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Extending the capabilities of electron tomography with advanced imaging techniques and 

novel data processing methods, can augment the information content in three-dimensional (3D) 

reconstructions from projections taken in the transmission electron microscope (TEM). In this 

work we present the application of simultaneous electron energy-loss spectroscopy (EELS) and 

energy-dispersive X-ray spectroscopy (EDS) to scanning TEM tomography. Various tools, 

including refined tilt alignment procedures, multivariate statistical analysis and total -variation 

minimization enable the 3D reconstruction of analytical tomograms, providing 3D analytical 

metrics of materials science samples at the nanometer scale. This includes volumetric 

elemental maps, and reconstructions of EDS, low-loss and core-loss EELS spectra as four-

dimensional spectrum volumes containing 3D local voxel spectra. From these spectra, 

compositional, 3D localized elemental analysis becomes possible opening the pathway to 3D 

nanoscale elemental quantification. 

 

Introduction 

Electron tomography extends the imaging capabilities of a 

transmission electron microscope (TEM) to the third spatial 

dimension.1 Several contrast mechanisms in the TEM have 

been successfully used in tomography to access a wide range of 

information at the nanoscale in three dimensions (3D).2–5 In 

materials science, especially high-angle annular dark-field 

(HAADF) imaging in the scanning transmission electron 

microscope (STEM) has proven to be a powerful tool due to its 

atomic number sensitivity and robustness to diffraction 

contrast.6–11 

Analytical electron microscopy, based on inelastic electron 

scattering, generates spectroscopic and element-sensitive 

imaging data. Its combination with electron tomography can 

allow chemically sensitive 3D imaging with nanometer (or even 

atomic) resolution. Initially energy-filtered TEM (EFTEM) 

tomography2,12–17 and more recently energy-dispersive X-ray 

spectroscopy (EDS)18–20 and electron energy-loss spectroscopy 

(EELS)21,22 tomography in the STEM have been demonstrated. 

This has resulted in the possibility to reconstruct elemental 

distributions in 3D. The first reconstructions of spectral 

information have been demonstrated in the low-loss regime 

using EFTEM13,15 for few spectral channels and more recently 

also using EELS for identification of surface plasmons.5 Very 

recently also reconstruction of core-loss EELS spectra has been 

demonstrated by reconstructing few independent spectral 

components.23 However, the quality of such reconstructions 

was often constrained by limited tilt ranges, small number of 

pixels, lengthy acquisition times or a lack of full spectroscopic 

X-ray and energy-loss data. For the same reasons, as well as 

due the computational complexity involved, simultaneous 

EELS and EDX tomography including full synthesis of 3D 

local X-ray and energy-loss spectra based on an independent 

reconstruction of each spectral channel has not yet been 

demonstrated. 

In this work EELS and EDS tomographic data was acquired 

simultaneously and subsequently subject to advanced data 

processing methods to extract precise 3D elemental maps as 

well as EELS and EDS voxel spectra: A powerful projection/re-

projection matching algorithm for reliable alignment of the 

tomographic data was applied,24 as well as multivariate 

statistical analysis for noise reduction of EELS spectra.25,26 

Spectra have been evaluated with a new model-based 

approach,27,28 and compressed sensing9,10,29–32 was established 

for the 3D reconstruction of elemental maps. Though these 

techniques have been used separately in analytical microscopy 

or electron tomography, their combined application opens the 

route for an advanced analytical 3D investigation. 

Two ways to examine analytical electron tomography data have 

been pursued in this work. These are outlined in Fig. 1. In a 

STEM, tilt angle resolved spectrum images were acquired, 

recording EDS, low-loss and core-loss EELS spectra 

simultaneously for each pixel. This results in four-dimensional 

(4D) datasets, where each dataset consists of two spatial, one 

energy and a fourth tilt angle dimension. In our first approach 

towards 3D chemical imaging, 2D elemental maps have been 

extracted for each tilt angle from the spectrum images (A1 in 

Fig. 1), giving tilt-dependent EELS and EDS chemical 

information for every element under consideration. By 

tomographic reconstruction (A2 in Fig. 1) each tilt-dependent 

map was used to reconstruct a three-dimensional element-

specific volume. In our second approach EELS and EDS 

spectra were directly reconstructed from the spectrum image tilt 

series by doing one reconstruction for each individual spectral 

channel (B in Fig. 1), yielding 4D datasets – spectrum volumes 

Page 1 of 6 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



ARTICLE Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

– that consist of three spatial and one energy dimension. 3D 

local voxel spectra could then be extracted and analyzed to 

access local chemical information on a spectral rather than an 

image basis.  

 

Results & Discussion 

The procedures involved in analytical electron tomography are 

demonstrated on an Al-5 wt.% Si alloy with 50 ppm Na and 

6100 ppm Yb. Modification and refinement of eutectic Si in Al-

Si alloys by trace elements is a widely used method to improve 

mechanical properties of casting alloys.33–37 Nevertheless the 

modification and refinement mechanisms are still a matter of 

debate and require understanding of the elemental distribution 

down to the atomic level.35 A needle shaped sample, suitable 

for tomography, was prepared from the surface of the Al-Si 

sample using focused ion beam (FIB) milling38,39 (see 

Supplementary Information). 

Analytical electron tomography experiments were performed 

on a probe-corrected FEI Titan3 G2 60-300 microscope with an 

X-FEG Schottky field-emission electron source operated at 

300 kV (see Supplementary Information for details). The 

microscope is equipped with a Gatan Imaging Filter (GIF) 

Quantum40 and a FEI Super-X EDS detector, consisting of four 

separate silicon drift detectors.41 The microscope setup allows 

fast parallel acquisition of EDS data as well as of low-loss and 

core-loss EELS spectra using the dual-EELS capacity of the 

GIF Quantum.42–44 Thanks to this experimental setup spectrum 

images of about 100*200 pixels with a pixel size of 1 nm could 

be acquired every 5° over a tilt range from -75° to +80°. Fig. 2 

shows HAADF STEM images acquired at different tilt angles 

and EDS and EELS spectra from single pixels in the 

projections. 

The tilt series alignment was carried out via HAADF STEM 

images, acquired together with the analytical data. The 

alignment process, which requires all projections to be 

registered to a common tilt axis located in the center of the 

projections, was a two-stage process. We started with an initial 

coarse alignment using filtered cross-correlation between 

neighboring images for first estimates of the shift parameters. 

These shift parameters were then refined in several iterations 

using projection/re-projection matching. Similar methods have 

been described previously and have shown to provide a reliable 

alignment.24,45 In our workflow, a temporary reconstruction 

with the current alignment parameters is calculated, which is 

then re-projected at the orientations of the acquired projections. 

The shift between these re-projections and the acquired 

projections is determined using filtered cross-correlation with 

sub-pixel accuracy.46 To calculate the position of the tilt axis, 

rotational centers were calculated for each sinogram by center 

of mass methods.47 The shift and rotational alignments were 

done alternatingly, cycling through 10 iterations. This provided 

a set of alignment parameters, which was subsequently applied 

to all acquired analytical data. 

A further challenge in the reconstruction arises from the low 

signal-to-noise ratio in core-loss EELS data, for edges beyond 

1000 eV as for the material investigated (Yb-M45: 1528 eV, Al-

Fig. 1 Principles of analytical electron tomography showing 

the two approaches (A&B) pursued in this work. 

Fig. 2 (a) HAADF STEM images from tilt series. (b) Single 

pixel low-loss EELS spectra. (c) Single pixel core-loss EELS 

spectra (original spectra are shown as histogram, PCA-

treated spectra as solid lines) (d) Single pixel EDS spectra. 

Spectra are taken from the locations indicated by (1), (2) and 

(3) in (a). In (c)&(d) ionization edges and X-ray absorption 

lines are indicated. Spurious signals from the microscope and 

sample holder (Cu) are shown in brackets. The Cu signal is 

strong at high tilt angles (-70°) as a part of the scattered 

electrons hit the sample support. 
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K: 1560 eV, Si-K: 1839 eV). The short pixel times in addition 

to low ionization cross-sections render the spectral processing 

with respect to background removal or thickness deconvolution 

problematic. Furthermore, the Yb-M45 edge is overlapping with 

the Al-K edge, which complicates a separation of the net signal 

of those two edges. 

Principal components analysis (PCA) has been shown to be 

able to overcome noise problems in EELS spectra.22,25,26 We 

apply weighted PCA,26 adapted to the dominant Poissonian 

noise in our EELS spectra (see Supplementary Information 

including Figure S1). Examples for such spectra are shown in 

Fig. 2b(2) superimposed with the original data. Noise reduction 

using PCA was necessary for further processing of spectral 

data. In untreated spectra the noise was too high to allow 

reliable extraction of the background and element specific 

signals in particular concerning separation of contributions 

from Yb and Al. For extraction of elemental maps from EELS 

spectrum images a model-based fitting approach was used.28 

The spectrum is modelled using a background, described with a 

power-law function and ionization edges, given by Hartree-

Slater cross-sections. Plural scattering can be included in the 

model by convolution of the single-scattering core-loss model 

with the low-loss spectrum. Furthermore the low-loss spectrum 

was used for modelling the electron-loss near-edge structure 

(ELNES) by an iterative refinement of ELNES intensities. To 

extract elemental maps from projections, PCA-treated core-loss 

spectra and the corresponding low-loss spectra were used (see 

Supplementary Information including Figure S2). The extracted 

EELS elemental maps correspond to the extracted signal 

normalized by the elemental cross-sections. 

For extraction of EDS maps also a model-based approach was 

used, describing the background with a Kramers-model.48 After 

identification of the X-ray lines, Gaussian peaks were fitted for 

each line family and the integral from the whole series was 

used to generate the element-specific signal. The fitting 

approach is useful in particular for extraction of Al-elemental 

maps as the Al K-lines (Al-Kα: 1.49 keV) are very close to the 

Yb M-lines (Yb-Mα: 1.52 keV). For Si the K-lines (Si-Kα: 

1.74 keV) and for Yb the L-lines (Yb-Lα: 7.41 keV) were used. 

The extracted EDS elemental maps correspond to the sum of X-

ray counts for a specific element. In our setup, the extracted 

intensity of the elemental maps displayed a strong angular 

dependence due to shadowing of X-rays by the sample holder. 

This was compensated by normalizing the projections with the 

summed intensity from each elemental map at the respective 

tilt. This was possible since effects of X-ray absorption in the 

sample could be neglected due to the small sample size (see 

Supplementary Information including Figure S3 and Table S1). 

The 3D elemental maps were reconstructed with a total 

variation (TV) minimization algorithm. For comparison 

reconstructions with the simultaneous iterative reconstruction 

technique (SIRT) were also carried out. TV minimization 

denotes a variant of compressed sensing.49,50 It is assumed that 

the image (or volume) gradient is sparse, i.e. is zero at most 

locations. Because of the materials chemistry and the sharp 

interfaces between the different phases in the sample, the 

assumption was justified. For TV minimization the problem 

was solved.51 In this formulation the first term is the isotropic 

Fig. 3 (a) Orthogonal slices through reconstructions of the Yb M45-edge, the Si K-edge and the Al K-edge from EELS data. (b) 

Orthogonal slices through reconstructions of the Yb L-line, the Si K-line and the Al K-line from EDS data. (c) Surface rendered 

views of the segmented volume of the Yb M45-edge, the Si K-edge and the Al K-edge and an overlay of the three segmented 

volumes. (d) Surface rendered views of the segmented volume of the Yb L-line, the Si K-line and the Al K-line and an overlay 

of the three segmented volumes. 
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min
𝑢∈ℝ𝑛

∑‖𝐷𝑖𝑢‖2 +
𝜇

2
‖𝐴𝑢 − 𝑏‖2

2

𝑖

  (1) 

TV norm of the image or volume vector u. Diu is the local 

gradient vector at the position i in three dimensions. This 3D 

implementation of the algorithm provides more reliable 

reconstructions compared to previous implementations of TV 

minimization where the gradient DiU was usually calculated 

along 2 dimensions29–32. The second term in (1) represents a 

least-squares optimization of the linear equation system given 

by the projection geometry. b is the measurement vector 

containing all projection data. A is the projection operator 

mapping from the image or volume vector u to a projection 

vector.52 µ is a weighting factor between the two terms in the 

optimization and needs to be adapted to the noise level in the 

projections. (see Supplementary Information including Fig. S4 

for a comparison of reconstructions using 2D and 3D 

algorithms and different weighting factors µ) 

Slices through 3D EELS elemental maps of the major 

constituents of the sample are displayed in Fig. 3a for both 

SIRT and TV minimization. The same slices through 3D EDS 

elemental maps are depicted in Fig 3b. TV minimization 

provided sharp interfaces in the reconstruction and allowed 

simple segmentation of the reconstruction based on absolute 

threshold values using the Otsu threshold criterion.53 Fig. 3c&d 

and Supplementary Videos S1&S2 show surface rendered 

views of segmented 3D EELS and EDS elemental maps 

respectively. 

TV minimization applied to the reconstruction of elemental 

maps was very efficient regarding noise reduction. In the case 

of silicon, it is easily possible to distinguish regions with a 

higher Si-concentration from regions with a lower Si-

concentration, where also Yb is present. Good agreement can 

be observed between the reconstructions from EELS and EDS 

data. 

To extract more information about local material compositions 

we reconstructed 3D local EDS and EELS spectra for each 

voxel (cf. approach B in Fig. 1). For EELS plural scattering was 

removed,54 so single-scattering spectra could be reconstructed. 

Depending on the energy regime either Fourier-log (low-loss) 

or Fourier-ratio (high-loss) deconvolution was carried out. 

EELS core-loss spectra had been PCA treated beforehand. For 

the reconstruction each spectral channel was treated as an 

independent tilt series and was reconstructed using a 

multiplicative SIRT algorithm with 30 iterations (see 

Supplementary Information). This process resulted in 

physically meaningful reconstructions, as every voxel spectrum 

represents the local single scattering probability. In the EDS 

case, again spectra normalized to compensate shadowing 

effects were reconstructed (see Supplementary Infomation). 

Since X-ray intensities are proportional to the probability of X-

ray creation along the beam path through the sample, the 

reconstructed voxel spectra contain information about the 3D 

local X-ray creation probability. Fig. 4 shows single-voxel 

spectra (voxel size: 1 nm3) from different locations in the 

sample. Different absorption edges and X-ray lines as well as 

changes in their relative intensity can be clearly distinguished. 

Being able to reconstruct the 3D elemental maps and local 

voxel spectra allows combining the information from both. 

Using all reconstructed data we sum 3D voxel spectra over 

specific regions defined by masks created from the 3D EDS 

elemental maps. To reduce the impact of interfaces between the 

different materials, the boundaries of the masks were removed 

by applying 3D morphological erosion operators. These 3D 

masks and EDS and EELS voxel spectra summed over the 

different regions are shown in Fig. 5. This provides spectra with 

Fig. 4 Reconstructed single voxel spectra (voxel size: 1 nm3). 

(a) Single-scattering low-loss EELS spectra, (b) single-

scattering core-loss EELS spectra (PCA treated) and (c) EDS 

spectra. Ionization edges and major X-ray lines are indicated. 

Spectra are extracted (1) from an Yb-rich precipitate, (2) 

from a Si-rich region, (3) from Al. 
Fig. 5 Local core-loss EELS and EDS spectra summed over 

different regions of the volume: (a) summed over Yb-rich 

precipitates, (b) summed over Si-rich regions, (c) summed 

over the Al-matrix without the surface layer. (1) shows the 

masks over which spectra are summed, (2) shows the core-

loss EELS spectra, (3) shows EDS spectra, the inset in (3) 

shows a zoom to the low-energy region from 0.5 keV to 

1.3 keV Ionization edges and X-ray lines are indicated. 

Absorption lines arising due to the instrument and sample 

support (Cu, Fe, Co) are written in brackets. Ga and O are 

present due to Ga-ion implantation during sample 

preparation and surface oxidation. 
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high signal to noise ratio but which contain only information 

about a single phase in three dimensions. Such matrix-free 

spectra cannot be analyzed from 2D spectrum images as spectra 

of localized phases are also affected by other materials over the 

thickness of the sample. 

With voxel spectra being available, relative phase compositions 

could be derived, harnessing the strengths of the respective 

EELS and EDS quantification schemes, yet encountering some 

typical issues, associated with overlapping signals or inaccurate 

sensitivity factors. Quantification of the Yb-rich precipitates 

(Fig. 5a) gave Al:Si:Yb compositions of at.% 43:47:10 in EELS 

and at% 48:35:16 for EDS (see Supplementary Information). In 

the present case the main limitation are overlapping Yb-M and 

Al-K edges and X-ray lines. Furthermore for the EELS case the 

M45-edge of Yb is not well modelled by the Hartree-Slater 

cross-section model. EDS quantification is based on k-factors, 

which are not known with high accuracy. Despite the observed 

compositional variation between the techniques, these values 

give a fair estimate about the relative composition. This also 

shows the usefulness of simultaneous EELS and EDS analysis, 

as the complementarity of the two techniques serves to validate 

results from one technique by the other. 

 

Conclusions 

In the present work simultaneous analytical EELS and EDS 

tomography for 3D nanoscale chemically sensitive microscopy 

was established. While conventional tomographic techniques, 

such as HAADF STEM tomography, can only provide 

indications about chemistry, 3D elemental maps can provide 

unambiguous elemental identification and reveal compositional 

changes. Elemental identification removes many uncertainties 

in the interpretation of tomograms. We demonstrated the 

feasibility of reconstructing spectrum volumes for both EELS 

and EDS reconstructing each spectral channel individually. 

These four-dimensional datasets contain local voxel spectra, 

which allow the local access of different regions in the sample. 

In this way a 3D matrix-free analysis of confined phases, such 

as nanoparticles or precipitates, becomes possible. This is an 

important step towards reliable compositional quantification in 

3D space. We have shown that data processing methods, such 

as projection/re-projection matching, multivariate statistical 

analysis and compressed sensing, can enable reliable 

reconstructions of analytical tomograms, even from data limited 

in terms of pixel time, number of pixels and the number of 

spectrum images. 

Simultaneous EELS and EDS tomography allows verification 

of one technique by the other, but it will also be useful when 

some elements in a sample are easier to detect by one technique 

or the other. Furthermore linking analytical tomography with 

complementary techniques, such as atom probe tomography55 

will allow a deeper understanding of materials and techniques. 

Apart from elemental quantification EELS tomography has the 

potential for extraction of local electrical and optical properties 

or chemical fingerprinting in three dimensions. The low-loss 

spectrum contains a large amount of information about material 

properties, in the core-loss spectrum ELNES analysis can 

provide information about the chemical state in 3D. These 

methods will be applicable to a wide range of materials, 

essentially to all applications where 3D nanometer resolution is 

required in combination with chemical sensitivity. Examples 

are all types of embedded nanoparticles, core/shell structures, 

precipitation studies or the investigation of dopants. 

Another interesting goal of analytical electron tomography – 

next to reliable quantification – will be to combine chemical 

sensitivity with 3D atomic resolution. The main challenges lie 

in the long acquisition times compared to HAADF STEM, 

where atomic resolution tomography has already been 

demonstrated. Spectrum images with high enough signal to 

noise ratio need to be recorded, while limiting beam damage 

and sample drift during image acquisition. 
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