This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Solving the nanostructure problem: exemplified on metallic alloy nanoparticles†

Valeri Petkov,*,a Binay Prasai, b Yang Ren, b Shiyao Shan, c Jin Luo, c Pharrah Joseph c and Chuan-Jian Zhong c

With current technology moving rapidly toward smaller scales nanometer-size materials, hereafter called nanometer-size particles (NPs), are being produced in increasing numbers and explored for various useful applications ranging from photonics and catalysis to detoxification of wastewater and cancer therapy. Nature also is a prolific producer of useful NPs. Evidence can be found in ores on the ocean floor, minerals and soils on land, and in the human body that, when water is excluded, is mostly made of 6-10 nm in size and globular in shape proteins. Precise knowledge of the 3D atomic-scale structure, that is how atoms are arranged in space, is a crucial prerequisite to understanding and so gaining more control over the properties of any material, including NPs. In the case of bulk materials such knowledge is fairly easy to obtain by Bragg diffraction experiments. Determining the 3D atomic-scale structure of NPs is, however, still problematic spelling trouble for science and technology at the nanoscale. Here we explore this, so-called “nanostructure problem”, from a practical point of view arguing that it can be solved when its technical, that is the inapplicability of Bragg diffraction to NPs, and fundamental, that is the incompatibility of traditional crystallography with NPs, aspects are both addressed properly. As evidence we present a successful and broadly applicable, 6-step approach to determining the 3D atomic-scale structure of NPs based on a proper combination of a few experimental and computational techniques. The approach is exemplified on 5 nm in size Pd$_x$Ni$_{100-x}$ particles (x=26, 56 and 88) being explored for catalytic applications. Furthermore, keep using Pd$_x$Ni$_{100-x}$ NPs as an example, we show how once NP atomic structure is determined precisely, strategy for improving NP structure-dependent properties of particular interest to science and technology can be designed rationally and not subjectively as frequently done now.

Introduction

The three-dimensional (3D) atomic structure of bulk single crystals can be determined with high precision, i.e. “solved” as the scientific community tends to emphasize, by analysing the positions and intensities of thousands of sharp Bragg peaks usually present in their 3D diffraction patterns. The situation with bulk polycrystalline materials, that are ensembles of micrometer-size crystallites and so often referred to as “powders”, is somewhat complicated due to the one dimensional (1D) character of their diffraction patterns reducing the number of sharp Bragg peaks to a few hundreds at best. Nevertheless, solving crystal structure on the basis of powder diffraction data has been increasingly successful thanks to the recent advances in x-ray instrumentation allowing collecting powder diffraction patterns with excellent resolution and computer power allowing implementation of sophisticated algorithms for reconstructing 3D atomic ordering from the less informative, when compared to the case of single crystals, 1D diffraction data at hand. Typically, solved crystal structure is represented in terms of positions of atoms in a unit cell of a perfectly periodic, infinite 3D lattice. This is possible because atoms in bulk crystalline materials are arranged in full accord with such, also known as Bravais, lattices. Bravais lattice type, lattice cell size and positions of atoms in the cell are so selected that the solved crystal structure is represented both very accurately and as concisely as possible. From the positions of atoms in the cell all essential structural
characteristics of the bulk crystalline material studied such as, for example, atomic bond lengths and angles, atomic coordination type and numbers, chemical species arrangement pattern, hereafter called chemical pattern, local symmetry etc can be obtained and, hence, the relationship between crystal’s atomic structure and properties explored straightway.

Precise determination of the 3D atomic structure of NPs, that are ensembles of particles smaller than several tens of nanometer in at least one dimension, is, however, far more complicated and so have become known as “nanostructure problem”11. The problem has both technical and fundamental aspects. In particular, similarly to polycrystallite ensembles, NP ensembles exhibit 1D diffraction patterns. However, contrary to the case of polycrystallite ensembles, the 1D diffraction patterns for NP ensembles do not show a series of sharp Bragg peaks but only a few broad, Bragg-like features merged into an irregular, low-frequency oscillation (e.g. see Figure S1 introduced later on). This renders the well-established, sharp Bragg peaks-based procedures for determining 3D atomic structure technically impossible to apply to NPs. Furthermore, the surface to volume ratio in NPs is much larger than that in bulk crystalline materials rendering the percentage of surface atoms in the former much larger than that in the latter. For example, about 45% and 10 % of all atoms in particles with spherical shape and size of 5 nm and 50 nm, respectively, are surface atoms. Atoms at NP surface have incomplete coordination spheres18, experience significant surface relaxation19 and, quite often, surface environment20 effects. As a result, atoms at NP surface and atoms inside NPs, that have complete coordination polyhedra and are largely not affected by NP extended surface related effects, may not exhibit the same structural pattern. Therefore, intrinsically, atoms in significant fractions of NPs, in particular NP surface and NP core atoms, may not arrange alike18-21. Besides, in pursuit of particular functionality, the arrangement of atoms in NPs often is made extra irregular deliberately22,23. Thus, more often than not, the underling concept of traditional crystallography that like atoms occupy like positions in perfectly periodic, infinite 3D lattices appears fundamentally broken with finite size, extended free surface NPs. Therefore, positions of atoms in unit cells of perfectly periodic, infinite 3D lattices may not represent the atomic structure of NPs accurately but approximate it to a certain extent only23, if at all24. Evidently, given the fundamental incompatibility of traditional crystallography with NPs, the positions of all and not a small, pre-selected fraction of atoms in a nanometer-size material under study ought to be determined and used when the relationship between that NP atomic structure and properties of that material is to be explored accurately. This, as shown here, can be a fairly achievable task.

Over the years the technical and fundamental aspects of “nanostructure problem”11 have been addressed in a number of studies. For example, some studies have concentrated26 on resolving the problem’s technical aspect and so considered the rather diffuse diffraction patterns of NPs not in reciprocal but in real space in terms of Atomic Pair Distribution Functions (PDFs), introduced later on. However, unit cells of perfectly periodic, infinite 3D lattices have been made use of and, hence, the atomic structure of NPs studied not solved but approximated only. Other studies26 have taken a step further by considering NP’s finite size and extended surface. These studies, however, have featured NPs as nanometer-size replicas of perfectly periodic crystals and so have not quite crossed the limits of traditional crystallography. Studies based on experimental atomic PDFs and finite size atomic structure models built by Molecular Dynamics simulations27 or constructed semi-manually as to resemble crystal structure types of interest28 have proven more successful. The models, however, have been approached more of a qualitative than of a quantitative point of view and so the atomic structure of NPs studied not determined precisely. Concentrating on resolving the problem’s fundamental aspect, some studies have pursued constructing NP structure models from scratch, i.e. starting with a small pile of uncorrelated and not prearranged in particular way atoms. These, \textit{ab initio} type studies proved successful only in the case of 0.7 nm in size C\textsubscript{60} molecules (buckminsterfullerene) with well-known in advance, soccer ball-type structure29,30. By contrast, other studies have employed bulk crystals-based approach to the “nanostructure problem”. In particular, bulk single crystals made of 102 Au atom NPs interconnected by organic molecules have been grown, the atomic structure of the crystals solved by traditional Bragg x-ray diffraction (XRD)12,13 and so the positions of Au atoms in the NPs determined14 with low but acceptable resolution of 1.1 Å. The approach has not been pursued much further beyond. Non-diffraction based techniques such as, for example, Transmission Electron Microscopy (TEM)12,33, Raman34, Extended X-ray Absorption Fine-Structure Spectroscopy (EXAFS)35 and Nuclear Magnetic Resonance (NMR)36 also have been used to study the atomic structure of NPs. However, due to their local structure only probe character, the techniques have not been able to solve NP atomic structure but reveal some NP structural characteristics only. Thus, regardless of the sustained effort, no NP atomic structure has been solved, i.e. positions of all atoms in NPs determined accurately yet.

Here we demonstrate that NP atomic structure can be solved with success when both the technical and fundamental aspects of the “nanostructure problem” are addressed properly by i) employing procedures not relying on sharp Bragg peaks in 1D diffraction patterns and, at the same time, ii) completely abandoning the broken limits of Bravais lattices-based crystallography, respectively. For the purpose we employ a proper combination of a few widely available experimental and computational techniques. The techniques are described in the Section below. As an example we solve the 3D atomic structure of 5 nm Pd\textsubscript{x}Ni\textsubscript{100-x} particles (x=26, 56 and 88) explored for catalytic applications. The preparation of Pd\textsubscript{x}Ni\textsubscript{100-x} NPs also is described in the Section below. The example is relevant since metallic NPs are known to adopt crystallographic and non-crystallographic type structures38, each consistent with a number of different chemical patterns39, i.e. are non-trivial from a structural point of view. Note, other NP systems with non-trivial atomic structure
could have been used to exemplify the approach to solving the “nanostructure problem” we demonstrate here since, as discussed below, it is not limited to NPs of particular chemistry, size or shape. Also note that we are approaching the “nanostructure problem” as “finite size, extended free surface NP structure problem” leaving aside the cases of nanometer-size structural fluctuations in bulk crystals\(^{39-41}\) and glasses\(^{42}\) since, usually, both are considered in terms of continuous atomic configurations subjected to 3D periodic boundary conditions.

Experimental and Computational Techniques

1.1 Samples preparation and characterization

The synthesis of \(\text{Pd}_x\text{Ni}_{100-x}\) NPs (\(x=26, 56, 88\)) was based on reduction of \(\text{Pd(II)}\) and \(\text{Ni(II)}\) precursors in the presence of capping agents starting with dissolving palladium(II) acetylacetonate and nickel(II) acetylacetonate, mixed in a desired molar ratio, in octyl ether, and adding 1,2-Hexadecanediol as a reducing agent. After heating to 378 K in \(\text{N}_2\) atmosphere, oleic acid and oleylamine were added as capping agents. The purging in \(\text{N}_2\) was discontinued and the solutions extra heated to 493 K with reflux for 0.5 h resulting in a complete change of their color to black. The solutions were then cooled down to room temperature and \(\text{Pd}_x\text{Ni}_{100-x}\) NPs with the desired \(\text{Pd/Ni}\) ratio precipitated out by adding ethanol and centrifugation. The NPs were dispersed in hexane solvent, mixed with carbon black (XC-72) and sonicated in ice bath for 3 h. Dry, carbon-supported NPs were obtained by removing the solvent and capping agents, including thermal processing (at 540 K) in \(\text{O}_2\) atmosphere for 30 min followed by processing (at 700 K) in \(\text{H}_2\) atmosphere for other 30 min.

The exact chemical composition of \(\text{Pd}_x\text{Ni}_{100-x}\) NPs was determined by inductively-coupled plasma optical emission spectroscopy (ICP-OES) using a Perkin Elmer 2000 DV ICP-OES instrument with the following parameters: 18.0 L \(\text{Ar(g)}\)/min plasma, auxiliary 0.3 L \(\text{Ar(g)}\)/min, nebulizer of 0.73 L \(\text{Ar(g)}\)/min, 1500 W power and peristaltic pump rate of 1.40 mL/min. For the measurements, several samples of each set of \(\text{Pd}_x\text{Ni}_{100-x}\) NPs were dissolved in concentrated aqua regia and diluted to concentrations in the range of 1 to 50 ppm. Elemental (Pd and Ni) concentrations were derived by measuring one or more (Pd or Ni) emission lines to check for interferences and using multi-point calibration curves made from standards with concentrations from 0 to 50 ppm dissolved in the same acid matrix as the unknowns. The standards were re-measured after analyzing 6 to 12 NP samples and the instrument re-calibrated if the measured values were not within \(\pm 5\%\) from the initial ones. The instrument reproducibility was determined using 1 mg/L elemental solutions ensuring \(\pm 1\%\) error for both Pd and Ni concentration.

The size and morphology of \(\text{Pd}_x\text{Ni}_{100-x}\) NPs (\(x=26, 56, 88\)) was determined by TEM and confirmed by High-Angle Annular Dark-Field (HAADF)-scanning TEM (STEM) experiments. For the TEM measurements NP samples were diluted in hexane and drop cast onto carbon-coated copper grids followed by solvent evaporation in air at room temperature. TEM experiments were done on JEM-2200FS microscope operated at 200 kV. The microscope was fitted with an ultra-high-resolution (UHR) pole piece with a point resolution of 0.19 nm. Exemplary TEM and high-resolution (HR)-TEM images of \(\text{Pd}_x\text{Ni}_{100-x}\) NPs are shown in Figure S2.

A JEOL JEM 2100F TEM with a CEOS hexapole probe corrector attached was used to obtain HAADF-STEM images and Electron Energy Loss Spectroscopy (EELS) based elemental maps of \(\text{Pd}_x\text{Ni}_{100-x}\) NPs. The instrument was operated at 200 kV in STEM mode. The lens settings combined with the corrector tuning gave a spatial resolution of ~ 90 pm. HAADF images were taken at a collection angle larger than 50 mrad. Elemental maps of the NPs were obtained by EELS with both \(\text{Pd M}_{4,5}\) and \(\text{Ni L}_{2,3}\) peaks included. The beam convergence and angles for the EELS collection were set to be around 14 mrad and 40 mrad, respectively. Exemplary HAADF-STEM images of \(\text{Pd}_x\text{Ni}_{100-x}\) NPs (\(x=26, 56, 88\)) are shown in Figure S3 and Figure 6, respectively.

The catalytic activity of capping agents free, dry \(\text{Pd}_x\text{Ni}_{100-x}\) NPs for CO oxidation was measured on a custom-built reaction system including a temperature-controlled reactor, gas flow/mixing/injection controllers, an online gas chromatograph (Shimadzu GC 8A) equipped with 5A molecular sieve, Porapak Q packed columns and a thermal conductivity detector. Gas environment included 1 vol % CO balanced by \(\text{N}_2\), 20 vol % \(\text{O}_2\) balanced by \(\text{N}_2\) and 15 vol % \(\text{H}_2\) balanced by \(\text{N}_2\). The catalytic activity in terms of the temperature at which 50 % of CO conversion is achieved, \(T_{1/2}\), is summarized in Figure 7 introduced later on. Note the lower the values of \(T_{1/2}\) the better the catalytic activity.

1.2 High-energy XRD experiments

High-energy synchrotron XRD experiments were carried out at the 11-ID-C beamline of the Advanced Photon Source, Argonne. All NPs were measured with x-rays of energy 115 keV (\(\lambda=0.1080\) Å) up to wave vectors of 25 Å\(^{-1}\). Carbon powder support alone was measured separately. For the measurements the samples were put in glass capillaries. Experimental XRD patterns corrected for detector dead time, sample absorption, carbon support and background (air etc.) scattering are shown in Figure S1. Note these XRD patterns and so their Fourier counterparts, the atomic PDFs of Figure 1, reflect ensemble averaged structural features of all \(\text{Pd}_x\text{Ni}_{100-x}\) NPs sampled by the x-ray beam in a way traditional powder XRD patterns reflect ensemble averaged structural features of all polycrystallites sampled by the x-ray beam in those experiments. Using ensemble averaged structural features to understand and explain ensemble averaged properties (catalytic, magnetic, optical etc.) puts NP atomic structure-property exploration on the same footing. The XRD data of Figure S1 were reduced to structure factors defined as:

\[
S(q) = 1 + \left[I_0(q) \sum c_i f_i(q) \right] \left[\sum c_i f_i(q) \right],
\]
where \(c_i\) and \(f_i(q)\) are the atomic concentration and x-ray scattering factor, respectively, for species of type \(i\) that are Pd and Ni in our case. The structure factors were Fourier transformed into atomic PDFs as follows:

\[
G(r) = \frac{2}{\pi} \int_{q_{\min}}^{q_{\max}} q [S(q) - 1] \sin(q r) dq
\]

Figure 1 Experimental (symbols), fcc-type crystallographic (lines in red) and icosahedral-type non-crystallographic (lines in blue) structure based PDFs for Pd\(_{50}\)Ni\(_{50}\) NPs. The position of the first peak in each experimental PDF is marked with a solid horizontal arrow. The low-r part of the experimental PDFs (lines in black) is shown in the inset. Dashed arrows mark the evolution of subtle PDF features, i.e. of subtle structural features of Pd\(_{50}\)Ni\(_{50}\) NPs, with Pd/Ni ratio.

1.3 Density Functional Theory (DFT) calculations

DFT calculations were carried out using the Vienna ab-initio simulation program (VASP) employing a plane-wave basis. The projector augmented-wave (PAW) method was used to describe the electron-ion interactions. Perdew-Burke-Emzerhof (PBE)\(^{45}\) exchange correlation functional was used throughout the calculations. We explored 150 atom configurations of Pd and Ni species in appropriate proportions positioned inside a cubic super-cell applying periodic boundary conditions at constant volume for annealing, equilibrating, and cooling, and at zero pressure conjugate gradient (CG) for relaxation. A time step of 2.5 fs was used in the calculations. First, the initially random 150-atom configurations were annealed at 2000 K, which is above the melting points of bulk Pd and Ni, for 30 ps. The configurations were then cooled down to 1000 K in 10 ps and equilibrated at this temperature for 30 ps. Finally, the configurations were cooled down to room temperature (300 K) at a cooling rate of 15 K/ps, subjected to an equilibration for 20 ps and fully relaxed to a local energy minimum at zero pressure. Analysis of the final configurations showed that Pd and Ni atoms are arranged on the vertices of a face-centered-cubic type lattice. DFT calculations under non-periodic boundary conditions were also carried out in the manner described above. Analysis of the resulted model atomic configurations showed that clusters of 150 Pd and Ni species may adopt both fcc-type crystallographic and icosahedral-type non-crystallographic atomic structure. The former, however, was found to be much more favourable than the latter because of its much lower energy (-3.617 eV/atom vs -3.477 eV/atom for fcc and icosahedral-type structure, respectively), i.e. of its much higher stability. Nevertheless, as discussed below, not only fcc-type but also icosahedral-type atomic arrangements were considered and so tested as possible structure types for Pd\(_{50}\)Ni\(_{50}\) NPs.

1.4 Classical Molecular Dynamics simulations

The relatively simple but highly efficient for modeling the atomic structure of metals and alloys quantum corrected Sutton-Chen (Q-SC) potential\(^{48-50}\), as implemented in the computer code DL_POLY\(^{51}\), was employed in the classical molecular dynamics (MD) simulations. Q-SC potential treats the atomic structure model energy, \(U\), as a sum of two terms: an atomic pair potential \(V(r_{ij})\) term and a local electron density \(\rho_i\) term\(^{48-50}\) as follows:

\[
U = \sum_i \left[\sum_{j \neq i} \frac{1}{2} \varepsilon_{ij} V\left(r_{ij}\right) - c_i \epsilon_i \rho_i \right]^{\frac{1}{2}}
\]
Here the so-called length parameters a_{ij} and r_{ij} represent the lattice parameter and the distance between i^{th} and j^{th} atoms from the model atomic configuration, respectively. The parameters ϵ_{ij} and c_i are used to scale the repulsive, $V(r_{ij})$, and attractive, ρ_i, energy terms, respectively, and m and n are positive integers such as that $n > m$. The Q-SC potential parameters used in this study are presented in Table 1 below. They were verified by computing the cohesive energy of bulk Pd and Ni. MD simulations yielded cohesive energy values of 3.96 eV/atom and 4.66 eV/atom, respectively. These values compare very well with the experimental values of 3.89 eV and 4.44 eV, respectively.

Table 1. Q-SC potential parameters for Ni and Pd.

<table>
<thead>
<tr>
<th>Metals</th>
<th>m</th>
<th>n</th>
<th>ϵ (meV)</th>
<th>a (Å)</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>5</td>
<td>10</td>
<td>7.3767</td>
<td>3.5157</td>
<td>84.745</td>
</tr>
<tr>
<td>Pd</td>
<td>6</td>
<td>12</td>
<td>3.2864</td>
<td>3.8813</td>
<td>148.205</td>
</tr>
</tbody>
</table>

As commonly accepted, the mixed i-j atomic interactions were estimated as follows:

$$e_{ij} = \sqrt{\epsilon_{ij}}$$

$$a_{ij} = \sqrt{\frac{\epsilon_{ij}}{c_i}}, m_{ij} = \frac{m_i + m_j}{2} \quad \text{and} \quad n_{ij} = \frac{n_i + n_j}{2}.$$ \hspace{1cm} (6)

Several structure models with the chemistry, size (approx. 4100 atoms) and shape (spherical) of Pd$_x$Ni$_{100-x}$ NPs (x= 26, 56 and 88) studied here were explored. The models were optimized, i.e. their energy minimized, starting the MD simulations at 700 K accounting for the fact that the post-synthesis treatment of Pd$_x$Ni$_{100-x}$ NPs was conducted up to that temperature only (see Section 1.1. above). The simulations were carried out under a canonical NVT ensemble using velocity Verlet algorithm with a time step of 2 fs in the absence of periodic boundary conditions. Each of the models was equilibrated at 700 K for 200 ps, cooled down to room temperature (300 K) in steps of 50 K and again equilibrated for 50 ps. The energy of the so optimized structure models was normalized per atom to facilitate comparison. As an example, MD optimized structure models for Pd$_{56}$Ni$_{44}$ NPs are shown in Figure S4.

1.5 FCC-type crystallographic and icosahedral-type non-crystallographic structure based computations of atomic PDFs

Face-centered-cubic (fcc)-type crystallographic structure based atomic PDFs for Pd$_x$Ni$_{100-x}$ NPs (x=26,56 and 88) were computed with the help of the program PDFgui25. Atomic PDFs for perfect fcc lattices were computed at first. Being identical all atoms had to be assigned a relevantly weighted average of the x-ray scattering power of Ni and Pd atoms. The δ-functions like PDF peaks, each corresponding to an atomic coordination sphere in a perfect fcc-type crystal structure, were then broadened by convolution with Gaussian functions to take into account the presence of thermal (Debye-Waller type) and static local atomic displacements in real NPs. Finally, parameters of the underlying fcc lattices, such as the length of the edge of their cubic unit cell, and parameters influencing the width of PDF peaks, such as average atomic thermal displacements, were adjusted so that the computed atomic PDFs approach the respective experimental data as close as possible. Icosahedral-type non-crystallographic structure based atomic PDFs for Pd$_x$Ni$_{100-x}$ NPs (x=26,56 and 88) were computed in a similar manner except for the application of non-periodic boundary conditions and using the program DISCUS52. Results from the computations are shown in Figure 1.

1.6 Hybrid reverse Monte Carlo simulations

Hybrid reverse Monte Carlo (RMC) simulations were used to optimize several structure models for Pd$_x$Ni$_{100-x}$ NPs (x=26, 56 and 88). The starting atomic configurations were those used in the MD simulations. Atomic configurations already optimized in terms of energy by MD also were used as starting ones in the hybrid RMC simulations. In general, hybrid RMC yielded virtually identical results for the cases when the respective starting atomic configurations already were and were not MD optimized in terms of energy. Just the hybrid RMC simulations were easier and faster to conduct in the former than in the latter case.

In the spirit of traditional RMC simulations53,54, the positions of atoms in a structure model being optimized were adjusted as to minimize the difference between the model computed and respective experimental atomic PDF. That difference appears as first term in the function χ^2_D defined by equation (8) introduced below. During the simulations Pd and Ni atoms were constrained to maintain as maximal (i.e. as close to 12) as possible coordination numbers. The constraint appears as second term in the function χ^2_D defined by eq. (8) below. Also, Pd and Ni atoms were constrained not to come closer than pre-selected distances of closest approach. The constraint appears as third term in the function χ^2_D defined by eq. (8) below. The first constraint took into account the close packing nature of fcc-like atomic ordering identified, as described below, as a very plausible structure type for Pd$_x$Ni$_{100-x}$ NPs. The second constraint reflected the fact that metal atoms may not approach each other much closer than the sum of respective atomic radii R_D. Radii of Pd and Ni atoms used here reflected the findings of DFT calculations and structure data mining carried out by us. A relatively new feature55,56, turning the simulations into a hybrid between traditional RMC and MD, was the optimization of model’s
energy as described by the function χ^2 defined by eq. (9) introduced below. The simultaneous minimization of model’s energy and the difference between model computed and experimental PDF data is important since if the former or latter are done alone some inherent to NPs structural features (e.g. local structural disorder) may end up under or overestimated, respectively. Model’s energy was described by a pair-wise (Lennard-Jones type) potential defined as:

$$U = \varepsilon \left(\frac{r_{ij}}{r_{0}} \right)^{12} - 2 \left(\frac{r_{ij}}{r_{0}} \right)^{6},$$ \hspace{1cm} (7)

where ε is the equilibrium energy and r_0 the equilibrium distance between two like atoms. Values for ε and r_0 for pure Pd and Ni were taken from literature sources.\(^{(57)}\) The atomic cross (i.e. Pd-Ni) interactions were described by ε and r_0 parameters calculated as an arithmetic mean of the respective parameters for pure Pd and Ni. All in one, the hybrid RMC simulations aimed at the minimization of residuals function χ^2 involving both χ^2_D and χ^2_P each defined as:

$$\chi^2_D = \frac{\sum (G_{i}^{exp} - G_{i}^{calc})^2}{\sigma_{G}^2} + \sum \frac{(CN_{i}^{exp} - CN_{i}^{calc})^2}{\sigma_{CN}^2} \hspace{1cm} (8)$$

$$\chi^2_P = \frac{\sum (R_{ij}^{exp} - R_{ij}^{calc})^2}{\sigma_{R}^2}, \hspace{1cm} (9)$$

Here G_{i}^{exp} and G_{i}^{calc} are calculated and experimental atomic PDFs for a given value of the real space distance r_{i}, CN_{i}^{exp} and CN_{i}^{calc} are preset desired and model calculated first atomic coordination numbers, and R_{ij}^{exp} and R_{ij}^{calc} are preset desired and model calculated first atomic neighbour distances for ij atomic pairs, respectively. The term ΔU reflects changes in model’s energy. Energy changes were triggered by adjusting atomic positions and swapping positions of nearby Pd and Ni atoms. The σ’s in the denominators of eqs. (8) and (9) are weighting factors allowing controlling the relative importance of the individual terms in the residuals function χ^2 being minimized. In the course of simulations the values of σ’s and the rate of swapping the positions of nearby Pd and Ni atoms were changed several times to increase the chances of finding the global minimum of the residuals function χ^2, instead of a local minimum. In the final stages of the simulations minimizing i) the difference between experimental and calculated atomic PDF data and ii) the energy of model atomic configurations was given preference over maintaining the preset CNs and distances of closest atomic approach. The latter though were never violated during the hybrid RMC simulations. The simulations were considered completed when no significant changes in the residuals χ^2 function were observed. The hybrid RMC simulations were done with the help of a new version\(^{(58)}\) of the program RMC++. Structure models for Pd$_{x}$Ni$_{100-x}$ NPs optimized by hybrid RMC are shown in Figures 2 and 4. Note hybrid RMC described above is very much different from the so-called Empirical Potential Structure Refinement (EPSR) simulations which feature disordered but continuous atomic configurations subjected to 3D periodic boundary conditions.\(^{(59,60)}\)

1.7 Evaluation the quality of structure models for Pd$_{x}$Ni$_{100-x}$ NPs

The quality of various MD and hybrid RMC optimized structure models for Pd$_{x}$Ni$_{100-x}$ NPs ($x=26, 56$ and 88) was evaluated by computing a reliability factor, R_{exp}^{PDF}, defined as\(^{(25,44,61)}\):

$$R_{exp}^{PDF} = \left[\frac{\sum w_i (G_{i}^{exp} - G_{i}^{calc})^2}{\sum w_i (G_{i}^{exp})^2} \right]^{1/2} \hspace{1cm} (10)$$

where G_{i}^{exp} and G_{i}^{calc} are the experimental and model computed atomic PDFs, respectively, and w_i are weighting factors reflecting the experimental uncertainty of the individual G_{i}^{exp} data points. Here w_i were considered to be uniform which, as predicted by theory\(^{(62)}\) and largely corroborated by experiment\(^{(63)}\), is a reasonable approximation in the case of high quality G_{i}^{exp} data such as ours. Note R_{exp}^{PDF} is conceptually very similar to the weighted profile agreement factor R_{exp}^{PDF} used for evaluating how well a crystal structure model reproduces experimental powder diffraction data defined as:

$$R_{exp} = \left[\frac{\sum w_i (y_{i}^{exp} - y_{i}^{calc})^2}{\sum w_i (y_{i}^{exp})^2} \right]^{1/2}, \hspace{1cm} (11)$$

where y_{i}^{exp} and y_{i}^{calc} are, respectively, the observed and model calculated intensities at the step i in the 1D polycrystalline powder diffraction pattern, and w_i are weighting factors reflecting the quality of the experimental diffraction data. The typical values of R_{exp}^{PDF} are, however, in the range of 15-30 % (e.g. see Figure 5) that appears somewhat high when compared to that of R_{exp} values (usually less than 10 %)\(^{(64,66)}\). This mostly reflects the fact that atomic PDFs analysis takes both Bragg-like features and the overall diffuse component of the experimental diffraction patterns into account while crystal structure determination from powder diffraction data focuses on sharp Bragg peaks alone. The inherently higher absolute values of R_{exp}^{PDF}, however, do not affect it functional purpose as a quantity allowing evaluating the quality of NP structure models unambiguously.

Results and Discussion

To solve the atomic structure of Pd$_{x}$Ni$_{100-x}$ NPs ($x=26, 56$ and 88) we chose to follow the logical sequence of steps involved in crystal structure determination on the basis of powder diffraction data. Accordingly, we considered the experimental diffraction data as obtained in reciprocal space at first. However, as can be seen in Figure S1, the experimental XRD
patterns for \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs appear rather diffuse, a picture typical for nanometer-size materials. As mentioned above, it is this diffuse character of the 1D diffraction patterns for NPs that renders the well-established, sharp Bragg peaks-based procedures for solving 3D atomic structures from 1D diffraction data inapplicable to NPs. Therefore, we considered the respective atomic PDFs instead since, as we \(^{20,24,39,44,45}\) and others \(^{21,25-27,29,40,41,61}\) have repeatedly shown, they lend themselves to convenient NP structure models test and refinement. As can be seen in Figure 1 peaks in the experimental PDFs decay to zero at distances shorter (~ 3.5 nm) than the physical size of \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs, which is ~ 5 nm as determined by TEM (see Figure S2) and confirmed by HAADF-STEM (see Figure S3), indicating the presence of non-negligible structural disorder. Such is typical for NPs and, usually, is due to finite size and surface relaxation effects. Further inspection of the experimental PDF data reveals that PDF peaks smoothly change position with Pd/Ni ratio (see the inset in Figure 1). For example, the first peak in the PDF for \(\text{Pd}_{x}\text{Ni}_{100-x} \) \(\text{Pd}_{x}\text{Ni}_{100-x} \) and \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs changes its position from 2.59 Å to 2.67 Å and then to 2.73 Å, respectively. The peak reflects the shortest atomic-pair distances, i.e. the radius of the first atomic coordination sphere in \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs. Clearly it evolves with Pd/Ni ratio. New PDF features appear, shift in position and grow in intensity as well (follow the dashed arrows in the inset in Figure 1). Evidently the experimental PDFs are sensitive enough to capture both overall (e.g. presence of disorder) and subtle (e.g. atomic-pair distances) features of the atomic structure of \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs, including the evolution of those features with Pd/Ni ratio.

Next, keep following in the footsteps of crystal structure studies, we aimed at identifying the type of atomic structure exhibited by \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs. To do it we had to take into consideration the fact that, in spite of their very good sensitivity both to overall and fine features of the atomic structure of NPs, experimental atomic PDFs alone are not as fully amenable to an explicit identification of NP structure types as experimental Bragg diffraction patterns alone are in identifying crystal structure types\(^{2,12,43,65}\). Therefore, in the search of \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs’ structure type we not only had to account for but also go beyond the experimental PDF data. In particular, encouraged by prior studies on monometallic NPs\(^{67}\), we employed DFT as a tool for investigating what types of atomic structure are likely to occur in Pd-Ni system. Details of the DFT calculations are given in Section 1.3 above. DFT indicated that when Pd and Ni atoms are mixed together a fcc-type structure is most likely to occur. Icosahedral-type atomic arrangement, though much less favorable, also was found possible to occur. DFT, however, could not explore sure enough all types of atomic structure likely to be exhibited by 5 nm \(\text{Pd}_{x}\text{Ni}_{100-x} \) particles because of their relatively large size (about 4100 atoms). Therefore, additionally, we queried the experimentally determined atomic structures of bulk Pd-Ni crystals. All turned out to be of a fcc-type\(^{68}\). To verify the predictions of first-principles DFT and findings of prior structure studies on bulk Pd-Ni crystals we computed atomic PDFs for perfect, fcc-type crystallographic and icosahedral-type non-crystallographic structures, and compared the so-computed PDFs with the experimental PDFs. Details of the computations are given in Section 1.5 above. Results of the comparison are presented in Figure 1. As can be seen in the Figure, the fcc-type crystallographic structure based and experimental PDF data agree fairly well. On the other hand, the icosahedral-type non-crystallographic structure based and experimental PDF data largely disagree. The success of the former and failure of the latter model computations gave us confidence to consider fcc-type atomic arrangement as the most likely type of the atomic structure of \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs, and pursue that type further. Note, we could not just assumed that \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs’ structure type should be similar to bulk Pd-Ni crystals’ structure type and casually pursue the latter without verification since prior studies had shown clearly\(^{4,69-73}\) that the structure type of intrinsically non 3D periodic NPs may be very different from the structure type of their bulk, intrinsically 3D periodic crystalline counterparts (also see Figure S9).

Once the structure type for \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs was identified and verified, relevant 3D structure models were generated by populating appropriate in size (~ 5 nm/4100 atoms) and shape (spherical) pieces of fcc-type lattice with Pd and Ni atoms in pertinent proportions. The models were then optimized by minimizing their energy. The minimization was done by Molecular Dynamics (MD) simulations described in Section 1.4 above. MD optimized structure models for \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs exhibiting two very different chemical patterns are shown in Figure S4. In general, the MD optimized models reproduced the respective experimental PDF data reasonably well, except for the region of higher-r values. This is exemplified in Figure S5 where an atomic PDF computed from the MD optimized structure model for \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs (see Figure S4a) featuring random alloy chemical pattern is compared with the respective experimental PDF data. Analysis of the MD optimized structure models revealed that the uniformly flat atomic planes terminating their surface were causing the misfit between the MD model computed and experimental data. Therefore, in the following MD optimization of such models were carried out minimizing their energy. The minimization was done by Molecular Dynamics (MD) simulations described in Section 1.4 above. MD optimized structure models for \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs exhibiting two very different chemical patterns are shown in Figure S4. In general, the MD optimized models reproduced the respective experimental PDF data reasonably well, except for the region of higher-r values. This is exemplified in Figure S5 where an atomic PDF computed from the MD optimized structure model for \(\text{Pd}_{x}\text{Ni}_{100-x} \) NPs (see Figure S4a) featuring random alloy chemical pattern is compared with the respective experimental PDF data. Analysis of the MD optimized structure models revealed that the uniformly flat atomic planes terminating their surface were causing the misfit between the MD model computed and experimental data.
PDFs at higher-r values, i.e. at longer interatomic distances. Moreover, uniformly flat surfaces, i.e. an insignificant degree of surface structural disorder, was the opposite of what the high-resolution TEM images of Pd$_{56}$Ni$_{44}$ NPs and the atomic resolution HAADF-STEM image of Pd$_{56}$Ni$_{44}$ NPs showed (see Figures S2 and S3). Evidently, MD optimized structure models did not reproduce well the positional disorder of surface atoms in Pd$_{56}$Ni$_{44}$ NPs. Furthermore, MD optimized structure models of the same overall chemistry but distinct chemical patterns could not be unambiguously discriminated in terms of their minimized energy. For example, the energy of MD optimized structure models for Pd$_{56}$Ni$_{44}$ NPs featuring random alloy (Fig. S3a) and Ni$_{core}$-Pd$_{shell}$ (Fig. S3b) chemical patterns came as -4.051 eV/atom and -4.052 eV/atom, respectively, i.e. came up pretty much about the same.

To obtain more precise and less ambiguous structure solution for Pd$_{56}$Ni$_{44}$ NPs we carried out hybrid RMC simulations as described in Section 1.6 above. Among the explored chemical patterns were Ni cluster-over Pd cluster phase segregated, Ni$_{core}$-Pd$_{shell}$ onion-like and random alloy type patterns. These were suggested by previous experimental studies indicating that, depending on details of the synthesis and post-synthesis treatment, Pd$_{56}$Ni$_{44}$ NPs may exhibit different chemical patterns with the Ni$_{core}$-Pd$_{shell}$ one occurring particularly often. The latter may be expected since both the cohesive (4.66 eV/atom for Ni vs 3.96 eV/atom for Pd) and surface (0.90 eV for Ni vs 0.77 eV/atom for Pd) energy for Ni are higher than those for Pd. As an example, hybrid RMC optimized structure models for Pd$_{56}$Ni$_{44}$ NPs featuring Ni cluster-over Pd cluster phase segregated, Ni$_{core}$-Pd$_{shell}$, onion-like and random alloy chemical patterns are shown in Fig. 2 (a), (b), (c) and Fig. 4(b), respectively. The quality of the models was evaluated in terms of their energy and “reliability indicator”, R_{wp}^{PDF}, defined by eq. (10) in Section 1.6 above. The results of the evaluation are shown in Fig. 3. As can be seen in the Figure the reliability indicators for the structure models featuring Ni cluster-over Pd cluster, Ni$_{core}$-Pd$_{shell}$ and onion-like chemical patterns are significantly inferior to that of the structure model featuring random alloy chemical pattern. Besides, the energy of the latter (-4.060 eV/atom) is lower than that of the former (-4.042 eV/atom for Ni cluster-over Pd cluster, -4.049 eV/atom for Ni$_{core}$-Pd$_{shell}$ and -4.055 eV/atom for onion-like models) rendering the random alloy type model the most accurate representation, i.e. solution, of the atomic structure of Pd$_{56}$Ni$_{44}$ NPs that could be achieved. Note energy differences in the order of a few tens of meV/atoms are typical for structure models differing in the degree of atomic ordering alone. Furthermore, the energy of so solved atomic structure of Pd$_{56}$Ni$_{44}$ NPs (-4.06 eV/atom) is lower than that (-4.051 eV/atom) of the virtually identical MD optimized, random alloy type model of Fig. S4(a). The former, however, reproduces the experimental PDF data much better than the latter (see Figure S5). Evidently, not only hybrid RMC optimizes the energy of NP structure models at least as good as MD but also accounts for the experimental diffraction/PDF data to the fullest possible extent (compare the respective reliability indicators shown in Figure S5). According the bond-angle distribution shown in Fig. S6 the randomly distributed with respect to each other Pd
Figure 5 Experimental (symbols) and atomic structure solutions derived (solid lines in red) atomic PDFs for Pd$_x$Ni$_{100-x}$ NPs (x=26, 56 and 88). The structure solutions are shown in Fig. 4(a), (b) and (c), respectively. The quality of each structure solution is evaluated in terms of reliability indicator, R_{wp}^{PDF}, described in Section 1.6. The values of R_{wp}^{PDF} are rather low which is typical for structure solutions of very good quality. So-called difference line plots are given beneath each data set as shifted by a constant for clarity (lines in cyan). The plots represent the difference between the full profiles of the respective experimental and structure solution derived atomic PDFs. All three difference plots exhibit low-amplitude, high-frequency ripples only providing extra evidence for the very good quality of the NP atomic structure solutions provided by the approach to solving the “nanostructure problem” demonstrated here.

and Ni atoms in Pd$_{56}$Ni$_{44}$ NPs are fcc-like arranged locally. This is to be expected considering the similarity between the fcc-type structure based and experimental PDFs shown in Fig. 1. In a similar manner hybrid RMC optimized models featuring 4100 atom configurations with local fcc-like ordering and random alloy chemical patterns were found to be the most accurate representation of the atomic structure of Pd$_{26}$Ni$_{74}$ and Pd$_{68}$Ni$_{12}$ NPs that could be achieved. The so solved atomic structure of Pd$_{26}$Ni$_{74}$ and Pd$_{68}$Ni$_{12}$ NPs is shown in Figure 4(a) and (c), respectively, together with that of Pd$_{56}$Ni$_{44}$ NPs (Figure 4(b)). The respective reliability indicators are summarized in Figure 5. As can be seen in the

Figure 6 HAADF-STEM images (up) and EELS elemental maps (down) for single Pd$_x$Ni$_{100-x}$ NPs with x=26 (a), x=56 (b) and x=88 (c). Elemental maps show rather scattered distribution of Pd and Ni species across the NPs reflecting their random-alloy character. Ni species distribution is in red and Pd species distribution in green.

Figure the R_{wp}^{PDF} values for as solved atomic structure of Pd$_x$Ni$_{100-x}$ NPs (x=25, 56 and 88) fall in the range of 18 % - 22 % which, as explained in Section 1.7 above, is considered a benchmark for success in atomic PDFs-based structure studies. Thus, although Ni$_{core}$-Pd$_{shell}$ pattern is considered as native for Pd-Ni NPs, the Pd$_x$Ni$_{100-x}$ NPs (x=25, 56 and 88) studied here were found to be random nanoalloys. Independent confirmation of the random-alloy character of Pd$_x$Ni$_{100-x}$ (x=26, 56 and 88) NPs came from supplementary HAADF-EELS experiments (see Section 1.1) carried out after the type of atomic structure of Pd$_x$Ni$_{100-x}$ NPs was identified and verified, initial 3D models of fcc-type structure found most plausible generated, optimized, evaluated and ranked as described above. As can be seen in Figure 6 the EELS elemental maps show a rather scattered distribution of Pd and Ni species across Pd$_x$Ni$_{100-x}$ NPs (x=26, 56 and 88) confirming their random alloy character.

From the positions of atoms in the 3D structure solutions shown in Fig. 4 precise knowledge of essential structural characteristics of Pd$_x$Ni$_{100-x}$ (x=26, 56 and 88) NPs such as, for example, distribution of different chemical species across the NPs, also known as partial atomic PDFs, average partial and total first atomic coordination distances and numbers (CN)s within the NPs and at the NP surface alone etc. can be obtained easily. Note these characteristics are inaccessible if NP atomic structure is considered in terms of a unit cell of a perfectly periodic, infinite 3D lattice. Partial atomic PDFs for Pd$_x$Ni$_{100-x}$ (x=26, 56 and 88) NPs are shown in Figure S7. The position of the first peak in a partial PDF corresponds to the respective first atomic neighbor distance.

Data in Figure S7 shows that the first neighbor Ni-Ni distance, reflecting the diameter/size of Ni atoms, increases from 2.50 Å to 2.53 Å and then to 2.55 Å with increasing the relative amount of Pd from 26 % to 56 % and then to 88 %, respectively. The size of Pd atoms also increases with Pd concentration from 2.68 Å to 2.72 Å and then to 2.74 Å.
The size of Pd atoms in Pd\textsubscript{x}Ni\textsubscript{100-x} NPs approaches that in bulk Pd at low Ni concentration. With increasing the relative amount of Pd the size of Ni atoms in Pd\textsubscript{x}Ni\textsubscript{100-x} NPs increases well beyond that in bulk Ni. The size of Pd atoms in Pd\textsubscript{x}Ni\textsubscript{100-x} NPs approaches that in bulk Pd at low Ni concentration. With increasing the relative amount of Ni the size of Pd atoms in Pd\textsubscript{x}Ni\textsubscript{100-x} NPs decreases well beyond that in bulk Pd. The observed expansion of Ni and shrinking of Pd atoms indicates redistribution of charge in Pd\textsubscript{x}Ni\textsubscript{100-x} NPs with changing the Pd/Ni ratio.

As postulated by the theory of chemical bonding of Pauling2,3,4, metal atoms receiving extra charge would become smaller in size due to the increased attraction of the electron cloud by the nuclei while ones loosing charge would become larger. Pauling has also proposed that charge transfer on the metallic atom-pair bond on alloying would be proportional to the electronegativity difference between the respective atoms, for maintaining electroneutrality. For reference, the electronegativity of Pd is 2.28 and that of Ni is 1.9 suggesting charge transfer toward Pd, i.e. increasingly smaller Pd atoms with increasing Ni concentration and progressively larger Ni atoms with increasing Pd concentration, which is exactly what we observe. Charge redistribution may influence the catalytic properties of metallic NPs considerably.5 Hence, precise knowledge of it may prove rather useful for the understanding of these properties.

The average partial Pd-Pd and Pd-Ni CNs and the average total first CN inside Pd\textsubscript{50}Ni\textsubscript{50} NPs, derived from the respective atomic structure solution (see Fig. 4b), are 6.2, 5.2 and 11.5, respectively. The similarity between the average Pd-Pd and Pd-Ni CNs reflects the random alloy character of the atomic structure of Pd\textsubscript{50}Ni\textsubscript{50} NPs. The relatively large value of total CN – its close packed nature. The average partial Pd-Pd and Pd-Ni CNs and the average total first CN involving atoms at the surface of Pd\textsubscript{50}Ni\textsubscript{50} NPs only reduce to 4.04, 3.4 and 7.1, respectively, reflecting the incomplete coordination spheres of atoms at NP surface. The distribution of total first CNs for atoms Pd\textsubscript{50}Ni\textsubscript{50} NPs surface only, as obtained from the respective atomic structure solution, is shown in Figure S8. It is rather broad showing 9- and 8-fold coordinated atoms, indicative of close packed, planar-type atomic configurations, as well as 7- to 4-fold coordinated atoms, indicative of terraces, edges and sharp corners at NP surface. Such a variety of atomic configurations occurs when NPs exhibit non negligible surface structural disorder which is exactly what the high-resolution TEM and atomic resolution HAADF-STEM images (see Figures S2 and S3) as well as the enhanced decay of the experimental PDFs at higherr values (see Fig. 1 and the inset in Figure S5) indicate. Low coordinated surface atoms are known to enhance the catalytic activity of metallic NPs52,53 for some reactions. However, the opposite may happen when the number of very low coordinated surface atoms, in particular that of 4-fold and 5-fold coordinated atoms, exceeds some critical threshold54. Hence, precise knowledge of the first CNs for surface atoms in metallic NPs also may prove rather useful for the understanding of their catalytic properties.

Figure 7 illustrates how this pertains to Pd\textsubscript{x}Ni\textsubscript{100-x} NPs, i.e. how precise knowledge of the particular structural characteristics of Pd\textsubscript{x}Ni\textsubscript{100-x} NPs discussed above can help understand better and so design rational strategy for improving further their catalytic properties. As can be seen in the Figure the catalytic activity of Pd\textsubscript{x}Ni\textsubscript{100-x} NPs appears enhanced when i) surface Pd atoms and their first neighbors pack closer, ii) NP surface becomes less corrugated, and iii) the distance between nearby Pd and Ni atoms at the NP surface elongates. Therefore, coordinated effort aiming at enhancing of i) to iii) is very likely to be a successful strategy.
for improving further the catalytic activity of Pd₈Ni₁₀₀₋ₓ NPs for CO oxidation. The effort may involve fine tuning the parameters of NP synthesis/post-synthesis treatment and/or others.

Precise knowledge of the atomic-scale structure of metallic NPs may be important not only for the understanding of their catalytic but also magnetic, optical and bio-medical properties. For example, positions of atoms in a thin slab of the realistically rugged (e.g. see Figure 58) and curved (e.g. see Fig. 4) surface of a precisely determined 3D structure of NPs may constitute a basis for accessing docking of proteins to the surface of these NPs that is much better than the commonly used approximations featuring slabs made of flat atomic planes of regular crystalline lattices.

Conclusions

In conclusion, we demonstrate an approach to solving the “nanostructure problem” involving 6 coherent steps. The steps, (i) to (vi), are summarized below and, for methodological clarity, compared with those involved in the approach to solving crystal structures from powder diffraction data. The comparison is fair since both approaches rely on 1D diffraction data sets obtained from ensembles of entities with largely identical atomic-scale structure and some dispersity in size and shape. Step (i): ensemble averaged NP chemical composition, size and shape should be precisely determined since all three are an integral part of NP atomic structure solution. In particular, the former takes into account the common dependence of atomic-scale structure on chemical composition (e.g. see the inset in Fig. 1) and the latter two - the fact that atomic-scale structure, size, shape and properties of nanometer-size materials are intimately coupled. Understandably, the smaller the dispersity in NP size and shape the smaller the danger of ending up with a biased (e.g. toward particular NP size/shape) solution of the “nanostructure problem”. Powder diffraction studies too require prior knowledge of crystallite’s chemical composition. Prior knowledge of crystallite's size and shape is not necessarily needed since, typically, crystal atomic structure does not depend on crystal’s size and shape. Step (ii): very good quality diffraction data has to be collected to high wave vectors so that the respective atomic PDFs are with high real-space resolution. Data can be taken on NPs that are compacted, i.e. self supporting, dispersed in solid, as is the case with carbon supported Pd₈Ni₁₀₀₋ₓ NPs studied here, or in soft (e.g. polymeric) matrix, in solution, subjected to reactive gas atmosphere and elevated temperature or others. High wave vectors can be reached by employing high-energy synchrotron x-ray, as done here, neutron or electron diffraction. A combination of x-ray, neutron and/or electron diffraction may be very useful in case of multicomponent NPs because of the different scattering power of atoms for x-rays, neutrons and electrons. Chemistry specific PDFs obtained by resonant high-energy synchrotron XRD may be added to the mix. Note crystal structure studies based on traditional powder diffraction also rely on x-ray and/or neutron and/or resonant XRD data. Powder diffraction, however, targets achieving high resolution in reciprocal space and not in real space. Hence, typical powder diffraction patterns do not extend to high wave vectors. Step (iii): the type of atomic structure of NPs studied should be identified with a high degree of certainty. Assuming that it ought to be similar to the structure type of a bulk material of identical chemistry and so considering that structure type only may turn into a roadblock to solving the “nanostructure problem” as exemplified in Figure S9. Powder diffraction studies may need nothing but sharp Bragg peaks to search for and identify crystal structure type unambiguously since that type must comply with both the translational and local symmetry elements of one out of 230 in number only, so-called, Space groups. Constraints imposing strict 3D periodicity and uniformity may not be a priori applied to NP atomic structure rendering the number of possible NP structure types much larger than that of possible crystal structure types. Hence, extra to the experimental PDF data clues, including sound chemical intuition, may be needed to help search for and identify NP structure type in a self-consistent and not erratic manner. As shown here, a combination of first-principles DFT predictions with structure data mining aimed at pinpointing likely NP structure type(s) followed by verification based on experimental PDF data may do a very good job. Other approaches, in particular MD simulations based, may be equally successful. Step (iv): 3D model(s) of the NP structure type identified and actual NP chemistry, size and shape, precisely determined in step (i), are to be generated next. This can be done semi-manually, as done here, or largely automatic. For comparison, 3D structure models for crystals feature relatively small size unit cells of Bravais lattices containing pertinent atomic species occupying positions consistent with the symmetry elements of given Space Groups. Step (v): the initial NP structure model(s) have to be optimized to the fullest possible extent. If the optimization targets minimization of model’s energy alone, as done by classical MD, the outcome may not reflect well some structural characteristics inherent to NPs such as, for example, the presence of NP surface relaxation & structural disorder (e.g. see Fig. S5). One of the obvious reasons is that, usually, model’s energy is described with potentials/force fields developed and tested on ab initio or experimental data for bulk and not nanometer-size materials. Nevertheless, structure models with optimized energy alone still can be very useful in exploring likely NP structure types elucidating NP structure trends and in providing starting points for subsequent NP atomic structure optimization guided by experimental data such as, for example, atomic PDFs data. Indeed we found that when RMC-type model structure optimization starts from atomic configurations with energy already optimized by MD and not from scratch NP structure solutions are easier and faster to arrive at. Techniques such as hybrid RMC appear more successful than MD alone because not only they minimize both model’s energy and the difference between model computed and experimental PDF data simultaneously but also can accommodate various NP atomic structure relevant constraints such as interatomic distances of closest approach.
total or partial coordination numbers, bond angles, distribution of chemical species across the NPs, and others. Constraints may be based entirely on sound chemical intuition12 and/or on experimental data from complementary local structure probe techniques such as Raman, EXAFS and NMR. Atomic structure-relevant constraints of the type described above also are used in the optimization of crystal structure models. That optimization, however, aims exclusively at minimizing the difference between model computed and experimental diffraction data in reciprocal space, paying particular attention to sharp Bragg peaks17,64,66. Furthermore, usually, the energy of crystal structure models is not optimized since positions of atoms in crystals are constrained heavily by the symmetry elements of the respective Space Group(s)12,13. The energy of NP structure models has to be optimized since positions of atoms in NPs are much less constrained. \textit{Step vii)}: the quality of optimized NP structure model(s) should be evaluated and model(s) ranked accordingly. For the purpose, a proper indicator of model’s quality such as, for example, the reliability indicator R_{wp}^{PDF} defined by eq. (10) is to be used. Model’s energy may be considered as well though differences in energy may not necessarily be as obvious as differences in R_{wp}^{PDF} values (compare differences in energy between models in Figure 2 with differences in the respective R_{wp}^{PDF} values in Figure 5). NP structure model with i) well optimized energy and ii) highest possible quality, i.e. showing very low R_{wp}^{PDF} value, can be considered as precisely determined (i.e. solved) atomic structure of the NPs under study. Furthermore, to be considered as structure solution, that model should be consistent with all other NP structure-sensitive data possibly available (e.g. CNs and bond lengths determined by local structure probe techniques) and, when applicable, meet proven in practice criteria such as, for example, bond valence sums32. Quality of crystal structure models optimized against powder diffraction data is evaluated and models ranked in a very similar way17, 64, 66.

The quality of solved NP atomic structure may be cross checked further by, for example, inspecting the way it reproduces very fine details in the experimental diffraction data both in reciprocal/$S(q)$ space (see Figure S10) and real/PDF space (see the “difference line plots” in Figure 5). The representativeness of solved NP atomic structure, i.e. how well it reflects the atomic structure of individual entities of the ensemble of NPs studied, may also be cross checked using techniques sensitive to single NPs such as, for example, high-resolution TEM, HAADF-STEM-EELS, as done here, or others.

As our present and prior studies show, very realistic 3D structure models for NPs with various size, shape and chemistry are fairly easy to generate and verify against experimental atomic PDFs. Examples include models of 3 to 30 nm in size and spherical in shape metallic NPs of fcc, i.e. crystallographic,38 or icosahedral, i.e. non-crystallographic, type structure71, 8 to 25 nm in size and spherical in shape alloy NPs of metallic glass, i.e. amorphous type structure93, 2 to 6 nm in size and spherical in shape core-shell Quantum Dots94, metal oxide hollow tubes with inner and outer diameter of ~10 and 20 nm, respectively70, metal oxide solid tetrapods with ~2 nm wide and 11 nm long arms95, 9 nm in size and snow-flake-like in shape all organic (C$_{2616}$H$_{4068}$Na$_{320}$) NPs90 often referred to as polymer mimics of proteins, 2 to 14 nm in size and spherical in shape semiconductor NPs of quite open, diamond-type structure6, and others. The examples indicate that the approach described here is broadly applicable. Last but not least the approach can be implemented straightforwardly since it relies on a combination of widely available experimental and computational techniques. As such it has all the qualities needed to become a road map (see Figure S11) to solving the “nanostructure problem”111.

A successful approach to optimizing, evaluating and ranking of crystal structure models and so ultimately solving crystal atomic structure on the basis of 1D Bragg diffraction data was first demonstrated in mid-1960s97,98. However, it took about 30 years for the approach to be more-or-less automated by developing software packages incorporating its most important steps in a convenient way17,64,99. About that time clones of the approach streamlined for crystalline materials of particular chemistry (e.g. all organic) and structure type (e.g. molecular) were developed as well100. Some time may also be needed to streamline, automate and clone the approach to truly solving and not merely approximating NP atomic structure on the basis of 1D atomic PDFs data demonstrated here. Nevertheless, even as it is right now, the approach can challenge the “nanostructure problem” with marked success.

\section*{Acknowledgements}

Work on this paper was supported by DOE-BES Grant DE-SC0006877. Work at the Advanced Photon Source was supported by DOE under Contract DEAC02-06CH11357.

\section*{References}

51 W. Smith, W. C. Yong, and P. M. Rodger, Molecular Simulation, 2002, 28, 86.