Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/nanoscale

1	Self-ordering of small-diameter metal nanoparticles by dewetting on hexagonal mesh templates
2	Eric R. Meshot ^{1,2} , Zhouzhou Zhao ¹ ,Wei Lu ¹ , and A. John Hart ^{1,3} *
3	¹ Department of Mechanical Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI
4	48109, USA.
5	² Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue,
6	Livermore, CA 94551, USA.
7	³ Mechanosynthesis Group, Department of Mechanical Engineering, Massachusetts Institute of
8	Technology, Cambridge, MA 02139, USA.
9	*E-mail: ajhart@mit.edu
10	
11	Keywords
12	Nanoparticle, catalyst, order, template, dewetting
13	
14	Abstract
15	Arrays of small-diameter nanoparticles with high spatial order and controlled spacing are useful for
16	catalysis, photonic devices, magnetic recording, synthesis of nanowires and nanotubes, and many other
17	applications. We show that self-ordered metal nanoparticle arrays can be formed by dewetting of thin
18	films on hexagonal mesh substrates made of anodic aluminum oxide (AAO). We investigated the particle
19	morphology and dynamics of dewetting using a combination of atomic force microscopy (AFM), grazing-
20	incidence small-angle X-ray scattering (GISAXS), and numerical simulations. The metal film dewets onto
21	the interstitial sites (<i>i.e.</i> , the node points) between pores on the top surface of the AAO; this is driven by
22	surface tension about the edges of the holes in the film, which are self-patterned by the geometry of the
23	template. Templated metal particles were more monodisperse and had higher local order than those
24	formed by the same process on flat, nonporous alumina. The degree of order depends on the initial film
25	thickness, and for the optimal thickness tested (nominally 2 nm), we achieved uniform coverage and high
26	order of the particles, comparable to that of the AAO template itself. Computational modeling of
27	dewetting on templates with various pore order and size showed that the order of AAO pores is primarily
28	influential in determining particle position and spacing, while the variance in pore size is less impactful.

Page 2 of 18

Our study demonstrates that high local hexagonal order is achievable from facile single-step dewetting.
 Potential uses of these ordered nanoparticle arrays on porous materials include plasmonics and energy
 storage.

32

33 Introduction

34 Fabricating substrate-supported arrays of metal nanoparticles is widely important for catalysis, 35 photonic devices, magnetic recording, synthesis of nanowires and nanotubes, and other applications. 36 Independent control of the size, spacing, and order of the particles is crucial to enable engineering of 37 properties that rely both on particle dimensions and organization. Various methods to produce nanoparticle arrays have both strengths and limitations. Top-down methods^{1 2, 3 4-7} are frequently limited 38 39 by the wavelength of optical lithography, or require use of electron beam lithography, which is relatively 40 costly and low throughput. Bottom-up (self-directed) processes, such as by the use of capillary forces or block copolymers to assist assembly of particles⁸ are effective yet often rely on pre-formed nanoparticles 41 42 or micelles, which adds additional complexity and challenges to the process. Additionally, the presence 43 of the polymer can contaminate or alter the performance or functionality of the particle array.

44 Dewetting of metal thin films into islands is an alternative, facile, and self-directed route for making particle arrays. Dewetting of pre-patterned thin films can be induced by ion⁹ or laser¹⁰ beams as well as 45 46 by thermal annealing, which is often more accessible compared to techniques requiring high-energy sources. Thermal stress drives solid-state dewetting through surface diffusion of metal atoms at 47 temperatures well below the melting point of the metal.¹¹ which allows restructuring of the film into islands 48 49 in order to minimize the energy of the system. However, this process is governed by surface tension that originates from random formation of grain boundaries and holes in the film,¹² so it is challenging to control 50 51 resultant particle size and spacing.

Researchers have patterned defects or other topographical features on host substrates to control the migration of metal atoms during film dewetting and thus achieve deterministically ordered structures. For example, thin metal films deposited on a substrate with sub-micrometer pits or trenches, preferentially dewet and form particles at the bottom of the pits.¹³⁻¹⁶ Giermann and Thompson¹⁴ explain that grooving of the film at the sharp edges of topographical features leads to pinching off of the film as atoms migrate

57 away from these highly strained regions. Further studies showed that depending on film thickness and processing conditions, dewetting could be programmed to produce one or several particles per pit.^{13, 17} 58 59 Recent studies combined dewetting with other mechanisms to fabricate arrays. For instance, Ye and Thompson¹⁸ exploited the crystal orientation of single-crystal Ni films. They showed that arrays of 60 61 different complex shapes can be generated from the same lithographic pattern, depending on the film's crystal orientation. Farzingour, et al.¹⁹ deposited metal films on top of sacrificial antimony patterns and 62 63 then generated regular arrays of ~100 nm particles by sublimating the antimony away during heating. 64 However, to our knowledge, templated dewetting has not been studied at the ~10-nm scale due to the 65 inherent challenges of patterning surface topographies with small feature size. 66 Here, we study the self-ordering of metal nanoparticle arrays by dewetting of thin films on hexagonal 67 mesh substrates made of nanoporous anodic aluminum oxide (AAO). We deposited metal films on the 68 top surface of AAO substrates and found that upon thermal annealing, the metal film dewets onto the 69 interstitial sites (*i.e.*, the node points) between pores on the top surface of the AAO. This is driven by 70 surface tension around the edges of holes in the film, which are self-patterned by the geometry of the 71 template. Using atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering 72 (GISAXS), and numerical simulations, we show that metal particles formed on AAO are more 73 monodisperse and have higher local hexagonal order than on flat control substrates. The organization of 74 the templated particles is related to the initial film thickness and the relative order of the AAO pores.

75

76

77 Results and discussion

78 We focused our study on dewetting of Fe because it is has broad applicability for magnetic devices, 79 catalysis, and growth of carbon nanostructures; however, our approach is generally valid for metals and 80 other materials that can be deposited in a line-of-sight configuration. As illustrated in Figure 1, Fe metal 81 films are sputtered on the top surface of the AAO substrate and thus are self-patterned by the 82 hexagonally arranged pores. Coating of sputtered thin films is uniform in thickness up to wafer scale 83 areas and yields topography with nanoscale roughness, which is pronounced by the inherent roughness 84 and porous structure of the AAO. Thermal annealing is still required to induce coarsening and fully form 85 particles, which we performed at 775 °C in H₂/He for 10 minutes (see Supplementary Information for 86 details).

87 During heating, holes in the self-patterned film grow during annealing as metal atoms flow from the 88 highly strained (energetically unfavorable) edges of the holes to the node points on the surface of the 89 AAO. Dewetting occurs upon heating due to capillary instabilities in the film, and surface tension arising 90 at holes in the film drives the diffusion of atoms. This may occur at temperatures as low as 20% of the 91 metal's bulk melting temperature, yet the thermal energy is enough to both induce a compressive stress 92 in the film (due to thermal mismatch between film and substrate) and increase the mobility of metal atoms during surface diffusion, both of which drive film dewetting. Our previous in situ GISAXS studies²⁰ of Fe 93 94 films (nominally 1 nm) for carbon nanotube (CNT) growth on flat Al₂O₃ demonstrated that dewetting 95 occurs at 550 °C (36% of Fe melting point) and can be rapid (< 10 sec) when heating at 10 °C sec⁻¹ in 96 H_2/He . The Fe particles are stable in their size and spacing on the substrate for several minutes 97 thereafter. We also note that the native FeO_x thin film reduces to Fe upon heating, which we found to be 98 critically important for dewetting.

Here, we performed experiments with different Fe thickness deposited on AAO and examined the surface topography before and after by AFM imaging. Local AFM traces of select areas on bare AAO and 2 nm Fe on AAO (*i.e.*, to with and without particles) compare relative height in Figure 2 show the presence of small particles at the node points after deposition and annealing. We conclude that the particle diameter is <20 nm and that the Fe is restricted to the top surface of the AAO. To show that most if not all of the Fe is confined to the top surface, we grew a vertically aligned CNT forest from the particle

array. Cross-sectional SEM reveals a clean CNT/AAO interface, with no CNTs originating from the AAOpores (Figure S1).

107 We observe that the initial Fe thickness has a strong influence on the particle order after dewetting on 108 AAO, which is demonstrated in Figure 3 by AFM images and corresponding FFT patterns. FFT analysis 109 of particles formed on AAO from sub-5-nm films exhibit order, evidenced by the pronounced rings 110 characteristic of small variance in particle spacing. The case with 2 nm initial Fe thickness shows 111 markedly better coverage compared to 1 nm with similarly high order according to their respective FFT; 112 however, if the initial film is too thick, the template does not influence order. In comparison, metal films on 113 flat Al₂O₃ dewet according to the random roughness of the underlayer, and thus, the particles are 114 polydisperse in size and spacing, which is evidenced by the diffuse FFT pattern (Figure 3e). A 5 nm film 115 yielded a highly polydisperse particle population lacking order. This suggests that there is a threshold for 116 film thickness, likely due to the fact that it is not energetically favorable for a large particle to be confined 117 to the limited area of a node point on the AAO's surface. We estimate that when the volume of a 5 nm 118 film is divided evenly according to the accessible node density on the AAO support (18 nm, 49 nm 119 spacing from AFM analysis in Figure S2), the average particle diameter is larger than 40 nm, which 120 exceeds the lateral dimension of the available surface of a node. 121 We also sought to quantify the influence of the AAO template on the Fe particle size. However, this is 122 challenging to do with AFM images due to the presence of the pores and long-range roughness in the 123 surface of AAO. As a result, we employed GISAXS as a complementary technique, which is nondestructive and probes nanoscale surface structure over a large area (>10 mm²).²¹ For our 124 substrates, two characteristic coherent scattering features are present for 0.1 < q < 1 nm⁻¹: a low-q peak 125 126 corresponding to the particle-particle spacing, and a high-q peak related to the form factor (size, shape) of the particle. As shown in Figure 3f, bare AAO has a sharp scattering peak at q = 0.2 nm⁻¹ arising from the 127 128 interpore spacing $(2\pi/q = 31 \text{ nm})$, which corroborates the FFT of the corresponding AFM image in Figure 129 3d. There is nearly no high-q scattering because the top surface of the AAO exhibits no well-defined 130 structures (*i.e.*, random roughness). There is a peak present at a similar q value ~0.2 nm⁻¹ for templated 131 particles due to pore spacing because the pores remain exposed for X-rays to scatter from them as long

as the initial metal film thickness is small. However, a form-factor peak emerges at $q = 0.4 \text{ nm}^{-1}$ in this

- 133 case due to the presence of well-defined particles on the surface $(2\pi/q = 16 \text{ nm})$. This peak is 134 significantly narrower than the corresponding peak for Fe on flat Al₂O₃ at q = 0.7 nm⁻¹ (full width at half 135 maximum is 0.07 nm⁻¹ versus 0.15 nm⁻¹, respectively), which indicates that particles formed on AAO 136 templates are more monodisperse than those on flat supports. 137 We quantify the particle order by finding the maximum value of the following expression: 138 $Q = \frac{1}{3N} \sum_{i=1}^{N} [\cos \frac{4\pi x_i}{\sqrt{3}\lambda_0} + \cos \frac{4\pi}{\sqrt{3}\lambda_0} (-\frac{x_i}{2} + \frac{\sqrt{3}y_i}{2}) + \cos \frac{4\pi}{\sqrt{3}\lambda_0} (-\frac{x_i}{2} - \frac{\sqrt{3}y_i}{2})]$ (1)
- 139 This formulation has been used for highly ordered atomic surface structures.²² The order parameter Q_{max} 140 is 0 for entirely disordered (random) and 1 for perfectly hexagonally ordered particles. *N* is the total 141 number of particles in the image, λ_0 is the particle spacing, and (x_i, y_i) are the coordinates of each 142 particle. We maximize Q by scanning the following two variables: the spacing λ_0 (from 0.5 to 1.5) and 143 the orientation θ (from 0 to 60°) of the coordinate system (expressed in terms of x_i, y_i). We use a custom 144 MATLAB script to identify the location of particles by scanning for local maxima in both AFM and 145 simulated images.

146 It is also important to consider that the AAO lacks long-range order and thus the size of the area of 147 analysis influences the calculated order. For large scan sizes, particle arrays on both AAO mesh 148 substrates and flat Al₂O₃ substrates show similarly low order, even though the arrangements of particles 149 seen in AFM images are different. In Figure 4, we quantify the order of particles formed on AAO versus 150 flat substrates, and we show that Fe particles in both cases show higher order when a smaller area is 151 investigated. However, in comparing these two substrates across AFM scan sizes, we observed a 2-fold 152 difference in the order parameter value (0.34 versus 0.18 for templated and flat cases, respectively) when 153 analyzing from AFM image segments smaller than 350 nm, which by inspection corresponds with the 154 approximate domain size of the AAO used in this study. This highlights two important points: the 155 hexagonal mesh template indeed prescribes the formation of ordered arrays by directing dewetting; and 156 the long-range order of the nanoparticle array is inherently limited by the finite grain size and limited long-157 range order of the AAO template. Although AAO substrates have been reported with larger pores (~50

nm) having quasi-hexagonal order across several hundred nanometers,²³ such substrates are not widely
available to our knowledge.

160 To complement our experimental approach and explore the design space of AAO-templated dewetting, we also performed computational modeling. We adopted an energetic framework used 161 previously to study dewetting of nanoscale polymeric and metallic films.²⁴ This approach considered a 162 163 liquid thin film on a substrate surface as a representative system, where the free energy of the system 164 comprises the surface energy of the film and the van der Waals (VDW) interaction between the metallic 165 film and the substrate. Although the precise physical state of nanoscale metal catalysts is controversial, 166 the framework sufficiently describes the flow of high-mobility metal atoms during dewetting at elevated 167 temperatures (*i.e.*, by surface diffusion), and importantly, the equilibrium state of the final particle arrays is 168 the same regardless of our assumption of the film's physical state. The expression for the free energy G 169 is

$$G = \iint \left[\frac{\gamma}{2} \left(\nabla h\right)^2 + V(h)\right] dA$$
(2)

where *h* denotes the height (thickness) of the thin film, and the area integration extends over the
substrate surface. The first term accounts for the surface energy, which is related to the surface tension
of the film (*y*). The second term represents the van der Waals interaction, where

174
$$V(h) = B/h^8 - A/12\pi h^2$$
 (3)

Here, *A* is the Hamaker constant and *B* is a constant accounting for the strength of short-range repulsion. We normalized the spatial dimension in Eq. 2 by the initial film thickness h_0 , and thus, *A* and *B* can be expressed by the dimensionless parameters $A_0 = A/(\gamma h_0^2)$ and $B_0 = B/(\gamma h_0^8)$. We used $A_0 = 0.2$, $B_0 =$ 2×10^{-6} , and for example, if $\gamma \sim 1$ N/m, $h_0 \sim 1$ nm, then the Hamaker constant is $A \sim 10^{-19}$ - 10^{-18} J, which is comparable to the values reported by Wu, et al.²⁵ We combined Eq. 2 with the lubrication approximation of the Navier-Stokes equation²⁶ to derive a governing equation for film thickness evolution, the details of which are in the Supplementary Information.

Using this framework, we investigated the influence of substrate geometry (*i.e.*, pore size, spacing) and initial film thickness (Figure 5). We first designed the nominal mesh template (with a mean pore size of 25 nm spaced by 50 nm) and defined the film thickness, and normalized all other parameters. In the

simulation output, dewetting is spontaneous, and then proceeds to a quasi-equilibrium state of slowcoarsening, at which we calculate the particle order.

187 The limiting control cases from the simulation are a perfect mesh template and a perfectly flat 188 substrate. We simulate that a perfect mesh template indeed yields a perfectly ordered particle array 189 (Figure S3), and from this perfect case, we can introduce disorder in our simulated template by varying 190 the pore size and spacing according to Gaussian distributions. We show in Figure 5a that particle order 191 decreases nonlinearly with pore order, where ordered arrays resulting only when the pores are highly 192 ordered. For instance, the particle order drops by as much as 42-81% (depending on initial film 193 thickness) when the pore order decreases by only 20%. Furthermore, all of the thickness curves tested 194 converge to the approximate particle order of 0.15 as pore order nears zero, which is nearly the value we 195 calculate for a flat substrate without pores (0.09, Figure S2). This asymptotic behavior represents a lower 196 bound to the disorder of templated particles. Two particles cannot occupy the same volume; they will 197 either coalesce or remain separated by a distance equal to their combined radii. Therefore, an array of 198 100% uncorrelated particles with order parameter equal to zero is prohibited because it would require 199 particles to overlap in space.

200 The simulation results corroborate our experimental finding (Figure 4) that templated particles are 201 relatively uncorrelated over large areas but well ordered for small areas, as dictated by the high local 202 ordering of the AAO pores. To demonstrate this, we calculated the values of the pore order and particle 203 order for the AFM images shown in Figure 4 and superimposed them on the plot in Figure 5a. Absolute 204 values between experiment and simulation differ, in part because the simulation uses generalized 205 materials parameters, yet the overall trends are consistent. The simulated image in Figure 5c represents 206 a disordered array of particles that resulted from a mesh with poorly ordered pores, which is corroborated 207 by the lack of order in the inset FFT. The associated histogram in Figure 5b shows that the sizes of the 208 particles (measured by height from the substrate) are large and polydisperse compared to those found in 209 highly ordered arrays.

Particle order is less drastically influenced by variations in pore size (Figure 5d), which we quantified
using the standard deviation of normally distributed pore sizes (expressed as a percentage of the pore
diameter). Except for large initial film thickness, the particle array remains well-ordered even for large

213 pore size variations. For the film thicknesses tested, the order parameter of particle arrays decreases by 214 only 26-42% (greater for larger film thickness) when we vary the pore size by 20%. When the pore size 215 variation is large, the area of each node point varies significantly, which can alter the dewetting and 216 coarsening mechanics. For example, a large area between smaller-than-average pores allows more 217 coarsening via diffusion between adjacent nodes, resulting in agglomeration into larger particles at these 218 locations. Such coarsening is represented in Figure 5f, where the simulated image shows larger particles 219 that grew during dewetting at the expense of adjacent particles, and the accompanying histogram 220 illustrates a bimodal particle size distribution. At the other limit, when the pore order is high and the pore 221 size variation is low (Figure 5e), the resulting particles are highly ordered as well as small and 222 monodisperse compared to other cases tested. To compare with experimental results, we refer back to 223 GISAXS data in Figure 3f, showing that templated Fe particles are small and have a narrow size 224 distribution, as evidenced by the form factor scattering at $q = 0.4 \text{ nm}^{-1}$ (as compared to particles on flat 225 alumina without pores, which produce a diffuse form factor centered around 0.7 nm⁻¹).

226 Our results provide insight into the relationship between film thickness and template geometry and 227 how this relationship might scale. In general, we observed in our simulations that particle order increased 228 with decreasing thickness of the initial self-patterned film, with the thinnest film that we tested being 229 approximately equivalent to 0.1-0.2 times the mean pore spacing. Simulations of thick films showed that 230 even for small deviations in pore order (2%), the decay in particle order was substantial (> 60%), which 231 corroborates AFM results for 5-nm-thick films in Figure 3c that exhibited no influence of the underlying 232 mesh substrate. Our AFM analysis also suggested that there is a practical lower limit to the effect of film 233 thickness because if the initial film is too thin, the coverage of particles is compromised, due to overall 234 limited supply of metal atoms to the particles on the substrate surface during dewetting and coarsening. 235 For large AAO pore size and spacing the available top surface area between pores is large, so thin films 236 will not be affected by the porous structure and will dewet randomly as shown in our control cases (Figure 237 3e and Figure S3). We also note that templated dewetting experiments can be much faster in light of our 238 previous in situ SAXS studies that show dewetting is nearly instantaneous. This would mitigate issues 239 that arise due to excessive particle coarsening as well as make for rapid manufacturing.

Vanoscale Accepted Manuscript

240

Vanoscale Accepted Manuscript

242 We showed that self-ordered metal nanoparticle arrays can be fabricated by dewetting Fe thin films, 243 which are self-patterned on well-ordered AAO substrates. AAO-templated particles were smaller, more 244 monodisperse, and had higher local ordering than those formed by the same process on flat, nonporous 245 substrates. The degree of order is inversely related to the thickness of the initial film, and while the 246 variation in pore size influenced the dewetting process, the spatial organization of the pores ultimately 247 governed the order of particle arrays. We demonstrated local hexagonal ordering of particles, yet the 248 long-range order of the particles is ultimately limited by the ability to fabricate large-area, highly ordered 249 mesh templates. Thus, we believe our study highlights an opportunity and a clear motivation for 250 developing alternative substrates having small template features and long-range order. This scalable 251 templated dewetting approach could be applicable to a variety of metallic thin films on ordered 252 nanoporous substrates, which are potentially relevant to manufacturing of novel catalytic membranes and 253 photonic structures.

254

255 Acknowledgements

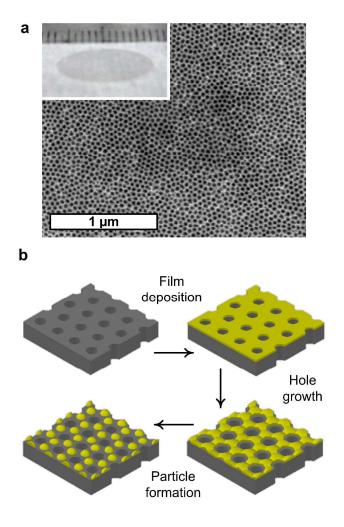
256 Financial support for the experimental work (E.R.M. and A.J.H.) was provided by the Office of Naval 257 Research (N00014101055), and the computational work (Z.Z. and W.L.) was supported by the National 258 Science Foundation (CMMI-0927634). Lawrence Livermore National Laboratory is operated by Lawrence 259 Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security 260 Administration under Contract DE-AC52-07NA27344. X-ray scattering was performed in the G1 beamline 261 at the Cornell High-Energy Synchrotron Source (CHESS), which is supported by the NSF and NIH-262 NIGMS under NSF Grant DMR-0936384. AFM and SEM were performed at the University of Michigan 263 Electron Microbeam Analysis Library (EMAL). E.R.M. received support from the Belgian American 264 Education Foundation and LLNL for data analysis and manuscript preparation. The authors thank Erik 265 Polsen, Mostafa Bedewy, and Megan Roberts, for assistance with AFM, GISAXS, and thin film 266 deposition.

267

268 Supplementary Information

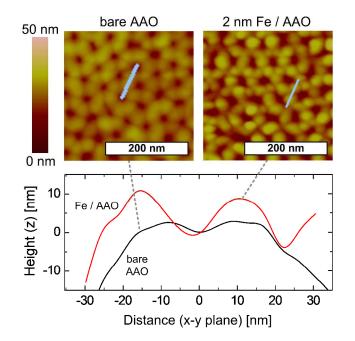
- 269 Detailed description of methods including annealing experiments, X-ray scattering, calculation of
- order parameter, and simulations; carbon nanotube growth results; supplementary AFM and simulation
- 271 data and analysis.

273 References


- J. C. Hulteen and R. P. Vanduyne, *Journal of Vacuum Science & Technology a-Vacuum Surfaces* and Films, 1995, **13**, 1553-1558.
- M. Park, C. Harrison, P. M. Chaikin, R. A. Register and D. H. Adamson, *Science*, 1997, **276**, 1401 1404.
- 278 3. J. Y. Cheng, C. A. Ross, H. I. Smith and E. L. Thomas, *Advanced Materials*, 2006, **18**, 2505-2521.
- 279 4. Y. Lu and A. Lal, *Nano Letters*, 2010, **10**, 2197-2201.
- 280 5. J. Joo, B. Y. Chow and J. M. Jacobson, *Nano Letters*, 2006, **6**, 2021-2025.
- 281 6. T. Ito and S. Okazaki, *Nature*, 2000, **406**, 1027-1031.
- 282 7. C. W. Gwyn, R. Stulen, D. Sweeney and D. Attwood, Chicago, Illinois (USA), 1998.
- 283 8. H.-J. Tsai and Y.-L. Lee, *Soft Matter*, 2009, **5**, 2962-2970.
- 284 9. J. Lian, L. Wang, X. Sun, Q. Yu and R. C. Ewing, *Nano Letters*, 2006, **6**, 1047-1052.
- 285 10. J. D. Fowlkes, L. Kondic, J. Diez, Y. Wu and P. D. Rack, *Nano Letters*, 2011, **11**, 2478-2485.
- 11. C. V. Thompson, Annual Review of Materials Research, 2012, 42, 399-434.
- 12. D. SROLOVITZ and S. SAFRAN, *Journal of Applied Physics*, 1986, **60**, 255-260.
- 13. S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao and Y. Lei, *Advanced Functional Materials*, 2011,
 289 21, 2446-2455.
- 290 14. A. L. Giermann and C. V. Thompson, *Applied Physics Letters*, 2005, **86**, 121903-121903.
- 15. J. Basu, C. B. Carter, R. Divakar, B. Mukherjee and N. Ravishankar, *Applied Physics Letters*, 2009,
 94, 171114-171113.
- 293 16. J. Petersen and S. G. Mayr, *Journal of Applied Physics*, 2008, **103**, 023520-023528.
- 17. F. Ruffino and M. G. Grimaldi, *Applied Surface Science*, 2013, **270**, 697-706.
- 295 18. J. Ye and C. V. Thompson, *Advanced Materials*, 2011, **23**, 1567-1571.
- 296 19. P. Farzinpour, A. Sundar, K. D. Gilroy, Z. E. Eskin, R. A. Hughes and S. Neretina, *Nanoscale*, 2013,
 5, 1929-1938.
- 20. E. R. Meshot, E. Verploegen, M. Bedewy, S. Tawfick, A. R. Woll, K. S. Green, M. Hromalik, L. J.
- 299 Koerner, H. T. Philipp, M. W. Tate, S. M. Gruner and A. J. Hart, ACS Nano, 2012, 6, 5091-5101.

- 300 21. J. R. Levine, J. B. Cohen, Y. W. Chung and P. Georgopoulos, *Journal of Applied Crystallography*,
- 301 1989, **22**, 528-532.
- 302 22. H. Gong, W. Lu, L. Wang, G. Li and S. Zhang, *Journal of Applied Physics*, 2012, **112**.
- 303 23. W. Lee, R. Ji, U. Gösele and K. Nielsch, *Nat Mater*, 2006, **5**, 741-747.
- 24. J. Becker, G. Grun, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke and R. Blossey, *Nat Mater*, 2003,
- **2**, 59-63.
- 306 25. Y. Wu, J. D. Fowlkes, P. D. Rack, J. A. Diez and L. Kondic, *Langmuir*, 2010, **26**, 11972-11979.
- 26. A. Oron, S. H. Davis and S. G. Bankoff, *Reviews of Modern Physics*, 1997, **69**, 931-980.

- 309
- 310


Nanoscale Accepted Manuscrip

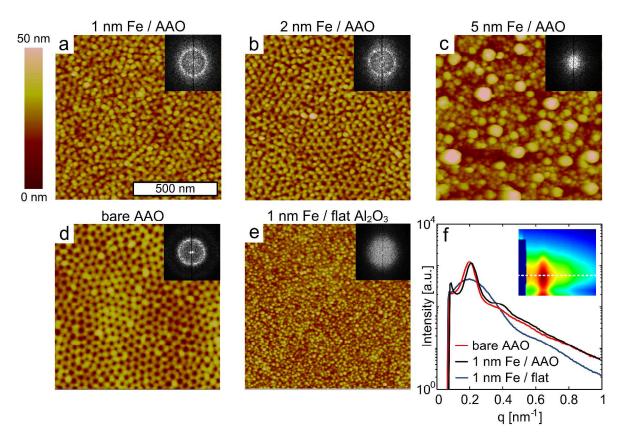
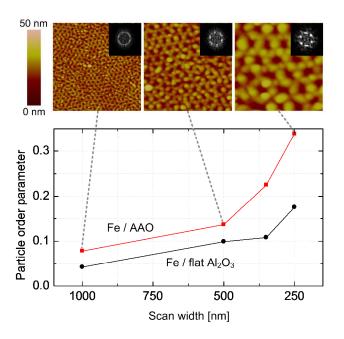
311 Figures

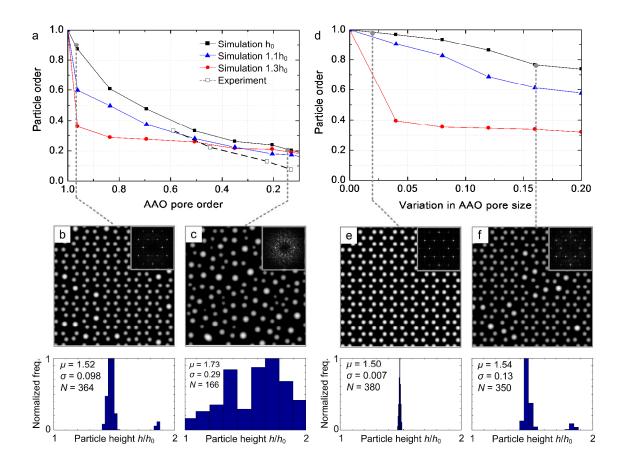
313

Figure 1. Process of templated dewetting on AAO templates. (a) SEM of the top surface with inset photograph of AAO templates used in this study (reported mean pore diameter is 18 nm; Synkera, Inc.). The ruler marks in the photograph represent millimeters. (b) Preparation of AAO-supported metal nanoparticles by sputter deposition of a thin film followed by thermal annealing. According to classical detwetting theory, dewetting of the film is driven by surface tension whereby holes in the film grow until islands pinch off, ideally leaving individual particles at the node points of the AAO template.

321

Figure 2. AFM analysis of topographical comparison between bare AAO and ordered Fe particles after annealing/dewetting of 2 nm Fe on AAO. The traces shown in the spline plot are taken from respective AFM images as indicated by the light blue lines. The origin of the plot was selected to be at the center of a node point. AAO substrates had 18-nm pore size and 49-nm pore spacing.


Figure 3. Study of Fe film thickness order and monodispersity of templated nanoparticles. AFM images
(with inset corresponding FFT) comparing the surface morphology after thermal annealing of (a) 1 nm Fe
on AAO, (b) 2 nm Fe on AAO, (c) 5 nm Fe on AAO as well as (d) bare AAO and (e) 1 nm Fe on flat Al₂O₃.
(f) GISAXS of samples shown in (a), (d), and (e). AAO substrates had 18-nm pore size and 49-nm pore
spacing.

332

333

Figure 4. Influence of AAO template on short- and long-range order of Fe particle arrays after annealing.
Scan size was established by selecting subsequently smaller areas on an AFM image of 2 nm Fe on AAO
(shown above plot) and 1 nm Fe on flat Al₂O₃ (not shown). AAO substrates had 18-nm pore size and 49nm pore spacing.

339

Figure 5. Simulation study of how the particle order is influenced by both the order of the AAO substrate and the variation in AAO pore size. Order parameters calculated from AFM images (from Figure 4) are shown (black hollow square, dashed line) in a) for comparison. Image and inset FFT are shown for several representative simulation conditions, illustrating relative changes in order and polydispersity, where (e) represents nearly perfect order and monodispersity. Simulations were performed with a mean pore size of 25 nm spaced by 50 nm, and data are normalized to h₀, where images are 500 x 500 and accompanying histograms tabulate the measured height of each particle.

- 347
- 348