# Nanoscale

## Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/nanoscale

#### Nanoscale

Cite this: DOI: 10.1039/c0xx00000x

# PAPER

### **Two-Dimensional Layered Semiconductor/Graphene Heterostructures** for Solar Photovoltaic Applications

Mariyappan Shanmugam, Robin Jacobs-Gedrim, Eui Sang Song, and Bin Yu\*

Received 16th June 2014, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Schottky barriers formed by graphene (monolayer, bilayer, and multilayer) on 2D layered semiconductor tungsten disulfide (WS<sub>2</sub>) nanosheets are explored for solar energy harvesting. The characteristics of graphene-WS<sub>2</sub> Schottky junction varies significantly with the number of graphene layers on WS<sub>2</sub>, resulting in difference in solar cell performance. Compared with monolayer or stacked bilayer, multilayer

<sup>10</sup> graphene helps to achieve improved solar cell performance due to superior electrical conductivity. The all-layered-materials Schottky barrier solar cell employing WS<sub>2</sub> as a photoactive semiconductor exhibits efficient photon absorption in visible spectral range, yielding 3.3 % photoelectric conversion efficiency with multilayer graphene as Schottky contact. Carrier transport at graphene/WS<sub>2</sub> interface and interfacial recombination process in the Schottky barrier solar cells are examined.

#### 15 Introduction

Recently, 2D layered semiconductors are rapidly emerging as a new class of functional materials for various applications such as nanoelectronics,<sup>1-6</sup> solar cells,<sup>7-9</sup> photodetectors<sup>10-12</sup> and energy storage.13-16 Compared with traditional semiconductors such as 20 Si,<sup>17</sup> GaAs,<sup>18</sup> CdTe,<sup>19</sup>and CuInSe<sub>2</sub>,<sup>20</sup> mechanical flexibility,<sup>21</sup> tunable optical bandgap,<sup>22</sup> and high carrier mobility<sup>23</sup> are among the few intriguing properties that warrant 2D layered semiconductors as potential candidates in solar energy harvesting. Tungsten disulfide (WS<sub>2</sub>), one of the members in 2D layered 25 semiconductor family, has been recently explored for various nano-device applications.<sup>24-26</sup> Its tunable optoelectronic properties offer unique opportunities in developing efficient solar photovoltaic technology. The major advantages of 2D layered semiconductors, such as improved photo-response and layer-30 dependent optical/electrical properties, have been reported for various optoelectronics applications.<sup>27,28</sup>

It is evident that by changing the number of layers of 2D semiconductor in a stack, photons with a wide spectral range can be harvested to generate electrons. In 2D semiconductors, weak <sup>35</sup> *van der Waals* forces brings individual atomic planes together, while strong covalent bonds exist within each crystal planes.<sup>29</sup> This allows for easy exfoliation of 2D crystals to make devices. However, the exfoliation process<sup>30,31</sup> yields sheets with only small area. Recently, chemical vapour deposition (CVD) method

<sup>40</sup> has been demonstrated for large-area growth.<sup>32-34</sup> On the other hand, the superior properties of graphene such as high carrier mobility<sup>35</sup> and negligible photo-absorption<sup>36</sup> in visible spectral

College of Nanoscale Science and Engineering

range are considered to be key merits in serving as a transparent conductor for solar cells.<sup>37</sup> The characteristics of graphene vary to a great extent among monolayer, bilayer, and multilayer.<sup>38</sup> Graphene stacked with 2D semiconductors in heterostructures has <sup>50</sup> been explored for applications in electronics to demonstrate the possibility of incorporating the advantages of both materials.<sup>39-42</sup>

Schottky barrier solar cells are relatively simple in structure and fabrication process, as compared with p-n, p-i-n, and tandem solar cells, having only metal-semiconductor junction to establish 55 built-in electric field in depleted semiconductor region. Recently, extraordinary photon absorption has been reported in 2D semiconductors in only a few atomic layers.43 In Schottky barrier solar cells, strong electric field at metal/semiconductor junction, defect-free interface (to avoid Fermi level pinning), efficient 60 photo-absorption and carrier transport are key factors to achieve high performance. In general, 2D layered semiconductors exhibits self-terminated atomic planes with no unsaturated dangling bonds at the surface, which helps to facilitate the formation of high-quality interface and to achieve efficient carrier 65 transport with negligible interfacial traps. In this research paper, we study the characteristics of graphene/WS2 Schottky barrier in solar cell structure. The impacts of graphene layered configuration on photovoltaic performance of Schottky barrier solar cell are examined.

#### 70 Experimental

#### A. CVD growth of WS<sub>2</sub> nanosheet

Tungsten (W) film with a thickness of ~30 nm was deposited onto SiO<sub>2</sub>-coated Si substrates by electron-beam evaporation. The W-coated substrates were placed downstream in the CVD quartz 75 tube chamber. Sulfur powder (99.99 % purity) was placed upstream in the chamber. Sulfur was evaporated at 115°C with

State University of New York, Albany, NY-12203, USA.

<sup>45</sup> Fax: (518) 956-7492; Tel: (518) 956-7492; \*E-mail: byu@albany.edu

200 sccm flow of argon as the carrier gas. The chamber pressure was maintained at 1 Torr. Solid-vapour reaction between tungsten surface and sulfur vapour resulted in WS<sub>2</sub> nanosheets on Si/SiO<sub>2</sub> substrates. A 1000°C post-annealing treatment was performed for one hour to improve the cructallinity of WS<sub>2</sub> camples. Fig. 1(c)

- <sup>5</sup> one hour to improve the crystallinity of WS<sub>2</sub> samples. Fig 1(a) shows the schematic diagram of the CVD furnace set-up used for WS<sub>2</sub> growth. Noticing the two temperature zones used for sulfur evaporation and WS<sub>2</sub> growth. Fig. 1(b) is the photo of a typical sample showing large-area growth of WS<sub>2</sub> on SiO<sub>2</sub>. Fig. 1(c)
   <sup>10</sup> illustrates the planar hexagonal lattice structure of WS<sub>2</sub> composed
- of W and S atoms in the 2D crystal plane.

Polymethyl methacrylate (PMMA) was coated on  $WS_2$ , as the supporting material to facilitate the transfer process. The sample was annealed at 90°C for 5 minutes. Potassium hydroxide (KOH)

- <sup>15</sup> was used to etch the SiO<sub>2</sub> layer, releasing WS<sub>2</sub> nanosheet from Si substrates and making it free-floating in KOH. The free-floating WS<sub>2</sub> nanosheet was manually transferred from KOH to Aluminum (Al) coated glass substrate for solar cell fabrication. This method is feasible for large-area grown samples of 2D <sup>20</sup> semiconductors. The etching rate of SiO<sub>2</sub> is determined by the
- KOH concentration. Fast etching rate may affect material quality of 2D semiconductors. Therefore, it is important to use a seamless etching process to minimize process-induced effects on  $WS_2$  nanosheets.



Fig. 1 (a) Schematic of two-zone CVD growth process for  $WS_2$  nanosheet using Ar as carrier gas. (b) A typical CVD synthesized sample showing  $WS_2$  nanosheet on SiO<sub>2</sub>. (c) Schematic of hexagonal atomic planar structure of  $WS_2$  showing W and S atoms.

#### 30 B. CVD growth of graphene

25

Growth of monolayer and multilayer graphene was performed by CVD method using Cu and Ni as the substrates, respectively. Methane and hydrogen gases were used to take advantage of the solubility of carbon in Cu and Ni substrates, resulting in <sup>35</sup> monolayer and multilayers of graphene, respectively. The growth temperature was fixed at 1000°C for both monolayer and

- multilayer graphene growth. PMMA layer was coated on the graphene-grown Cu and Ni substrates by spin coating method at 2000 rpm for 1 minute, followed by a baking at 90°C for 5 <sup>40</sup> minutes. The Cu and Ni substrates were etched by FeCl<sub>3</sub> solution.
- The separated graphene films were then transferred to deionized water to remove excessive FeCl<sub>3</sub> on the surface. Subsequently, the PMMA-supported monolayer and multilayer graphene layers were transferred onto  $WS_2$  nanosheets for solar cell fabrication.
- <sup>45</sup> After transferring graphene, the PMMA was dissolved by acetone.

#### C. Material characterization

Raman Spectroscopy with a laser excitation wavelength of 532 nm (Horiba Scientific) was performed to study the as-grown WS<sub>2</sub> <sup>50</sup> nanosheet, and monolayer/bilayer/multilayer graphene. The WS<sub>2</sub> naosheet, coated on a glass substrate, was subjected to UV/visible absorption measurement to acquire the values of optical bandgap and transmittance using Camspec M550 Double-Beam Scanning UV/Vis Spectrophotometer (in the spectral range of 200 nm  $\sim$  <sup>55</sup> 900 nm). Surface profile of the WS<sub>2</sub> nanosheet was analysed by Dimension 3100 atomic force microscopy (AFM).

#### D. Solar cell fabrication and characterization

Al thin films of 100 nm were deposited on three glass substrates by electron beam evaporation method. The CVD-60 grown WS<sub>2</sub> nanosheets were transferred onto each of the Alcoated glass substrates by a manual transfer process. Monolayer, bilayer and multilayer graphene sheets, synthesized by CVD method, were subsequently transferred onto the three Al-coated substrates. The stacked structures Glass/Al/WS<sub>2</sub>/graphene were 65 annealed at 100°C for five minutes to remove any excess solvents present in the samples. In our experiment, monolayer and multilayer graphene sheets were as-grown on Cu and Ni foils, respectively. The bilayer graphene was obtained by stacking two monolayer graphene grown on Cu. Three Schottky barrier solar 70 cells, having different stacked structure of (i) Glass/Al/WS<sub>2</sub>/monolayer graphene, (ii) Glass/Al/WS<sub>2</sub>/bilayer graphene, and (iii) Glass/Al/WS2/multilayer graphene, were characterized to explore the material interfacial properties and photovoltaic characteristics. Fig. 2 shows a combined schematic 75 view of the fabricated three Schottky barrier solar cells employing WS<sub>2</sub> nanosheet as a photoactive semiconductor with monolayer, bilayer, and multilayer graphene as the Schottky contacts. The current-density-vs.-voltage (J-V) characteristics of the Schottky barrier solar cells were measured under both dark 80 condition and standard AM 1.5 illumination by Agilent B1500A semiconductor device analyzer. A calibrated Xe arc lamp was used to simulate the natural solar light. The Schottky barrier solar cells were illuminated through the graphene contacts as shown in Fig. 2.



Fig. 2 A combined schematic structure of the three fabricated Schottky barrier solar cells using Al as ohmic contact for WS<sub>2</sub> nanosheet, while monolayer, bilayer, and multilayer graphene were used as Schottky contacts. The devices are labelled as cell-1, cell-2 90 and cell-3, respectively.

#### **Results and Discussion**

AFM characterization was performed on the CVD-synthesized WS<sub>2</sub> nanosheet to examine the surface properties. A 30  $\times$  30  $\mu m^2$  surface topography scan on the WS<sub>2</sub> nanosheet grown on Si/SiO<sub>2</sub>

is shown in Fig. 3(a). A clear difference is observed between the SiO<sub>2</sub> surface and the CVD WS<sub>2</sub> nanosheet. In the same scanning area, the phase image was generated, showing significant contrast between the two materials, as shown in Fig. 3(b). The AFM line <sup>5</sup> scan measurement was also conducted on the WS<sub>2</sub> nanosheet sample. The average value was considered on SiO<sub>2</sub> substrate and on WS<sub>2</sub> nanosheet, confirming the thickness of WS<sub>2</sub> nanosheet about ~37 nm, as shown in Fig. 3(c).



<sup>10</sup> Fig. 3 AFM measurements results of (a) surface morphology of WS<sub>2</sub> nanosheet on SiO<sub>2</sub>, (b) phase image indicating the variation of phase between SiO<sub>2</sub> and WS<sub>2</sub> and (c) line-scan corresponding to the surface profile shown in (a) showing the thickness of WS<sub>2</sub> nanosheet.

- Raman spectroscopic measurements were performed to study <sup>15</sup> the monolayer, bilayer and multilayer graphene sheets. The major characteristic peaks of monolayer graphene were observed at 1582 cm<sup>-1</sup> and 2679 cm<sup>-1</sup>. The intensity ratio between G and 2D peaks confirms it is monolayer grapheme, as shown in Fig. 4(a). In the case of bilayer graphene, the intensity of G and 2D peaks is <sup>20</sup> observed to be nearly the same, as seen in Fig. 4(b). Multilayer graphene sheets were obtained on Ni foil showed dominant G peak, as illustrated in Fig. 4(c). The intensity ratio between 2D and G peaks of monolayer, bilayer, and multilayer graphene sheets were calculated and shown in Fig. 4(d). It is well known <sup>25</sup> that the 2D peak in graphene originates from double resonance
- electron-phonon scattering which exhibits significant difference among monolayer, bilayer, and multilayer graphene sheets.

It is expected that the intensity of G peak increases with the number of graphene layers. As shown in Figs. 4(a), 4(b) and 4(c), the C much of an Itilizenergy layer in the target of the formula 1.

- <sup>30</sup> the G peak of multilayer graphene is the strongest among all graphene samples. The position and full-width-at-half-maximum of G-peak are not sensitive to the number of layers. It originates from in-plane vibration of sp<sup>2</sup> carbon with doubly degenerated phonon modes at the center of the Brillion zone. However, the 2D
- <sup>35</sup> peak shows significant variation due to change in the band structure of multilayer graphene. We also observe that all three samples do not show noticeable D peak in the Raman spectra,

confirming reasonably good quality of graphene. It should be noted that the ratio of 2D and G peaks decreases with the number 40 of graphene layers, as seen in Fig. 4(d). The ratio is much higher for monolayer graphene as compared with bilayer and multilayer

for monolayer graphene as compared with bilayer and multilayer graphene sheets, with multilayer exhibiting the smallest value among all samples, as illustrated in Fig. 4(d).



45 Fig. 4 Raman spectroscopic characterization results of (a) monolayer graphene synthesized on Cu, (b) bilayer graphene obtained by stacking two monolayers, (c) multilayer graphene synthesized on Ni foil, and (d) intensity ratio comparison of the three samples.

Two strong active vibrational modes of WS<sub>2</sub> were observed. 50 We confirm the major vibrational Raman modes in the CVD assynthesized samples from the disappearance of the peak at ~421.3 cm<sup>-1</sup> (A<sub>1g</sub> mode). The peak at  $\sim$ 352.8 cm<sup>-1</sup> with no polarization dependence is  $E_{2g}^1$  mode. Fig. 5 (a) shows the Raman spectrum obtained on the  $WS_2$  nanosheet samples in the wavenumber range s5 of 300 cm<sup>-1</sup> $\sim$ 500 cm<sup>-1</sup>. The E<sup>1</sup><sub>2g</sub> peak (352.8 cm<sup>-1</sup>) represents inplane atomic vibration in WS<sub>2</sub> lattice, while the A<sub>1g</sub> peak (421.3 cm<sup>-1</sup>) is associated with the out-of-plane vibrational mode. The  $E_{2g}^{1}$  mode involves in-plane displacement of both transition metal and chalcogen atoms, while A1g mode involves only chalcogen 60 atoms. A schematic of the two Raman active vibrational modes of WS<sub>2</sub> are illustrated in Fig. 5(b). The values obtained for the representative peaks are slightly different, when compared to those of the bulk crystal (355 cm<sup>-1</sup> and 421 cm<sup>-1</sup>, respectively). The very slight shift might be from the unintentional impurity 65 contents present on the surface.

The Lorentzian double-peak-fit was performed on the Raman spectra obtained from the three nanosheet samples to extract the values of FWHM and a typical fitting is shown in Fig. 5(c), performed on samples 2. The two Lorentzian fits yield the peaks  $_{70}$  correspond to the experimental data at both signature values. All the three samples showed FWHM values approximately ~18 for  $E_{2g}^{1}$  and 8 for  $A_{1g}$ , respectively, suggesting that the CVD-grown WS<sub>2</sub> nanosheets are highly crystalline in nature with negligible structural deformation (that could be introduced during the SiO<sub>2</sub>

wet etching step and the subsequent transferring process between different substrates). The post-treatment, i.e., annealing at 1000°C after growth, helps to form the highly crystalline nanosheets. Fig. 5(d) shows the calculated difference in the wavenumber of  $E_{2g}^{1}$  and  $A_{1g}$  vibrational modes for the three samples. The nearly-equal difference values in wavenumber suggest that the three nanosheet samples possess nearly identical characteristics, synthesized by the same growth process.



<sup>10</sup> Fig. 5 (a) Raman spectra of three CVD synthesized WS<sub>2</sub> nanosheet samples used for solar cell fabrication showing two major vibrational modes. (b) Schematic of atomistic view of the two modes illustrating the direction of atomic movements. (c) Double peak Lorentzian fit of Raman spectrum for sample 2. (d) The calculated wavenumber <sup>15</sup> difference of two vibrational modes for three WS<sub>2</sub> nanosheet samples.

Three WS<sub>2</sub> nanosheets were consecutively transferred onto the glass substrate for conducting characterization using UV-visible optical absorption spectroscopy. From the AFM profiling measurement, it is confirmed that each nanosheet is about ~37 nm <sup>20</sup> thick and hence the transfer process yielding a 111 nm stack. The

- $WS_2$  stack for UV visible absorption measurement was used for subsequent fabrication of solar cell with graphene as a Schottky contact. Fig. 6 shows the measured optical transmittance of the  $WS_2$  nanosheet in the wavelength range of 200 nm~900 nm. The
- <sup>25</sup> nanosheet exhibits a maximum optical transmittance of ~43% in longer wavelength region, while showing very efficient photoabsorption in the visible spectral window. The optical absorbance spectrum corresponding to the transmittance is shown in Fig. 6. A strong photo-absorption in the wavelength range starting from
- <sup>30</sup> 200 nm to 900 nm suggests that WS<sub>2</sub> nanosheet is desirable for solar energy harvesting. We also calculated the optical bandgap of WS<sub>2</sub> nanosheet from the measured optical transmittance using the Tauc plot method via the relationship  $\alpha hv \propto (hv - E_G)^{1/2}$ , where  $\alpha$  is the absorption coefficient of WS<sub>2</sub> nanosheet, hv is the
- <sup>35</sup> incident photon energy, and  $E_G$  is the optical bandgap (that determines the photo-absorption spectral range). The bandgap is calculated to be ~1.3 eV from the transmittance spectrum shown in Fig. 6. A dominant photo-absorption associated with 1.3 eV bandgap is highly favourable for solar cell design, as this spectral



Fig. 6 Measured UV-visible absorbance and transmittance of the WS<sub>2</sub> nanosheet exhibits strong photo-absorption in the spectral window of 200 nm~900 nm and the corresponding transmittance shows a maximum value of ~43% at longer wavelength region with a 45 calculated optical bandgap value of 1.3 eV.

range suits well with thin-film semiconductors such as amorphous Si, CdSe, CdTe and CdS.

Three Schottky barrier solar cells (*Cell-1* with monolayer graphene on WS<sub>2</sub>, *Cell-2* with bilayer graphene on WS<sub>2</sub>, and <sup>50</sup> *Cell-3* with multilayer graphene on WS<sub>2</sub>) were characterized under dark condition and AM1.5 illumination. The graphene induced Schottky barrier in WS<sub>2</sub> nanosheet is used to develop electric field at the graphene/WS<sub>2</sub> junction, used for efficient electron-hole pair dissociation in the solar cells. The built-in <sup>55</sup> electric field at the graphene-WS<sub>2</sub> junction points towards graphene contact from the WS<sub>2</sub>. Thus, the electron transport is in the opposite direction, from WS<sub>2</sub> to Al ohmic contact. The holes generated in the valance band of WS<sub>2</sub> nanosheet are transported towards graphene contact along the electric field direction.

Fig. 7 (a) shows the J-V characteristics of the three devices 60 under AM1.5 illumination calibrated by a standard solar cell. The output power characteristics as a function of the applied voltage are shown in Fig. 7(b). The Schottky-barrier solar cell employed monolayer graphene as a contact on  $WS_2$  (cell-1) exhibits the key  $_{65}$  device metrics of  $J_{SC}$  (short-circuit current density),  $V_{OC}$  (opencircuit voltage),  $P_{\text{MAX}}$  (maximum power), and  $\eta$  (photoconversion efficiency) of 9.2 mA/cm<sup>2</sup>, 640 mV, 1.6 x 10<sup>-3</sup> W, and 2.3 %, respectively. The cell-2 (bilayer graphene contact on  $WS_2$ ) shows  $J_{SC}$ ,  $V_{OC}$ ,  $P_{MAX}$  and  $\eta$  as 14.2 mA/cm<sup>2</sup>, 680 mV, 2 x 10<sup>-3</sup> 70 W, and 2.9% respectively. For cell-3 (multilayer graphene contact) the  $J_{SC},\,V_{OC},\,P_{MAX}$  and  $\eta$  are 16 mA/cm², 700 mV, 2.3 x 10<sup>-3</sup> W, and 3.3 % respectively. It should be noted that the changes in solar cell performance metrics is influenced only by the graphene contact (made of varying number of layers), as the 75 WS<sub>2</sub> nanosheet thickness remains the same. While improvement of solar cell performance is expected by increasing the WS<sub>2</sub> nanosheet thickness, the presented effort is focusing only on the effect of graphene contacts.

The  $J_{SC}$  characteristics of the Schottky barrier solar cells were <sup>80</sup> measured at different illumination conditions, as shown in Fig. 7(c). A nearly linear increase in  $J_{SC}$  with incident light intensity is observed for all three devices. The photo-carrier generation is significantly impacted by the incident light intensity, therefore drastically changing the  $J_{SC}$  value. Larger increase in  $J_{SC}$  is observed in the Schottky barrier solar cell with multilayer graphene contact as compared with other two devices, suggesting s multilayer graphene would be the desirable contact configuration for Schottky barrier solar cell.



Fig. 7 Schottky barrier solar cell performance: (a) J-V characteristics of three solar cells under AM1.5 illumination, (b) output power, (c)
 light intensity dependence of J<sub>SC</sub> values, and (d) comparison of performance metrics showing J<sub>SC</sub>, V<sub>OC</sub> and η for different solar cells.

Fig. 7(d) summarizes the measured key metrics of solar cell  $(J_{SC}, V_{OC} \text{ and } \eta)$  for the three Schottky barrier solar cells with monolayer, bilayer, and multilayer graphene contacts. Cell-3 <sup>15</sup> shows exceptional value in  $V_{OC}$  as compared with cell-1 and cell-2, offering an insight about the major change in the quasi-Fermi level splitting due to optical illumination. The difference in the  $J_{SC}$  value among all three solar cells would be due to efficient electron-hole pair separation and collection as a result of <sup>20</sup> significant modification in Schottky barrier behaviour by bilayer and multilayer graphene contacts. Therefore, we attribute the distinction in overall photovoltaic performance in solar cell to the critical impact of graphene contacts and the associated Schottky junction properties.

- Fig. 8 shows the energy-band diagram of the graphene-WS<sub>2</sub> nanosheet Schottky barrier solar cell (as shown in Fig. 2) with reference to vacuum level ( $E_0$ ). Photons incident on the device through graphene layer and excite electrons from the valence band ( $E_V$ ) to conduction band ( $E_C$ ) of the WS<sub>2</sub> nanosheet, leaving
- <sup>30</sup> holes in the valence band. The electric field  $(E_J)$  developed at the graphene-WS<sub>2</sub> interface, pointing towards graphene contact, drives the photo-generated electrons towards Al electrode. The parameters  $\phi_G$ ,  $\phi_{WS2}$ , and  $\phi_B$  represent the workfunction of graphene, WS<sub>2</sub> and the Schottky barrier height, respectively. The
- <sup>35</sup> parameter  $E_F$  represents the position of Fermi level for graphene, WS<sub>2</sub> nanosheet and Al contact. The transport pathway of photogenerated electrons from  $E_C$  of the WS<sub>2</sub> nanosheet to  $E_F$  of the Al contact and reach graphene contact through an external load ( $R_L$ ) is illustrated.



Fig. 8 Schematic of energy level alignment at the graphene-WS<sub>2</sub> interface illustrating Schottky barrier height, junction electric which drives electron-hole transport towards their respective electrodes.

In conventional bulk or thin-film semiconductors such as Si <sup>45</sup> and GaAs, the surface is not self-terminated. Since the lattice periodicity is interrupted, the surface possesses huge density of unsaturated dangling bonds which act as recombination centers limiting solar cell performance. The surface recombination velocity of photo-generated carriers is greatly influenced by the <sup>50</sup> surface traps, resulting in key recombination process. 2D layered semiconductors, by nature, are individual atomic planes coupled via weak van der Waals forces. The surface is self-terminated atomic plane with no dangling bonds. Therefore, in principle the surface recombination velocity is expected to be extremely low, <sup>55</sup> as compared to conventional bulk and thin-film semiconductors. The low surface recombination velocity helps to facilitate efficient photo-generated carrier collection at electrode, yielding solar cells with significantly improved photocurrent.

The J-V characteristics under dark condition represent the 60 interface material quality that directly impacts carrier transport and recombination in solar cells. Electron transport under dark condition is in the opposite direction to that under illumination. If dark current is minimized, the net photocurrent increases. Fig. 9(a) shows the dark J-V characteristics of the three Schottky 65 barrier solar cells in a forward-bias region of  $0V \sim 1V$ . The onset voltage of the dark current is lower in cell-3 (multilayer graphene contact), and is shifted by about a hundred meV in the positive bias region for cell-2 and cell-3, as shown in Fig. 9(a). The reduced dark current density, positive shift of the onset voltage, 70 and increased photocurrent indicate that the multilayer graphene contact helps to reduce electron capturing from the conduction band of the WS<sub>2</sub> and hole capturing from the valence band, and eventually controls the trap-assisted recombination process in the WS<sub>2</sub>. Fig. 9(a) inset shows the semi-log plot of the dark J-V 75 characteristics of the three solar cells, showing distinct behavior in the forward bias region (from 0V~1V).

The dark current density is analyzed in the low-  $(0.2V \sim 0.4V)$ and medium-forward-bias region  $(0.5V \sim 0.8V)$  to study the recombination possibilities at the bulk of WS<sub>2</sub> and graphene-WS<sub>2</sub> 40

interface, as well as the impact of graphene on carrier transport and recombination. Figs. 9(b) and (c) show the curve fitting by a single-diode model performed on all the three devices in the lowand medium-forward-bias regions, respectively. The linear region s in the semi-log plot of J-V characteristics is fit into the single-

diode model to extract the dark saturation current density (J<sub>0</sub>),

$$J_{D}(V) = J_{0}(e^{\frac{qV}{nkT}} - 1)$$
(1)

Here q is electronic charge, V is the applied voltage to solar cell, n is the ideality factor, k is the Boltzmann constant, and T is temperature at which the solar cell operates (300 K).



Fig. 9 (a) Dark J-V characteristics of the Schottky barrier solar cells with the inset showing semi-log plot. (b) Fitting with low-forward-15 bias diode model to extract the Jo values for solar cells. (c) Fitting with medium-forward-bias diode model.

**Table 1.**Comparision of saturation current density  $J_0$  values in dark condition for all the three Schottky barrier solar cells at different forward bias regions, showing the effect of graphene <sup>20</sup> contact.

| Devices | $J_0 (A/cm^2)$       | $J_0 (A/cm^2)$          |
|---------|----------------------|-------------------------|
| C.11.1  | 2.7 10-7             |                         |
| Cell-I  | $/./ \times 10^{-7}$ | $7.3 \times 10^{-8}$    |
| Cell-2  | $6.2 \times 10^{-7}$ | $2.9 \times 10^{-6}$    |
| Cell-3  | $5.0 \times 10^{-7}$ | 9.3 x 10 <sup>-10</sup> |

The values of  $J_0$  for three solar cells with different graphene contacts are listed in Table 1. In both conditions, low- and medium-forward-bias regions, cell-3 with multilayer graphene <sup>25</sup> contact exhibits lower  $J_0$  as compared to other two devices. In particular, the diode model fitting at medium-forward-bias region

showed significantly lower J<sub>0</sub> value for cell-3 as compared to that of cell-1 and cell-2, demonstrating the better control over dark current in device configuration with multilayer graphene contact. <sup>30</sup> This could be the primary cause for the improved photovoltaic performance of the cell-3 as compared with other two devices.

It is known that electron transport occurs in the opposite directions under dark and illumination conditions. Lower dark <sup>35</sup> current value confirms the improvement in the illuminated J-V characteristics of a solar cell. In other words, the net photocurrent of a solar cell under illumination condition would be adversely affected by an increase in dark current. This can be explained, in a simple way, by equation (2),

$$J(V) = J_{SC} - J_D(V) \tag{2}$$

Here  $J_D$  is the dark-current density of the solar cell and  $J_D(V)$  is the dark-current density as expressed in equation (1). It is evident that decreasing  $J_0$  would increase the net photocurrent, therefore improving the photovoltaic performance. The Schottky barrier 45 solar cell with multilayer graphene on WS<sub>2</sub> exhibits the lowest dark saturation current density, as listed in Table 1, leading to enhanced photoconversion efficiency. The V<sub>OC</sub> increases of 20 mV and 60 meV are observed in cell-3 with multilayer graphene contact as compared with cell-2 (bilayer graphene contact) and 50 cell-1 (monolayer graphene contact), respectively, which can be attributed to the better control over dark current using multilayer graphene contact on WS<sub>2</sub> nanosheet. This can be explained using the following equation (3),

$$V_{OC} = \frac{kT}{q} \ln(\frac{J_{SC}}{J_0} + 1)$$
(3)

<sup>55</sup> It is therefore understood that better capability to suppress dark current can be achieved via using highly conductive multilayer graphene, as compared with monolayer and bilayer graphene, which results in improved solar cell performance. The advantage of adopting multilayer graphene as the Schottky contact on 60 layered semiconductor WS<sub>2</sub> nanosheet is demonstrated through both illuminated and dark J-V characteristics and the relationship that connect both in equations (1), (2) and (3).

#### Conclusions

We demonstrate graphene/2D semiconductor Schottky barrier solar cells with different layer configuration of graphene contact on the CVD-assembled WS<sub>2</sub> nanosheets. Solar cell performance is significantly improved by incorporating multilayer graphene as the Schottky contact. While the WS<sub>2</sub> nanosheet exhibits the same efficient visible spectral photo-absorption in all three 70 demonstrated solar cells, the multilayer graphene helps to suppress the dark current much better than monolayer and bilayer graphene, which improves the Schottky barrier solar cell performance. The experimental results point to the possibility of designing all-2D-layered-materials-based solar cells with 75 potential advantages in efficient photoelectric conversion, mechanical flexibility, and low material consumption.

75

#### References

5

10

15

20

25

30

35

50

60

65

70

- Q. H. Wang, K. K.-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nature Nanotechnology 2012, 7, 699-712.
- 2 R. Ganatra and Q. Zhang, ACS Nano 2014, 8 (5), 4074-4099.
- 3 W. S. Hwang, M. Remskar, R. Yan, V. Protasenko, K. Tahy, S. D. Chae, P. Zhao, A. Konar, H. Xing, A. Seabaugh and D.
- Jena, Appl. Phys. Lett. 2012, 101, 013107.
  Y. Lin, Y. Zeng, and A. Javey, ACS Nano 2014 8 (5), 4948-4953
- 5 S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, Nano Lett., 2013, 13 (1), 100-105.
  - 6 J. Kang, W. Liu and K. Banerjee, Appl. Phys. Lett. 2014, 104, 093106.
- 7 M. Shanmugam, C. A. Durcan and B. Yu, Nanoscale, 2012, 4, 7399-7405.
- 8 M. Bernardi, M. Palummo and J. C. Grossman, Nano Lett., 2013, 13 (8), 3664-3670.
- 9 P. Qin, G. Fang, W. Ke, F. Cheng, Q. Zheng, J. Wan, H. Lei and X. Zhao, J. Mater. Chem. A, 2014,2, 2742-2756.
- S. Alkis, T. Özta, L. E. Aygün, F. Bozkurt, A. K. Okyay, and B. Ortaç, Optics Express 2012, 20, 21815-21820.
  - 11 O. L. Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, Nature Nanotechnology 2013, 8, 497-501.
  - 12 R. B. Jacobs-Gedrim et al., ACS Nano, 2014, 8 (1), 514-521.
- H. Wang, H. Feng and J. Li, Small 2014, 10, 2165-2181.
   T. Stephenson, Z. Li, B. Olsen and D. Mitlin, Energy Enviro
- T. Stephenson, Z. Li, B. Olsen and D. Mitlin, Energy Environ. Sci., 2014, 7, 209-231.
- K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, Z. Xu, Q. Zhang and J.-Y. Lee, J. Mater. Chem., 2011,21, 6251-6257.
- H. Hwang, H. Kim, and J. Cho, Nano Lett., 2011, 11 (11), 4826-4830.
   L. E. Chaar, I. A. Jamont, N. E. Zein, Renewable, and
  - 17 L. E. Chaar, L.A. lamont, N. E. Zein, Renewable and Sustainable Energy Reviews 2011, 15, 2165–2175.
- 18 M. Konagai, Jpn. J. Appl. Phys. 2011, 50, 030001.
- 19 S. G. Kumara and K. S. R. K. Rao, Energy Environ. Sci., 2014, 7, 45-102.
  - 20 Y.F. Makableh, R. Vasan, J.C. Sarker, A.I. Nusir, S. Seal, M.O. Manasreh, Solar Energy Materials and Solar Cells 2014, 123, 178–182.
- 40 21 T. Georgiou et al., Nature Nanotechnology2013, 8, 100–103.
  - K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 2010, 105, 136805.
     S. Fuhrer and J. Hone, Nature Nanotechnology 2012
  - 23 M. S. Fuhrer and J. Hone, Nature Nanotechnology 2013, 8, 146–147.
- 45 24 W. S. Hwang et al., Appl. Phys. Lett. 2012, 101, 013107.
  - R. Gatensby et al., Applied Surface Science 2014, 297, 139– 146.
  - 26 L-Y. Gan, Q. Zhang, Y. Cheng, and U. Schwingenschlögl, J. Phys. Chem. Lett., 2014, 5 (8), 1445–1449.
  - 27 S. Yang, S. Tongay, Y. Li, Q. Yue, J. –B. Xia, S.-S. Li, J. Li and S.-H. Wei, Nanoscale, 2014,6, 7226-7231.
    - 28 S. Yang, Y. Li, X. Wang, N. Huo, J.-B. Xia, S.-S. Lia and J. Li, Nanoscale, 2014,6, 2582-2587.
    - 29 S. Z. Butler et al., ACS Nano 2013, 7 (4), pp 2898–2926.
- 55 30 G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett., 2011, 11 (12), 5111–5116.
  - 31 R. A. Gordon, D. Yang, E. D. Crozier, D. T. Jiang, and R. F. Frindt, Phys. Rev. B 2002, 65, 125407.
  - 32 Y.-H. Lee et al., Advanced Materials 2012, 24, 2320–2325.
  - 33 Y. Zhang et al., ACS Nano, 2013, 7 (10), 8963–8971.
  - 34 Y. C. Lin et al. Nanoscale 2012, 4, 6637–6641.
    - 35 A. K. Geim and K. S. Novoselov, Nature Materials 2007, 6, 183 – 191.
    - 36 C. M. Weber et al., Small 2010, 6, 184–189.
    - 37 C. X. Guo et al., Angewandte Chemie, 2010, 49, 3014–3017.
  - 38 W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, Phys. Rev. B 2009, 80, 235402.
  - S. Bertolazzi, D. Krasnozhon, and A. Kis, ACS Nano, 2013, 7
     (4), 3246–3252.
  - 40 K. Roy et al., Nature Nanotechnology 2013, 8, 826–830.

- 41 J. Yoon et al., Samll 2013, 9, 3295–3300.
- 42 L. Britnell1 et al., Science 2012, 335, 947-950.
- 43 M. Bernardi, M. Palummo and J. C. Grossman, Nano Lett., 2013, 13 (8), 3664–3670.

Nanoscale, [2014], [vol], 00–00 | 7