Natural Product Reports

Dereplication: racing to speed up the natural products discovery process

Journal:	Natural Product Reports
Manuscript ID:	NP-REV-10-2014-000134.R1
Article Type:	Review Article
Date Submitted by the Author:	19-Feb-2015
Complete List of Authors:	Gaudêncio, Susana; LAQV, REQUIMTE- Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Departamento de Química; UCIBIO, REQUIMTE- Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Departamento de Ciências da Vida Pereira, Florbela; LAQV, REQUIMTE- Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Departamento de Química

SCHOLARONE[™] Manuscripts Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Dereplication: racing to speed up the natural products discovery process

Susana P. Gaudêncio*^{*a,b*} and Florbela Pereira^{*a*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

5 Covering: 1993-2014 (July)

To alleviate the dereplication holdup, which is a major bottleneck in natural products discovery, scientists have been conducting their research efforts to add tools to their "bag of tricks" aiming to achieve faster, further accurate and efficient ways to accelerate the pace of drug discovery process. Consequently ¹⁰ dereplication has become a hot topic presenting a huge publication boom since 2012, blending multidisciplinary fields in new ways that provide important conceptual and/or methodological advances, opening up pioneering research prospects in this field.

1 Introduction

Nowadays, the presumably high productivity, in terms of novel 15 isolated bioactive compounds number, has not yet led to a

corresponding increase in the number of new drug candidates. Instead, after more than two decades of combinatorial chemistry research, a declining number of new chemical entities (NCEs) in drug development pipelines has been observed,¹ Fig. 1.

Number of papers under dereplication topic
 Total new chemical entities (NCEs) approved drugs
 NPs or directly derived therefrom NCEs approved drugs

20

Fig. 1 Comparison between dereplication outputs, NPs approved drugs and total NCEs approved drugs. (<u>http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/ucm20025676.htm</u>).¹

This phenomenon combined with the higher success rate of drug discovery obtained from marine world (1 in 3140 marine natural ²⁵ products) comparing with the industry average (1 in 5000–10,000 compounds) has led to the rekindling interest in natural products-like scaffolds.² Natural products (NPs) sources are well known to produce chemical metabolites with unique features, highly complex structures and proprieties for human health care and ³⁰ well-being, exhibiting a wide range of applications that have inspired a number of industrial arenas. There is no doubt that NPs are the most consistently successful source of drug leads, as it can be seen in Fig. 1. The urge to fill the industrial pipelines and to discover novel lead-like compounds for drug discovery, that can

³⁵ meet the societal challenges of lacking suitable therapeutically agents for a broad extent of diseases, has never been greater. Antibiotic resistance, for instance is a "ticking time bomb", we are currently in "red alert", having a poor drug repertoire, in

which commonly treated infections are becoming lethal. One 40 dominant tailback in NPs discovery is dereplication, *i.e.* the discharge of known compounds. With the ultimate objective of speeding up and improve drug discovery programs efficiency, researchers have been using multifaceted approaches, either merging different areas of knowledge or creating totally 45 innovative ways to advance this field. Consequently, dereplication, which is the object of our review, has become a matter of great interest in the latest years. The importance of dereplication can be proven by the significant increase of publications covering this topic since 2012, Fig. 1. Therefore, we 50 believed that development of multidisciplinary dereplication processes, which will be underlined in this review, will certainly result in an expressive enhancement in the number of NPs (or directly derived therefrom) and approved drugs in an imminent future. Our insight into this theme will cover the period from

1993 to 2014 (July). In this review we do not intend to give an exhaustive description of the focused techniques and methodologies. Instead we will refer to their use from the NPs dereplication point of view, giving priority to significant reported ⁵ progresses in this area, emphasizing key developments that have

shaped the field, trends and engrave of future directions.

2 Reviews

- Over forty reviews under the "dereplication" topic have been ¹⁰ reported, according to the information obtained from ISI Web of Science and NPR archive. Hence, a selection of several reviews focusing on several and diverse NPs dereplication aspects will be underlined. A vast number of reviews describing enhanced technological progresses of hyphenated tools and combined ¹⁵ dereplication strategies that have been pivotal to accelerate the
- speed of novel NPs isolation process have been reported.³⁻⁷ Others particularly debate the emerging advances in chromatography, mass spectrometry (MS) and NMR technologies to overcome the challenges encountered in screening NPs
- ²⁰ libraries, increasing the rule of NPs in the high-throughput screening (HTS) based drug discovery.⁸⁻¹¹ The approaches used in biodiversity- and taxonomy-guided microbial NPs library construction, combined with HTS and with Liquid Chromatography–Mass Spectrometry (LC–MS) have been
- ²⁵ promoted as efficient dereplication processes.¹² Furthermore, significant advances in the field of computational mass spectrometry for NPs research, highlighting recent developed methods for the detection and investigation of small molecules, namely MetFrag/MetFusion, ISIS, FingerID, and FT-BLAS, were
- ³⁰ reviewed.¹³ The latest applications of Imaging Mass Spectrometry (IMS) technologies, challenges, pitfalls and prospects for improvement and application to microbial NPs were reviewed.¹⁴ Existing and emerging technological advances referring to MS related with NPs dereplication have been
- ³⁵ extensively reviewed and described.¹⁵ Recent studies emphasized metabolomics-driven analysis, using modern mass spectrometry techniques, as a key approach for the discovery of NPs from microbial sources.¹⁶ Chemotyping/metabolomics as part of screening, using direct metabolite profiling techniques such as
- ⁴⁰ direct injection MS or NMR have been reviewed, focusing in how it can be used for the discovery of novel compounds in

combination with modern methods for dereplication, avoiding redundancy in the selection of microorganism species.¹⁷

- As far as NMR is concerned, in a recent review,¹⁸ technical 45 improvements were headlined, such as miniaturized and cryogenic NMR probes along with hyphenation capabilities and computational support and that nowadays it is not always necessary to separate the components of a mixture in order to obtain spectroscopic information from its constituents, 50 minimizing isolation and dereplication efforts. However, capital and operating costs of commercial instrumentation for this purpose are still high-priced.¹⁸ Other published review article described and discussed the analytical techniques of dereplication and related technologies for quantification and structure 55 identification of small-amount compounds from limited amounts of natural source extracts.¹⁹ Technical improvements such as miniaturized and cryogenic NMR probes allowing to obtain good spectral data, with 1 mg of sample or less, are in vogue and are pointed out in more than one review.²⁰ Reviews of the state of the 60 science in what regards computer assisted structure elucidation (CASE) developments were produced by Elyashberg (2010),²¹ Jaspars (1999),²² and Steinbeck (2004).²³ The CASE systems aiming to minimize structure elucidation difficulties, attribution errors and speed up structure elucidation. Ultimately, becoming a 65 tool for structure elucidation and enabling to determine stereochemistry. Approaches involving chemical biology applied to marine bacteria and in silico methods have been overviewed as successfully useful to the discovery of novel antibiotics.²⁴ Technological and philosophical strategies were reviewed 70 addressing antifungal NPs discovery bottlenecks, associated with NPs screening and dereplication.²⁵
- *In vitro* bioassays incorporated during various stages of research and development are regarded as playing a vital role in evaluating botanicals.²⁶ Several chromatographic separation techniques of
- ⁷⁵ plant material, and other related issues as dereplication procedures during NPs isolation have been discussed in a couple of reviews.^{27,28}

3 Facts and statistics

⁸⁰ As illustrated in the following graphics, Fig. 2 and 3, dereplication has become a marked pursuit subject in recent years.

Fig. 2 Number of publications per year covering dereplication topic, period 1993-2014. Data source from Web of ScienceTM Core Collection.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Fig. 3 Number of citations per year covering dereplication topic, period 1993-2014. Data source from Web of ScienceTM Core Collection.

⁵ The present statistical analysis comprises dereplication literature indexed in Web of ScienceTM Core Collection, Current Contents Connect[®], Derwent Innovations IndexSM, MEDLINE[®] and SciELO Citation, prior to July 8th of 2014, in a total of 340 publications (277 articles, 21 proceedings and 42 reviews). All
 ¹⁰ publications enclosing the dereplication subject were analyzed. Prior to 1993 until 2011 there was a steady increase in the number of publications/year rising from 3 in 1993 to 19 during 2011, there was a notable increase in the number of reports since 2011 (approximately 89%), corresponding to 49 and 50

¹⁵ publications in 2012 and 2013, respectively. Worldwide more than three-quarters of the publications (*i.e.* 205 out of 243, corresponding to 84%), during the last ten years, are linked to ten countries, namely USA, Denmark, Switzerland, Brazil, Germany, China, Australia, Netherlands, Canada and England. However, ²⁰ 170 publications (out of 243, corresponding to 70%) are related with several other countries, Fig. 4 demonstrates these data. It was taken into account that the papers may include researchers from several countries.

Fig. 4 Number of publications per year and per country covering dereplication topic, period 2004–2013. Data source from Web of ScienceTM Core Collection.

Journal Name

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

The most productive country in this field has been USA, contributing with 69 outputs across this period (28%). However, Denmark is the country with more citations, 829 citations out of 5297 citations during the mentioned period (16%), comparing 5 with 778 citations (15%) obtained by USA. The publications associated with the top ten mentioned countries (Fig. 4) have

ARTICLE TYPE

accumulated the higher number of citations, corresponding to approximately 79% of the overall citations.

Over 120 journals have been selected for publications having to ¹⁰ do with dereplication, during 1993-2014, the top ten journals selected to report the above theme are listed in Fig. 5.

Fig. 5 Analysis of the selected journals to report dereplication topics, period 2004-2013. Data source from Web of ScienceTM Core Collection.

The papers and citations related to these top ten journals 15 correspond to *ca.* 43% and 43% of the complete publications and accumulated citations number during the mentioned period, respectively. Interestingly, *J. Nat. Prod.* is the top one selected journal, with a considerable margin (35 publications, corresponding to 14%), and the second most cited (603

- ²⁰ accumulated citations, corresponding to 11%). Only *J. Antibiot.* exhibits more accumulated citations (682 citations, corresponding to 13%). Nevertheless, *J. Antibiot.* includes the record cited paper in the field,²⁹ with 638 citations to date, having an amazing average of 63.8 citations per year.
- 25 Although we perceive that older publications accumulate more citations, the exponential increment of citations per year, for dereplication interrelated publications obtained during 1993-2014 is quite remarkable, Fig. 3. In fact, the upsurge is more impressive taking into consideration that approximately 80% of
- ³⁰ the total number of reports dealing with this matter have been published in the last ten years (*i.e.* since 2004, inclusive) and that nearly half of these 36% were published from 2011 to 2014 (July).

35 4 Dereplication trends and approaches

Chronologically the "dereplication" word and the first concerns related with this theme were reported in 1978.³⁰ After a long period of "silence" in 1990 a second manuscript was published.³¹ Later, in 1993 research efforts started to be progressively 40 implemented in this field.^{32, 33} At the end of last century dereplication techniques involved majorly the use of biological screening processes,^{33, 34} LC-MS techniques³⁵⁻³⁷ with implementation of MS libraries and databases, 32, 38 allowing hit searching at some extent (e.g. chemical structure, molecular 45 formula, molecular weight, bioactivity and taxonomy). Meanwhile, enhancements in the dereplication processes such as substructure investigation started to be promoted,³² the use of similarity searches over databases of estimated ¹³C NMR-spectra for NPs structure identification,³⁸ the first computer assisted 50 structure 2D NMR elucidation methodologies (CASE)^{22, 39-42} as well as HTS.⁹ During the considered period we specially

highlight the contribution of Cordell *et al.*^{43, 44} At the turn of the century and early 2000's taxonomic identification started to be used as a dereplication tool (16S rDNA sequencing)⁴⁵⁻⁵⁰ in addition to the improvement and advent of novel hyphenated ⁵ technologies/techniques (*e.g.* LC-MS, LC-DAD, LC-NMR, LC-NMR-MS).^{37, 51-54} Methodologies using hyphenated techniques

- NMR-MS).⁵³ We Methodologies using hyphenated techniques combined with bioactivity guided assays (*e.g.* HPLC-ESMS-bioassays, TLS/ESMS/bioassays)⁵⁵⁻⁵⁸ have also been reported. MS methods were improved and used as dereplication tactics,
- ¹⁰ (*e.g.* Q-TOF-MS-MS multistage, IT-MSn, LC-MS-MS, ESI-TOF-MS)^{59, 60} as well as cryoprobe, gradient and chiral NMR technologies⁶¹⁻⁶³ and further advances in the field of CASE.^{23, 64, 65} Commercial databases became available in the market (*e.g.* NPs libraries such as MarinLit, LC-MS-MS libraries).^{32,66, 67}
- ¹⁵ From 2005 to 2011 analytical spectroscopic and spectrometric methods levelled up exceptionally, dereplication methodologies met these new techniques, promoting and developing novel multifaceted approaches. In what concerns hyphenated techniques a wide array of possible combined sets was used (*e.g.*
- ²⁰ HPLC-DAD-SPE-NMR, LC-MS-ELSD),⁶⁸ exhaustive detailed descriptions have been reported.^{4, 6, 69-83} The introduction of Xhitting algorithm,⁸⁴ capillary scale NMR probe,⁸⁵ MALDI-TOF imaging,⁸⁶⁻⁸⁸ advanced public and commercial databases availability (*e.g.* Dictionary NPs, Antibase, MarinLit, Antibarin, NPS, Antibase, Anti
- ²⁵ Pubchem, ZINC, NAPROC-13, NMRShiftDB, GNPS),^{12, 89-95} *de novo* sequencing techniques,⁹⁶ *in silico* dereplication,²⁴ computer assisted numerical analysis,^{97, 98} bioinformatics,^{24, 29} genomics,⁹⁹ proteomics,⁸⁰ metabolomics.^{17, 100-104} From 2012 to mid-2014 we have been assisting to an incredible increasing number of ³⁰ publication data under dereplication focus, using up dated and
- ³⁰ publication data under dereplication focus, using up dated and enhanced trends comprising analytic techniques, databases, combined procedures and blending scientific fields with the main goal of accomplishing faster, accurate and efficient dereplication,¹⁰⁵ using smaller amounts of samples.^{106, 107} In
- ³⁵ particular, hyphenated/combined techniques,¹⁰⁸⁻¹¹¹ MS,¹¹²⁻¹¹⁵ MS-MS networking,^{15, 95, 116} IMS,¹¹⁷ and NMR¹¹⁸ as well as genomics,¹¹⁹ bioinformatics^{120, 121} and metabolomics¹²²⁻¹²⁴ approaches^{19, 28, 95, 125-127} have played a major role in dereplication. Plentiful of the above mentioned methods represent
- ⁴⁰ important advances in this field and contributed to fundamental developments that have made dereplication as it is performed nowadays. These will be emphasized in leading topics presented in the following sections.

45 5 High Throughput Screening (HTS)

In general, high throughput research lays on the automation of large scale repetition experiments making such trials achievable. At the turn of the century the potential of new technologies to enhance HTS and use it as a parallel dereplication method started ⁵⁰ to be discussed.⁹ HTS allows quickly conducting millions of chemical, genetic or pharmacological tests. Though this process it

- is possible to rapidly identify active compounds, antibodies, or genes that modulate a specific biomolecular pathway, providing hits for drug design and for the understanding of the interaction ⁵⁵ or role of a particular biochemical process.^{128, 129} Automation is a
- key element in HTS's efficacy, using robotics, data processing, control software, liquid handling devices, sensitive detectors,

readout or detection, HTS robots could test up to 100,000 compounds per day.¹³⁰ Nevertheless, when seeking changes or 60 defects that a computer may not easily determine manual measurements are necessary.¹³¹ Automatic strain pickers select thousands of microbial strains for high throughput genetic screening.¹³² Around 2008 ultra-high-throughput screening (uHTS) technologies, patented by Queeney and Hughes,¹³³ made 65 possible the screening of more than 100,000 compounds per day.¹³³⁻¹³⁵ Possessing the ability of rapid screening diverse NPs to identify bioactive compounds, HTS has led to an eruption in the rate of generated data in recent years.¹³⁶ One of the most vital challenges in HTS experiments is to glean biochemical 70 significance from enormous amount of data, which relies on the development and adoption of appropriate experimental design and analytic methods for both quality control and hit selection.¹³⁷ Consequently, high-quality HTS assays are critical in HTS experiments. The development of high-quality HTS assays 75 requires the integration of both experimental and computational approaches for quality control (QC). Effective analytic QC methods serve as gatekeepers for excellent quality assays.138-142 In 2010, Weitz and co-workers reported an HTS process performing 1,000 times faster screening (100 million reactions in $_{80}$ 10 hours) at 1-millionth the cost (using 10^{-7} times the reagent volume) of conventional techniques using drop-based microfluidics.¹⁴³ A silicon sheet of lenses placed over microfluidic arrays with fluorescence measurement of 64 different output channels simultaneously with a single camera, 85 analyzes 200,000 drops per second.¹⁴⁴ Standard HTS is now being trussed to cell biology, mainly using technology such as high-content screening (HCS). High throughput cell biology dictates methods that can take routine cell biology from low scale research to the speed and accuracy that allows the entire genome 90 to be looked at, very rapidly. It will have its most significant impact in exploring biology towards cell models as a system progress rather than isolated pathways.¹³² Advances in the field of tissue bioengineering aimed to enhance the success of drug candidates through pre-clinical optimization. Models that are

⁹⁵ most amenable to HTS with emphasis on detection platforms and data modeling, 3D micro-organoid systems will play an increasing role in drug testing and therapeutics over the next decade. Nevertheless, important hurdles remain before these models are fully developed for HTS.¹⁴⁵

¹⁰⁰ Despites the broad array of possible HTS tests, accelerating data-collection and hit selection processes, avoiding the re-discovery of known or undesirable chemical compounds makes dereplication an imperative step in efficiently run NPs discovery programs. To meet the demand for rapid analytical
 ¹⁰⁵ characterization of biologically active samples identified by HTS, dereplication strategies using tandem analytical techniques and database searching to determine the identity of an active compound at the earliest possible stage in the discovery process have been refined.⁵² For example, the LC-NMR technique used in
 ¹¹⁰ NPs HTS programs, resulted in the identification of the marine alkaloid aaptamine 1 (Fig. 6), isolated from *Aaptos* sp. sponge, exhibiting inhibitory activity IC₅₀ = 120 nM, against the enzyme glutamine: fructose-6-phosphate amidotransferase (GFAT).⁵¹

Fig. 6 Marine alkaloid, aaptamine 1.

- The application of high-performance liquid chromatographyelectrospray ionization MS (HPLC-ESI-MS) technique s specifically for the integration of NPs sample mixtures into modem HTS, also reveals noteworthy impact upon several procedures associated with the HTS of NPs, including, among others, assessment of the extract sample diversity, dereplication, structure elucidation, preparative isolation and affinity-based ¹⁰ biological activity evaluation.¹¹ Multiple approaches used in biodiversity- and taxonomy-guided microbial NPs libraries construction, combined with HTS assays plus liquid chromatography-mass spectrometry (LC-MS) have been
- highlighted as efficient dereplication processes.¹² Overall, 15 emerging advances in MS, MS-MS, NMR and other technologies are making possible to overcome the challenges encountered in screening NPs libraries in today's drug discovery environment. In fact, the success of any HTS campaign dependents on the quality of the chemical library. The construction and maintenance of a
- ²⁰ high quality NPs library, whether based on microbial, plant, marine or other sources is a costly endeavor.¹⁰ The NPs programs based on screening of extract libraries, bioassay-guided isolation, structure elucidation and subsequent scale-up production are challenged to meet the rapid cycle times that are characteristic of
- ²⁵ the modern HTS.¹⁰ As we apply these technologies and develop them even further, we can look forward to increased impact of NPs in the HTS based drug discovery.¹⁰ Recently various attempts have been made to increase the efficacy and precision of chemical libraries used in HTS drug discovery approaches. One ³⁰ such approach is ChemGPS¹⁴⁴⁻¹⁴⁸ developed at Backlund lab,
- ³⁰ such approach is ChemOPS developed at Backlund lab, which provides a defined chemical space for pre-screening evaluation of chemical compounds properties or virtual dereplication. However, the need for space expansion defined in ChemGPS for NPs¹⁴⁴ was recently proposed, since several
- ³⁵ studied NPs in a large extent fell outside the defined ChemGPS chemical space.¹⁴⁸ Continually having the objective of keeping scientific accomplishments moving forward new defies are addressed, a recent review, concerning HTS methodologies for NPs samples, demands alterations in assay design as well as in a sample, propagation to increase the viold of manipulation bit
- ⁴⁰ sample preparation to increase the yield of meaningful hit structures.⁸ HTS operation is still highly specialized and expensive. Although

some Universities have one of their own, most of the labs resort services of an existing HTS facility.¹⁴⁹

- ⁴⁵ The process of finding a new drug against a chosen target for a particular disease usually involves HTS, wherein large libraries of chemicals are tested for their ability to modify the target. Another important function of HTS is to show how selective the compounds are for the chosen target. The idea is to find a
- ⁵⁰ molecule which will interfere with only the chosen target, but not with other related targets. To this end, other screening runs will be made to see whether the "hits" against the chosen target will interfere with other related targets - this is the process of crossscreening.¹⁵⁰ Cross-screening is important because the more
- ⁵⁵ unrelated targets a compound hits, the more likely that off-target toxicity will occur with that compound once it reaches the clinic.¹⁵¹ While HTS is a commonly used method for novel drug

discovery, it is not the only method. It is often possible to start from a molecule which already has some of the desired ⁶⁰ properties. Such a molecule might be extracted from a natural source or even be a drug on the market which could be improved upon (so-called "me too" drugs). Other methods, such as virtual high throughput screening (VHTS), where screening is done using computer-generated models and attempting to "dock" ⁶⁵ virtual libraries to a target are also often used. ^{152, 153}

According to Makley and Gestwicki, HTS sequencing is a methodology that will carve dereplication future and expand the number of "druggable" targets.¹⁵⁴

70 6. Analytical Technologies

The analytical techniques are interconnected in a way that their separation line is very narrow which sometimes hampers their division by topics. Nevertheless to make a clear general overview, these will be distributed by subsections, including: 1) ⁷⁵ separation techniques; 2) detection methods and 3) hyphenated techniques.

6.1 Separation Techniques

Compound isolation from NPs complex mixtures, such as crude extracts, can be performed using several developed separation techniques. The most usual are; Thin-Layer Chromatography (TLC), Gas Chromatography (GC), Capillary Electrophoresis (CE), Solid Phase Extraction (SPE), Column Chromatography (CC), Flash Column Chromatography (FCC), High Performance

⁸⁵ Liquid Chromatography (HPLC) and Ultra High Performance Liquid Chromatography (uHPLC).

- High-Performance Thin-layer chromatography (HPTLC) is the result of improvements made to the original TLC method, including automation, increasing the resolution attained and ⁹⁰ enhancing quantitative analysis accuracy. This method is not used as commonly as the others and its use is usually related with plants NPs.^{146, 147} GC possesses very high chromatographic resolution. Though only volatile chemical compounds that
- vaporize without decomposing may be separated and analyzed. ⁹⁵ Higher molecular weight (MW) and polar metabolites cannot be analyzed by this method.¹⁴⁸ Modern instruments allow '2D' chromatography (GCxGC), promoting an additional resolution increase.¹⁴⁹ CE is suitable for use with a wider range of compound classes than GC and has higher theoretical separation
- ¹⁰⁰ efficiency than HPLC. As for all electrophoretic techniques, are most appropriate for charged analytes. For NPs structure elucidation MS and/or NMR are essential.¹⁵⁰ Explorative Solid-Phase Extraction (E-SPE) and HPLC-PDA-MS-SPE-NMR were described in several reports as accelerating microbial and plant
- ¹⁰⁵ NPs discovery, purification and dereplication methodologies, respectively.^{68, 81, 151} Column chromatography, for example CC and FCC, often times is used before using HPLC, being the resulting fractions analyzed by the latest technique. HPLC method has been extensively used in the isolation of a broad ¹¹⁰ range of NPs, becoming a very powerful, versatile and standardized chromatographic technique. It has the advantage of enabling to be coupled with an endless list of detection methods, several of which discussed in further detail in subsection 6.3.¹⁵²

uHPLC systems can work at up to 15,000 Psi. The higher pressures allows using much smaller particle sizes in the columns ($\sim 0,01 \ \mu m$). Operating at very high pressures and using such small packing columns particles and columns sizes enables a ⁵ remarkable decrease in analysis time, sample amounts and

- eluents volume, increase in peak capacity, sensitivity and reproducibility compared to conventional HPLC. An important improvement of the overall performance was achieved, for numerous applications. This technology has rapidly been widely
- ¹⁰ accepted by the analytical community and is being gradually applied to various fields of NPs analysis such as QC, profiling and fingerprinting, dereplication and metabolomics.¹⁵³ Similarly to HPLC this separation method can be used with several columns types and chemical phases, as well as being coupled ¹⁵ with several detection methods, according to the specifications of
- the NPs of interest. As an example, using UV detection photodiode array detector (DAD) and Acquity BEH C_{18} chromatographic column due of its universality, selectivity,

efficiency and robustness a fingerprinting method for chemical ²⁰ screening of microbial metabolites, potential antibiotics, in spent cultivation broths was accomplished.¹⁰³

6.2 Detection Methods

MS is used to identify and to quantify metabolites after separation ²⁵ by GC, LC, CE, HPLC or uHPLC. There are several studies which use MS as a stand-alone technology: the sample is infused directly into the mass spectrometer with no prior separation, the MS serves both to separate and detect metabolites.³ MS is a highly selective and high throughput analytical technique, which ³⁰ is ideally suited for the identification and purity determination of large numbers of compounds prepared using organic synthesis/combinatorial chemistry or for NPs dereplication. Major improvements in MS hardware and methodologies that are particularly relevant to NPs research and dereplication fields are ³⁵ highlighted in Fig. 7.^{15, 154}

Fig. 7 Timeline illustrating the major advances in MS hardware and methodologies, period 1959 - 2012.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Compounds may be characterized based on molecular weight, elemental composition and structural features based on fragmentation patterns. Surface-based mass analysis has seen a resurgence in the past decade, with new MS technologies focused on increasing sensitivity, minimizing background, and reducing sample preparation. The ability to analyze metabolites directly from biofluids and tissues continues to challenge current MS technology, largely because of the limits imposed by the complexity of these samples. Among the technologies being

- ¹⁰ developed to address this challenge is Nanostructure-Initiator MS (NIMS) desorption/ionization approach that does not require the application of matrix and thereby facilitates small-molecule (*i.e.*, metabolite) identification. MALDI is also commonly used, yet the application of a MALDI matrix can add significant to be account of a matrix can add significant to be application of a matrix can add significant to be application.
- 15 background at <1000 Da that complicates analysis of low-mass range metabolites. In addition, the size of the resulting matrix crystals limits the spatial resolution that can be achieved in tissue imaging. Because of these limitations, several other matrix-free desorption/ionization approaches have been applied to the application approaches have been applied to the
- 20 analysis of biofluids and tissues. Secondary ion mass spectrometry (SIMS) was one of the first matrix-free desorption/ionization approaches used to analyze metabolites from biological samples. SIMS uses a high-energy primary ion beam to desorb and generate secondary ions from a surface. The
- ²⁵ primary advantage of SIMS is its high spatial resolution, a powerful characteristic for tissue imaging with MS. However, SIMS has yet to be readily applied to the analysis of biofluids and tissues because of its limited sensitivity at >500 Da and analyte fragmentation generated by the high-energy primary ion beam.
 ³⁰ Desorption electrospray ionization (DESI)^{155, 156} and Direct
- ³⁰ Desorption electrospray ionization (DESI)^{155, 156} and Direct Analysis in Real Time (DART)¹⁵⁷ are matrix-free techniques for analyzing biological samples that uses a charged solvent spray to desorb ions from a surface. Advantages in both DESI and DART are that no special surface is required and the analysis is
- ³⁵ performed at ambient pressure with full access to the sample during acquisition.¹¹⁵ A limitation of DESI is spatial resolution because "focusing" the charged solvent spray is difficult.¹¹⁵ However, a recent development termed Laser Ablation ESI (LAESI),¹⁵⁸ is a promising approach to circumvent this limitation,
- ⁴⁰ followed by nanoDESI upgrade.¹⁵⁹ For more detailed literature related with MS techniques see Carter¹¹⁵ and Dorrestein and co-workers¹⁵ reviews.

NMR is the only detection technique that allows analyzing all kinds of small metabolites and which the samples can thus be

- ⁴⁵ recovered for further analyzes. The great majority of NPs chemists consider that NMR is close to being a universal detector for structure elucidation. The main advantages of NMR are high analytical reproducibility and simplicity of sample preparation. In practice it is relatively insensitive compared to mass
- ⁵⁰ spectrometry-based techniques. In fact, recent advances in MS enable this method to have has as much structural elucidation potential as NMR. However it is not yet commonly used in this perspective by NPs researchers. While NMR and MS are the most widely used techniques, other methods of detection that
- 55 have been used include ion-mobility spectrometry, electrochemical detection (coupled to HPLC), radiolabel (when combined with TLC) and X-ray crystallography. Due to its

ARTICLE TYPE

enormous significance as dereplication methods MS, NMR and X-ray single crystal diffraction (SCD) will be focused in extra ⁶⁰ detail in sections 6.3 and 7, 8 and 9, respectively.

6.3 Hyphenated techniques

Dereplication strategies rely on analytical techniques and database searching to determine the identity of an active ⁶⁵ compound at the earliest possible stage in the discovery process. This prevents wasted efforts in samples with no potential for development and allows resources to be focused on the most promising leads. In the past few years, advances in technology have permitted the development of tandem analytical techniques.

- ⁷⁰ Hyphenated methods bring up to a combination of two (or more) separation and detection methods. Advances in technology have allowed the development of tandem, modern, sophisticated hyphenated analytical techniques which are commonly used for NPs dereplication achieving rapid lead identification,⁴ examples
- ⁷⁵ are GC-MS, LC-PDA, LC-MS^{36, 160}, LC-FTIR, LC-NMR, LC-NMR-MS, and CE-MS.¹⁶¹ LC-UV-DAD, LC-MS, LC-MS-MS, LC-NMR¹⁴⁶ and LC-NMR-MS. Modem spectroscopic methods have largely revolutionized compound identification and tremendously accelerated the speed at which isolated compounds
- ⁸⁰ can be identified.⁴ Hyphenated techniques can be used as metabolomics, genomic and proteomics dereplication tools. These "omic" strategies will be further described in section 12. The previously mentioned tandem methods, that have been reported as successful tools for dereplication purposes, as well as
- 85 the most recent and exotic hyphenated trends will be described below, in this review. These will give information for NPs researchers set their own dereplication workflow according to compound sources, characteristics, budget and potential collaborations.
- ⁹⁰ *GC-MS* was the first hyphenated technique to be developed, it is one of the most widely used and potent methods. GC-MS of derivative components of lipophilic extracts is the first step before any bioassay-guided studies, being this technique the method of choice for dereplication of fatty acids.¹⁴⁹

⁹⁵ Liquid Chromatography (LC) metabolite profiling using hyphenated techniques such as LC-MS and more recently LC-NMR are the most frequently used methods in the NPs community. LC-MS is used since dereplication early days. It quickly provides plenty of structural information, leading to a
 ¹⁰⁰ partial or a complete on-line *de novo* structure determination of the NPs of interest when combined with MS databases. As a complement to this approach, bioassays performed after

LC/microfractionation of the extracts grant efficient localization of the bioactive LC-peaks in the chromatograms. The 105 combination of metabolite profiling and LC/bioassays provides the possibility of distinguishing between already known bioactive compounds (*i.e.* dereplication) and new molecules directly in plants, bacteria and fungi crude extracts. Also several examples of rapid localization of bioactive compounds, based on postchromatographic bioautographic testing of LC-NMR microfractions and subsequent on-line identification were illustrated by Hostettmann and co-workers.^{54, 58}

- ⁵ The LC-SPE-NMR approach introduced the solid-phase extraction (SPE) interface between the chromatography and NMR by on-line multiple trapping of the constituents to achieve accumulation for generating high quality 1D and 2D NMR spectra. This technique has greatly improved sensitivity and
- ¹⁰ reduced NMR acquisition time. The LC-SPE-NMR method provides a highly valuable and efficient tool for NPs drug discovery research by performing it in an automated manner. The application of an LC-SPE-NMR-MS approach has proven to be the most effective combination for compound identification
- ¹⁵ without traditional purification of individual components in the crude extract. The recent development of cryogenic flow and micro-coil (nL quantity) NMR probes set a dramatic increase in sensitivity to accomplish *de novo* structure elucidation of complex NPs with 10–50 μ g quantities, and also makes the on-
- ²⁰ line NMR data acquisition possible. Multiple hyphenation techniques, such as LC-SPE-NMR-MS-FTIR, represent the future direction of a comprehensive and robust method for the rapid dereplication of NPs extracts.⁵

NPs discovery is far from the ideal efficiency and productivity

- ²⁵ and can always be further improved; evolutions in hyphenation techniques are welcome. These might include the combination of an innovative on-line bioassay system, perfectly coupled with automated database searching capabilities (data libraries consist of LC, UV, NMR, MS, IR and other searchable parameters) to
- ³⁰ accelerate the entire process.⁵ Already confirmed by several reports on-line biochemical detection coupled to mass spectrometry (LC-BCD-MS) as also shown to profoundly accelerate the time required for compound description and identification.¹⁶²
- ³⁵ Liquid chromatography electrospray ionization-mass spectrometry and matrix-assisted laser desorption ionizationtime-of-flight- mass spectrometry (LC-ESI-MALDI-TOF) revealed to be an improved efficiency approach over more traditional schemes utilizing off-line fraction collection and
- ⁴⁰ conventional ionization methods, which can be explained by several factors. First, the superior sensitivity of ESI and MALDI means that less material is required for a successful analysis. Second, on-line LC-MS optimizes the efficiency of sample transfer, saving both time and monotonous labor. Furthermore,
- ⁴⁵ the concentration dependence of ESI allows the majority of the LC-MS injected material to be recovered for biological testing without compromising the signal available for molecular weight determination.¹⁶³

Electrospray ionisation time-of-flight mass spectrometry (ESI-

- ⁵⁰ TOF-MS) has been used for detection and identification as a highly sensitive and accurate method, it proved to be very powerful for the analysis and dereplication of NPs in complex mixtures.⁵⁹ Hyphenated LC-DAD-SPE-NMR and LC-UV-ESI-MS techniques applied for separation and structure verification of
- ⁵⁵ the major known constituents present in plant extracts revealed to be worthy dereplication methodologies.¹⁶⁴

LC-DAD-TOFMS spectral data is becoming easier to use for dereplication with advances in analytical equipment and better compound databases.⁸³ LC-MS-ELSD (Evaporative Light 60 Scattering Detector) analysis allows the creation of a peak library, which can be used for different data mining strategies: 1) the dereplication of previously isolated NPs; 2) clustering/ranking of extracts for the creation of highly diverse NPs libraries; 3) a selection tool for the focused isolation of bioactive NPs; and 4) to 65 search for alternative sources of a targeted NP. It also has the advantage of showing the predominant compounds for isolation in a complex mixture.^{78, 90} LC-MS-MS became a very important tool for the on-line identification of NPs in crude extracts. For an efficient use of this technique in NPs dereplication, a careful 70 study of the parameters to generate informative MS-MS spectra reveals to be necessary. CID MS-MS spectra of ubiquitous NPs constituents have been systematically studied using hybrid quadrupole time of flight (Q-TOF) and ion trap (IT) mass analyzers under various CID energy conditions. From example, 75 these guidelines and on-line characterization were applied to study C-glycosidic flavonoids by LC-MS-MS or LC-multiple-

stage MS.¹⁶⁵ *HPLC* can be coupled to several detection methods, such as UV, DAD, FD, ECD, RID, FID, CL, ESLD, CAD, MS, MS-MS and ⁸⁰ many others. According to the diversity and specific features of the NPs, allowing to optimize the most efficient detection and isolation conditions in a personalized way for each specific case.¹⁵² HPLC has lower chromatographic resolution than GC,

- but has the advantage of permitting to analyze and/or separate a ⁸⁵ much wider range of compounds.¹⁶⁶ It also has the advantage of separating both polar and nonpolar compounds, using reverse or normal phase solvents and columns, respectively. High performance Liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) specifically applied for the
- 90 integration of NPs sample mixtures into modem HTS, had significant impact upon a variety of procedures associated with the HTS of NPs, including extract sample diversity evaluation, dereplication, structure elucidation, preparative isolation, and affinity-based biological activity evaluation.¹¹ This improvement 95 is due to the high resolution provided by reversed-phase HPLC coupled with the moderate and quite universal ionization aided by electrospray method.¹¹ The hybrid HPLC-DAD-MS-SPE-NMR technique must be highlighted as particularly promising due its versatility and opportune time-saving. After initial HPLC 100 separation with protonated solvents and detection, a small fraction of the solution is sent for MS, with the remainder sent to an SPE cartridge. Formerly, if the MS results suggest that further investigation is necessary, the stored sample can be conveniently washed off the cartridge with a deuterated solvent into an NMR ¹⁰⁵ tube or flow cell for NMR measurements.⁶⁸

uHPLC is an improved methodology for the analysis of NPs crude extracts, using new MS analyzers with increased resolving power and accuracy such as the orbital trap (Orbitrap) HR-MS and HR-MS-MS, which drastically facilitates the identification of ¹¹⁰ complex compound matrices.¹⁶⁷ uHPLC-DAD-QTOF and uHPLC-DAD-QTOF-MS screening applied to secondary metabolites of fungi extracts has proved to be an accurate dereplication tool.^{105, 168} Furthermore, uPLC-MS-ELSD-PDA

databases produced during fractionation may be used as powerful dereplication tools to facilitate compound identification from small-molecule NPs libraries.¹⁰⁷ uHPLC-MS-MS, relying on molecular networking, is also an emerging technique to ⁵ dereplicate related molecules.⁹⁵

Matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) performs fast and cheap analyzes for microorganism dereplication. Exhibiting promising high-throughput analyzes automation application, and ¹⁰ consequently becoming a supreme dereplication tool.⁸⁸ MALDI-

- TOF-MS is an efficient dereplication device as it can be used to discriminate between bacterial isolates at the species level. Further studies corroborate that large scale MALDI-TOF-MS based on bacteria taxa identification is appropriate as
- ¹⁵ dereplication methodology, performing an efficient screening of microbial culture collections containing pigments with potential novel properties.¹¹³

MALDI-TOF-imaging (npMALDI-I) characterizes the spatial distribution of NPs from intact organisms of differing

- ²⁰ complexities. It has been tested in cyanobacteria and sponges. In addition to identifying known NPs, it determines unknown ions co-localized in the different matrices, proving to be a suitable dereplication method for drug discovery programs.⁸⁷ The latest applications of Imaging MS (IMS)¹¹⁷ to NPs research,
- ²⁵ technological challenges, prospects and improvements have been reviewed by Yang and co-workers,¹⁴ and Dorrestein and coworkers.¹⁵ Including in the latest, the most recent high-tech advances, such as 3D MALDI-IMS, DESI-IMS and SIMS-IMS¹¹⁷ describing their various advantages over MALDI-IMS and their
- ³⁰ downsides as emergent approaches for NPs discovery and for the understanding of molecular interactions at regulating and guiding ecology in complex biological systems. Having as major intention resolving the shortcomes presented by the newest mentioned approaches and predicting the continuous developing
- ³⁵ of experimental techniques with more efficient ionization sources and more sensitive detectors to refining structure elucidation to the visualization of intact NPs at the subcellular level and mapping NPs at a global level.¹⁵

Intact-Cell MALDI-TOF (ICM) mass spectrometry to achieve a ⁴⁰ rapid proteometric clustering of a subset of microbial strains collection has been described.⁸⁶ In the reported study, cluster analyzes of mass spectra resolved microbial strains into 11 groups corresponding to several species belonging to different genera; the results were verified by 16S rDNA analysis. This

- ⁴⁵ approach permits the rapid identification of isolates for dereplication, and the selection of strains, that represent rare species for subsequent characterization.⁸⁶
- Collision-induced MS-MS technique is used to fragment a precursor ion into several product ions, and individual product 50 ions are selected and subjected to collision-induced MS-MS-MS analysis. This method enables the identification of the fragmentation pathway of a precursor molecule from its firstgeneration fragments (MS-MS), through to the nth generation product ions (MSn). It also allows the identification of the 55 corresponding neutral products released (neutral losses). Elements used in the molecular formula analysis include C, H, N, O, and S, since most NPs are constituted by these five elements. High-resolution mass separation and accurate mass measurements afforded the unique identification of molecular formula of small 60 neutral products. Through sequential add-up of the molecular formulas of the small neutral products, the molecular formula of the precursor ion and its productions were uniquely determined. The molecular formula of the precursor molecule was then reversely used to identify or confirm the molecular formula of the
- for neutral products and that of the productions. The molecular formula of the neutral fragments permitted the identification of substructures, leading to a rapid and efficient characterization of NPs precursors. The method was applied to paclitaxel **2** (TaxolTM, $C_{47}H_{51}NO_{14}$; 853 amu), Fig. 8, to identify its molecular formula and substructures, and to characterize its potential fragmentation pathways. The method was further validated by correctly identifying the molecular formula of minocycline ($C_{23}H_{27}N_3O_7$; 457 amu) **3** and piperacillin ($C_{23}H_{27}N_5O_7S$; 517 amu) **4**, Fig 8.⁷⁷

Fig. 8 Paclitaxel 2, minocycline 3 and piperacillin 4 chemical structures.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Thus, a simple and sensitive mass spectrometric method has been developed for the dereplication of NPs. The method provides information about the molecular formula and substructure of a precursor molecule and its fragments, which are invaluable aids

s in dereplication of NPs at their early stages of purification and characterization.⁷⁷

Multistage MSn de novo sequencing dereplication-Multistage mass spectrometry (MSn) generates the so-called spectral trees, this is a powerful tool in the annotation and structural elucidation

- ¹⁰ of metabolites and is increasingly used in the area of accurate mass LC/MS-based metabolomics to identify unknown, but biologically relevant compounds. As a consequence, there is a growing need for computational tools specifically designed for the processing and interpretation of MSn data. A novel approach
- ¹⁵ to represent and calculate the similarity between high-resolution mass spectral fragmentation trees was created.¹¹² This approach can be used to query multiple-stage mass spectra in MS spectral libraries. Additionally the method can be used to calculate structure-spectrum correlations and potentially deduce
- ²⁰ substructures from spectra of unknown compounds. Both the dereplication and *de novo* identification functionalities of the comparison approach were discussed by Reijmers and co-workers.¹¹² This novel MSn spectral processing and comparison method increases the probability of assigning the correct identity
- ²⁵ to experimentally obtained fragmentation trees. Ultimately, this tool may pave the way for constructing and populating large MSn spectral libraries that can be used for searching and matching experimental MSn spectra for annotation and structural elucidation of unknown metabolites detected in untargeted ³⁰ metabolomics studies.¹¹²
- Flow injection electrospray mass spectrometry (FIE-MS) metabolite fingerprinting is widely used as a first pass screening for compositional differences, where discrimination between samples can be achieved without any preconceptions. Powerful
- ³⁵ data analysis algorithms can be used to select and rank FIE-MS fingerprint variables of the biological problem under investigation. Species-specific FIE-MS-MSn metabolite database creation and how to query the database to predict identity of highly significant variables within FIE-MS fingerprints is
- ⁴⁰ required. Draper and co-workers¹⁰¹ developed a protocol applicable to any bioscience research area, involving FIE-MS fingerprinting. It details how to interpret m/z signals within the explanatory variable list based on a correlation analysis in conjunction with an investigation of mathematical relationships
- ⁴⁵ regarding (de)protonated molecular ions, salt adducts, neutral losses and dimeric associations routinely observed in FIE-MS fingerprints. Although designed for use by biologists and analytical chemists, data-mining expertise is an added valued.¹⁰¹ Using multistage mass spectrometry followed by spectral ⁵⁰ alignment algorithms made possible the development of

ARTICLE TYPE

technology for high-throughput nonribosomal peptides (NRPs) dereplication and sequencing. The algorithm, developed by Pevzner and co-workers, for comparative NRPs dereplication establishes similarities between newly isolated and previously ⁵⁵ identified similar but non-identical NRPs which substantially reduces dereplication efforts. However, the method weakness is that it is only suitable for cyclic NRPs.⁹⁶ Successful applications of this novel technique combined with NMR for cyanobacteria and actinomycetes NPRs were attained.^{169, 170} Development of a ⁶⁰ chemoinformatic library-based and informatics search strategy for NPs (iSNAP) has been constructed and applied to NRPs, and it proved useful for true non-targeted dereplication across a spectrum of NRPs within NPs extracts.¹²³

65 7 Computational mass spectrometry tools for dereplication

7.1 Ligand-guided approach - small molecules

Presently, the chemical structures of several thousands of NPs are known, e.g. the Chapman & Hall/CRC Dictionary of NPs 70 contains a comprehensive database of 170,000 NPs, although the vast majority of metabolites still prevail unknown.¹⁷¹ Moreover, the structural diversity of metabolites is extraordinarily large, when comparing with biopolymers, such as proteins. Identification of secondary metabolites possesses a problem, 75 unlike proteins these small molecules are usually not made by building blocks, and the genomic sequence does not reveal, in almost all cases, information about their structure. Consequently, a huge number of metabolites remains uncharacterized with respect to their structure and function.¹⁷² The identification of 80 small molecules from MS data continues a major data interpretation challenge. Computational aspects for identifying small molecules range from searching for a reference spectral library to structural elucidation of an unknown compound. Single-stage MS does not provide information beyond the 85 compound molecular mass, in order to obtain such information the analyte must be fragmented, using frequently fragmentation methods such as collision-induced dissociation (CID) for tandem MS, and fragmentation during electron ionization (EI). Therefore the most common dereplication approach using MS is to search ⁹⁰ for similar fragmentation spectra in a library.¹⁷³ The aim of a library searching is either to obtain a correct structure hit of already known compounds or partial structural insights from

novel compounds that nearly match. Unfortunately, the size of public and commercial available MS-MS libraries is still small ⁹⁵ compared with electron ionization libraries. Thus, the searching in MS-MS libraries is yet often unsuccessful. After some initial progress as part of the DENDRAL project¹⁷⁴

After some initial progress as part of the DENDRAL project^{1/4} throughout 1970s and subsequent decades, not much progress has been accomplished regarding the development of computational

methods for analyzing fragmentation patterns of small molecules, besides spectral libraries searching. In a recent review, Böcker *et al.*¹⁷⁵ reported several new ideas and approaches dealing with MS detection and investigation of small molecules that have surfaced ⁵ over the last five years, relying on established computational

- methods such as combinatorial optimization (*MetFrag*,¹⁷⁶ *MetFusion*,¹⁷⁷ and *FT-BLAST*¹⁷⁸) and machine learning (*ISIS*¹⁷⁹ and *FingerID*¹⁸⁰) techniques. The crucial leap forward in drug discovery from natural sources can only be achieved, in our
- ¹⁰ opinion, with an essential change in dereplication MS methodology, which is including predicted spectral data. In this sense four (MetFrag, MetFusion, ISIS and FingerID) out of the five above referred methods, are not supported by spectral libraries searching, but instead they rely on more comprehensive
- ¹⁵ molecular structure databases searching. In fact, spectral libraries are obviously several orders of magnitude smaller than molecular structure databases. For example, PubChem database currently contains about 50 million compounds, while the two largest (commercial) spectral libraries, Wiley and National Institute of
- ²⁰ Standards and Technology-NIST (version 14) and Wiley Registry (10th edition) enclose mass spectra data (MS) of 250,000 and 680,000 compounds, respectively. Currently, NIST comprises 51,216 MS-MS spectra from 42,126 different precursor ions out of merely 8,171 compounds. This limitation can be overthrown
- ²⁵ by an accurate prediction of fragments and their respective abundances from compounds molecular structures using computational methods. Consequently, searching in spectral libraries can be replaced and/or complemented by searching in an *in silico* mass spectra database. This line of attack has been very
- ³⁰ successfully used in proteomics for many years. Although it is necessary to realize that the prediction of peptide fragmentation patterns are comparatively easier than for small molecules. The ISIS¹⁷⁹ and FingerID¹⁸⁰ tools deal with metabolite fragmentation data, using a rule-based *in silico* fragmentation spectra prediction
- ³⁵ approach and a predicting structural features and compound classes approach, respectively. The DENDRAL project¹⁷⁴ was the first attempt to generate structural candidates and predicting their fragmentation mass spectra using a rule-based approach. However, it failed in its major purpose of performing automatic
- ⁴⁰ structure elucidation using mass spectral data, and the research was discontinued.¹⁸¹ Unlike the rules learned during the DENDRAL project, Kangas *et al.*¹⁷⁹ did not claim these predictions, which were obtained by simulating the behavior of ions in a linear ion trap using a kinetic Monte Carlo simulation, to
- ⁴⁵ achieve true fragmentation rules. Their ISIS tool built using an Artificial Neural Network machine learning technique worked well but only for lipids, 40 out of 45 lipids of the test set were correctly identified.¹⁷⁹ On the other hand, in the fingerprint approach the query spectrum of an unknown compound is
- ⁵⁰ transformed into a vector feature that was given to the substructure classifiers to predict the fingerprint of the molecule, using the same training data transformations. Heinonen *et al.*¹⁸⁰ used the predicted fingerprints from targeted LC-MS and CID fragmentations carrying out a Kernel-based approach, to retrieve
- ss and score candidate molecules from large molecular databases, such as PubChem.

The original ideas associated to mapping fragmentation spectra with compound structures (combinatorial optimization) were

found in the literature in 1980,¹⁸² but it was necessary to wait ⁶⁰ over 30 years for the development of a suitable combinatorial fragmentation approach for processing a complete database.¹⁷⁵⁻¹⁷⁷ Whereas *MetFrag*¹⁷⁶ compares *in silico* mass spectra obtained by a bond dissociation approach, with experimental mass spectra from PubChem or Kyoto Encyclopedia of Genes and Genomes ⁶⁵ (KEGG) assigning a score to all results, MetFusion¹⁷⁷ combines search results from a molecular structure database and from a spectral library, taking advantage of both resources. Although, MetFrag achieves promising results, it was clearly outperformed by its successor MetFusion. Other method, FT-BLAST is based ⁷⁰ on the calculation of fragmentation trees (FTs) and FT alignments. FT-BLAST searches in a FT library comprising the basic idea that fragmentation patterns similarities are correlated with the chemical similarity of the corresponding compounds.

All the discussed approaches are heavily focused in ⁷⁵ comprehensive molecular structure databases but these data can be exponentially amplified employing fully comprehensive molecular structures generated by computational approaches to aid in chemical space exploration – Small Molecule Universe Database.¹⁸³⁻¹⁸⁶ For example, Kerber *et al.*¹⁸⁷ reported that there ⁸⁰ are more than 109 million possible molecular structures for the molecular formula C₈H₆N₂O with mass 146 Da, but only 413 hits matched in PubChem database.

7.2 Genome-guided approach

85 Tens of thousands of sequenced microbial genomes or drafts of genomes are available at International Nucleotide Sequence Database Collaboration (INSDC) database, and this number is predicted to exponentially increase over the next decades. The huge sequence space that has been built can be used for the 90 discovery of small bioactive molecules through a genome mining process.¹⁸⁸⁻¹⁹² In spite of the high rate by which genome sequences are being obtained, the process of mining genetically encoded small molecules was performed one gene cluster at a time and requiring many person-years efforts to annotate a single 95 molecule, making computational approaches to automatically connect a molecule to its biosynthetic signature valuable tools. A few in silico methods have been published thus far to automate the analysis of secondary metabolism in bacterial and fungal genomes.¹⁹³⁻²⁰¹ The first of these was ClustScan¹⁹³ (Cluster 100 Scanner) which is designed for rapid, semi-automatic annotation of DNA sequences encoding modular biosynthetic enzymes e.g., polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS) and hybrid (PKS/NRPS) enzymes in microbes, and invertebrate metagenomics datasets. Additionally, more tools were published such as SBSPKS toolbox¹⁹⁴ and NPs searcher web server.¹⁹⁵ Unfortunately, these tools are largely limited to analyze the core genes for type I PKS and NRPS biosynthesis. Recently, a more comprehensive pipeline capable of identifying biosynthetic loci covering the whole range of known secondary metabolite classes (polyketides, non-ribosomal peptides, terpenes, aminoglycosides, aminocoumarins, indolocarbazoles, lantibiotics, bacteriocins, nucleosides, beta-lactams, butyrolactones, siderophores, melanins and others), the antiSMASH (antibiotics & Secondary Metabolite Analysis Shell) was technologically 115 advanced by Takano and co-workers.²⁰¹

In conjunction with these in silico methods, developed in the last

years, a unique and impressive MS-based strategy that enables the genome mining of small-molecules families from living microbial populations has been recently reported.^{159, 202, 203} In 2012, Dorrestein *et al.*¹⁵⁹ described a powerful integration of two

- ⁵ methodologies, nanospray desorption electrospray ionization (nanoDESI) MS and the generation of molecular networks, which, together, allow the direct chemical analysis of secreted microbial exchange factors in live colonies. This technology was validated when metabolic profiling a *Pseudomonas* sp. strain by
- ¹⁰ the detection and partial characterization of thanamycin, a chlorinated non-ribosomal peptide synthetase-derived with antifungal activity. The results are in accordance with previous predictions which attributed the antifungal activity of *Pseudomonas* sp. to the presence of thanamycin.²⁰⁴ Moreover, the

15 concepts of molecular families (MFs) and gene cluster families

(GCFs) were introduced by the same group.²⁰² They used MS-MS networking as a tool to map the molecular network of more than 60 organisms, most of which unsequenced, and located their nonribosomal peptide MFs, that were structurally related molecules, 20 based on their mass spectral fragmentation patterns. Recently, the same group identified at least four non-ribosomal peptide synthetase-derived molecular families *e.g.* napsamycin **5**, arylomycin **6**, daptomycin **7**, stenothricin **8** (Fig. 9) and their gene subnetworks with different modes of action from *Streptomyces* 25 *roseosporus*.²⁰³ Through MS-MS mapping networking, a number of previously unreported analogs that were produced by *S. roseosporus* involving truncation, glycosylation, hydrolysis and biosynthetic intermediates and/or shunt products were captured and visualized.

Fig. 9 Four non-ribosomal peptide synthetase derivatives 5-8, from Streptomyces roseosporus.

The MS-MS molecular network approach tackles the problem from new and different directions, emerging as powerful ³⁵ instrument for dereplication of compounds originated from natural sources and identification of novel drug leads.⁹⁵ We agree with the authors, which described these approaches as a step forward to achieve the "holy grail" in microbiology,¹⁵⁹ an ideal methodology integrating governing chemistry with genomics and

40 phenotypes of microbial colonies.

8 X-ray crystallography

X-ray crystallography enables identifying the atomic and molecular structure of a crystal. For comparison, the nearest competing methods in terms of structures analyzed are NMR ⁴⁵ spectroscopy and mass spectrometry, which provide limited molecular structure information.²⁰⁵ Moreover, crystallography can solve structures of arbitrarily large molecules, whereas solution-state NMR is restricted to relatively small ones (less than 70 kDa). X-ray crystallography is now used routinely by ⁵⁰ scientists to determine how a pharmaceutical drug interacts with its protein target and what changes might improve it. However, intrinsic membrane proteins remain challenging to crystallize because they require detergents or other means to solubilize them in isolation, and such detergents often interfere with ⁵⁵ crystallization. Such membrane proteins are a large component of the genome and include many proteins of great physiological importance, such as ion channels and receptors. The determination of the absolute configuration of chiral compounds is one of the most difficult analyzes of molecular structures.

- 5 NMR and spectrometric methods can determine in principle only relative stereochemistry. X-ray crystallography is the only method that can determine the absolute configuration of chiral molecules, on the basis of the anomalous scattering effects of heavy atoms. X-ray technique provides direct structural
- ¹⁰ information of molecules at the atomic level and is recognized as a reliable structure determination method.^{206,207} However, as its name implies, the technique has a limitation, the sample needs to be available as a single crystal, the growth of which can be a time consuming process of trial-and-error, and even not possible often
- 15 times. Recently, fantastic advances to this method have been accomplished, in 2013 Fujita and co-workers reported a novel Xray protocol for single-crystal diffraction (SCD) analysis that does not require the sample crystallization. In this method, tiny crystals of porous complexes are soaked in a solution of the
- ²⁰ target, such that the complexes can absorb the targeted molecules avoiding crystallization of the sample itself.²⁰⁸ The real and intrinsic problems of X-ray crystallography are thus solved and transformed into a rapid and convenient method for the analysis of molecular structures using only a trace amount of sample. The
- 25 following features are worth of special attention: 1) the crystallization step, which is the bottleneck of the X-ray analysis protocol, becomes unnecessary. Therefore, the crystallographic study of molecular structures is drastically accelerated and is now applicable to the analysis of liquid or even volatile compounds; 2)
- ³⁰ crystallographic analysis can be performed in trace amounts, on the nanogram-microgram scale. Thus, in terms of sensitivity, Xray analysis overwhelmingly dominates NMR analysis and is even comparable to mass spectrometry; and 3) the determination of the absolute configuration of chiral molecules can be easily
- ³⁵ carried out without any chemical modification of the sample molecules. Moreover, it was possible to successfully determine the structure of a scarce marine natural product, miyakosyne A 9, isolated from a marine sponge *Petrosia* sp., including the absolute configuration of its chiral center, which could not be ⁴⁰ determined by conventional chemical and spectroscopic methods, Fig 10.²⁰⁸

Fig. 10 Miyakosyne A 9, isolated from a marine sponge Petrosia sp..

45

- In combination with HPLC (LC–SCD), it allows the direct characterization of multiple fractions, establishing a prototypical means of liquid chromatography SCD analysis. It is expected that this methodology will be applicable to microanalysis in NPs ⁵⁰ chemistry and predicted that many NPs that researchers have given up hope and left behind will be easily and precisely characterized and their structures determined.²⁰⁸ This technological advent brings added value to several industrial and commercial applications. It has the power of totally shaping compound ⁵⁵ structure elucidation research as it is now, and it will open up a new era for drug discovery when routinely applied. Although the authors consider that the applicable range of their X-ray protocol,
- the LC-SCD analysis will be a powerful tool for the rapid characterization of multiple components with much higher 60 structural reliability than LC-MS and LC-NMR techniques, having a considerably extended scope that can include polycyclic, non-aromatic and non-planar molecules. This revolutionary

method works perfectly well for several compound types, hence it presents some drawbacks in which some molecules were initially ⁶⁵ flawed because of atom miss-assignment, symmetry problems and guest disorder.²⁰⁸ Nevertheless, this problem can be easily fixed and the incorrect structures can be correctly elucidated using only the mass spectrometric data (molecular weight information). Alike common crystallographic analysis, the ⁷⁰ refined crystal structures often times have to be supported by MS and NMR spectroscopy. As a consequence, these techniques may not be discarded with the advent of LC-SCD technique and still need to stick together.

9 NMR

A long way has been travelled by NMR spectroscopy from a little used technique by NPs chemists 50 years ago, to currently being an extremely potent and very extensively used method for structure elucidation. Over the last decades several thousands of publications describing the use of 2D NMR to identify and characterize NPs have been reported. During this period of time, the amount of sample needed for elucidation purposes has decreased from the 20–50 mg range to less than 1 mg. Therefore, it is a very important accomplishment for NPs research, considering that typically it involves small amounts of new isolated compounds. Major improvements in NMR hardware and methodologies, which are particularly relevant to NPs research and dereplication fields are highlighted in Fig. 11.^{18, 209, 210}

As high- and ultra-high-field NMR instrumentation (400–1000 MHz) becomes increasingly available, the quantitative ¹H NMR

90 (qHNMR) method has been converted into a valuable and unbiased analytical tool for NPs analysis, particularly focused in bioactive NPs, covering all small molecules < 2000 Da.²¹¹ The interest of this method within dereplication context is supported mainly by two approaches: 1) qHNMR-based purity-activity 95 relationships (PARs),²¹² a powerful tool for recognizing "hidden" mechanisms that might involve single chemical entities and their

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Fig. 11 Timeline illustrating the major advances in NMR hardware and methodologies, period 1960 - 2013.

Journal Name

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

interactions with (residually) complex natural matrices using non chromatographic methodologies; and 2) qNMR as an alternative to LC-based quantitation of NPs. The qHNMR experiments based on the most recent development of microcryoprobes (1.7 mm i.d. ⁵ and smaller) present lower limits of detection and quantization from microgram to nanogram ranges.^{211, 213-217}

Nevertheless, major sensitivity improvements in modern spectrometers would still obviously be convenient in order to improve NPs dereplication, reducing the time required for data

- ¹⁰ acquisition, particularly for multidimensional NMR of small molecules. Herein, below we discuss two relatively novel developments, which appear to be particularly promising for NPs investigation field. One of these is the ASAP-HMQC approach (acceleration by sharing adjacent polarization),²¹⁸ which uses
- ¹⁵ homonuclear Hartmann–Hahn mixing (similar to that used in TOCSY sequences) during the relaxation delay. It transfers magnetization from protons bonded to ¹²C to those bonded to ¹³C, enhancing ¹³C-¹H peaks that consequently allow a shorter relaxation delay. Even with an inferior resolution than HSQC, the
- ²⁰ shorter experiment time makes ASAP-HMQC a potentially useful technique for rapid compound screening and dereplication.^{18, 218} A second approach corresponds to a non-uniform sampling (or sparse sampling)¹⁸ methodology, which consists in replacing the regular time increments used during the evolution period of a 2D
- ²⁵ experiment by irregularly spaced intervals. In a recent work, Rovnyak and co-workers²¹⁹ reported that a non-uniformly sampled HSQC spectrum of a NP could be obtained in one quarter of the time required to obtain a regular HSQC spectrum with no loss in resolution, using non uniform sampling.
- ³⁰ The complete structure elucidation of complex NPs by analysis of 2D NMR data is subject to a fundamental limitation, which is a sufficient number of assignable ¹H signals relay to ¹³C or ¹⁵N nuclei of the underlying molecular structure.²²⁰

Taking into account the so-called *Crews rule*²²¹ (a guideline for ³⁵ successful 2D NMR analysis) which states that for an easier

- chemical structure elucidation of a given molecule the ratio of H/C must be greater than 2, otherwise it can be backbreaking or an inaccurate process (*e.g.*, polycyclic alkaloids with high heteroatom content and many sp^2 carbons). For NPs with the
- ⁴⁰ right H/C ratio (*i.e.* \geq 2), the dipolar coupling (1D and 2D NOESY and ROESY) and ¹H-¹H scalar coupling are great methods for identifying pairs of protons which are spatially close, even if separated by a large number of bonds. Thus, the NOESY sequence, is widely exploited for solving the relative
- ⁴⁵ configuration of small molecules.²²⁰ Though, it presents limitations for large molecules such as proteins.¹⁸ Moreover, NOE analysis is an excellent method for conformation and configuration assignments of cyclic compounds as seen in numerous examples of chemical structure elucidation studies of
- ⁵⁰ NPs. However, from acyclic compounds with highly flexible carbon chains and multiple conformers, it was necessary to develop innovative and imaginative methods for connecting isolated "islands of stereochemistry"²²⁰ within complex

ARTICLE TYPE

molecules. In fact, it is one of the extreme difficulties in NPs 55 structure elucidation. One creative solution, the J-Based configurational analysis (Murata's method),²²² was developed in 1999, which exploits both ¹H-¹H and ¹H-¹³C coupling constants in order to assign anti or gauche relationships of vicinal substituted chains. Other solution developed by Kishi et al.²²³ 60 rely in the observation of several examples of configurational assignments in complex polyketides prepared by synthesis. They realized that small systematic patterns of ¹H NMR and ¹³C NMR chemical shift differences are associated with different diastereomers. Furthermore, expanding on this observation, a 65 universal database (UDB) to assign the relative absolute configuration of contiguous stereogenic units of complex polyketides was set up.²²³⁻²²⁵ Later was reported an extension of UDB using overlapping contiguous triads of ¹H-¹H coupling constants with those of synthetic diastereomers with defined 70 configuration for assignment of polyol and polyacetoxy compounds purposes.^{226, 227} Application of the UDB approach was illustrated,^{228, 229} in the configurational assignment of sagittamides A, 10 and B, 11 (Fig. 12), polyacetoxy long chain α . ω -dicarboxcylic acids terminated as amides of ornithine and 75 valine, that were previously reported by Lievens and Molinski from an unidentified tunicate collected in Micronesia.²³⁰

Fig. 12 Sagittamides A 10 and B 11 chemical structures.

Diffusion-ordered spectroscopy (DOSY)²³¹⁻²⁴⁰ is a family of 80 NMR experiments used in mixtures analysis to allow signals belonging to a given organic compound to be correlated through their rate of diffusion. Molecules of different sizes and shapes will often present different diffusion coefficients. Gerwick et al.²⁴¹ reported a diffusion-edited NMR approach using the 85 DECODES (homonuclear ¹H-¹H TOCSY or ¹H-¹H COSY spectra)^{241, 242} and HETDECODES (heteronuclear ¹H-¹³C HMBC or ¹H-¹³C HSQC spectra)^{241, 243} experiments, to confirm whether the major compound in a given biologically active fraction of a natural extract was in fact symplostatin 1, a known cytotoxic ⁹⁰ peptide derivative from dolastatin class. One of the major glitches of DOSY approaches is spectral overlap. Despite, the extension of 2D DOSY experiment to 3D DOSY (e.g., using HMQC or COSY) contributed significantly to reduce overlapping, further advances are needed to resolve complex mixtures. Numerous 95 processing techniques have been developed over the past years to enable resolution of the diffusion dimension that include fitting

signal decays to a sum of exponentials,²⁴⁴ continuous distributions²⁴⁵ or iterative thresholding.²⁴⁶ Even when these methods were applied to the very best quality experimental data, it was still required that the components in a mixture were well-⁵ separated as regards diffusion coefficient (*i.e.* diffusion coefficient difference > 30%) and in limited number (2-4 components).²⁴⁷ Recently, new methods were reported to avoid those limitations, specifically LOCODOSY²⁴⁸ an influential method that allows the resolution of a considerably larger number of mixture components, and OUTSCORE²⁴⁷ showing a cleaner spectra resolution of two components with diffusion coefficient differing by only 17%. Additionally, an interesting approach used to improve resolution is matrix-assisted DOSY, in which a mixture of compounds with similar diffusion constants (*e.g.*)

¹⁵ isomers) is manipulated by adding a co-solute (*e.g.* sodium dodecyl sulphate micelles)²⁴⁹ or a solid phase (*e.g.* stationary phase material used for chromatographic columns).²⁵⁰ Undoubtedly DOSY approaches added new tools to the "bag of tricks" available for dereplication of known or nuisance

²⁰ compounds in NPs drug discovery processes. Moreover, they are currently recognized as valuable complements to LC-MS for dereplication purposes.²⁴¹

10 Computer Assisted Structure Elucidation ²⁵ (CASE)

CASE is by its nature a very complex process, which cannot afford to ignore any available information that can possible be used for solving the structure of an unknown compound. Therefore, such system needs to integrate all existing 30 computational methods *e.g.* spectroscopy databases, knowledge and rule collections as well as deterministic and stochastic structure generators, carefully choosing the right method for the structure elucidation problem in question. There are many different ways to approach a particular CASE issue; the common 35 steps of a prototype CASE process are outlined in Fig. 13.^{22, 251}

Fig. 13 Components of a CASE process prototype.

The CASE field in regard to NPs starts with a dereplication procedure supported by structure-spectra databases.²⁵²⁻²⁵⁴ ⁴⁰ Therefore, spectroscopic databases (*e.g.* 1D ¹H and ¹³C NMR,

⁴⁰ Therefore, spectroscopic databases (*e.g.* 1D ⁴H and ¹⁵C NMR, infrared spectroscopy- IR and MS) are the first selected methods when confronted with a structure elucidation question and can thus be seen as some kind of fingerprint method for fast identification of a chemical compound (recorded within minutes

⁴⁵ if the compound is available in the database). Even though, since early attempts that have been made to create databases, from all types of spectroscopic data, the largest efforts that have been done were, in fact, for NMR databases.²³ Examples of NMR databases are SpecInfo,²⁵² CSearch,²⁵³ NMRShiftDB,⁶⁶ and ⁵⁰ ACD/Labs NMR

(http://www.acdlabs.com/products/dbs/nmr_db/).

NMRShiftDB is an open-access, open-submission database of organic compounds and their NMR data. NMRShiftDB is available to the public via a web-interface at <u>http://www.nmrshiftdb.org</u> and through an alpha-quality stand-

⁵ alone client. This database contains about 42,000 organic molecules and their associated recorded experimental 1D NMR spectra can be used for searching and spectrum prediction. NMRShiftDB's functionality includes (sub-) spectra and (sub-) structure searches as well as shift prediction of ¹³C spectra based ¹⁰ on the database support.

ACD/Labs NMR is a commercial database containing more than 1,400,000 experimental ¹H chemical shifts and ¹H-¹H 450,000 coupling constants.²⁵⁵ Databases are available for ¹H, ¹³C, ¹⁵N, ¹⁹F, and ³¹P corresponding to over 210,000; 200,000; 16,780;

- ¹⁵ 9,200; and 27,000 chemical structures, respectively. Each standalone database contains chemical shifts, original literature references, molecular formula, molecular weight, and the IUPAC name for each structure record.
- Historically, the CASE area has been researched for over 40 ²⁰ years. One of the most established CASE systems, SESAMI,²⁵⁶ was developed by Munk and co-workers. In SESAMI, two distinct lines of structure elucidation approaches were used, one based on the principle of structure assembly, the other based on structure reduction. Later, a structure generator with a user-
- ²⁵ friendly interface, termed Assemble 2.0,²⁴³ was created by this group. The generated structures can be ranked automatically according to the agreement of their predicted proton or carbon NMR shifts with the experimental spectrum of the unknown compound. In addition, the Assemble 2.0 as a pure structure
- ³⁰ generator only possesses the most basic knowledge about organic chemistry and does not make any attempt to perform spectra interpretations.²⁵⁷ In 1988, COCOA²⁵⁸ a structure generator based on structure reduction was also incorporated into the SESAMI. The same group using an independent method from the above
- ³⁵ mentioned approach, developed structure reduction based methods that were implemented in the SESAMI and COCOA programs.²⁵¹ These methods were complemented by spectra interpreters such as INTERPRET and INFER2D.^{258, 259} More recently, Munk and co-workers reported the improvement of a
- ⁴⁰ new structure generator HOUDINI²⁶⁰ with significantly enhanced performance when compared to the previously used COCOA program. HOUDINI²⁶⁰ is based on two central data structures: 1) a square matrix of atoms constructed upon input of the molecular formula; and 2) a data structure called substructure
- ⁴⁵ representation, which consists of substructures in the form of atom-centred fragments. The performance of COCOA-based and HOUDINI-based SESAMI were compared using a set of seven complex naturally occurring compounds, as a test set of unknowns (between 16 and 76 heavy atoms, non-hydrogen
- ⁵⁰ atoms).²⁶¹ These comparative tests clearly revealed faster execution times and more efficient processing of ambiguous structural information for HOUDINI.²⁶¹ Another approach developed by Köch *et al.*²⁶² using the CASE system COCON was focused on the integration of new NMR experiments (*e.g.* ¹H-
- ^{55 15}N-HMBC and 1,1-ADQUATE) to overcome known problems in automated structure elucidation. Therefore, COCON has proven to solve CASE technical hitches for molecules as large as the macrolide ascomycin **12** (Fig. 14), using both 1,1-

ADEQUATE and ¹H–¹⁵N-HMBC data.²⁶³ A web version of the ⁶⁰ program, called WebCocon, is available at <u>http://cocon.nmr.de</u>.

Fig. 14 Macrolide ascomycin 12 chemical sctructure.

As highlighted by Steinbeck²³ in an excellent NPR review, the 65 Structure Elucidator expert system^{64, 65, 264} StrucEluc was the first commercial system (Canadian company ACDLabs) with general applicability that presented the most promising achievements in terms of practical application of a CASE system.^{265, 266} Elyashberg and co-workers, in recent years, have described two 70 generations of the StrucEluc: 1) the first generation system, StrucEluc-1²⁶⁷ enabling structure elucidation of organic molecules with 1D ¹³C NMR spectra; and 2) the second system, StrucEluc-2,^{64, 65, 268} which is capable of elucidating the chemical structure of large NPs (to date, systems up to 1515 amu mass and 75 106 skeleton atoms)98 with 2D NMR spectral data. Several examples have been reported in the literature documenting the successful application of StrucEluc for elucidation of complex NPs as well as for structure revision purposes.^{21, 269} The NP elucidated structure asperjinone 13, isolated from thermophilic 80 Aspergillus terreus, proposed by Liao et al,²⁷⁰ was recently revised using the expert system StrucEluc and it was suggested that structure **14** is the correct structure (see Fig. 15).²⁷¹ The authors stated that it was the first example of a reliable structure

revision being performed with the assistance of CASE system ⁸⁵ only, without additional experiments and quantum chemical NMR shift calculations.²⁷¹

Steinbeck and co-workers suggested and developed various components for CASE over the last years.^{254, 272} The efficient platform for end users, named SENECA^{273, 274} was created by ⁹⁰ them to integrate those CASE systems. The current version of SENECA incorporates the evolutionary algorithm and is available as a GUI client or as a stand-alone command-line executable for free download under artistic license from SourceForge at http://sourceforge.net/projects/seneca/. This ⁹⁵ version of SENECA was completely refactored and is currently

in the Chemistry Development Kit (CDK), a notorious opensource library for chemoinformatics.^{275, 276}

Fig. 15 Proposed structure of asperjinone 13 and the correspondent revised structure 14.

- SENECA performs a stochastic search, using an evolutionary ⁵ algorithm of constitution space (space made up with all chemical compounds with the same molecular formula), guided by fitness Two or scoring functions. fitness evaluators. NMRShiftDBjudge²⁷³ and AntiBredtJudge,²⁷⁷ have already been presented in previous versions of SENECA. In addition, a third
- 10 fitness evaluator, NPLikenessJudge, was incorporated within the last version of SENECA.²⁷⁴ To test the performance of the SENECA system to predict the correct structures using only ¹³C spectral data, Jayaseelan and Steinbeck collected 41 test cases (with heavy atom counts \leq 15) from recently published articles in
- 15 J. Nat. Prod..²⁷⁴ The best performance of the CASE system was revealed with the application of the three fitness evaluators, correct structures were retrieved in the solution set for 36 out of 41 cases. Therefore the authors concluded that natural productlikeness can contribute to a better ranking of correct structure

Table 1 Essential features of selected databases for NPs dereplication.

- 20 results list for solving unknown NPs structures.²⁷⁴
- In addition to CASE systems, there are a number of spectral databases and programs to calculate chemical shifts from structures, which are potentially useful for NPs dereplication process. For example, the two commercial softwares: 25 ACD/CNMR (Canadian company ACDLabs) and ChemNMR (CambridgeSoft) and the two open-source softwares: NMRShiftDB66 and **SPINUS** (http://joao.airesdesousa.com/spinus).278 In the last decade the CASE research field has been completely
- 30 consolidated. We highlighted particularly the recent developments in SENECA platform which can lead to significant improvements in CASE systems for NPs dereplication applications. In addition, we believe that open-source and opendata implementation strategies surveyed by research groups in 35 this field can make possible, within a few years, the use of CASE
- systems at NPs laboratories on a daily basis.

11 NPs Databases

At the present time, databases and the manipulation of databases 40 (data mining) are standard features of chemistry research. Only a fraction of these large knowledge databases is immediately applicable in the NPs field. Several public domains, private domains and commercial databases have been developed, that can assist NPs chemists in the dereplication process. The most 45 relevant databases for NPs dereplication as well as their searchable attributes are listed in Table 1.

Detabase	Compounds ^a		Dariad	MW	ME	t tyb	NIMD ^c	Mcd	Discretisites	т	0000
Database	Total	NPs	Period	MW	MF	UV	NMK	MS	Bioactivity	Taxonomy	222
CAS/SciFinder	8.9 x 10 ⁷	> 283,000	Current	+	+	-	-	-	+	+	+
CSLS	$4.6 \ge 10^7$	extracts	~2010	+	+	-	-	-	+	-	+
ChemSpider	3.2×10^7	> 7,800	Current	+	+	+	-	-	+	-	+
PubChem	5.1×10^7	> 438,00	Current	+	+	-	-	-	+	-	+
ZINC	3.4×10^7	> 19,000	Current	+	-	-	-	-	+	-	+
NAPROC-13		> 6,000	~2007	+	+	-	+ ^{c1, c2, c3}	-	-	-	+
NMRShiftDB	42,000	$?^{\mathrm{f}}$	Current	+	+	-	+ ^{c1, c2, c3}	-	-	-	+
Massbank	13,000	> 2500	Current	+	+	-	-	$+^{d1, d2, d3}$	-	-	+
ReSpect		> 3595	Current	+	+	-	-	$+^{d1, d2, d3}$	-	-	+
Metlin		64,000	Current	+	+	-	-	$+^{d_{1,d_{3}}}$	-	-	+
GNPS	$1.6 \ge 10^5$	$> 1.4 \text{ x } 10^5$	Current	+	+	-	-	$+^{d1, d3}$	-	-	+
NaprAlert		> 150,000 extracts	~2003 ^g	+	+	$+^{h}$	-	-	+	+	-
Dictionary NP		> 260,000	Current	+	+	+	-	-	+	+	+
Dictionary MNP		25,000	Current	+	+	+	-	-	+	+	+
MarinLit		23,500	Current	+	+	+	+ c1, c2, c3	-	+	+	$+^{h}$
AntiBase		42,950	Current	+	+	$+^{h}$	+ ^{c1,h}	-	+	+	+
AntiMarin		53,000	2013 ⁱ	+	+	$+^{h}$	+ c1, c2, c3,h	-	+	+	$+^{h}$

^{*a*} when possible an estimate number of NPs in the database is given;

 ${}^{b}\lambda$ UV data values;

 50 c three NMR data options have been used: $^{c1}\delta$ values (experimental or calculated), c2 spectra or c3 ¹H NMR structural features (¹H-SF); d three MS data options have been used: d1 positive, negative, and neutral MSn *m/z*-value, d2 spectra or d3 fragment ion (*m/z*);

^e sub-structure searching;

^f NPs reported in the database, without numbers;

^g only includes *ca*. 15% of the literature from 2004 to present time;

55 ^h partial data only;

is the result of a merger between AntiBase (a database of all terrestrial and marine microbial natural products) and MarinLit (a database of marine natural products) that finished in 2013.

Chemical Abstracts Service's Registry File, available at Scientific and Technical Network (<u>http://www.cas.org/products/scifinder</u>) a commercial database, comprises the largest online repository of NPs structures. Other commercially available databases are:

- ⁵ NaprAlert (<u>http://www.napralert.org</u>/), which represents a significant resource for the terrestrial sources NPs chemists, Chapman & Hall / CRC Dictionary NPs (<u>http://dnp.chemnetbase.com/tour/</u>) and MNPs (<u>http://www.crcpress.com/product/isbn/9780849382161</u>),
- 10 MarinLit
 (<u>http://pubs.rsc.org/marinlit</u>),
 AntiBase

 (<u>http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527338411.html</u>) and AntiMarin.
 The superior det here a list of in Table 1 are from public densities

The remaining databases listed in Table 1 are from public domain (freely available for consultation without fees). These are CSLS 15 (http://cactus.nci.nih.gov/), ChemSpider

- (http://www.chemspider.com), PubChem (http://pubchem.ncbi.nlm.nih.gov/), ZINC (http://zinc.docking.org/), and spectral databases NAPROC-13 (http://c13.usal.es/c13/usuario/views/inicio.jsp?lang=es&country
- ²⁰ <u>=ES</u>), NMRShiftDB (<u>http://nmrshiftdb.nmr.uni-koeln.de/</u>), Massbank²⁷⁹ (<u>http://www.massbank.jp/index.html</u>), Metlin²⁸⁰ (<u>http://metlin.scripps.edu/index.php</u>), and ReSpect²⁸¹ (<u>http://spectra.psc.riken.jp/</u>), a MSn spectral database for phytochemicals. The GNPS: Global Natural Products Social
- ²⁵ Molecular Networking (<u>http://gnps.ucsd.edu/</u>) is a bacterial network that includes selected MS-MS data of ions below *m/z* 2000 from HMDB (<u>www.hmdb.ca</u>), LipidMaps (<u>http://www.lipidmaps.org/</u>), MassBank and NIST.⁹⁵ GNPS is a global social analysis infrastructure and has the largest database
- ³⁰ of worldwide contributed MS-MS spectra to data. All the public databases do not include taxonomic resources information. However, PubChem, the largest chemical biology public available database, is closely integrated with other literature and biomedical databases such as PubMed, Protein, Gene, Structure
- ³⁵ and Taxonomy.²⁸² See Blunt and Munro²⁸³ and Yuliana *et al.*²⁸⁴ for more comprehensive reviews of NPs available literature, Cheng *et al.*²⁸² for applications of PubChem database in drug discovery, and Irwin *et al.*²⁸⁵ for ZINC database as virtual screening. An extensive route has been traversed respecting
- ⁴⁰ databases advances for NPs dereplication since Corley and Durley review in 1994,³² especially regarding the systematic inclusion of MS and NMR spectral data and sub-structure searching. The emerging of open-source and open-data implemented databases (*e.g.*, PubChem, NMRShiftDB and CDING and CORDER to be advantage of the systematic searching of the systematic searching and the systematic searching of the systema
- ⁴⁵ GNPS) are of great significance because it can be continuously developed and improved by the entire community, including researchers, funding agencies and open access journals.

12 The "omics" revolution

- Several developments and scientific advances improved the ⁵⁰ analysis of biological systems. Rapidly expanding important tools and research fields, such as: 1) genomics: DNA sequencing and its related research. Genetic fingerprinting and DNA microarray; 2) proteomics: protein concentrations and modifications analysis, especially in response to various parameters; and 3)
- ⁵⁵ metabolomics: analogous to proteomics, but dealing with metabolites. Imperatively bioinformatics research efforts had to parallel the development of these fields to enable processing huge data information provided by the mentioned "omics" topics. All these multi and interdisciplinary research areas play an important
- ⁶⁰ and increasing role in NPs dereplication, especially in the discharge of species that have already been studied or do not reveal potential research interest, targeting the most promising for

investigation, *i.e.* organism/microorganism biotechnological dereplication.

65 12.1 Genomics

Genome sequencing is rapidly changing the field of NPs research by providing opportunities to assess the biosynthetic potential of strains prior to chemical analysis or biological testing. Ready access to sequence data is driving the development of new bioinformatics tools and methods to identify the products of silent or cryptic pathways. While genome mining fast became a useful approach to NPs discovery it also became clear that identifying pathways of interest is much easier than finding the associated products. This led to bottlenecks in the dereplication process that 75 must be overcome, to fully realize the potential of genomics-

based NPs discovery.²⁸⁶ Sequence-based analysis of secondary metabolite biosynthesis using primer sets employed to specifically target biosynthetic

- types, such as adenylation domains associated with nonribosomal ⁸⁰ peptide synthetases (NRPS) and ketosynthase (KS) domains associated with type I modular, iterative, hybrid, and enediyne polyketide synthases (PKSs) is a strategy that provides an estimate of pathways diversity and assesses the biosynthetic richness of individual strains. Bioinformatics evaluation of ⁸⁵ secondary-metabolite biosynthetic potential that can be applied in
- the absence of fully assembled pathways or genome sequences can be performed. The rapid identification of strains that possess the greatest potential to produce new secondary metabolites along with those that produce known compounds can be used to
- ⁹⁰ improve the process of NPs dereplication by providing a method to prioritize strains for fermentation studies and chemical analysis. Nevertheless the indication of the presence of a certain biosynthetic pathway, for example PKS, does not totally guarantee the production of unknown polyketide-derived
- ⁹⁵ secondary metabolites. For example, in a recent work²⁸⁷ the production of polyketides from kijanimicin and tautomycin classes was predicted based on the PKS analyzes of a *Streptomyces tendae* strain. However, only the known compound kijanimicin 53, **15** (Fig. 16), a synthetic derivative of kijanimicin family, was in fact isolated from this strain. The authors reported several culture efforts to obtain tautomycin **16** (Fig. 16), originally reported in *Streptomyces* sp., or any known/unknown derivatives from tautomycin family which turned out unsuccessful.²⁸⁷

Fig. 16 Polyketide-derived secondary metabolites, kijanimicin 53 15 and tautomycin 16.

The term dereplication is also applied for the selection of the ⁵ most biotechnology-based interesting microorganisms for detailed studies. These approaches are focus on diversifying microbial NPs producing strains and extract libraries, while decreasing genetic and chemical discharge,⁵⁰ avoiding their retesting, isolation and consequent associated costs. Ribosomal 16S

- ¹⁰ DNA sequences, used for phylogenetic studies, is an essential tool for identifying and classifying microorganisms. The discrimination of distinct cultures among morphologically similar strains (dereplication) and the detection of specific biosynthetic pathways in these strains are important steps in the selection of
- ¹⁵ microorganisms to include in NPs libraries. The Basic Local Alignment Search Tool (BLAST),²⁸⁸ that finds regions of local similarity between sequences, is a forceful bioinformatics tool. BLAST (available at <u>http://blast.ncbi.nlm.nih.gov/Blast.cgi</u>) compares nucleotide or protein sequences to sequence databases
- 20 and calculates the statistical significance of matches. The discovery of novel species or novel phylogeny raises the probability of finding new bioactive compounds.

There are several analytical and/or computational approaches available for 16S genes profiling and subsequent microbial ²⁵ dereplication, following described.

The use of high-throughput DNA sequencing to produce very large datasets of 16S rDNA sequences in short time periods it is now economically affordable. Dereplication of 16S rDNA sequences libraries, removing duplicate sequences from a library

³⁰ and preparing the raw sequences for subsequent analyzes, Genomics involves: 1) comparing all the sequences in a data set to each other; 2) group similar sequences together; and 3) output a representative sequence from each group. This is possible with the advent of new computer analyzes tools like the Java program ³⁵ FastGroup.⁴⁷ The described optimal strategies for dereplicating sequences are: 1) trim ambiguous bases from the 5' end of the sequences and all sequence 3' of the conserved Bact517 site; 2) match the sequences from the 3' end; and 3) group sequences equal or higher than 97% identical match to each other.⁴⁷

40 Pyrolysis mass spectrometry (PyMS)⁴⁸ is a fully automated whole-cell fingerprinting technique that enables the rapid and reproducible sorting and profiling of 16S rRNA microorganisms genes, using small samples and evidencing discriminatory capacity at the infraspecies level. The congruence found between 45 the clusters defined by the chemometric and molecular fingerprinting techniques was very high and demonstrated the effectiveness of PyMS as a rapid sorting and dereplicating procedure for putatively novel strains, criteria. This was outlined by performing polymerase chain reaction-restriction fragment polymorphism-single-strand conformational 50 length polymorphism (FIRS) studies to compare chemometric fingerprinting vs ribotyping fingerprinting methods, in mycolic acid containing actinomycetes strains.48

RiboPrinter²⁸⁹ is a microbial characterization system, an ⁵⁵ automated instrument that performs ribotyping on bacterial samples, with multiple applications in a NPs research program, which was initially developed for actinomycetes analysis. This system is able to identify closely related isolates and to discriminate between morphologically similar isolates with ⁶⁰ unique genetic, fatty acid and fermentation profiles. For the detection of biosynthetic genes, a 1,006-bp probe containing a portion of an adenylation domain of a non-ribosomal peptide synthetase (NRPS) was employed. Using this alternate probe in place of the standard ribosomal probe, the RiboPrinter was able ⁶⁵ to detect NRPS genes in several microbial strains.²⁸⁹

FT-IR spectroscopy, is also a rapid and reliable whole-organism fingerprinting method, that can be applied as a very useful dereplication tool to indicate which environmental isolates have been previously cultured.²⁹⁰

⁷⁰ Direct metabolite profiling techniques such as direct injection MS or NMR can easily be used for chemotyping/metabolomics of strains from microbial and fungi collections, using modern informatics tools. BOX and ERIC fingerprinting which are rapid and reproducible can be applied as robust dereplication ⁷⁵ procedures.²⁹¹

Matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) is a powerful tool for microbial dereplication. Moreover, it was approved for diagnostic use by FDA Bruker and biomerieux platforms. It has higher reproducibility than repetitive element sequence based polymerase chain reaction (rep-PCR), has high-throughput potential, it is faster and less expensive. Its taxonomic resolution was situated at the strain species level. Experiments based on concatenated 16S rRNA, gyrB, and recA gene sequences si indicated that phylogeny clustering of bioactive species has also

the potential to be a useful dereplication tool in biodiscovery.²⁹² Full genome sequencing, a vital tool to disclose complex secondary metabolomes, is becoming affordable and accessible, being already used as HTS strategy. It allows analyzing all ⁹⁰ identifiable secondary NPs gene clusters and determines the percentage of the microorganisms genome dedicated to NPs assembly which can be compared with genome sequences from several other NPs producing microorganisms. As an example *Salinispora tropica*, a marine actinomycete, genome sequencing exposed the novelty of the majority of the 17 biosynthetic loci. In addition, bioinformatic analysis not only was critical for the ⁵ structure elucidation of the polyene macrolactam salinilactam A **17** (Fig. 17), but its structural analysis aided the genome assembly of the highly repetitive slm loci. Firmly establishing the genus *Salinispora* as a rich source of drug-like molecules and importantly revealing the strong interplay between genomic ¹⁰ analysis and traditional NP isolation studies.²⁹³

Fig. 17 Salinilactam A 17, from Salinispora tropica.

12.2 Metabolomics

- ¹⁵ The great majority of protocols for taxonomic dereplication of microbial strains mostly use molecular tools which do not take into consideration the ability of these selected bacteria to produce secondary metabolites. As the identification of novel chemical entities is one of the key elements driving drug discovery
- ²⁰ programs, novel methodologies to dereplicate microbial strains by metabolomics approaches needed to be brought to light. Metabolite profiling is important for functional genomics and metabolomics methods, being utilized to screen diverse biological sources of potentially novel and sustainable sources of pharmacologically-active drugs.
- Metabolomics has become an effective tool in systems biology, allowing to gain insights into the potential of natural isolates for synthesis of significant quantities of promising new agents which enables to manipulate the environment within fermentation ³⁰ systems in a rational manner to select a desired metabolome.¹²³
- Due to the important advances registered in analytical techniques, profiling methods for the analysis of crude extracts from biological sources have evolved into powerful tools for dereplication, quality assessment and metabolomics. Metabolite
- ³⁵ profiling of crude extracts represents a challenging analytical task since these mixtures are composed of hundreds of NPs. According to the type of study the focus can be put on major bioactive constituents or minor significant biomarkers. In many cases, a rapid on-line or at-line identification of the compound(s)
- ⁴⁰ of interest and in some cases of all detected constituents (metabolomics) is required. The most common techniques for these types of analyzes consist of a detection method hyphenated to HPLC, such as LC-PDA, LC-MS or LC-NMR. With the evolution of multivariate data analysis (MVDA) methods,
- ⁴⁵ profiling extracts may also rely on direct NMR or MS analysis without prior HPLC separation, which requires high resolution instruments.^{102,294}

Adding LC-HR-MS to the stratagem improves a process that

provides the ability to identify putative novel chemical entities as ⁵⁰ NPs discovery leads was developed. In more detail, to process large and complex three dimensional LC-HR-MS datasets, the reported method uses a bucketing and presence-absence standardization strategy in addition to statistical analysis tools including principal component analysis (PCA) and cluster ⁵⁵ analysis. LC-MS-PCA is effective for strain prioritization in a drug discovery program, supporting drug discovery in the search for unique NPs and for rapid assessment of regulation of NPs production. Demonstrating that grouping bacteria according to

the chemical diversity of the produced metabolites is reproducible and provides great improved resolution for the discrimination and prioritization of microbial strains compared to current molecular dereplication techniques.^{122,295}

Additionally, using the metabolomics tools through the employment of high resolution Fourier transform mass ⁶⁵ spectrometry coupled to liquid chromatography (LC-HRFTMS) and NMR spectroscopy, one can establish the chemical profile of endophytic and/or endozoic microbial extracts and their plant or animal sources, resulting in a very efficient dereplication approach. Identifying the compounds of interest at an early stage 70 will aid in the isolation of the bioactive components.

Metabolomic profiling has found its application in screening extracts of macroorganisms as well as in the isolation and cultivation of microorganisms that produce bioactive natural NPs. Metabolomics is being applied to identify and biotechnologically 75 optimize the production of pharmacologically active secondary metabolites. The links between metabolome evolution during optimization and processing factors can be identified through metabolomics. Information obtained from a metabolomics dataset can efficiently establish cultivation and production processes at a ⁸⁰ small scale which will be finally scaled up to a fermenter system, while maintaining or enhancing synthesis of the desired compounds. MZmine¹²⁴ and SIEVE²⁹⁶ softwares are employed to perform differential analysis of sample populations to find significant expressed features of complex biomarkers between 85 variable parameters. Metabolomes are identified with the support of existing high resolution MS and NMR records from public or commercial databases (see databases section for details) and further validated through available reference standards and NMR experiments.123

12.3 Proteomics

The use of proteomics approaches for dereplication purposes, are not as widely described as for the other "omics" fields. Nevertheless it presents a unique opportunity to look at the 95 relationships between the bioactivity profile of the microorganisms under study and their genome, proteome, metabolome characteristics. It will definitively contribute to the understanding of the molecular pathways that control the synthesis of targeted bioactive metabolites and the future 100 optimization of their production. While virtually describing all proteins present in the cell and providing information on their abundance and post-translational modifications, proteomics has emerged as an indispensable strategy to decipher the molecular mechanisms underlying cell metabolisms.

¹⁰⁵ Characterization of the proteins involved in the biosynthesis of bioactive compounds can be an important step in the drug

discovery process. Such biosynthetic pathways are usually unveiled using a differential proteomic approach, based on 2Delectrophoresis (2DE) and advanced MS techniques. Automated molecular formula determination by tandem high-resolution MS-

- ⁵ MS spectroscopic data is a valuable method for the rapid screening and identification of small molecules such as the dereplication of NPs, characterization of drug metabolites, and identification of small peptide fragments in proteomics.⁸⁰
- In addition to MALDI, typing an alternative diagnostic method ¹⁰ based on the knowledge of specific NRPs and other metabolite structures, is an approach that can be used in microorganism mixture analysis representing a similar benefit from proteomics, by going from peptide mapping to peptide sequencing and aiding better identification rates.²⁹⁷
- 15

13 In silico dereplication

The inspection of new approved drugs during 1981-2010 shows that there is a downward trend line since the highpoint in 1987 (68 new chemical entities (NCEs)/year) and minimum of 24 ²⁰ NCEs per year in 2004.¹ Therefore, one of the most important

- ²⁰ NCEs per year in 2004.³ Therefore, one of the most important questions in drug discovery still remains unanswered: Where in chemical structural space are biologically relevant compounds to be found? The answer to this question is not easy, however as Stockwell stated "The mapping of biological-activity space using
- ²⁵ small molecules is akin to mapping the stars uncharted territory is explored using a system of coordinates that describes where each new feature lies".²⁹⁸ From these coordinates it is possible to identify some of the central criteria in designing compound libraries to modulate the functions of proteins: 1) diversity; 2)
- ³⁰ drug-likeness; and 3) biological relevance. The last criterion is fulfilled by the NPs which have been optimized in a very long natural selection process for optimal interaction with biological macromolecules. Two distinct but complementary computerdriven drug discovery approaches can be applied: ligand-based ³⁵ methodology and structure-based methodology.
- In ligand-based virtual screening process, the most effective biologically active lead molecule is detected using structural, topological or pharmacophoric similarity search. The Lipinski rule-of-five is widely used as a filter in drug discovery to evaluate
- ⁴⁰ drug-likeness and to verify if a compound with some activity has properties that would make it a possible orally active drug in humans.²⁹⁹ Waldmann *et al.*³⁰⁰ suggested from a statistical analysis of the structural classification of NPs that more than half of all NPs have just the right size to serve as a starting point for
- ⁴⁵ hit and lead discovery. Ertl and co-workers³⁰¹ developed NPlikeness score, a Bayesian measure which permits the determination of how molecules are similar to structural space covered by NPs. Recently, we reported that the topological descriptor MDEO-12,³⁰² the electronic descriptor TopoPSA³⁰²
- $_{\rm 50}$ and the quantum-chemical descriptor and the energy of the highest occupied molecular orbital $(\epsilon_{\rm HOMO})^{303}$ have a remarkable performance in discriminating antitumor, antibiotic and overall biological lead-like compounds, respectively. These approaches can be used in virtual screening, prioritization of compound
- ⁵⁵ libraries and design of building blocks towards NPs lead-like libraries. One of the most widely used virtual screening approaches is Quantitative Structure Activity Relationship

This journal is © The Royal Society of Chemistry [year]

(QSAR) modeling.³⁰⁴ Tropsha *et al.*³⁰⁵ reported the discovery of novel tylophrine derivatives as anticancer agents using combined ⁶⁰ approaches of validated QSAR modeling and virtual screening.

- They experimentally tested ten structurally diverse hits that were predicted and eight of these were confirmed to be active with the highest experimental EC(50) of 1.8 μ M implying an exceptionally high hit rate (80%).³⁰⁵ More recently, a diverse set
- 65 of flavonoids structures that were isolated from plants, used in traditional medicine, were investigated by Wiese and co-workers.³⁰⁶ The flavones retusin and ayanin which possesses a rare C-methylated structure were found to be highly potent inhibitors of breast cancer resistance protein, showing only 70 slightly less potency than the most potent inhibitor known so far
- ⁷⁰ Slightly less potency than the most potent inhibitor known so far (ABCG2). Through 2D and 3D QSAR modeling, the authors were able to identify the structural features which significantly influence the inhibitory potency.³⁰⁶
 - In structure-based virtual screening process, the 3D structure of
- 75 the target of interest must be known from X-ray crystallography, NMR spectroscopy or molecular modeling. Furthermore, if an Xray structure of the protein with a ligand is available, the binding mode of the ligand can be as well analyzed. Structure-based methodology involves automated and fast docking of a large 80 number of chemical compounds against a protein-binding or active site, taking advantage of the growing number of protein 3D-structures.^{307, 308} The therapeutic targets of nine medicinal plant ingredients (e.g. genistein, ginsenoside Rg1, quercetin, acronycine, baicalin, emodin, allicin, catechin, camptothecin) 85 were predicted using an extended ligand-protein docking method, INVDOCK,309 and the results obtained were in accordance with available experimental findings.³¹⁰ Rollinger et al.³¹¹ reported a structure-based pharmacophore model utilizing an in silico filtering experiment for the targeting selection of 90 acetylcholinesterase (AChE) inhibitors from more than 110,000 NPs. Two coumarin derivatives, scopoletin 18 and glucoside scopolin 19 (Fig. 18), were proposed as promising AChE inhibiting hits from virtual screening procedure and successfully tested with respect to their anticholinesterase potential.³¹¹

Fig. 18 Sopoletin 18 and glucoside scopolin 19, isolated from the medicinal plant *Scopolia carniolica* Jaqc.

Recently, ten NPs from an *in-house* NPs database were ¹⁰⁰ successfully identified using structure-based virtual screening, as cysteine protease falcipain-2 (FP-2) inhibitors, one of the most promising targets for antimalarial agents discovery.³¹² Moreover, these ten caffeat, flavonoid and flavonoid glycoside derivatives have showed moderate inhibitory activities against FP-2 with IC₅₀ ¹⁰⁵ values ranging from 3.18 to 68.19 μM.³¹² See Langer and Krovat,³¹³ Hou and Xu,³¹⁴ and Rollinger *et al.*,³¹⁵ for more comprehensive reviews of the available literature.

14 Combined techniques

Combined techniques embody an added value to avoid the rediscovery of NPs. Besides the use of hyphenated techniques coupling any other described methodologies in this review is 5 conceivable. Examples are, dereplication strategies that use analytical techniques and database searching to determine the identity of an active compound at the earliest possible stage in the discovery process. This prevents wasted efforts on samples with

- no potential for development and allows resources to be focused ¹⁰ on the most promising lead.⁴ MS and HPLC-MS spectrometry together with spectral databases are powerful tools in the chemometric profiling of bio-resources for NPs production. High throughput techniques, high sensitivity LC-NMR and LC-SCD are also emerging tools in this area. Additionally, the structures of
- ¹⁵ breitfussin A 20 and B 21 (Fig. 19), comprising a rare molecular framework, with the combination of an indole, an oxazole and a pyrrole, were recently supported by a combination of atomic-force microscopy (AFM), CASE, and DFT calculations. However, none of which was able to propose a unique solution ²⁰ individually.³¹⁶

Fig. 19 Highly modified halogenated dipeptides, breitfussin A 20 and B 21, from *Thuiaria breitfussi*.

- Screening of NPs extract libraries continues to furnish novel lead ²⁵ molecules for further drug development, regardless the analysis defies and the NPs potential market leaders ranking.¹⁰ Bioassay guided isolation is broadly used to prioritize crude extracts, fractions or pure compounds. The development of simple and rapid bioassays is decisive for an efficient localization of active ³⁰ principles enabling a direct screening of bioactive constituents
- either by refined HTS automation robots or in small scale facilities. Nevertheless the development of modern LC hyphenated techniques, such as LC-UV, LC-MS, LC-MS-MS, LC-NMR, and LC-MS-MS-NMR, combined with any of the
- ³⁵ described HTS systems, are potent procedures that are becoming routinely used in NPs studies. Hence, techniques that can be applied *in situ*, or in real-time monitoring of NPs in biological samples still need to be improved to comprehend the biological functions of secondary metabolites.¹⁴ Characterization of small
- ⁴⁰ molecules and their interaction with natural proteins (*e.g.* receptors, ion channels) also include well-known and widely used standard analytical methods, such as HPLC-MS, NMR, calorimetry and X-ray diffraction, combined with newer and more specialized analytical methods (*e.g.* biosensors), biological
- ⁴⁵ systems (*e.g.* cell lines and animal models), and *in-silico* approaches.³¹⁷ From our point of view implementing routine bioassay on healthy cells at the same time that compound

libraries are being screened, for example screening of human and veterinary microbial, fungal and viral pathogens, cancer types as ⁵⁰ well as several other diseases, would give a push moving forward the selection process of drug-like *vs* lead-like hits.

15 Conclusions and future prospects

"Chemoprospection" as we like to name the search for 55 treasurable novel drug-like agents, embraces an extensive number of dereplication strategies that can turn the NCEs discovery process faster. The publication boom that we have been assisting since 2012, on the topic of dereplication is the consequence of researcher's versatility and aptitude to take advantage of a vast 60 array of multidisciplinary advents that can meet the purpose of pursuing novel NPs with potential biotechnological and industrial applications. This occurrence is directly related with the extraordinary technological advances accomplished via an impressive number of methodologies tackling the dereplication 65 blockage, from small molecules to species- picking strategies, in such different investigation fields, directions and successful ways, allowing the selection of the most prolific species and exploring the NPs chemical and genomic space. A long way has been travelled by dereplication in 36 years, switching from a little 70 used approach by NPs chemists in the early 90's to currently being an extremely potent and indispensable used manifold procedure. We highlight some examples, such as HTS screening, analytical technology for separation (particularly hyphenated and combined techniques), detection methods (e.g. DAD, MS and 75 NMR) and the achievement of comprehensive molecular structural/spectral databases. Progresses in MS, MS-MS, MS-MS networking,159,202,203 IMS,¹¹⁷ molecular followed by computational MS such combinatorial tools as optimization,^{176,177,178} machine learning,^{179,180} and in silico 80 techniques and genome mining methods, 194,195,201 have profoundly contributed to advance the dereplication methods, with the consequential leap forward in drug discovery from natural sources. Enhanced sensitivity in modern NMR spectrometers definitely developed NPs dereplication, reducing 85 data acquisition time and sample amount, which is a crucial parameter in NPs field, giving credit to the advent of capillary cryoprobes and ASAP,-HMQC²¹⁸ methods, non-uniform sampling (or sparse sampling)^{18,219} and UDB^{228, 229} methodologies. Likewise, DOSY²³³ experiments, complementary 90 to LC-MS, in particular LOCODOSY²⁴⁸ and matrix-assisted DOSY methods^{249,250} are additional tools to the "bag of tricks", available for boosting dereplication of known or nuisance NP compounds. The use of proteomics for dereplication purposes is not as widely

⁹⁵ described as the other "omics". However, with regard to drug discovery, knowing the targets by characterization of the proteins involved in the biosynthesis of the bioactive compounds can be a key factor, especially from the chemoinformatics (receptor -based computational drug discovery approach), NMR and X-ray points
¹⁰⁰ of view. The use of open-source docking simulators containing cohesive updated information about protein 3D-structures, protein-binding, active sites, diversity, drug-likeness and biological importance, will make the dereplication concept expanding from the discharge of known NPs to the discharge of

chembiochemical non valuable NPs.

Dereplication will adapt and keep following the pace of new scientific inventions as far as our imagination can go. As a result, we are going to highpoint approaches that, in our opinion, are the

⁵ most auspicious and in addition we are going to provide several insights that will take some of the reviewed approaches to a whole new level.

The recent developments in SENECA open-source and open-data platform $^{273,\ 274}$ carrying out search in a fully comprehensive

¹⁰ chemical space, comprising all possible chemical compounds generated by computational approaches (*i.e.* with the same molecular formula), will lead to major progresses in CASE systems for NPs dereplication applications. We believe that CASE is going to be advanced to a level that will allow the ¹⁵ systematic assessment of biological-activity space.

Thinking about methodical inclusion of NMR and MS spectral data and sub-structure searching, emerging of open-source and open-data implemented databases, *e.g.*, PubChem, NMRShiftDB, GNPS have relevant impact and can be continuously developed

²⁰ and upgraded by the entire NPs "prospectors" community. HTS full genome sequencing will make the number of sequenced genomes exponentially increase in the next decade. Together with bioinformatics tools it will allow to analyze all identifiable secondary NP gene clusters and determine the percentage of the

²⁵ genome dedicated to NPs assembly. Currently starting to be widely applied to microorganisms, imagine the power of expanding it similarly to macroorganisms (*e.g.* plants, invertebrates) and additionally to build a database with all these data. Enabling to compare our organism of study to known

³⁰ genome sequences of NPs producing organisms, it will definitely accelerate the discovery of novel NPs drug-like.Despite the fact of developments concerning databases, the lack

of integrated databases is a major hindrance for rapid dereplication. Alike DNA sequences are stored at Genbank, in our aninion building a universal and source and onen data all

- ³⁵ our opinion, building a universal open-source and open-data allinclusive chemical database will solve the fundamental database bottleneck, revolutionizing dereplication as it is performed today. We strongly believe that worldwide open-source, open-data databases implementation policies, and the merger of spread
- ⁴⁰ available information in a unique library, a "superdatabase", including information provided by CASE, NMR, MSn and full genome sequencing, etc., with standard features, enabling its use in any kind of analytical software, regardless the equipment brand, as well as in a platform in a website, will map NPs at a
- ⁴⁵ global scale and will have the power of boosting dereplication as we never seen before. Such worldwide "superdabase" could be achieved with data generated through advanced computational spectra prediction and *in silico* building NPs lead-like library approaches and additionally by uploading and registering NPs
- ⁵⁰ data. Submitting and providing all the data as it is in peer review publications/patents (*e.g.* HR-MS, 1D and 2D NMR, MS and MSn, etc.), which is currently an under-exploited data source. Combining these records and creating this "superdatabase" would permit by uploading experimental compound data (*e.g.* 1D NMR
- ⁵⁵ or/and 2D NMR spectra, NP chemical structure, etc.) to immediately access matches, identical structures and unknown compounds.

In addition to what was mentioned above, we also consider of

vital importance the implementation of toxicity screenings in ⁶⁰ healthy cells in an early stage of NPs downstream analyzes as a way of taking the fastest lane to get NCEs. A large percentage of novel lead-like drugs end up failing phase I of clinical trials due to toxicity issues. If the objective is "digging" for drug-leads instead of bioactive compounds only, this procedure, using either ⁶⁵ *in vitro, in vivo, virtual* or cross screenings, will save

considerable research investment.

The outstanding LC–SCD tecnhique²⁰⁸ brings a tremendous value to several industrial and commercial applications. It has the power of totally modeling compound structure elucidation 70 research as it is now, inaugurating a new era for drug discovery when routinely applied. Hybrid techniques such as HPLC-DAD-BDC-MS-SPE-NMR-SCD will be a dream come true for NPs chemists. This will allow not only to perform efficient and ultrafast dereplication, but also conducting small amounts of 75 promising compounds whose structure cannot be fully justified by NMR to SCD, advancing and accelerating structure elucidation.

The tendency is to minimize sample preparation and avoid compound separation; we predict that the evolution of ⁸⁰ multivariate data analysis methods will proceed, with new NMR and MS technologies focused on increasing sensitivity and minimizing background. Having into account, the amazing MSbased strategy that enables genome mining families of smallmolecules in living microbial populations, integrating leading ⁸⁵ chemistry with genomics and phenotypes of microbial colonies, conceive escalating it to more complex organisms, will make this approach very close to an ideal methodology. Analytical equipment miniaturization, to carry on and perform *in loco* analysis, will exponentially expand the sort of uses in NPs area.¹⁵

90 Recent cutting-edge developments in adaptive optics (AO) microscopy have dramatically improved resolution, proving particularly promising for applications that require images from deep within biological tissue specimens.³¹⁸ Additionally, the "one-Ångström barrier" plus the "deep sub-Ångström" resolution 95 regions were successfully exceeded. Although the use of microscopy for dereplication objectives is still in a very early stage, we have confidence that microscopy will effectively transition from a precision laboratory instrument to a rugged, frontline tool for dereplication and structure elucidation, in a near 100 future. For example, 3D in loco or in situ atomic-force microscopy (AFM)³¹⁶ will increase the speed and productivity of drug discovery, changing dereplication as it is performed nowadays and in the years to come. It is obvious that NPs researcher's ultimate goal is the development of *in loco* and *in* 105 situ dereplication and structure elucidation approaches. Though extremely challenging it is also absolutely superb and convenient, we envision that in a near future we will get to the precision and sensitivity level of analyzing pure NPs, and in a further advanced stage NPs sources itself, in a microscope and actually perceive 110 the molecular structures, using same principle to realize chemical reactions. Performing structure elucidation through visualization of the NPs at the subcellular level is what the future holds.

We have no doubt that the outputs of such fantastic research evolutions described in the present review and what is yet to ¹¹⁵ come will lead to a cumulative percentage of novel NCEs in the forthcoming years, meeting up vital societal challenges related

22.

23

with a broad range of diseases.

Notes

^a LAQV, REQUIMTE, Departamento de Química, ^b UCIBIO, 5 REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Fax: (+351) 212948550; Tel: (+351) 212948300; E-mail: <u>s.gaudencio@fct.unl.pt</u>

10 16 Funding information

Fundação para a Ciência e a Tecnologia (FCT), Ministério da Educação e Ciência, Portugal and FEDER through grant n° PTDC/QUI-QUI/119116/2010, PEst-C/EQB/LA0006/2013 and PEst-OE/BIA/UI0457/2011-CREM, and the European Union 7th

¹⁵ Framework Programme (FP7/2007-2013) under grant agreement n° PCOFUND-GA-2009-246542.

17 References

- D. J. Newman and G. M. Cragg, *Journal of Natural Products*, 2012, **75**, 311-335.
- W. H. Gerwick and B. S. Moore, *Chemistry & Biology*, 2012, 95 36.
 19, 85-98.
- 3.Y. G. Shin and R. B. van Breemen, *Biopharmaceutics & Drug*25Disposition, 2001, 22, 353-372.
- 4. K. V. Sashidhara and J. N. Rosaiah, *Natural Product Communications*, 2007, **2**, 193-202.
- 5. D. D. Baker, M. Chu, U. Oza and V. Rajgarhia, *Natural Product Reports*, 2007, **24**, 1225-1244.
- 30 6. J.-L. Wolfender, E. F. Queiroz and K. Hostettmann, *Expert Opinion on Drug Discovery*, 2006, **1**, 237-260.
- 7. O. Potterat and M. Hamburger, *Natural Product Reports*, 105 40 2013, **30**, 546-564.
- 8. C. J. Henrich and J. A. Beutler, *Natural Product Reports*, 2013, **30**, 1284-1298.
- 9. D. J. Hook, *Journal of Biomolecular Screening*, 1998, **3**, 78-78.
- 10. F. E. Koehn, *Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques*, 2008, **65**, 177-210.
- 11. M. A. Strege, *Journal of Chromatography B*, 1999, **725**, 67-78.
- 12. E. J. Ashforth, C. Fu, X. Liu, H. Dai, F. Song, H. Guo and L. Zhang, *Natural Product Reports*, 2010, **27**, 1709-1719.
- 45 13. F. Hufsky, K. Scheubert and S. Boecker, *Natural Product Reports*, 2014, **31**, 807-817.
- 14. C.-J. Shih, P.-Y. Chen, C.-C. Liaw, Y.-M. Lai and Y.-L. Yang, *Natural Product Reports*, 2014, **31**, 739-755.
- 15.A. Bouslimani, L. M. Sanchez, N. Garg and P. C. Dorrestein,50Natural Product Reports, 2014, 31, 718-729.
- 16. D. Krug and R. Mueller, *Natural Product Reports*, 2014, **31**, 768-783.
- 17. T. O. Larsen, J. Smedsgaard, K. F. Nielsen, M. E. Hansen and J. C. Frisvad, *Natural Product Reports*, 2005, **22**, 672-695.
- 55 18. R. C. Breton and W. F. Reynolds, *Natural Product Reports*, 2013, **30**, 501-524.
- 19. T. Ito and M. Masubuchi, *Journal of Antibiotics*, 2014, **67**, ¹³⁰ 50. 353-360.
- M. Halabalaki, K. Vougogiannopoulou, E. Mikros and A. L.
 Skaltsounis, *Current Opinion in Biotechnology*, 2014, 25, 1-7.
- M. Elyashberg, A. J. Williams and K. Blinov, Natural Product Reports, 2010, 27, 1296-1328.

- M. Jaspars, Natural Product Reports, 1999, 16, 241-247.
- C. Steinbeck, *Natural Product Reports*, 2004, **21**, 512-518.
- 65 24. O. Genilloud, I. Gonzalez, O. Salazar, J. Martin, J. Ruben Tormo and F. Vicente, *Journal of Industrial Microbiology & Biotechnology*, 2011, **38**, 375-389.
 - T. Roemer, D. Xu, S. B. Singh, C. A. Parish, G. Harris, H. Wang, J. E. Davies and G. F. Bills, *Chemistry & Biology*, 2011, 18, 148-164.
 - A. Agarwal, P. D'Souza, T. S. Johnson, S. M. Dethe and C. V. Chandrasekaran, *Current Opinion in Biotechnology*, 2014, 25, 39-44.
 - 27. O. Sticher, Natural Product Reports, 2008, 25, 517-554.
- 75 28. F. Bucar, A. Wube and M. Schmid, *Natural Product Reports*, 2013, **30**, 525-545.
 - 29. J. Berdy, *Journal of Antibiotics*, 2005, **58**, 1-26.
 - L. J. Hanka, S. L. Kuentzel, D. G. Martin, P. F. Wiley and G. L. Neil, *Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer*, 1978, 63, 69-76.
 - J. A. Beutler, A. B. Alvarado, D. E. Schaufelberger, P. Andrews and T. G. McCloud, *Journal of Natural Products*, 1990, 53, 867-874.
- 85 32. D. G. Corley and R. C. Durley, *Journal of Natural Products-Lloydia*, 1994, **57**, 1484-1490.
 - J. Antonio and T. F. Molinski, Journal of Natural Products, 1993, 56, 54-61.
 - J. H. Cardellina, M. H. G. Munro, R. W. Fuller, K. P.
 - Manfredi, T. C. McKee, M. Tischler, H. R. Bokesch, K. R. Gustafson, J. A. Beutler and M. R. Boyd, *Journal of Natural Products*, 1993, **56**, 1123-1129.
 - 35. H. L. Constant and C. W. W. Beecher, *Natural Product Letters*, 1995, **6**, 193-196.
 - S. L. Zhou and M. Hamburger, *Journal of Chromatography A*, 1996, **755**, 189-204.
 - J. L. Wolfender, C. Terreaux and K. Hostettmann, *Pharmaceutical Biology*, 2000, **38**, 41-54.
 - A. Tsipouras, J. Ondeyka, C. Dufresne, S. Lee, G. Salituro, N. Tsou, M. Goetz, S. B. Singh and S. K. Kearsley, *Analytica Chimica Acta*, 1995, **316**, 161-171.
 - C. Peng, S. G. Yuan, C. Z. Zheng and Y. Z. Hui, *Journal of Chemical Information and Computer Sciences*, 1994, **34**, 805-813.
 - C. Peng, S. G. Yuan, C. Z. Zheng, Z. S. Shi and H. M. Wu, Journal of Chemical Information and Computer Sciences, 1995, **35**, 539-546.
 - M. Kock, J. Junker, W. Maier, M. Will and T. Lindel, *European Journal of Organic Chemistry*, 1999, 579-586.
- 110 42. T. Lindel, J. Junker and M. Kock, European Journal of Organic Chemistry, 1999, 573-577.
 - G. A. Cordell, C. W. W. Beecher, A. D. Kinghorn, J. M. Pezzuto, H. L. Constant, H. B. Chai, L. Q. Fang, E. K. Seo, L. Long, B. L. Cui and K. Slowing-Barillas, *Structure and Chemistry (Part E)*, 1997, 19, 749-791.
 - G. A. Cordell and Y. G. Shin, Pure and Applied Chemistry, 1999, 71, 1089-1094.
 - G. A. Cordell, *Phytochemistry*, 2000, **55**, 463-480.
 - J. A. Colquhoun, J. Zulu, M. Goodfellow, K. Horikoshi, A. C. Ward and A. T. Bull, *Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology*, 2000, **77**, 359-367.
 - 47. V. Seguritan and F. Rohwer, *BMC bioinformatics*, 2001, **2**, 9-9.
- 125 48. P. F. B. Brandao, M. Torimura, R. Kurane and A. T. Bull, *Applied Microbiology and Biotechnology*, 2002, 58, 77-83.
 - S. Donadio, P. Monciardini, R. Alduina, P. Mazza, C. Chiocchini, L. Cavaletti, M. Sosio and A. M. Puglia, *Journal* of *Biotechnology*, 2002, 99, 187-198.
 - V. Knight, J. J. Sanglier, D. DiTullio, S. Braccili, P. Bonner, J. Waters, D. Hughes and L. Zhang, *Applied Microbiology and Biotechnology*, 2003, **62**, 446-458.
 - 51. S. C. Bobzin, S. T. Yang and T. P. Kasten, *Journal of Chromatography B*, 2000, **748**, 259-267.

37.

34.

90

80

38. 100

39

41.

115

120

44

45.

52.	S. C. Bobzin, S. Yang and T. P. Kasten, Journal of Industrial	82.
53.	Microbiology & Biotechnology, 2000, 25 , 342-345. J. R. Gilbert, P. Lewer, D. O. Duebelbeis, A. W. Carr, C. E.	⁷⁵ 83.
5	Snipes and R. T. Williamson, in <i>Liquid Chromatography/Mass</i> Spectrometry, Ms/Ms and Time-of-Flight Ms, eds. I. Ferrer and	84.
54.	E. M. Thurman2003, vol. 850, pp. 52-65. J. L. Wolfender, K. Ndjoko and K. Hostettmann, <i>Journal of</i>	80 85.
55.	<i>Chromatography A</i> , 2003, 1000 , 437-455. K. Hostettmann, J. L. Wolfender and C. Terreaux,	
¹⁰ 56.	<i>Pharmaceutical Biology</i> , 2001, 39 , 18-32. J. Bradshaw, D. Butina, A. J. Dunn, R. H. Green, M. Hajek,	86.
	M. M. Jones, J. C. Lindon and P. J. Sidebottom, <i>Journal of Natural Products</i> , 2001, 64 , 1541-1544.	⁸⁵ 87.
57.	A. D. Kinghorn, N. R. Farnsworth, D. D. Soejarto, G. A. Cordell, S. M. Swanson, J. M. Pezzuto, M. C. Wani, M. E.	
	Wall, N. H. Oberlies, D. J. Kroll, R. A. Kramer, W. C. Rose, G. D. Vite, C. R. Fairchild, R. W. Peterson and R. Wild,	88. 90
58.	Pharmaceutical Biology, 2003, 41 , 53-67. K. F. Nielsen and J. Smedsgaard. <i>Journal of Chromatography</i>	89.
20	<i>A</i> , 2003, 1002 , 111-136.	90.
59.	<i>Chromatography A</i> , 2000, 872 , 85-90.	95 91.
60.	J. L. Wolfender, P. Waridel, K. Ndjoko, K. R. Hobby, H. J. Major and K. Hostettmann, <i>Analusis</i> , 2000, 28 , 895-906A.	92.
25 61.	G. E. Martin, C. E. Hadden, D. J. Russell, B. D. Kaluzny, J. E. Guido, W. K. Duholke, B. A. Stiemsma, T. J. Thamann, R. C.	93
	Crouch, K. Blinov, M. Elyashberg, E. R. Martirosian, S. G.	100
	Molodtsov, A. J. Williams and P. L. Schiff, <i>Journal of Heterocyclic Chemistry</i> , 2002, 39 , 1241-1250.	94.
30 62.	C. C. Stessman, R. Ebel, A. J. Corvino and P. Crews, <i>Journal of Natural Products</i> , 2002, 65 , 1183-1186.	
63.	B. Jaki, S. Franzblau and G. F. Pauli, <i>Phytochemical Analysis</i> , 2004, 15 , 213-219.	105
64.	K. A. Blinov, D. Carlson, M. E. Elyashberg, G. E. Martin, E. R. Martinsian, S. Molodtsov, and A. J. Williams, <i>Magnetic</i> .	95
(5	Resonance in Chemistry, 2003, 41, 359-372.	
65.	M. E. Elyashberg, K. A. Billiov, A. J. Williams, S. G. Molodtsov, G. E. Martin and E. R. Martirosian, <i>Journal of</i>	110
40	Chemical Information and Computer Sciences, 2004, 44, 771-792.	96.
66.	C. Steinbeck and S. Kuhn, <i>Phytochemistry</i> , 2004, 65, 2711-2717	115
67.	A. D. Buss and M. S. Butler, <i>Drug Development Research</i> , 2004 62 362-370	97.
45 68.	H. Tang, C. Xiao and Y. Wang, Magnetic Resonance in Chemistry 2009 47 S157-S162	98
69.	C. Clarkson, D. Staerk, S. H. Hansen and J. W. Jaroszewski, <i>Augustan Linearistry</i> , 2005 77 , 3547, 3553	120
70.	A. Fredenhagen, C. Derrien and E. Gassmann, <i>Journal of</i>	100
⁵⁰ 71.	J. W. Jaroszewski, <i>Planta Medica</i> , 2005, 71 , 691-700.	100.
72. 73.	J. W. Jaroszewski, <i>Planta Medica</i> , 2005, 71 , 795-802. L. Zhang, <i>Natural Products: Drug Discovery and Therapeutic</i>	125 101.
55 74	Medicine, 2005, 33-55. J. L. Wolfender, E. F. Queiroz and K. Hostettmann, Magnetic	102.
75	Resonance in Chemistry, 2005, 43 , 697-709.	103.
/5.	Symposium on Natural Preservatives in Food Systems, eds. D.	130
60 76.	D. R. Appleton, A. D. Buss and M. S. Butler, <i>Chimia</i> , 2007,	104.
77.	61, 327-331. Y. Konishi, T. Kiyota, C. Draghici, JM. Gao, F. Yeboah, S.	135 105.
	Acoca, S. Jarussophon and E. Purisima, <i>Analytical Chemistry</i> , 2007 79 1187-1197	
65 78.	D. Wolf and K. Siems, <i>Chimia</i> , 2007, 61 , 339-345.	106.
79.	C. A. Motti, M. L. Freckelton, D. M. Tapiolas and R. H. Willis, <i>Journal of Natural Products</i> 2009 72, 290-294	140 107
80.	S. Jarussophon, S. Acoca, JM. Gao, C. Deprez, T. Kiyota, C. Draghici, E. Purisima and Y. Konishi, <i>Analyst</i> , 2009, 134 , 690-700	140 107.
81.	D. Staerk, J. R. Kesting, M. Sairafianpour, M. Witt, J. Asili, S. A. Emami and J. W. Jaroszewski, <i>Phytochemistry</i> , 2009, 70 , 1055-1061.	108. 145

V. Pieri, S.	Sturm, C.	Seger, I	P. Schneider	and H.	Stuppner,
Planta Medi	ca, 2009, '	75, 996-9	96.		

- . K. F. Nielsen, M. Mansson, C. Rank, J. C. Frisvad and T. O. Larsen, *Journal of Natural Products*, 2011, **74**, 2338-2348.
- M. E. Hansen, J. Smedsgaard and T. O. Larsen, *Analytical Chemistry*, 2005, **77**, 6805-6817.
- G. Lang, N. A. Mayhudin, M. I. Mitova, L. Sun, S. van der Sar, J. W. Blunt, A. L. J. Cole, G. Ellis, H. Laatsch and M. H. G. Munro, *Journal of Natural Products*, 2008, **71**, 1595-1599.
- R. Dieckmann, I. Graeber, I. Kaesler, U. Szewzyk and H. von Dohren, *Applied Microbiology and Biotechnology*, 2005, 67, 539-548.
- E. Esquenazi, C. Coates, L. Simmons, D. Gonzalez, W. H. Gerwick and P. C. Dorrestein, *Molecular Biosystems*, 2008, 4, 562-570.
- J. Ghyselinck, K. Van Hoorde, B. Hoste, K. Heylen and P. De Vos, *Journal of Microbiological Methods*, 2011, 86, 327-336.
- G. G. Harrigan and G. H. Goetz, Combinatorial Chemistry & High Throughput Screening, 2005, 8, 529-534.
- J. Bitzer, B. Koepcke, M. Stadler, V. Heilwig, Y.-M. Ju, S. Seip and T. Henkel, *Chimia*, 2007, **61**, 332-338.
- R. Dunkel and X. Wu, Journal of Magnetic Resonance, 2007, 188, 97-110.
- J. L. Lopez-Perez, R. Theron, E. del Olmo and D. Diaz, *Bioinformatics*, 2007, 23, 3256-3257.
- M. I. Mitova, A. C. Murphy, G. Lang, J. W. Blunt, A. L. J. Cole, G. Ellis and M. H. G. Munro, *Journal of Natural Products*, 2008, **71**, 1600-1603.
- T. A. Johnson, J. Sohn, W. D. Inman, S. A. Estee, S. T. Loveridge, H. C. Vervoort, K. Tenney, J. Liu, K. K.-H. Ang, J. Ratnam, W. M. Bray, N. C. Gassner, Y. Y. Shen, R. S. Lokey, J. H. McKerrow, K. Boundy-Mills, A. Nukanto, A. Kanti, H. Julistiono, L. B. S. Kardono, L. F. Bjeldanes and P. Crews, *Journal of Natural Products*, 2011, 74, 2545-2555.
- J. Y. Yang, L. M. Sanchez, C. M. Rath, X. Liu, P. D. Boudreau, N. Bruns, E. Glukhov, A. Wodtke, R. de Felicio, A. Fenner, W. R. Wong, R. G. Linington, L. Zhang, H. M. Debonsi, W. H. Gerwick and P. C. Dorrestein, *Journal of Natural Products*, 2013, **76**, 1686-1699.
- J. Ng, N. Bandeira, W.-T. Liu, M. Ghassemian, T. L. Simmons, W. H. Gerwick, R. Linington, P. C. Dorrestein and P. A. Pevzner, *Nature Methods*, 2009, **6**, 596-U565.
- M. E. Elyashberg, K. A. Blinov, S. G. Molodtsov, A. J. Williams and G. E. Martin, *Journal of Chemical Information and Modeling*, 2007, **47**, 1053-1066.
- M. E. Elyashberg, A. Williams and G. E. Martin, *Progress in Nuclear Magnetic Resonance Spectroscopy*, 2008, **53**, 1-104.
- C. M. Farnet and E. Zazopoulos, *Natural Products: Drug Discovery and Therapeutic Medicine*, 2005, 95-106.
- K. Boroczky, H. Laatsch, I. Wagner-Dobler, K. Stritzke and S. Schulz, *Chemistry & Biodiversity*, 2006, 3, 622-634.
- D. P. Overy, D. P. Enot, K. Tailliart, H. Jenkins, D. Parker, M. Beckmann and J. Draper, *Nature Protocols*, 2008, 3, 471-485.
- J.-L. Wolfender, G. Marti and E. F. Queiroz, *Current Organic Chemistry*, 2010, 14, 1808-1832.
- . Z. Kamenik, F. Hadacek, M. Mareckova, D. Ulanova, J. Kopecky, V. Chobot, K. Plhackova and J. Olsovska, *Journal of Chromatography A*, 2010, **1217**, 8016-8025.
- F. Qiu, A. Imai, J. B. McAlpine, D. C. Lankin, I. Burton, T. Karakach, N. R. Farnsworth, S.-N. Chen and G. F. Pauli, *Journal of Natural Products*, 2012, **75**, 432-443.
- S. Kildgaard, M. Mansson, I. Dosen, A. Klitgaard, J. C. Frisvad, T. O. Larsen and K. F. Nielsen, *Marine drugs*, 2014, 12, 3681-3705.
- J. J. J. van der Hooft, R. C. H. de Vos, L. Ridder, J. Vervoort and R. J. Bino, *Metabolomics*, 2013, 9, 1009-1018.
- J. Yang, Q. Liang, M. Wang, C. Jeffries, D. Smithson, Y. Tu, N. Boulos, M. R. Jacob, A. A. Shelat, Y. Wu, R. R. Ravu, R. Gilbertson, M. A. Avery, I. A. Khan, L. A. Walker, R. K. Guy and X.-C. Li, *Journal of Natural Products*, 2014, 77, 902-909.
 S. D. Sarker and L. Nahar, *Methods in molecular biology* (*Clifton, N.J.*), 2012, 864, 301-340.

85

95

100

110

- C. S. Funari, P. J. Eugster, S. Martel, P.-A. Carrupt, J.-L. Wolfender and D. H. S. Silva, *Journal of Chromatography A*, 2012, **1259**, 167-178.
- 110. K. T. Johansen, S. G. Wubshet and N. T. Nyberg, *Analytical Chemistry*, 2013, **85**, 3183-3189.
- S. Bertrand, O. Schumpp, N. Bohni, A. Bujard, A. Azzollini, M. Monod, K. Gindro and J.-L. Wolfender, *Journal of Chromatography A*, 2013, **1292**, 219-228.
- M. Rojas-Cherto, J. E. Peironcely, P. T. Kasper, J. J. J. van der Hooft, R. C. H. de Vos, R. Vreeken, T. Hankemeier and T. Reijmers, *Analytical Chemistry*, 2012, 84, 5524-5534.
- 113. M. H. Stafsnes, M. Dybwad, A. Brunsvik and P. Bruheim, Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2013, **103**, 603-615.
- 15 114. T. El-Elimat, M. Figueroa, B. M. Ehrmann, N. B. Cech, C. J. Pearce and N. H. Oberlies, *Journal of Natural Products*, 2013, 76, 1709-1716.
 - 115. G. T. Carter, *Natural Product Reports*, 2014, **31**, 711-717.
- 116. P. C. Dorrestein, Natural Product Reports, 2014, 31, 704-705.

 E. Esquenazi, Y.-L. Yang, J. Watrous, W. H. Gerwick and P. C. Dorrestein, *Natural Product Reports*, 2009, 26, 1521-1534.

- G. F. Pauli, S.-N. Chen, D. C. Lankin, J. Bisson, R. J. Case, L. R. Chadwick, T. Godecke, T. Inui, A. Krunic, B. U. Jaki, J. B. McAlpine, S. Mo, J. G. Napolitano, J. Orjala, J. Lehtivarjo, S.-P. Korhonen and M. Niemitz, *Journal of natural products*, 2014, **77**, 1473-1487.
- M. R. Andersen, J. B. Nielsen, A. Klitgaard, L. M. Petersen, M. Zachariasen, T. J. Hansen, L. H. Blicher, C. H. Gotfredsen, T. O. Larsen, K. F. Nielsen and U. H. Mortensen, *Proceedings* of the National Academy of Sciences of the United States of America, 2013, 110, E99-E107.
- 120. J. Rocha-Martin, C. Harrington, A. D. W. Dobson and F. O'Gara, *Marine drugs*, 2014, **12**, 3516-3559.
- 121. G. D. Wright, *Canadian Journal of Microbiology*, 2014, **60**, 147-154.
- Y. Hou, D. R. Braun, C. R. Michel, J. L. Klassen, N. Adnani, T. P. Wyche and T. S. Bugni, *Analytical Chemistry*, 2012, 84, 4277-4283.
- A. Ibrahim, L. Yang, C. Johnston, X. Liu, B. Ma and N. A. Magarvey, *Proceedings of the National Academy of Sciences* of the United States of America, 2012, **109**, 19196-19201.
- 124. A. F. Tawfike, C. Viegelmann and R. Edrada-Ebel, *Methods in molecular biology (Clifton, N.J.)*, 2013, **1055**, 227-244.
- 125. D. A. Dias, S. Urban and U. Roessner, *Metabolites*, 2012, **2**, 303-336.
- W. R. Wong, A. G. Oliver and R. G. Linington, *Chemistry & Biology*, 2012, **19**, 1483-1495.
- 127. H. A. Kirst, *Expert Opinion on Drug Discovery*, 2013, **8**, 479- 120 493.
- 50 128. N. M. Nebane, T. Coric, K. Whig, S. McKellip, L. Woods, M. Sosa, R. Sheppard, L. Rasmussen, M.-A. Bjornsti and E. L. White, *Jala*, 2013, 18, 334-339.
- M. R. Duffy, A. L. Parker, E. R. Kalkman, K. White, D. 125 Kovalskyy, S. M. Kelly and A. H. Baker, *Journal of Controlled Release*, 2013, **170**, 132-140.
- 130. M. Hann and T. I. Oprea, *Current Opinion in Chemical Biology*, 2004, **8**, 255-263.
- 131. S. C. Desbordes, D. G. Placantonakis, A. Ciro, N. D. Socci, G. Lee, H. Djaballah and L. Studer, *Cell Stem Cell*, 2008, 2, 602-612.
- 132. CA2533219-A1; US2007184546-A1.
- 133. WO2008042960-A2; WO2008042960-A3; US2008240542-A1; WO2008042960-A8.
- 134. M. Weber, L. Muthusubramaniam, J. Murray, E. Hudak, O. 65 Kornienko, E. N. Johnson, B. Strulovici and P. Kunapuli,
- Assay and Drug Development Technologies, 2007, 5, 117-125.
 S. Fox, S. Filichkin and T. C. Mockler, Methods in molecular
 I. J. Clifford, M. J. 2000, 552, 70, 100
- biology (Clifton, N.J.), 2009, 553, 79-108.
 D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick, W.
 Hide, D. P. Hill, R. Kania, M. Schaeffer, S. St Pierre, S. Twigger, O. White and S. Y. Rhee, *Nature*, 2008, 455, 47-50.
 - 137. M. Eisenstein, *Nature*, 2006, **442**, 1067-1070.

- L. A. T. Cox, D. Popken, M. S. Marty, J. C. Rowlands, G. Patlewicz, K. O. Goyak and R. A. Becker, *Regulatory* toxicology and pharmacology : *RTP*, 2014, 69, 443-450.
- 139. X. D. Zhang, Journal of Biomolecular Screening, 2010, 15, 1116-1122.
- 140. X. D. Zhang, Journal of Biomolecular Screening, 2011, 16, 775-785.
- 80 141. X. D. Zhang and Z. Zhang, *Bioinformatics*, 2013, **29**, 794-796.
 - 142. T. Zhang, R. Omar, W. Siheri, S. Al Mutairi, C. Clements, J. Fearnley, R. Edrada-Ebel and D. Watson, *Talanta*, 2014, 120, 181-190.
 - 143. J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat, J.-C. Baret, M. Marquez, A. M. Klibanov, A. D. Griffiths and D. A. Weitz, *Proceedings of the National Academy of Sciences* of the United States of America, 2010, **107**, 4004-4009.
 - 144. E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz and K. B. Crozier, *Lab on a Chip*, 2010, **10**, 852-856.
- 90 145. L. Kimlin, J. Kassis and V. Virador, Expert Opinion on Drug Discovery, 2013, 8, 1455-1466.
 - K. Hostettmann, A. Marston and J. L. Wolfender, *Chimia*, 2005, **59**, 291-294.
 - D. Rakshith, P. Santosh, K. Tarman, D. M. Gurudatt and S. Satish, *Jpc-Journal of Planar Chromatography-Modern Tlc*, 2013, 26, 470-474.
 - N. Schauer, D. Steinhauser, S. Strelkov, D. Schomburg, G. Allison, T. Moritz, K. Lundgren, U. Roessner-Tunali, M. G. Forbes, L. Willmitzer, A. R. Fernie and J. Kopka, *Febs Letters*, 2005, 579, 1332-1337.
 - M. Stavri, R. Schneider, G. O'Donnell, D. Lechner, F. Bucar and S. Gibbons, *Phytotherapy Research*, 2004, 18, 774-776.
 - T. Soga, Y. Ohashi, Y. Ueno, H. Naraoka, M. Tomita and T. Nishioka, *Journal of Proteome Research*, 2003, 2, 488-494.
- 105 151. M. M. Pedersen, J. C. Chukwujekwu, C. A. Lategan, J. van Staden, P. J. Smith and D. Staerk, *Phytochemistry*, 2009, **70**, 601-607.
 - 152. J.-L. Wolfender, *Planta Medica*, 2009, **75**, 719-734.
 - P. J. Eugster, D. Guillarme, S. Rudaz, J.-L. Veuthey, P.-A. Carrupt and J.-L. Wolfender, *Journal of Aoac International*, 2011, 94, 51-70.
 - 154. J. R. Yates, III, Nature Methods, 2011, 8, 633-637.
 - 155. Z. Takats, J. M. Wiseman, B. Gologan and R. G. Cooks, *Science*, 2004, **306**, 471-473.
- 115 156. A. U. Jackson, A. Tata, C. Wu, R. H. Perry, G. Haas, L. West and R. G. Cooks, *Analyst*, 2009, **134**, 867-874.
 - 157. R. B. Cody, J. A. Laramee and H. D. Durst, *Analytical Chemistry*, 2005, **77**, 2297-2302.
 - G. Parsiegla, B. Shrestha, F. Carriere and A. Vertes, *Analytical Chemistry*, 2012, 84, 34-38.
 - 59. J. Watrous, P. Roach, T. Alexandrov, B. S. Heath, J. Y. Yang, R. D. Kersten, M. van der Voort, K. Pogliano, H. Gross, J. M. Raaijmakers, B. S. Moore, J. Laskin, N. Bandeira and P. C. Dorrestein, *Proceedings of the National Academy of Sciences* of the United States of America, 2012, **109**, E1743-E1752.
 - H. L. Constant, K. Slowing, J. G. Graham, J. M. Pezzuto, G. A. Cordell and C. W. W. Beecher, *Phytochemical Analysis*, 1997, 8, 176-180.
 - S. D. Sarker and L. Nahar, Methods in molecular biology (Clifton, N.J.), 2012, 864, 1-25.
 - 162. D. A. van Elswijk, U. P. Schobel, E. P. Lansky, H. Irth and J. van der Greef, *Phytochemistry*, 2004, **65**, 233-241.
 - B. L. Ackermann, B. T. Regg, L. Colombo, S. Stella and J. E. Coutant, *Journal of the American Society for Mass Spectrometry*, 1996, 7, 1227-1237.
 - E. C. Tatsis, S. Boeren, V. Exarchou, A. N. Troganis, J. Vervoort and I. P. Gerothanassis, *Phytochemistry*, 2007, 68, 383-393.
 - P. Waridel, J. L. Wolfender, K. Ndjoko, K. R. Hobby, H. J. Major and K. Hostettmann, *Journal of Chromatography A*, 2001, **926**, 29-41.
 - H. G. Gika, G. A. Theodoridis, J. E. Wingate and I. D. Wilson, Journal of Proteome Research, 2007, 6, 3291-3303.

159.

130

135

-				
	167.	J. Tchoumtchoua, D. Njamen, J. C. Mbanya, AL. Skaltsounis and M. Halabalaki, <i>Journal of Mass Spectrometry</i> , 2013, 48,	195.	M.H.T.Li, Tsodikova and
		561-575.	75 196.	A. de Jong, A.
	168.	A. Klitgaard, A. Iversen, M. R. Andersen, T. O. Larsen, J. C.	107	Acids Research
5		Frisvad and K. F. Nielsen, Analytical and Bioanalytical	197.	A. J. van Heel,
	169	H Mohimani W-T Liu V-I Vang S P Gaudencio W		W453
	107.	Fenical P C Dorrestein and P A Peyzner <i>Journal of</i>	80 198	V Mallika K
		Computational Biology. 2011. 18, 1371-1381.	80 170.	Journal of integ
10	170.	P. N. Leao, A. R. Pereira, WT. Liu, J. Ng, P. A. Pevzner, P.	199.	N. Khaldi, F.
		C. Dorrestein, G. M. Koenig, V. M. Vasconcelosa and W. H.		Nierman, K. H.
		Gerwick, Proceedings of the National Academy of Sciences of		and Biology, 20
		the United States of America, 2010, 107, 11183-11188.	85 200.	T. Weber, C. R
	171.	M. Baker, Nature Methods, 2011, 8, 117-121.		Huson and W.
15	172.	F. Hufsky, K. Scheubert and S. Bocker, <i>Trac-Trends in</i>	201	140 , 13-17.
	172	Analytical Chemistry, 2014, 53 , 41-48.	201.	M. H. Medema
	1/3.	S. Stein, Analytical Chemistry, 2012, 84, 7274-7282.		Zakrzewski, M Draitling Much
	1/4.	K. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum and J. Lederberg Artificial Intelligence 1903 61 200 261	⁹⁰ 202	N Don Duy
20	175	F Hufsky K Scheubert and S Bocker Natural Product	202.	Medema X Zh
20	175.	Reports 2014 31 807-817		Jackson J Ba
	176.	S. Wolf, S. Schmidt, M. Mueller-Hannemann and S.		Phelan, C. van
		Neumann, Bmc Bioinformatics, 2010, 11.	95	E. A. Shank, P.
	177.	M. Gerlich and S. Neumann, Journal of Mass Spectrometry,		Moore, N. Band
25		2013, 48 , 291-298.		and P. C. Dorre
	178.	F. Rasche, K. Scheubert, F. Hufsky, T. Zichner, M. Kai, A.		Sciences of the
		Svatos and S. Boecker, Analytical Chemistry, 2012, 84, 3417-		E2620.
		3426.	100 203.	WT. Liu, A.
	179.	L. J. Kangas, T. O. Metz, G. Isaac, B. T. Schrom, B.		Kersten, Y. Per
30		Ginovska-Pangovska, L. Wang, L. Tan, R. R. Lewis and J. H.		W. H. Gerwic
	190	Miller, Bioinformatics, 2012, 28, 1705-1713.	204	Dorrestein, Jour
180.	M. Heinonen, H. Snen, N. Zamboni and J. Kousu, Bioinformatics 2012 28 2333 2341	204.	K. Mendes, M. Voort I H M	
	181	I Gasteiger W Hanebeck and K P Schulz <i>Journal</i> of	105	Andersen P A
35	101.	Chemical Information and Computer Sciences, 1992, 32 , 264-		2011. 332. 1097
		271.	205.	Ll. Ooi, ed.,
	182.	N. A. B. Gray, R. E. Carhart, A. Lavanchy, D. H. Smith, T.		Ooi - Oxford U
		Varkony, B. G. Buchanan, W. C. White and L. Creary,	110 206.	G. M. Sheldrich
		Analytical Chemistry, 1980, 52, 1095-1102.		112-122.
40	183.	E. Luethi, K. T. Nguyen, M. Buerzle, L. C. Blum, Y. Suzuki,	207.	Models, Myster
		M. Hediger and JL. Reymond, Journal of Medicinal	208.	Y. Inokuma, S.
	104	<i>Chemistry</i> , 2010, 53 , 7230-7230.		1 akada, S. Ma
	184.	A. I. Nguyen, S. Syed, S. Urwyler, S. Berlrand, D. Berlrand and I. I. Reymond, <i>Chammedcham</i> 2008, 3 , 1520, 1524	200	2015, 495 , 401- K Wuthrich
45	185	7-I Deng C-X Du X Li B Hu 7-K Kuang R Wang	207.	2003 42 3340-
45	105.	SY. Peng, HY. Zhang and DX. Kong. Journal of	210.	R. R. Ernst. An
		Chemical Information and Modeling, 2013, 53, 2820-2828.		49 , 8310-8315.
	186.	A. M. Virshup, J. Contreras-Garcia, P. Wipf, W. T. Yang and	120 211.	G. F. Pauli, T. C
		D. N. Beratan, Journal of the American Chemical Society,		of Natural Prod
50		2013, 135 , 7296-7303.	212.	B. U. Jaki, S. C
	187.	A. Kerber, R. Laue, M. Meringer and C. Rucker, Journal of		Zhang, Y. Wan
	100	Computer Chemistry, Japan, 2004, 3 , 85-96.	010	2008, 71, 1742-
	188.	C. Corre and G. L. Challis, <i>Natural Product Reports</i> , 2009, 26,	125 213.	G. F. Pauli, B.
	190	9//-900. P. D. Korston, V. I. Vang, V. O. Vu, P. Cimarmanaia, S. I.	214	$C \in \mathbf{E}$ Pauli Ph
55	169.	Nam W Eenical M A Fischbach B S Moore and P C	214.	D. F. Faull, Fily D. Krishnan N
		Dorrestein Nature Chemical Biology 2011 7 794-802	215.	Experimental B
	190.	W. T. Liu, J. Ng. D. Meluzzi, N. Bandeira, M. Gutierrez, T. L.	130 216.	D. S. Wishart, Z
		Simmons, A. W. Schultz, R. G. Linington, B. S. Moore, W. H.		228-237.
60		Gerwick, P. A. Pevsner and P. C. Dorrestein, Anal. Chem.,	217.	S. Heikkinen,
		2009, 81 , 4200-4209.		Kilpelainen, Jos
	191.	H. B. Bode and R. Muller, Angewandte Chemie-International		125 , 4362-4367
		<i>Edition</i> , 2005, 44 , 6828-6846.	135 218.	E. Kupce and R
	192.	M. O. Maksimov, I. Pelczer and A. J. Link, <i>Proceedings of the</i>	210	2007, 45 , 2-4.
65		National Academy of Sciences of the United States of America,	219.	M. R. Palmer,
	102	2012, 109, 15225-15228. A Staroavie I Zucke I Simunkovie D E Long I Culture	220	T E Malinal-
	173.	and D. Hranueli Nuclaic Acids Research 2008 26 6002	220.	1. F. WOUDSKI
		6892	221	7507-7545. K N White '
70	194	S. Anand, M. V. R. Prasad, G. Yadav, N. Kumar, J. Shehara	<i>22</i> 1.	Wenzel and P
		M. Z. Ansari and D. Mohanty, Nucleic Acids Research 2010		73 , 8719-8722
		38 , W487-W496.	222.	N. Matsumori,
			145	Tachibana, Jour

- Acids Research, 2010, 38, W647-W651.
 A. J. van Heel, A. de Jong, M. Montalban-Lopez, J. Kok and O. P. Kuipers, Nucleic Acids Research, 2013, 41, W448-W453.
- V. Mallika, K. C. Sivakumar, S. Jaichand and E. V. Soniya, Journal of integrative bioinformatics, 2010, 7.
- N. Khaldi, F. T. Seifuddin, G. Turner, D. Haft, W. C. Nierman, K. H. Wolfe and N. D. Fedorova, *Fungal Genetics* and Biology, 2010, 47, 736-741.
- T. Weber, C. Rausch, P. Lopez, I. Hoof, V. Gaykova, D. H. Huson and W. Wohlleben, *Journal of Biotechnology*, 2009, 140, 13-17.
- M. H. Medema, K. Blin, P. Cimermancic, V. de Jager, P. Zakrzewski, M. A. Fischbach, T. Weber, E. Takano and R. Breitling, *Nucleic Acids Research*, 2011, **39**, W339-W346.
- N. Don Duy, C.-H. Wu, W. J. Moree, A. Lamsa, M. H. Medema, X. Zhao, R. G. Gavilan, M. Aparicio, L. Atencio, C. Jackson, J. Ballesteros, J. Sanchez, J. D. Watrous, V. V. Phelan, C. van de Wiel, R. D. Kersten, S. Mehnaz, R. De Mot, E. A. Shank, P. Charusanti, H. Nagarajan, B. M. Duggan, B. S. Moore, N. Bandeira, B. O. Palsson, K. Pogliano, M. Gutierrez and P. C. Dorrestein, *Proceedings of the National Academy of Sciences of the United States of America*, 2013, **110**, E2611-E2620.
- W.-T. Liu, A. Lamsa, W. R. Wong, P. D. Boudreau, R. Kersten, Y. Peng, W. J. Moree, B. M. Duggan, B. S. Moore, W. H. Gerwick, R. G. Linington, K. Pogliano and P. C. Dorrestein, *Journal of Antibiotics*, 2014, 67, 99-104.
- R. Mendes, M. Kruijt, I. de Bruijn, E. Dekkers, M. van der Voort, J. H. M. Schneider, Y. M. Piceno, T. Z. DeSantis, G. L. Andersen, P. A. H. M. Bakker and J. M. Raaijmakers, *Science*, 2011, **332**, 1097-1100.
- L.-l. Ooi, ed., Principles of X-ray Crystallography Li-ling Ooi - Oxford University Press2014.
- G. M. Sheldrick, Acta Crystallographica Section A, 2008, 64, 112-122.
- Models, Mysteries, and Magic of Molecules2008.
- Y. Inokuma, S. Yoshioka, J. Ariyoshi, T. Arai, Y. Hitora, K. Takada, S. Matsunaga, K. Rissanen and M. Fujita, *Nature*, 2013, **495**, 461-+.
- K. Wuthrich, Angewandte Chemie-International Edition, 2003, 42, 3340-3363.
- R. R. Ernst, Angewandte Chemie-International Edition, 2010, 49, 8310-8315.
- G. F. Pauli, T. Goedecke, B. U. Jaki and D. C. Lankin, *Journal* of Natural Products, 2012, 75, 834-851.
- B. U. Jaki, S. G. Frazblau, L. R. Chadwick, D. C. Lankin, F. Zhang, Y. Wang and G. F. Pauli, *Journal of Natural Products*, 2008, **71**, 1742-1748.
 - G. F. Pauli, B. U. Jaki and D. C. Lankin, *Journal of Natural Products*, 2005, **68**, 133-149.
- . G. F. Pauli, *Phytochemical Analysis*, 2001, **12**, 28-42.
- P. Krishnan, N. J. Kruger and R. G. Ratcliffe, *Journal of Experimental Botany*, 2005, 56, 255-265.
- D. S. Wishart, Trac-Trends in Analytical Chemistry, 2008, 27, 228-237.
- S. Heikkinen, M. M. Toikka, P. T. Karhunen and I. A. Kilpelainen, *Journal of the American Chemical Society*, 2003, 125, 4362-4367.
- E. Kupce and R. Freeman, Magnetic Resonance in Chemistry, 2007, 45, 2-4.
- M. R. Palmer, B. R. Wenrich, P. Stahlfeld and D. Rovnyak, Journal of Biomolecular Nmr, 2014, 58, 303-314.
- T. F. Molinski and B. I. Morinaka, *Tetrahedron*, 2012, 68, 9307-9343.
- K. N. White, T. Amagata, A. G. Oliver, K. Tenney, P. J. Wenzel and P. Crews, *Journal of Organic Chemistry*, 2008, 73, 8719-8722.
- N. Matsumori, D. Kaneno, M. Murata, H. Nakamura and K. Tachibana, *Journal of Organic Chemistry*, 1999, 64, 866-876.

- 223. Y. Kobayashi, C. H. Tan and Y. Kishi, *Journal of the American Chemical Society*, 2001, **123**, 2076-2078.
- S. Fidanze, F. B. Song, M. Szlosek-Pinaud, P. L. C. Small and Y. Kishi, *Journal of the American Chemical Society*, 2001, 123, 10117-10118.
- 225. S. Higashibayashi and Y. Kishi, *Tetrahedron*, 2004, **60**, 11977-11982.
- S. Higashibayashi, W. Czechtizky, Y. Kobayashi and Y. Kishi, Journal of the American Chemical Society, 2003, 125, 14379-14393.
- 227. H. Seike, I. Ghosh and Y. Kishi, Organic Letters, 2006, 8, 3861-3864.
- 228. H. Seike, I. Ghosh and Y. Kishi, Organic Letters, 2006, 8, 5177-5177.
- 15 229. H. Seike, I. Ghosh and Y. Kishi, *Organic Letters*, 2006, **8**, 3865-3868.
- 230. S. C. Lievens and T. F. Molinski, *Organic Letters*, 2005, 7, 2281-2284.
- 231. J. J. H. Ackerman and J. J. Neil, *Nmr in Biomedicine*, 2010, 20 23, 725-733.
- J. Barbera, L. Puig, P. Romero, J. L. Serrano and T. Sierra, Journal of the American Chemical Society, 2005, 127, 458-464.
- 233. Y.-T. Chan, X. Li, J. Yu, G. A. Carri, C. N. Moorefield, G. R.
 25 Newkome and C. Wesdemiotis, *Journal of the American Chemical Society*, 2011, 133, 11967-11976.
- 234. Y. Cohen, L. Avram and L. Frish, *Angewandte Chemie-International Edition*, 2005, **44**, 520-554.
- T. Evan-Salem, I. Baruch, L. Avram, Y. Cohen, L. C. Palmer
 and J. Rebek, Jr., *Proceedings of the National Academy of Sciences of the United States of America*, 2006, **103**, 12296-12300.
- B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens and J. C. Martins, *Journal of the American Chemical Society*, 2009, 131, 3024-3032.
- N. Giuseppone, J.-L. Schmitt, L. Allouche and J.-M. Lehn, Angewandte Chemie-International Edition, 2008, 47, 2235- 110 267. 2239.
- 238. K. F. Morris and C. S. Johnson, *Journal of Magnetic Resonance Series A*, 1993, **101**, 67-73.
- Q. Zhou, L. Li, J. Xiang, Y. Tang, H. Zhang, S. Yang, Q. Li,
 Q. Yang and G. Xu, Angewandte Chemie-International 115 Edition, 2008, 47, 5590-5592.
- 240.R. Novoa-Carballal, E. Fernandez-Megia, C. Jimenez and R.45Riguera, Natural Product Reports, 2011, 28, 78-98.
- R. T. Williamson, E. L. Chapin, A. W. Carr, J. R. Gilbert, P. R. Graupner, P. Lewer, P. McKamey, J. R. Carney and W. H. Gerwick, Organic Letters, 2000, 2, 289-292.
- 242. M. F. Lin and M. J. Shapiro, *Journal of Organic Chemistry*, 50 1996, **61**, 7617-7619.
- 243. H. Barjat, G. A. Morris and A. G. Swanson, *Journal of* Magnetic Resonance, 1998, **131**, 131-138. 125
- 244. M. Nilsson, M. A. Connell, A. L. Davis and G. A. Morris, *Analytical Chemistry*, 2006, **78**, 3040-3045.
- 55 245. M. A. Delsuc and T. E. Malliavin, *Analytical Chemistry*, 1998, 70, 2146-2148.
- 246. M. Urbanczyk, D. Bernin, W. Kozminski and K. 130 275. Kazimierczuk, *Analytical Chemistry*, 2013, **85**, 1828-1833.
- 247. A. A. Colbourne, S. Meier, G. A. Morris and M. Nilsson, *Chemical Communications*, 2013, **49**, 10510-10512.
- 248. A. A. Colbourne, G. A. Morris and M. Nilsson, *Journal of the American Chemical Society*, 2011, **133**, 7640-7643.
- 249. C. F. Tormena, R. Evans, S. Haiber, M. Nilsson and G. A. Morris, *Magnetic Resonance in Chemistry*, 2010, **48**, 550-553.
- 65 250. S. Viel, F. Ziarelli and S. Caldarelli, Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9696-9698.
- C. Steinbeck, Steinbeck, C. (2003). Computer-Assisted Structure Elucidation. In J. Gasteiger (Ed.), Handbook of Chemoinformatics: from Data to Knowledge in 4 Volumes (pp. 1378-1406). Weinheim: Wiley-VCH, Wiley-VCH2003.
- 252. R. Neudert and M. Penk, *Journal of Chemical Information and* 145 Computer Sciences, 1996, **36**, 244-248.

- V. Schutz, V. Purtuc, S. Felsinger and W. Robien, *Fresenius Journal of Analytical Chemistry*, 1997, 359, 33-41.
- 254. C. Steinbeck, S. Krause and S. Kuhn, *Journal of Chemical Information and Computer Sciences*, 2003, **43**, 1733-1739.
- M. E. Elyashberg, K. A. Blinov, S. G. Molodtsov and E. D. Smurnyi, *Journal of Analytical Chemistry*, 2008, 63, 13-20.
- 80 256. M. E. Munk, Journal of Chemical Information and Computer Sciences, 1998, **38**, 997-1009.
 - M. Badertscher, A. Korytko, K. P. Schulz, M. Madison, M. E. Munk, P. Portmann, M. Junghans, P. Fontana and E. Pretsch, *Chemometrics and Intelligent Laboratory Systems*, 2000, 51, 73-79.
 - B. D. Christie and M. E. Munk, Journal of Chemical Information and Computer Sciences, 1988, 28, 87-93.
 - 259. B. D. Christie and M. E. Munk, *Journal of the American Chemical Society*, 1991, **113**, 3750-3757.
- 90 260. A. Korytko, K. P. Schulz, M. S. Madison and M. E. Munk, Journal of Chemical Information and Computer Sciences, 2003, 43, 1434-1446.
 - K. P. Schulz, A. Korytko and M. E. Munk, *Journal of Chemical Information and Computer Sciences*, 2003, 43, 1447-1456.
 - T. Lindel, J. Junker and M. Kock, *Journal of Molecular Modeling*, 1997, 3, 364-368.
 - J. Junker, W. Maier, T. Lindel and M. Kock, *Organic Letters*, 1999, 1, 737-740.
- 100 264. S. G. Molodtsov, M. E. Elyashberg, K. A. Blinov, A. J. Williams, E. E. Martirosian, G. E. Martin and B. Lefebvre, *Journal of Chemical Information and Computer Sciences*, 2004, 44, 1737-1751.
 - K. A. Blinov, M. E. Elyashberg, S. G. Molodtsov, A. J. Williams and E. R. Martirosian, *Fresenius Journal of Analytical Chemistry*, 2001, 369, 709-714.
 - M. E. Elyashberg, K. A. Blinov, A. J. Williams, E. R. Martirosian and S. G. Molodtsov, *Journal of Natural Products*, 2002, 65, 693-703.
 - M. E. Elyashberg, K. A. Blinov and E. R. Martirosian, *Laboratory Automation & Information Management*, 1999, **34**, 15-30.
 - M. E. Elyashberg, K. A. Blinov, A. J. Williams, S. G. Molodtsov and G. E. Martin, *Journal of Chemical Information* and Modeling, 2006, 46, 1643-1656.
 - A. J. Williams, M. E. Elyashberg, K. A. Blinov, D. C. Lankin, G. E. Martin, W. F. Reynolds, J. A. Porco, Jr., C. A. Singleton and S. Su, *Journal of Natural Products*, 2008, **71**, 581-588.
 - W.-Y. Liao, C.-N. Shen, L.-H. Lin, Y.-L. Yang, H.-Y. Han, J.-W. Chen, S.-C. Kuo, S.-H. Wu and C.-C. Liaw, *Journal of Natural Products*, 2012, 75, 630-635.
 - 271. M. Elyashberg, K. Blinov, S. Molodtsov and A. J. Williams, Journal of Natural Products, 2013, **76**, 113-116.
 - S. Kuhn, B. Egert, S. Neumann and C. Steinbeck, *Bmc Bioinformatics*, 2008, **9**.
 - 273. C. Steinbeck, *Journal of Chemical Information and Computer Sciences*, 2001, **41**, 1500-1507.
 - K. V. Jayaseelan and C. Steinbeck, *Bmc Bioinformatics*, 2014, 15.
 - C. Steinbeck, Y. Q. Han, S. Kuhn, O. Horlacher, E. Luttmann and E. Willighagen, *Journal of Chemical Information and Computer Sciences*, 2003, 43, 493-500.
 - C. Steinbeck, C. Hoppe, S. Kuhn, M. Floris, R. Guha and E. L. Willighagen, *Current Pharmaceutical Design*, 2006, 12, 2111-2120.
 - 277. J. M. Nuzillard, Journal of Chemical Information and Computer Sciences, 1994, **34**, 723-724.
 - Y. Binev, M. M. B. Marques and J. Aires-de-Sousa, *Journal of Chemical Information and Modeling*, 2007, 47, 2089-2097.
- 140 279. H. Horai, M. Arita, S. Kanaya, Y. Nihei, T. Ikeda, K. Suwa, Y. Ojima, K. Tanaka, S. Tanaka, K. Aoshima, Y. Oda, Y. Kakazu, M. Kusano, T. Tohge, F. Matsuda, Y. Sawada, M. Y. Hirai, H. Nakanishi, K. Ikeda, N. Akimoto, T. Maoka, H. Takahashi, T. Ara, N. Sakurai, H. Suzuki, D. Shibata, S. Neumann, T. Iida, K. Tanaka, K. Funatsu, F. Matsuura, T.

This j	ournal is © The Royal Society of Chemistry [year]		J
507.	Chemistry, 2000, 43 , 4759-4767.		
70 307	 weigi, fi. boeinsen, C. E. Muener and M. Wiese, <i>Bioorganic & Medicinal Chemistry</i>, 2011, 19, 2090-2102. C. Bissantz, G. Folkers and D. Poopog, <i>Lowing of Medicinal</i> 		
306.	Design, 2007, 21 , 97-112. A. Pick, H. Mueller, R. Mayer, B. Haenisch, I. K. Pajeva, M. Weigt, H. Bognisch, C. F. Mueller, w. D. W. District and M. W.		
65 305.	S. Zhang, L. Wei, K. Bastow, W. Zheng, A. Brossi, KH. Lee and A. Tropsha, <i>Journal of Computer-Aided Molecular</i>		
304.	on Marine Research 2014. A. Tropsha, <i>Molecular Informatics</i> , 2010, 29 , 476-488.		
303.	<i>r</i> . referra, D. A. K. S. Latino and S. P. Gaudencio, <i>Front.</i> <i>Mar. Sci.</i> Conference Abstract: IMMR International Meeting		
60 202	drugs, 2014, 12, 757-778.		
302	Information and Modeling, 2008, 48 , 68-74. F. Pereira, D. A. R. S. Latino and S. P. Gaudencio Marine		
301.	10826. P. Ertl, S. Roggo and A. Schuffenhauer, <i>Journal of Chemical</i>		
500.	S. wetzel, K. S. Bon, K. Kumar and H. Waldmann, Angewandte Chemie-International Edition, 2011, 50 , 10800-		
200	Advanced Drug Delivery Reviews, 1997, 23, 3-25.		
298. 299.	B. R. Stockwell, <i>Nature</i> , 2004, 432 , 846-854. C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feenev.		
50	<i>Microorganisms by Mass Spectrometry</i> , eds. C. Fenselau and P. Demirev2011, vol. 1065, pp. 51-60.		
297.	V. Havlicek and K. Lemr, in <i>Rapid Characterization of</i>		
<i>⊣5 27</i> 0.	R. A. Scheltema and D. G. Watson, <i>Rapid Communications in</i> Marso, Spactrower, 2009 22, 1012 1019		
45 296	Analytica Chimica Acta, 2013, 805 , 70-79. A Kamleh, M. P. Barrett, D. Wildridge, R. J. S. Burchmore		
295.	and O. Potterat, <i>Food Chemistry</i> , 2014, 160 , 165-170. D. Forner, F. Berrue, H. Correa, K. Duncan and R. G. Kerr,		
⁴⁰ 294.	C. Abbet, I. Slacanin, E. Corradi, M. De Mieri, M. Hamburger		
	Proceedings of the National Academy of Sciences of the		
293.	D. W. Udwary, L. Zeigler, R. N. Asolkar, V. Singan, A. Lapidus, W. Fenical, P. R. Jensen and B. S. Moore		
35 292.	N. G. Vynne, M. Mansson and L. Gram, <i>Marine Drugs</i> , 2012, 10 , 1729-1740.		
	289-298.		
<i>_/1</i> .	M. Goodfellow, Antonie Van Leeuwenhoek International Journal of Concerned Melocilar Ministry 2000		
³⁰ 291	2014, 9. L. A. Maldonado, J. E. M. Stach, A. C. Ward, A. T. Bull and		
290.	2003, 30 , 472-479. C. Hao, S. Huang, Z. Deng, C. Zhao and Y. Yu, <i>Plos One</i> ,	100 318.	M. J. Booth, J
289.	F. V. KIIACCO, B. HAITI, J. E. JANSO, M. Greenstein and V. S. Bernan, <i>Journal of Industrial Microbiology & Biotechnology</i> ,		4033-4051.
25	Lipman, Journal of Molecular Biology, 1990, 215, 403-410.		Proll, F. Prol
288	2499. S.F. Altschul, W. Gish, W. Miller, F. W. Myers and D. I.	95 317.	P. Fechner, C
287.	E. A. Gontang, S. P. Gaudencio, W. Fenical and P. R. Jensen, Applied and Environmental Microbiology, 2010, 76, 2487-		Gross, M. J International
20	Ziemert, Journal of Industrial Microbiology & Biotechnology, 2014, 41 , 203-209.		Hansen, J. H. Mohn, G. Me
286.	P. R. Jensen, K. L. Chavarria, W. Fenical, B. S. Moore and N.	90 316.	K. O. Hansse
	G. Coleman, Journal of Chemical Information and Modeling, 2012 52 , 1757-1768	315.	J. M. Rolling
15 285.	<i>Phytochemistry Reviews</i> , 2013, 12 , 293-304. J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad and R.	314.	T. J. Hou and 10, 1011-103
284.	2013, 12 , 435-447. N. D. Yuliana, M. Jahangir, R. Verpoorte and Y. H. Choi,	313. ⁸⁵	T. Langer a Discovery &
283.	J. W. Blunt and M. H. G. Munro, <i>Phytochemistry Reviews</i> ,	212	Letters, 2014
282.	T. Cheng, Y. Pan, M. Hao, Y. Wang and S. H. Bryant, <i>Drug</i>	312.	L. Wang, S. Z
	A. Sakata, K. Akiyama, T. Sakurai, F. Matsuda, T. Aoki, M. Y. Hirai and K. Saito. <i>Phytochemistry</i> 2012, 82 , 38-45.	311. 80	J. M. Rolling Prast. Journa
⁵ 281.	Y. Sawada, R. Nakabayashi, Y. Yamada, M. Suzuki, M. Sato,	310.	X. Chen, C. Y 2003, 20 , 432
	R. Brandon, D. E. Custodio, R. Abagyan and G. Siuzdak,	210	Medicine, 200

A. Bender and	R. C. Glen,	Journal of	Chemical	Information
and Modeling,	2005, 45, 130	59-1375.		

- and C. Y. Ung, American Journal of Chinese 02, **30**, 139-154.
- Y. Ung and Y. Z. Chen, Natural Product Reports, -444.
- ger, A. Hornick, T. Langer, H. Stuppner and H. l of Medicinal Chemistry, 2004, 47, 6248-6254.
- Zhang, J. Zhu, L. Zhu, X. Liu, L. Shan, J. Huang, nd H. Li, Bioorganic & Medicinal Chemistry 24, 1261-1264.
- nd E. M. Krovat, Current Opinion in Drug Development, 2003, 6, 370-376.
- X. J. Xu, Current Pharmaceutical Design, 2004, 3.
- er, T. Langer and H. Stuppner, Current Medicinal 06, 13, 1491-1507.
- en, B. Schuler, A. J. Williams, T. B. Demissie, E. Andersen, J. Svenson, K. Blinov, M. Repisky, F. eyer, J.-S. Svendsen, K. Ruud, M. Elyashberg, L. aspars and J. Isaksson, Angewandte Chemie-Edition, 2012, 51, 12238-12241.
- D. Bleher, M. Ewald, K. Freudenberger, D. Furin, Kolarov, K. Krieg, L. Leidner, G. Markovic, G. l, S. Rau, J. Riedt, B. Schwarz, P. Weber and J. nalytical and Bioanalytical Chemistry, 2014, 406,
 - Light-Science & Applications, 2014, 3.