Nanoscale

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/nanoscale

Journal Name

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

High-Efficiency Synergistic Conversion of CO₂ to Methanol Using Fe₂O₃ Nanotubes Modified with Double-Layer Cu₂O Spheres

Nanoscale

Peiqiang Li^{*}, Hua Jing, Jinfeng Xu, Chenxiao Wu, Hui Peng, Jing Lu, Fusui Lu^{*}

Cuprous oxide/hematite nanotubes (Cu₂O/Fe₂O₃NTs) were prepared by the potentiostatic electrodeposited method in which different structured Cu₂O materials were modified onto Fe₂O₃ NTs surface. Among them, the material with double-layer Cu₂O spheres (Cu₂O/Fe₂O₃ NTs-30) showed excellent photoelectrocatalytic (PEC) properties with a suitable energy band gap (1.96 eV) and smaller overpotential (0.18 V). Furthermore, Cu₂O/Fe₂O₃ NTs-30 showed two types of synergism in the PEC reduction of CO₂: (i) between electrocatalysis and photocatalysis and (ii) between Cu₂O and Fe₂O₃NTs. The faradaic efficiency and methanol yield reached 93% and 4.94 mmol L⁻¹ cm⁻² after 6 h, respectively.

Introduction

Carbon dioxide (CO₂) released by burning fossil fuels is a primary cause of global warming; therefore, the capture and efficient use of CO₂ have become an important issue. Among all the possible 5 solutions, the catalytic conversion CO₂ to hydrocarbon fuels is a crucial goal that may positively influence the global carbon balance. Recently, attempts have been made to utilize CO₂ as a natural resource, i.e., as a feedstock rather than a waste product requiring costly disposal, such as high temperature and high pressure^{1,2}. The 10photocatalytic (PC) reduction CO2 proceeds under ambient temperature and pressure driven by solar energy, which is inexhaustible in supply and always available for use³⁻⁵. However, the PC conversion efficiency of CO₂ to methanol (CH₃OH) and other energy-rich compounds is generally low. One of the reasons 15 is the low utilization of visible light caused by the width of the energy band gap of the semiconductor material unsuitable for this purpose.

Moreover, electrocatalytic (EC) function has also received extensive attention in the field of CO_2 reduction because of the 20possibility of applying renewable electrical energy as the driving force. Furthermore, EC function is also conducted under ambient temperature and pressure which can dramatically simplify and lower the cost of CO_2 conversion to fuel⁶⁻¹⁰. An efficient catalyst should mediate the transfer of multiple electrons and protons to 25CO₂ at low overpotential, reduce CO_2 in the presence of H₂O, and

selectively afford one product. However, the EC reduction CO_2

suffers from one or more of the following problems: low energetic efficiency (i.e., large overpotential requirement), rapid loss of CO_2 reduction activity in favor of H₂O reduction, and poor selectivity $_{30}^{11,12}$.

efficient process, То achieve more catalytic а photoelectrocatalytic (PEC) processes have been studied using visible light-sensitive materials to convert CO₂ to small-molecule organic fuels¹³⁻¹⁷. The first use of a photocatalyst, as a 35photocathode, for the PEC reduction CO₂ was reported over 30 vears ago^{13} . Most of the researches about the PEC reduction of CO_2 involve electrically assisted photocatalysis¹⁴⁻¹⁶. A small bias is added to the catalyst materials based on the PC reduction to effectively separate the photo-generated holes and electrons and 40achieved higher photoelectric conversion efficiency; however, the applied bias is too small to conduct the EC reduction independently. Previously, we reported photo-enhanced electrocatalysis¹⁷, with efficient reduction efficiency. However, the light itself could not provide the desired PC function independently. Therefore, we 45 combined EC and PC functions to achieve a synergistic function between them on the same catalytic surface.

To achieve a synergistic function between PC and EC, the selection of a catalyst is the key point, which requires that the catalyst not only matches the energy band for the PC reduction, but soalso matches the small overpotential for the EC reduction simultaneously. Among the available materials, hematite (Fe_2O_3) is an excellent semiconductor photocatalyst and has been widely investigated because it is environmentally benign, very abundant,

P. Q. Li, H. Jing, J. F. Xu, C. X. Wu, P. Hui, J. Lu, F. S. Lu

Shandong Agricultural University

Shandong 271018, China

Corresponding Author E-mail: chem_carbon@yahoo.cn; pqli@sdau.edu.cn

Department of Chemistry

[†]Electronic Supplementary Information (ESI) available: Reduction of CO₂ to Low Carbon Alcohols on CuO FCs/Fe₂O₃ NTs Catalyst with Photoelectric Dual Catalytic Interfaces. See DOI: 10.1039/b000000x/

- and inexpensive¹⁸⁻²⁰. Different hematite-based hierarchical 55 nanoarchitectures have been developed, such as nanowires, flowerlike, urchinlike, nanobelts, nanotubes, nanorods, elliptic superstructures, and dendritic-micropines²¹. Among them, Fe₂O₃ nanotubes (NTs) are extensively used as photocatalyst because of its large surface area, efficient charge transferring capacity, high
- 60 active sites, and the low recombination of electron-hole pairs²² The most important characteristic is that Fe₂O₃ has a narrow band gap (2.2 eV) that can absorb light of wavelength shorter than 600 nm. However, the reduction of Fe₂O₃ is very weak for the positive conduction band $(0.28 \text{ eV})^{23}$.
- 65 To achieve suitable conduction and valence bands for the catalytic reduction of CO₂, cuprous oxide (Cu₂O) was selected to couple with Fe₂O₃ NTs. Cu₂O is a widely used p-type metal-oxide semiconductor, and its conduction band is located at -1.3 eV (vs. normal hydrogen electrode (NHE)) more negative than that of
- $70 \text{Fe}_2 \text{O}_3^{16}$, resulting in a strong reductive efficiency. In theory, the coupling of Cu₂O to Fe₂O₃ may lead to excellent PC reduction efficiency for CO₂ owing to the matched energy band gap. Moreover, Cu₂O is an outstanding electrocatalyst because of its great selectivity to CH₃OH and excellent conductive ability^{24,25}. 75 Therefore, it is expected that the combination of the two materials
- may exhibit a great PEC performance.

In this study, several Cu₂O/Fe₂O₃ NTs with different morphologies were prepared by the potentiostatic electrodeposition method in which Cu₂O films were deposited onto the surface of 80Fe₂O₃ NTs at different electrodeposition times. The as-prepared materials were investigated by a series of photochemical and electrochemical measurements, indicating that the Cu₂O/Fe₂O₃

- NTs at a deposition time of 30 min showed more excellent PEC properties than the materials obtained at other deposition times. 85Compared to Cu₂O/Fe or Fe₂O₃ NTs, the Cu₂O/Fe₂O₃NTs showed superior PEC reduction performance for the efficient conversion of CO₂ to CH₃OH. The faradaic efficiency and CH₃OH yield reached 93% and 4.94 mmol L^{-1} cm⁻² after 6 h, respectively. The
- Cu₂O/Fe₂O₃NTs material showed two types of synergistic function: 90(i) between the two materials (Cu₂O and Fe₂O₃) and (ii) between the PC and EC functions. The research provided a new methodology for the material design for the PEC reduction of CO₂; the PEC synergistic conversion of CO2 has a great environmental and social significance.

95 Results and Discussion

Journal Name

Figure 1. (a), (b) Scanning electron microscope (SEM) images of Cu₂O/Fe₂O₃ NTs at a deposition time of 30 min and Fe₂O₃ NTs. (inset of b: high-magnification SEM image of Figure 1b).

The Cu₂O/Fe₂O₃ NTs were prepared by the simple and practical 100 potentiostatic electrodeposition method. Figure 1a shows the SEM image of the Cu₂O/Fe₂O₃ NTs at a deposition time of 30 min; three lavers are clearly observed. The bottom laver is Fe₂O₃ NTs: the amplified Fe₂O₃ NTs grew in situ as volcano shape (Figure 1b), which distributed evenly on the surface. The inset of Figure 1b 105 shows that the diameter of Fe_2O_3 NTs is very small (~20 nm). The middle layer in Figure 1a shows spherical Cu₂O evenly distributed with a particle size of 200-500 nm. The upper layer in Figure 1a is evenly distributed, with larger and more regular Cu₂O spheres than the middle one. The diameter of larger Cu₂O spheres is 110approximately 12 µm. To the best of our knowledge, such a novel three-layer structure is reported for the first time.

Scheme 1. Growth mechanism of Cu₂O/Fe₂O₃NTs composite.

Scheme 1 shows the growth mechanism of the Cu₂O/Fe₂O₃ NTs, 115 demonstrating the changes in the morphology with the progress in electrodeposition. Herein, Cu₂O/Fe₂O₃ NTs-15, Cu₂O/Fe₂O₃ NTs-30, and Cu₂O/Fe₂O₃ NTs-45 represent the Cu₂O /Fe₂O₃ NTs with the electrodeposition times of 15 min, 30 min, and 45 min, respectively. First, it was a piece of iron, as shown in Scheme 1a. 120 During the electrochemical anodic oxidation treatment, Fe₂O₃ NTs in situ grew on the iron plate (Scheme 1b), as shown in Figure 1b. Then, using Fe₂O₃ NTs as the working electrode, potentiostatic electrodeposition was conducted for 15 min, as shown in Scheme 1c. The Cu₂O nanosphere layer was evenly distributed on the 125 surface of the Fe₂O₃ NTs. The scanning electron microscope (SEM) image shows the existence of the Cu₂O nanosphere layer (Figure S1). When the deposition time reached 30 min, as shown in Scheme 1d, bigger Cu₂O spheres appeared and formed another Cu₂O layer, which was sparse and extremely regular. A significant 130portion of the middle layer was exposed owing to the sparse upper layer (Figure 1a). When the deposition time reached 45 min, the Cu₂O microspheres were significantly produced and distributed in one layer (Scheme 1e), which was thicker than the middle Cu₂O layer and totally covered the other two (Figure S2). Among the 135three different types of structures, Cu₂O/Fe₂O₃ NTs-30 perhaps showed the largest specific surface that had more active sites for the catalytic reaction.

The best activity of Cu₂O/Fe₂O₃ NTs-30 was proved by the maximum absorption intensity for visible light (MAI-vis), energy 140 band gap (E_g) , electrochemical impedance spectroscopy (EIS), and the overpotential of EC reduction of CO₂. As shown in Table 1, in

Page 2 of 7

185

Journal Name

terms of the photochemical properties, the $E_{\rm g}$ was obtained after a series of calculations from the UV-visible absorption spectrum²⁶. The Cu₂O/Fe₂O₃ NTs-15, Cu₂O/Fe₂O₃ NTs-30, Cu₂O/Fe₂O₃ NTs-

- 14545 were found to have similar E_g value (~1.96 eV), indicating that the Cu₂O-loading had no obvious effect on E_g . However, Cu₂O/Fe₂O₃ NTs-30 with the highest value of MAI-vis indicated that the material possessed the highest utilization efficiency for visible light and may possess better PC properties than the others.
- 150 In terms of electrochemical properties, Cu_2O/Fe_2O_3 NTs-30 had the smallest EIS, indicating that this type of structure possessed the highest electron transfer efficiency, and it may favor the catalytic reduction of CO₂. Furthermore, the lowest overpotential (0.26 V) of Cu_2O/Fe_2O_3 NTs-30 indeed proved that the target material
- 155 showed the best EC reduction performance for CO₂. In the PEC process, Cu₂O/Fe₂O₃ NTs-30 has the largest CH₃OH yield than the other electrodeposited time. In summary, Cu₂O/Fe₂O₃ NTs-30 exhibited not only the best photochemical performance, but also the best electrochemical performance than the other materials 160 obtained at different deposition times. Therefore, we further studied Cu₂O/Fe₂O₃ NTs-30.

Table 1. Optical and electrical properties of Cu_2O/Fe_2O_3 NTs prepared at different electrodeposition times.

		Photochemical properties		Electrochemical properties		PEC
						6 h
		MAI-vis	$E_{\rm g}$	EIS	Overpotential	CH ₃ OH
		(a.u.)	(eV)	(ohm)	(V)	(mmol
						$L^{-1} \text{ cm}^{-2}$)
	0 min	1.246	2.03	1400.2	0.45	1.29
	15 min	0.935	1.97	793.2	0.29	2.35
	20	1.2(2	1.06	222.2	0.26	4.04
	30 min	1.202	1.90	232.3	0.20	4.94
1	45 min	1.028	1.96	445.1	0.47	3.09

165

First, the crystal structures of the as-prepared materials were analyzed by X-ray diffraction (XRD). As shown in the XRD spectra (Figure 2a), the diffraction peaks are strong and sharp, indicating good crystallization²⁷. The major strong characteristic 170 peaks of Fe₂O₃ NTs appeared at 2θ of 24.19°, 30.27°, 33.31°, 35.61°, 43.5°, 49.44°, 54.25°, 57.1°, 62.64°, and 65.2°, corresponding to the crystal faces of (012), (206), (104), (110), (113), (024), (116), (112), (214), and (300), respectively. Its lattice parameters of a = 5.0491 Å and c = 13.6577 Å, matched well with 175 JCPDS, No. 33-0664 of standard α -Fe₂O₃ sample, indicating that the sample was indeed α -Fe₂O₃²³. The major strong characteristic peaks of Cu₂O/Fe₂O₃ NTs-30 and Cu₂O/Fe appeared at 20 of 36.72°, 43.41°, 61.75°, and 74.33°, corresponding to the crystal faces of (111), (200), (220), and (311), respectively. Its lattice 180 parameters, a = b = c = 4.260 Å, matched well with JCPDS card (No. 65-3288) of Cu₂O²⁸. After Cu₂O was loaded on Fe₂O₃ NTs, the peaks of Fe₂O₃ NTs weakened or even disappeared as a result of almost complete coverage of the Cu₂O on the surface of Fe₂O₃ NTs, which also agreed well with the SEM image (Figure 1a).

Figure 2. (a) X-ray diffraction spectra of Cu₂O/Fe₂O₃ NTs-30, Cu₂O/Fe, 190 and Fe₂O₃ NTs (blue dot: crystal planes of Fe₂O₃ NTs, black dot: crystal planes of Fe, red dot: crystal planes of Cu₂O), (b) X-ray photoelectron

Journal Name

Figure 2b shows the X-ray photoelectron spectroscopy (XPS) 195 spectrum of Cu₂O/Fe₂O₃ NTs-30, and the data has been revised by C1s (284.6 eV). The wide-scan XPS spectrum showed the predominant presence of C, O, Fe, and Cu elements. Among those elements, O, Cu, and Fe elements were from the as-prepared composites, and the C element was from the XPS instrument itself. 200 Based on the corresponding high-resolution XPS spectra of Cu2p_{1/3} and Cu2p_{2/3}, the comparison of the standard XPS spectrum showed that the valence states of the elements prepared were Cu⁺¹ (Figure 2c)²⁹. The photoelectron peaks of Fe2p_{3/2} and Fe2p_{1/2} appeared ~711.1 eV and 724.8 eV, respectively (Figure 2d), which agreed 205 well with the literature values³⁰ and indicated the existence of α -Fe O. Thus the material was arround to be Cu O/Fe O

 $Fe_2O_3.$ Thus, the material was proved to be $Cu_2O/Fe_2O_3.$

Figure 3. (a) Valence-band photoemission spectrum of Cu_2O/Fe_2O_3 NTs-30, 210(b) current-time (*i-t*) curve of Cu_2O/Fe_2O_3 NTs-30, Cu_2O/Fe_5 , Fe_2O_3 NTs. The experiment was measured at the open circuit potential in 0.1 mol L⁻¹ KHCO₃ solution with CO₂ purged and light-on or light-off at every 25 s interval.

Figure 3a shows further analysis of the XPS spectrum. It is the 215 valence-band photoemission spectrum and Gaussian fit graph of Cu_2O/Fe_2O_3 NTs-30 based on the XPS spectrum (Figure 2b). The valence-band maximum (VBM) of the material was directly determined from the electron-emission spectrum by the linear extrapolation of the onset of the valence-band emission³¹. As 220 shown in Figure 3a, the VBM is 1.09 eV. Table 1 showed that the energy band gap of Cu_2O/Fe_2O_3 NTs-30 was narrowed from 2.03 eV to 1.96 eV after modifying Fe_2O_3 NTs with Cu_2O , indicating

that Cu₂O/Fe₂O₃ NTs-30 could absorb visible light shorter than 733 nm, and the absorption range for visible light was significantly 225 broadened. Thus, the conduction-band minimum (CBM) could be obtained by the D-value of the VBM and E_g , which was -0.87 eV. This value was more negative than the CO₂/CH₃OH potential (-0.38 V vs. NHE), indicating Cu₂O/Fe₂O₃ NTs-30 with excellent PC reduction ability. Above all, the modification of Fe₂O₃ NTs with 230Cu₂O greatly improved the material's PC reduction performance in theory because of the narrowed E_g and more negative CBM.

Furthermore, current-time (i-t) experiment was used to test the PC performance in practice. The *i*-t curves were measured at the open circuit potential in 0.1 mol L⁻¹ KHCO₃ solution with CO₂ 235purged under light on or off conditions. The current density Dvalue of Cu₂O/Fe₂O₃ NTs-30 between illumination and dark was ~15 μ A cm⁻², which was obviously larger than those of Cu₂O/Fe $(0.051 \ \mu\text{A cm}^{-2})$ and Fe₂O₃ NTs $(0.033 \ \mu\text{A cm}^{-2})$. Further, the current density D-value of Cu₂O/Fe₂O₃ NTs-30 was 300 and 450 240 times those of Cu₂O/Fe and Fe₂O₃ NTs, respectively. Thus, it proved that the coupling of Cu₂O with Fe₂O₃ NTs greatly enhanced the PC reduction of CO₂. In addition, the current density of Fe₂O₃ NTs decreased slightly with time, indicating the occurrence of light corrosion. The current density of Cu₂O/Fe almost had no change, 245 indicating that the Cu₂O had good photochemical stability. Excitingly, after coupling Cu₂O to Fe₂O₃ NTs, the light corrosion stopped. We assumed that Cu₂O protected Fe₂O₃ NTs against the light corrosion and strengthened the PC reduction ability. It was greatly consistent with the former theory.

Figure 4. Current-potential (I'-V) curves of the three materials under irradiation or dark (the black arrows point to the onset potential of the reduction of CO₂).

The linear-sweep voltammetry (LSV) results of Cu₂O/Fe₂O₃ 255NTs-30, Cu₂O/Fe, Fe₂O₃ NTs measured under the dark or visiblelight irradiation, with N₂ or CO₂ bubbling are shown in Figure 4. The net current density (*I'*) was calculated by subtracting the current density of hydrogen evolution (the current density purged N₂) from the total current density (the current density purged CO₂). 260The overpotential of the EC reduction CO₂ on Fe₂O₃ NTs was ~550 mV; however, that of Cu₂O/Fe was only 270 mV. After coupling Cu₂O to Fe₂O₃ NTs, the overpotential of the EC reduction CO₂ further decreased to 220 mV. Thus, the Cu₂O modification decreased the overpotential of the EC reduction of CO₂, decreasing 265the energy consumption in the EC reduction of CO₂. Moreover, the overpotential of Cu₂O/Fe₂O₃ NTs-30 under the irradiation Nanoscale

Journal Name

decreased to 40 mV than the dark condition, indicating that the light irradiation enhanced the material's EC reduction performance. This result agreed well with that reported previously¹⁷.

270 The -1.3 V (vs. saturated calomel electrode (SCE)) potential was taken as an example, as determined from the following product analysis, for further analysis. It was found that $I'_{Cu^{2O}/Fe^{2O3} NTs-30-dark}$ was about two times larger than $I'_{Cu^{2O}/Fe-dark}$ and about ten times larger than $I'_{Fe^{2O3} NTs-dark}$. This result clearly shows that the EC 275 reduction performance of the target material greatly enhanced after

introducing Cu₂O onto Fe₂O₃ NTs. In the PEC reduction of CO₂, $I'_{Cu^{2O/Fe^{2O3} NTs-30-light}$ was ~1.6 times larger than $I'_{Cu^{2O/Fe^{2O3} NTs-30-dark}$, indicating that the EC reduction performance of the target material could be greatly enhanced by the light irradiation. This may lead to 280 the synergistic function between the PC and EC reductions.

285 Figure 5. (a) Methanol yield of the PEC reduction of CO₂ on Cu₂O/Fe₂O₃ NTs-30 at different potentials (vs. SCE), (b) Methanol yield of the PEC, PC, and EC reduction of CO₂ on Cu₂O/Fe₂O₃ NTs-30, (c) Methanol yield of the PEC reduction CO₂ on Cu₂O/Fe₂O₃ NTs-30, Cu₂O/Fe, and Fe₂O₃ NTs at -1.3 V (vs. SCE), (d) Faradaic efficiency of methanol on Cu₂O/Fe₂O₃ NTs-29030, Cu₂O/Fe, and Fe₂O₃ NTs in the PEC process.

The main product of the PEC reduction CO_2 on Cu_2O/Fe_2O_3 NTs-30 was CH_3OH , as tested by GC, and no other products were detected. Further, when the parallel blank experiment (in 0.1 mol L^{-1} KHCO₃ solution without CO_2 purging) was conducted, CH_3OH 295 could not be obtained, indicating that the carbon in CH_3OH originated from the injected CO_2 . Figure 5a shows that from -1.0 V to -1.3 V (vs. SCE), the CH_3OH yield increased, and from -1.3 V to -1.4 V (vs. SCE) it decreased. The results can be explained as follows: in the range 0-1.3 V, as the potential became more 300 negative, the production quantity of CH_3OH increased gradually because the CO_2 reduction was the main reaction that occurred. When the potential was more negative than -1.3 V, hydrogen evolution becomes the main reaction, and the production quantity of CH_3OH decreased. Further, the highest CH_3OH yield was 4.94 305 mmol L⁻¹ cm⁻² after 6 h on Cu_2O/Fe_2O_3 NTs-30.

Next, the PEC, PC, and EC reductions of CO₂ on Cu₂O/Fe₂O₃ NTs-30 were compared (Figure 5b); the CH₃OH content reached 4.94, 0.90, and 1.39 mmol L⁻¹ cm⁻², respectively. From the CH₃OH yield point of view, the EC property of the composite catalyst was ³¹⁰better than the PC performance. However, when PC was coupled to EC, a higher yield was obtained, and this value was even higher than that of the simple sum of the EC and PC (2.29 mmol L⁻¹ cm⁻²) processes. Therefore, in terms of the product yield, the synergistic effect of the PC and EC reductions of CO₂ on Cu₂O/Fe₂O₃ NTs-30 ³¹⁵was thoroughly proved.

In addition, to verify the importance of material design, the PEC reduction of CO₂ on Cu₂O/Fe₂O₃ NTs-30, Cu₂O/Fe, and Fe₂O₃ NTs were carried out. The results showed that the CH₃OH yield on Cu₂O/Fe₂O₃ NTs-30 after 6 h was larger than those on Cu₂O/Fe ³²⁰ (0.55 mmol L⁻¹ cm⁻²), Fe₂O₃ NTs (1.29 mmol L⁻¹ cm⁻²), and the addition of both the processes (1.84 mmol L⁻¹ cm⁻²). Therefore, another synergistic effect existed, i.e., the synergistic function between Cu₂O and Fe₂O₃ NTs.

Finally, the faradaic efficiency well explained the synergistic ³²⁵function. As shown in Figure 5d, the faradaic efficiencies of Fe₂O₃ NTs and Cu₂O/Fe for the conversion of CO₂ to CH₃OH were only ~35% and 40%, respectively. However, the faradaic efficiency of Cu₂O/Fe₂O₃ NTs-30 reached 93%. This is probably because the existence of two synergistic functions leaded to such a high ³³⁰faradaic efficiency.

Scheme 2. Mechanism of the photoelectrocatalytic reduction of CO_2 on Cu_2O/Fe_2O_3 -30 nanotubes.

According to the above analysis and discussion, the mechanism 335 of the PEC reduction of CO₂ on Cu₂O/Fe₂O₃ NTs-30 was deduced. As shown in Scheme 2, two reactions occurred on the electrode surface under irradiation: (i) water was oxidized by the photogenerated holes to protons and oxygen because of the valence band at 1.09 eV, which was higher than the oxidation potential of 340H₂O/O₂ (0.82 V vs. NHE). Therefore, the as-prepared material could supply enough protons for the CO₂ reduction by the valenceband oxidation. (ii) CO₂ could be reduced to CH₃OH. On the one hand, the suitable conduction band of the as-prepared material was -0.87 eV, which was more negative than the reduction potential of 345CO₂/CH₃OH (-0.38 V vs. NHE). This indicated that the catalyst possessed enough PC reductive ability to reduce CO₂ to CH₃OH. On the other hand, the external potential could not only enhance the separation of electrons and holes to improve the PC reduction of CO₂, but also supplied sufficient electrons to sustain the EC 350 reduction of CO₂. Thus, the high efficiency of the PEC synergistic reduction of CO₂ on the Cu₂O/Fe₂O₃ NTs-30 could be reasonably

Experimental Section

explained.

Preparation of Catalysts

Page 6 of 7

355Cu₂O/Fe₂O₃ NTs were prepared by the potentiostatic electrodeposition method by depositing a Cu₂O film on the surface of Fe₂O₃ NTs. Further, the Fe₂O₃ NTs were obtained by the potentiostatic anodization method according to a previous report published by our group²³. The electrodeposition experiments were 360performed under 0.5 V for 30 min (20 °C). The Fe₂O₃ NTs were the working electrode, and the titanium foil was the counter electrode. The electrolytes comprised 0.4 mol L⁻¹ CuSO₄ and 3 mol L⁻¹ lactic acid. After washing with water and ethanol and drying, the Cu₂O/Fe₂O₃ NTs were obtained. The Cu₂O/Fe was prepared by 365a similar potentiostatic electrodeposition method in which the working electrode was pure Fe plate, not Fe₂O₃ NTs.

Characterization

The surface morphologies of the as-prepared samples were characterized by scanning electron microscopy (SEM, Philips 370XL30 FEG) using an accelerated voltage of 20 kV. The particle size was tested by the nano measurer software, and the result was the mean value, the standard deviation is less than 4.66%. The crystals were characterized by XRD) (Rigaku D/MAX-rA, Japan) using a diffractometer with Cu K α radiation, $\lambda = 1.54184$ Å in the 375 range $2\theta = 20-80^{\circ}$ and a scan rate of 4° min⁻¹. The surface compositions were detected by XPS, ESCALAB 250, using a monochromatic X-ray source (Al K α hv = 1486.6 eV). The photochemical properties were determined by measuring the UVvisible absorbance spectra using IS19-1 combined with a single 380 reflection internal accessory (Beijing Purkinje General Instrument Co., Ltd). The electrochemical properties were measured by Chenhua CHI660D electrochemical workstation (Shanghai Instrument Co., Ltd.).

The PEC properties were measured using a CHI660D 385electrochemical workstation. A SCE was used as the reference electrode; a platinum wire was used as the counter electrode; and the as-prepared materials were used as the working electrode. A 500 W xenon lamp (Solar-500, NBeT Group Corp.) with a filter ($\lambda \ge 420$ nm, 100 mW cm⁻²) served as the visible light source. LSV 390 and Amperometric *i-t* curves were measured in 0.1 mol L⁻¹ KHCO₃ with the scan rate 50 mV s⁻¹. N₂ or CO₂ was bubbled into the KHCO₃ solution at the rate of 40 sccm for 20 min before the experiment started. Overpotential of CO₂ reduction is equal to the D-value between the actual reduction potential and the theoretical 395 reduction potential (CO₂/CH₃OH=-0.38 V vs. NHE).

The PEC reduction of CO₂ experiments were conducted in a double cell reactor with circulating water at the constant temperature of 25 °C. Cu₂O/Fe₂O₃ NTs, platinum slice, and SCE were used as the working electrode, counter electrode, and 400 reference electrode, respectively. The electrode area was 2×2 cm², electrode interval was 1.0 cm, flow rate of CO₂ was 40 sccm during the entire experiment. A 500 W xenon lamp ($\lambda \ge 420$ nm, 100 mW cm⁻²) served as the source of visible light. The intermediates and products were detected by gas chromatography (6890-N, Agilent) 405 using a column (2 m, inner diameter 3 mm, Parapok Q, 80-100) and flame ionization detector. The column temperature was maintained at 100 °C, while the detector temperature was maintained at 150 °C. High purity N₂ was used as the carrier gas with a flow rate of 30 sccm. All the experimental data were taken 410 from the average of three parallel experiments.

Conclusions

In this study, Cu₂O/Fe₂O₃ NTs were prepared by the potentiostatic electrodeposition method in which Cu₂O film was deposited onto the surface of Fe₂O₃ NTs. The growth mechanism of Cu₂O/Fe₂O₃ 415NTs was studied in detail; the Cu₂O film showed various structures with the progress in the electrodeposition. Moreover, diverse photoelectric properties were determined for the materials with different morphologies. Among them, the material with doublelayer Cu₂O spheres (Cu₂O/Fe₂O₃NTs-30) showed excellent PEC 420properties with a suitable energy band gap (1.96 eV) and smallest overpotential (180 mV). The morphology and composition of Cu₂O/Fe₂O₃NTs-30 were determined by the XRD and XPS analyses. Furthermore, Cu₂O/Fe₂O₃NTs-30 showed two types of synergism in the PEC reduction of CO₂: (i) between 425 electrocatalysis and photocatalysis and (ii) between Cu₂O and

 Fe_2O_3NTs . The faradaic efficiency and methanol yield reached 93% and 4.94 mmol L⁻¹ cm⁻² after 6 h, respectively. The outstanding performance of Cu₂O/Fe₂O₃NTs-30 for the PEC reduction of CO₂ was well confirmed. Finally, the mechanism for the reduction CO₂ 430by Cu₂O/Fe₂O₃NTs-30 was elucidated in detail.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 21203114), Key Projects in 435 the National Science and Technology Pillar Program during the Twelfth Five-year Plan Period (Grant No. 2011BAD11B01), and Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (Grant No. BS2012NJ008) and Science and 440 Technology Development Planning of Shandong province

(Grant No. 2013GZX20109). We are grateful to the foundation supported by Shandong Jingbo Holdings Corporation.

445

Notes and references

* 61 Daizong Road, Tai'an, People's Republic of China. Tel: 86-0538-8249017.

 $E\text{-mail: chem_carbon} @outlook.com; pqli@sdau.edu.cn.$

- 450† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/
 - M. E. Berndt, D. E. Allen and W. E. Seyfried, *Geol.* 1996, 24, 351-354.
- 4552 X. Guo, D. Mao, S. Wang, G. Wu and G. Lu, *Catal. Commun.* 2009, 10, 1661-1664.
 - 3 C.-C. Lo, C.-H. Hung, C.-S. Yuan and J.-F. Wu, Sol. Energy Mater. Sol. Cells. 2007, 91, 1765-1774.
- 4 S. S. Tan, L. Zou and E. Hu, Catal. Today. 2008, 131, 125-129.
- 4605 J. Ettedgui, Y. Diskin-Posner, L. Weiner and R. Neumann, J. Am. Chem. Soc. 2010, 133, 188-190.
 - 6 Y. Hori, A. Murata and R. Takahashi, J. Chem. Soc., Faraday Trans. 1, 1989, 85, 2309-2326.
 - 7 S. Kaneco, H. Katsumata, T. Suzuki and K. Ohta, Electrochim.
- 465 *acta*, **2006**, *51*, 3316-3321.

ARTICLE

- 8 N. V. Rees and R. G. Compton, *Energy Environ. Sci.*, 2011, 4, 403-408.
- 9 Y. Hori, I. Takahashi, O. Koga and N. Hoshi, J. Phys. Chem. B. 2002, 106, 15-17.
- 47010 Arrigo, R.; Schuster, M. E.; Wrabetz, S.; Girgsdies, F.; Tessonnier, J. P.; Centi, G.; Perathoner, S.; Su, D. S.; Schlögl, R. *ChemSusChem.* 2012, *5*, 577-586.
 - Y. Hori, H. Wakebe, T. Tsukamoto and O. Koga, *Electrochim. acta*, 1994, 39, 1833-1839.
- 47512 J. Augustynski, P. Kedzierzawski and B. Jermann, Stud. Surf. Sci. Catal. 1998, 114, 107-116.
 - 13 M. Halmann, Nat. 1978, 275, 2.

Nanoscale

- 14 J. Gu, A. Wuttig, J. W. Krizan, Y. Hu, Z. M. Detweiler, R. J. Cava and A. B. Bocarsly, J. Phys. Chem. C. 2013, 117, 12415-12422.
- 48015 E. E. Barton, D. M. Rampulla and A. B. Bocarsly, Am. Chem. Soc. 2008, 130, 6342-6344.
 - 16 B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum and C. P. Kubiak, Annu. Rev. Phys. Chem. 2012, 63, 541-569.
- P. Li, H. Hu, J. Xu, H. Jing, H. Peng, J. Lu, C. Wu and S. Ai, *Appl. Catal. B: Environ.* 2013, *147*, 912-919
 - 18 Y.-M. Lin, P. R. Abel, A. Heller and C. B. Mullins, J. Phys. Chem. Lett. 2011, 2, 2885-2891.
- A. Kleiman-Shwarsctein, M. N. Huda, A. Walsh, Y. Yan, G. D. Stucky, Y.-S. Hu, M. M. Al-Jassim and E. W. McFarland, *Chem. Mater.* 2009, *22*, 510-517.
 - 20 G. Liu, Q. Deng, H. Wang, D. H. Ng, M. Kong, W. Cai and G. Wang, J. Mater. Chem. 2012, 22, 9704-9713.
 - 21 D. K. Bora, A. Braun, R. Erni, G. Fortunato, T. Graule and E. C. Constable, *Chem. Mater.* 2011, *23*, 2051-2061.
- 49522 A. Mao, K. Shin, J. K. Kim, D. H. Wang, G. Y. Han and J. H. Park, ACS Appl. Mater. Interfaces. 2011, 3, 1852-1858.
 - 23 P. Li, H. Wang, J. Xu, H. Jing, J. Zhang, H. Han and F. Lu, Nanoscale, 2013, 5, 11748-11754.
- Z4 T.-Y. Chang, R.-M. Liang, P.-W. Wu, J.-Y. Chen and Y.-C. Hsieh,
 Mater. Lett. 2009, *63*, 1001-1003.
 - 25 J. Bugayong and G. L. Griffin, *ECS Trans*, **2013**,*58*, 81-89.
 - 26 X. Wen, S. Wang, Y. Ding, Z. L. Wang and S. Yang, J. Phys. Chem. B. 2005, 109, 215-220.
- Z. Zhang, M. F. Hossain and T. Takahashi, *Appl. Catal. B: Environ.* **2010**, *95*, 423-429.
 - 28 W. Z. Wang, G. Wang, X. S. Wang, Y. Zhan, Y. Liu and C. L. Zheng, *Adv. Mater.* 2002, *14*, 67-69.
 - 29 Y. Zhu, W. Y. Wang, M. W. Guo, G. Li, H. J. Lu, *Inorg. Chem. Comm.* 2011, 14, 1432-1435.
- 51030 M. Muhler, R. Schlögl and G. Ertl, J. Catal. 1992, 138, 413-444.
 - 31 L. Larina, O. Shevaleevskiy and B. T. Ahn, *Energy Environ. Sci.* 2011, 4, 1480-1486.