηρ̄f

4 − 3ηρ̄f

(1 − ηρ̄f
)2

, (A. 3)

ηρ̄f
= 1

6
πρ̄f (r)σ

3
ff being the packing fraction of the fluid molecules and ρ̄f (r) is a smoothed

density defined as

ρ̄f (r) =
∫

dr′ρf (r
′)W (|r− r′|) . (A. 4)

The weighting function W (|r − r′|) in eq A. 4 is selected in the form [18]

W (|r− r′|) =



















3
πσ3

ff

(

1 − r
σff

)

, r ≤ σff

0, r > σff

where r = |r − r′|. The third contribution is the excess free energy due to fluid-fluid

attractive interaction which is accounted for in the mean-field approximation
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Fattr[ρf (r)] =
1

2

∫ ∫

drdr′ρf(r)ρf (r
′)φff(|r − r′|) (A. 5)

where φff (|r− r′|) is the Lennard-Jones potential of the fluid-fluid interactions provided

by eq 5.

The last contribution is due to the interaction between fluid and solid molecules

Ffs[ρf (r)] =
∫

V
drρf(r)Ufs(r) (A. 6)

where V is the volume occupied by the fluid, and Ufs(r) is provided by eq 6.

The minimization of the Helmholtz free energy with respect to the fluid density dis-

tribution ρf (x, h) leads to the following Euler-Lagrange equation for ρf (x, h).

log[Λ3ρf (x, h)] − Qf(x, h) =
λ

kBT
. (A. 7)

In eq A. 7, λ is a Lagrange multiplier and the function Qf(x, h) is given by

Qf (x, h) = −
1

kBT

[

∆Ψhs(x, h) + ∆Ψ′
hs(x, h) + Uff (x, h) + Ufs(x, h)

]

(A. 8)

where

Uff(x, h) =
∫ ∫

dx′dh′ρf(x
′, h′)φff,y(|x − x′|, |h − h′|), (A. 9)

∆Ψ′
hs(x, h) =

∫ ∫

dx′dh′ρf (x
′, h′)Wy(|x − x′|, |h − h′|)

∂

∂ρ̄
∆ Ψhs(ρ̄)|ρ̄=ρ̄f (x′,h′) . (A. 10)
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The functions φff,y(|x−x′|, |h−h′|) and Wy(|x−x′|, |h−h′|) are obtained by integrating

the potential φff(|r − r′|) and the weighted function W (|r − r′|) with respect to y from

−∞ to +∞, respectively.

When calculating Uff (x, h) which is due to the long-range fluid-fluid interactions, a

cutoff at a distance equal to four molecular diameters σff for the range of Lennard-

Jones attraction was employed. The precision of the iterations was characterized by the

dimensionless quantity

δ =
∫

V
dxdh

[

ρf,i+1(x, h) − ρin
f,i(x, h)

]2
/
(
∫

V
dxdhρf,i(x, h)

)2

where ρin
f,i(x, h) is the input density profile for the (i+1)-th iteration ρf,i+1(x, h), generated

by the Euler-Lagrange equation. The iterations were carried out on a two dimensional

grid with a spacing 0.1σff until δ became smaller than 10−7. The cutoff radius of 4σff

was used in the integrations involving the fluid-fluid interactions.

6 Appendix B

The obvious way to proof that the solution of the Euler-Lagrange equation (let say, for

drop D1), obtained with a selected precision, is not an intermediate step in the iteration

procedure that eventually will provide the other solution (drop D2) is to increase the

precision of the calculation. However for the two-dimensional case considered in the

present paper this way is impractical because it involves a considerable increase in the

calculation time, which even for the selected precision δ = 10−7 lasts about seven hours.

To obtain at least a qualitative answer to the above question, the following procedure was
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developed which uses an intrinsic stability criterion for a system which has a minimum in

its free energy. First, the obtained density profile ρf(x, h) was disturbed by shifting it in

some direction (let say, to the left) by a few grid intervals. This new density distribution,

ρ′

f (x, h), which now is asymmetric with respect to the initial plane of symmetry, is used

as a new initial guess for the Euler-Lagrange equation. If the nonshifted FDD ρf (x, h)

provides the minimum (local or global) in the free energy, the iteration procedure which

started with ρ′

f(x, h) should converge to ρf (x, h). However the absence of symmetry in

ρ′

f (x, h) leads to an extremely slow convergence of the iteration procedure. To obtain the

decision more rapidly, track was kept of the difference ∆ρ′

f,i(x, h) = ρ′

f,i+1(x, h)−ρ′

f,i(x, h)

between the density distributions, ρ′

f,i(x, h) and ρ′

f,i+1(x, h), provided by two successive

iterations started with the initial guess ρ′

f (x, h). After 50 - 100 iterations this difference as

function of x and h has, generally, one of the two shapes presented in Figures 14a, and b,

where the light (dark) areas represent positive (negative) values of ∆ρf,i(x, h). Figures 14a

and b indicate the tendency of the density distribution ρf,i(x, h) to “move” in the direction

of the positive part of ∆ρf,i(x, h), i.e. to the left for Figure 14a and to the right for

Figure 14b. If ∆ρf,i(x, h) had the shape shown in Figure 14a, the unshifted solution was

considered unstable and was disregarded. In the opposite case, when ∆ρf,i(x, h) had the

shape shown in Figure 14b, the unshifted solution was considered stable or metastable.

Note that if the initial guess for the iteration procedure is selected at the location of

the stable or metastable solution of Euler-Lagrange equation, the difference ∆ρf,i(x, h)

has the symmetric shape shown in Figure 14c.

38

Page 38 of 40Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



HaL HbL HcL

Figure 14: (a), (b), and (c) Possible contour plots of the differences between two consecutive iterations.

Dark areas correspond to negative values of the differences and light areas correspond to positive ones.
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