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Post-traumatic stress disorder (PTSD) is a psychological disorder affecting individuals that have experienced life-changing trau-
matic events. The symptoms of PTSD experienced by these subjects—including acute anxiety, flashbacks, and hyper-arousal—
disrupt their normal functioning. Although PTSD is still categorized as a psychological disorder, recent years have witnessed a
multi-directional research effort attempting to understand the biomolecular origins of the disorder. This review begins by provid-
ing a brief overview of the known biological underpinnings of the disorder resulting from studies using structural and functional
neuroimaging, endocrinology, and genetic and epigenetic assays. Next, we discuss the systems biology approach, which is of-
ten used to gain mechanistic insights from the wealth of available high-throughput experimental data. Finally, we provide an
overview of the current computational tools used to decipher the heterogeneous types of molecular data collected in the study of
PTSD.

1 Introduction

Post-traumatic stress disorder (PTSD) is the fifth most
common psychiatric disorder with an occurrence rate of
about 8% in the United States1. Unlike other psychiatric
disorders, PTSD may develop in individuals only after they
have experienced a terrifying traumatic event such as torture,
rape, kidnapping, or natural disasters such as floods or
earthquakes. The incidence of occurrence of PTSD in war
veterans is relatively high. Approximately 22% of veterans
returning from Iraq and Afghanistan are diagnosed with the
disorder2. Before 1980, when it was officially recognized
as a medical disorder, PTSD was referred to by different
names. During the American Civil War it was referred to as
“Soldier’s Heart”, during World War I as “Combat Fatigue”,
during World War II as “Gross Stress Reaction”, and during
the Vietnam War as “Post-Vietnam Syndrome”. Other names
for PTSD include “Battle Fatigue” and “Shell Shock”.

Currently, survey-based assays are used to diagnose PTSD,
including the Clinician-Administered PTSD Scale (CAPS)3
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from the “Diagnostic and Statistical Manual of Mental Disor-
der” (considered to be the gold standard) and self assessment
scales such as the “Posttraumatic Diagnostic Scale”4. These
tests help diagnose whether or not a subject has PTSD with
fairly good accuracy. However, these tests are not designed to
diagnose stages of the disorder, from an early manifestation
to later advanced stages. Thus there is a need to identify
reliable biomarkers for PTSD that can be used for the accurate
diagnosis, prognosis, and evaluation of therapeutics for the
disorder. Although many candidate biomarkers have been
identified for PTSD, reliable markers for specific clinical
applications are still lacking.

In a number of disease models, system biology approaches
have shed light on the complex underlying biophysical net-
works5–8. Systems biology aims to understand the complexity
of a biological system by integrating experimental data at
different scales with mathematical models (e.g., differential
equations, stochastic models and data-driven approaches such
as machine learning) to obtain useful information about the
system at the scale of interest9. These scales range from the
single-cell and single-molecule level up to the genome-wide,
organismal level (see Figure 1). Depending on the scale of
investigation, informative experimental data may consist of
“omics” measurements (e.g., transcriptomics and proteomics),
quantification of individual metabolites, or brain images. The
systems approach enables us to make testable predictions
(e.g., identification of diagnostic/prognostic biomarkers or
drug targets) and gain mechanistic insights into the system in
question.
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Fig. 1 Systems biology approach for the study of PTSD: A multitude of data types can be experimentally collected by probing biological
systems at different scales. This wealth of data is then further processed by employing mathematical and computational techniques (e.g.,
statistics, machine learning, computational modeling) to gain insight into the system under study.

In the remainder of this review, we first provide a brief
overview of the known biological underpinnings of PTSD,
noting that many excellent reviews are available reflecting the
vast, but often conflicting, amount of information available
on the subject10–14. Next, we focus on the range of systems
biology approaches that have been used to understand the
disorder. Finally, we present model studies which have
employed these tools to obtain new clinical and biological
insights.

2 Biology of PTSD

A large body of literature has documented symptoms of
PTSD in human subjects. These symptoms include memo-
ries/avoidance of traumatic events, emotional numbing, hyper-
arousal (e.g. exaggerated startle and lack of sleep), alteration
in fear conditioning, and impaired extinction learning15–17.
Recently, many neurobiological studies have been performed,
effectively broadening the view that PTSD is purely a psycho-
logical disorder and helping to obtain a deeper insight into the
disease mechanism. Psychophysiological observables such as
heart rate18, skin conductance (measurement of sweat activ-
ity), eye blinking (measurement of startle state), facial elec-
tromyogram (EMG, used to assess the neuronal signaling to

muscles) and cortical electroencephalographic event related
potentials (ERPs, measurement of brain activity)19,20 have
been used to quantify PTSD symptoms in a systematic man-
ner. Most psychophysiological studies conduct cross-sectional
comparisons between the treatment (individuals with PTSD)
and control (individuals without PTSD) groups. These stud-
ies generally find autonomic reactivity, such as heart rate and
skin conductance, and startle response to trauma-related stim-
uli to be elevated in the treatment group. Specifically, a strong
correlation has been observed between the level of reactivity
to trauma-related stimuli and the severity of PTSD21,22. In-
creases in heart rate, recurrent recall of trauma memories, and
exaggerated startling are typically all acquired in individuals
with the disorder, but these behaviors may not be unique to
PTSD.

Neuroimaging:To gain a better understanding of the disor-
der, many studies have focused on macroscopic features of
the human brain by employing techniques such as structural
(sMRI) and functional magnetic resonance imaging (fMRI).
The brain regions related to symptoms of the disorder include
the hippocampus, amygdala, ventromedial prefrontal cortex
(vmPFC), dorsal anterior cingulate cortex (dACC) and insular
cortex (see Table 1). sMRI studies have shown a decrease
in the volume of hippocampus23,24, vmPFC25, dACC25,26

and the insular cortex27,28 for patients with PTSD. In the
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Brain Regions Function Imaging Structural Imaging
Normal Activity in Correlation with Volume
function PTSD subjects PTSD severity change

Amygdala detection of threat, increased32,33 positively44–46 not clear
processing/learning of fear stimulation47,48

vmPFC goal-directed decisions making49 decreased36,44,50 negatively44,51 decrease25

dACC regulates cognitive control, error detection, increased51–53 positively34,38 decrease25,26

fear appraisal/expression54,55

Hippocampus short and long term memory56,57 mixed58,59 negatively29 decrease23,24

Insular cortex monitoring internal body states60 increased35,61 positively35 decrease35

Table 1 Summary of neuroimaging findings in subjects with PTSD. Abbreviations used: vmPFC denotes ventromedial prefrontal cortex
and dACC denotes dorsal anterior cingulate cortex.

case of changes to the hippocampal volume, it is not clear
whether this decrease is caused by the extreme trauma or
simply represents a risk factor; however, some studies point
to the latter29. We note that exceptions to the above have
been reported in children with PTSD30, possibly due to lack
of neuronal maturation, and in cases where symptom severity
was not very strong31. Studies performed with combat twins
using voxel-based morphometry suggest that the reduction
in ACC volume may be an acquired feature due to extreme
trauma25.

Functional MRI studies have shown increased activity
in the amygdala32,33, dACC34 and insular cortex35, and de-
creased activity in the vmPFC36 for PTSD patients subjected
to trauma-related stimuli. Positron emission tomography, an
fMRI technique quantifying local changes in cerebral blood
flow, has been performed on identical twins to study resting
dACC glucose metabolism and dACC activation during
non-emotional inference tasks. These studies demonstrated
that combat-exposed veterans with PTSD and their co-twins
have greater metabolism37 and greater activation38 compared
to veterans without PTSD and their co-twins. This suggests
that increased activation of dACC is a PTSD risk factor
rather than a symptom. Finally, activation in the amygdala39

and insular cortex40 does not appear to be unique to PTSD,
as these responses are also seen in other anxiety disorders.
Functional MRI techniques are also used to measure resting
state brain activity and functional connectivity (i.e., temporal
correlations between brain regions with common functional
properties). A recent paper by Yan et al.41 found increased
activity in the amygdala and the anterior insula and decreased
activity in the thalamus to be common features in both resting
state brain activity and task-based fMRI studies (as reported
by other authors, see citations included in the paper), in male
combat veterans with PTSD. Their results also highlight
decreased activity in the precuneus region of the brain, which

is responsible for integrating information from the past and
future. Furthermore, Rabinak et al.42 found enhanced con-
nectivity between the amygdala and insula in combat-related
PTSD patients. However, as many studies of anxiety-related
disorders have also reported fMRI-based amygdala and in-
sula activation43, these responses may not be unique to PTSD.

Neuroendocrinological studies:The major constituents of
the neuroendocrine response to physical and emotional threat
and stress are the sympathetic nervous system (SNS) and the
hypothalamic-pituitary adrenal (HPA) axis62. The immedi-
ate SNS response mobilizes the acute fight-or-flight response
and is followed by a response from the HPA axis that rein-
states homeostasis. PTSD patients showed low cortisol lev-
els, which is surprising for a disorder precipitated by ex-
treme stress, and differs from that observed in studies of acute
and chronic stress and major depressive disorder (which have
been associated with increased cortisol levels)63. Moreover,
PTSD patients exhibited increased levels of norepinephrine,
corticotropin-releasing hormone (CRH) and proinflammatory
cytokines, reflecting reduced glucocorticoid signaling. This
profile of alterations has been associated with PTSD patho-
physiology. However, emerging research indicates that these
alterations may instead reflect pre-traumatic vulnerabilities to
the later development of PTSD62.

Gene Expression:Previous gene expression studies of PTSD
have focused on two types of biomarkers: predictive and diag-
nostic signatures. Predictive biomarkers indicate risk of PTSD
development after trauma exposure and require longitudinal
studies. Multiple longitudinal studies have presented panels of
potential risk biomarkers64,65. These biomarkers include up-
regulated genes involved in type-1 interferon signaling (IFI27,
OAS1, OAS2, OAS3, XAF1, and USP18)64 and differentially
expressed genes which associate with glucocorticoid receptors
(GR), including low FKBP5 and high GILZ expression65. Ad-
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ditionally, many studies suggest potential mRNA diagnostic
biomarkers, including the GR-associated genes FKBP5 and
STAT5B66 among others67,68. Early markers for PTSD de-
velopment have been reported which may aid in developing
early detection diagnostic tools. Gene expression data col-
lected in emergency rooms immediately following trauma led
to the discovery of 574 differentially expressed genes distin-
guishing those who would later develop PTSD from those who
would recover69. These transcripts were enriched in genes in-
volved in immune activation, cell cycle, and signal transduc-
tion, among other biological processes. While these and other
initial results are promising, no validation studies have shown
that these biomarkers are valid in independent data sets. Addi-
tionally, the biomarkers were identified strictly by differential
expression statistics or panels derived from classification algo-
rithms (e.g., support vector machines) and do not incorporate
known or inferred biological network information. This lim-
its the ability of these gene panels to give biological insight
into the development and progression of PTSD and does not
provide a clear path for identification of therapeutics.

Epigenetics:Research on epigenetic mechanisms has re-
vealed that environmental experiences such as early life stress
and fear conditioning can modify the expression of genes
without altering the corresponding DNA sequence11,70–73.
Most of the studies investigating the role of epigenetics in
PTSD have focused on DNA methylation, typically compar-
ing peripheral blood methylation levels between PTSD pa-
tients and controls74–78. In particular, studies have found
that the number of uniquely methylated genes was signif-
icantly higher in PTSD-affected patients79. Furthermore,
genes found to be hyper-methylated in PTSD patients in-
clude: COMT80, H19, IL1881, LINE-182, PAC1 (female)83,
SLC6A384, MAN2C185, CLEC9A86, ACP586, and TLR886.
Conversely, genes such as FKBP587, Alu82, SLC6A474, TPR,
and ANXA286 were found to be hypo-methylated in PTSD.
Studies have also found that for subjects with low socioeco-
nomic status, the relationship between DNA methylation and
risk of developing PTSD may be modified in genes predomi-
nantly related to nervous system function88.

Subtypes of PTSD:The heterogeneous nature of the symp-
toms and development of PTSD create challenges in diagnos-
ing and treating the disease. While multiple studies have em-
phasized clear divisions into PTSD subgroups89,90, very lit-
tle work has focused on identifying unique biological signa-
tures for these subtypes. Instead, recent work has focused
on using symptoms and symptom trajectories to identify these
distinct subgroups, or on correlating specific biological mea-
sures to these symptom classes. For example, longitudi-
nal data from the Jerusalem Trauma Outreach and Preven-
tion Study identified three trajectories of PTSD symptoms
which they called rapid-remitting, slow-remitting and non-

remitting89. Interestingly, they note that only subjects classi-
fied as slow-remitting showed symptom improvements when
given antidepressants. Similar responses to antidepressants
were seen in another study90 where promoter methylation of
FKBP5 and GR showed differences between responders and
non-responders to treatment. These examples further empha-
size the existence of subgroups within PTSD, but overall pro-
vide little biological insight into the key differences between
these groups. In order to progress in the identification and
characterization of these subtypes in a manner useful for diag-
nostic and therapeutic development, specific biological signa-
tures must be extracted from large-scale data. In particular, the
biological features extracted from this type of analysis would
provide a more comprehensive picture of subtype biology than
these single gene correlations. We note that the identification
of subgroups from DNA microarray data has previously been
applied to the study of diseases such as cancer and fibromyal-
gia91–93.

3 Systems Biology Approach

The molecular inputs used for understanding a given bio-
logical system from a systems perspective include genomic,
transcriptomic, epigenomic, metabolomic, and proteomic
data. These data types measure the genome-wide amounts
of and changes to DNA sequence, mRNA expression, DNA
methylation/histone modification, metabolite production, and
protein expression, respectively. Commonly used experimen-
tal techniques for collecting this data include high-throughput
sequencing methods, array-based hybridization assays (e.g.
microarrays), liquid and gas chromatography, and mass
spectrometry. In addition to high-throughput molecular
measurements, neuroimaging assays, such as functional and
structural MRI, provide an organism-wide measure of brain
activity and morphology, respectively. When studying disease
mechanisms, each of the above assays can be utilized in either
a cross-sectional or longitudinal manner. In the former case,
different subjects with and without the disease phenotype are
measured simultaneously, with the goal of identifying time
point-specific differences between the groups. In the latter
case, measurements are repeatedly collected from the same
subjects over time, which helps to reduce inter-individual
variability and can provide temporal information regarding
disease progression. Figure 2 shows the analysis pipeline
typically applied to “omics” data to uncover the underlying
biology of PTSD. In the remainder of this section, we review
some commonly used methods in this pipeline.

Raw data from all of the above experimental modalities
are corrupted with noise. It is essential to understand
the sources of this noise in order to control for them in
downstream analyses, as the final conclusions of the study
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Fig. 2 Analysis pipeline for heterogeneous molecular data generated in PTSD studies. The raw data is first corrected for systematic
errors and batch effects, both of which may be introduced during the experimental process. Provided the biological signal is significant,
correcting these errors improves the signal-to-noise ratio and ensures more reliable downstream analyses. Following this step, statistical and
machine learning tools are used at appropriate stages (shown in the blue boxes) to obtain useful system information (shown in red).

depends on it. Noise sources can be broadly categorized
into two groups: one deriving from the stochastic nature
of molecular interactions (referred to as biological noise),
and the second coming from the measurement techniques
and other experimental strategies used (measurement noise).
As an example of the first group, gene expression levels
measured in genetically identical cells show substantial
cell-to-cell variations94,95. These unavoidable variations are
attributed to random molecular interactions and are known to
influence phenotypic properties96, environmental response97,
decision making at different stages of cell development98,
and information processing99. In contrast, the measurement
noise introduced into the data must be minimized, otherwise
it can lead to incorrect downstream analyses100.

As the first step of data analysis, the raw data is cor-
rected for measurement noise. Methods for performing this
task with high-throughput data include background correc-
tion, normalization and batch correction. The first technique
is typically used in fluorescence-based assays for reducing the
effects of non-specific background fluorescence. One part of
this procedure often involves removing those measurements
that are indistinguishable from background noise. Although

this introduces missing values into the dataset, such values
are preferable to measurements entirely lacking in biological
signal. The second technique, normalization, is used in
most high-throughput assays to remove systematic biases in
the data due to experimental artifacts rather than biological
signal. Examples of such biases include differing amounts
of biological starting material across assays (between-assay
normalization) and unequal fluorescence labeling efficiencies
in dual-color fluorescence-based assays (within-assay nor-
malization). Normalization methods often make assumptions
about the biological signal present in the data, including
that the overall signal range is the same across all samples
and that the majority of assayed measurements do not differ
significantly between samples101.

Variability in high-throughput data is often associated
with location102, time103, individuals conducting the ex-
periment and other technical factors104,105. In addition to
measurement noise, this gives rise to what is known as a
batch effect—where the structure of measurement error,
generally thought to be fixed within each batch, varies across
batches. This effect must be taken into account (see the
second step in Figure 2) to allow the integration of data from
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different batches, thus obtaining greater statistical power
for further analyses106. Methods such as surrogate variable
analysis107(SVA), independent surrogate variable analysis108

(ISVA), and ComBat106 have been used to perform batch
correction. ComBat is an empirical Bayes method which is
robust to outliers and can also correct for small batch size.
When the sources of experimental batches are simple100

(e.g., processing time), ComBat outperforms many other
methods109. However, certain confounding factors are more
difficult to ascertain. For these cases, SVA and ISVA provide
methods to correct for noise due to unmodelled, unmeasured,
or unknown factors. However, we note that these methods do
not address the situation where the phenotype of interest is
highly correlated with the experimental batches.

Once noise correction has been performed on the avail-
able high-throughput data, a range of analysis methods can be
applied to characterize the biological signal present. One of
the most common methods used to study disease mechanism
is differential expression (DE) analysis. The goal of DE anal-
ysis in this context is to identify genes/metabolites/proteins
that are differentially expressed between disease and control
samples. Use of proper statistical testing is essential for
this task, as the huge numbers of candidate biomarkers in
genome wide studies (e.g., roughly 20,000 genes on a typical
microarray) can lead to large numbers of false positive
and false negative predictions. Statistical methods like the
classical t-test, moderated t-test110 and SAM statistic111

have all been successfully used to generate DE p-values (i.e.,
probabilities that candidate biomarkers’ DE scores are due to
random chance rather than biological signal). Given a list of
p-values, multiple hypothesis testing correction methods that
control the false discovery rate (FDR) or family wise error
rate (FWER) can then be used to reduce numbers of false
positives and negatives112. After identifying disease-specific
DE candidates, a natural next step is to perform gene set
enrichment analysis (GSEA)113. Using a Kolmogorov-
Smirnov (K-S) statistic, GSEA identifies statistically enriched
biological functions or pathways within a list of candidate
biomarkers. GSEA can be very useful for ascribing biological
meaning to output from DE analyses.

An alternative to DE analysis for identifying disease
biomarkers is to employ machine learning tools. In general,
there are two distinct algorithmic approaches, namely (1)
supervised and (2) unsupervised learning. The nature of the
available data and the objective of the learning task dictates
the selection of the proper approach. Unsupervised learning
is used when observation labels (e.g., class or category)
are not available. Algorithms of this type are widely used
for clustering, dimensional reduction, principal component
analysis, and probability density estimation of a population.

In contrast, supervised learning refers to algorithms that
use available observation labels in the learning process.
These algorithms are mostly used for classification (i.e.,
assigning membership labels to a given observation) and
regression (i.e., estimating relationships between variables).
Supervised classification generally consists of two phases:
training and testing. During the training phase, features from
samples of known status (e.g., disease or control) are used
to build a predictor that is then evaluated during the testing
phase on samples of unknown status. Many algorithms
are available for classification, including: decision trees,
random forests, k-nearest neighbors, Bayesian methods,
neural networks, support vector machine (SVM), nearest
shrunken centroids (NSC)114, pathway-based classifiers like
the condition-responsive genes (CORGs) method115, and
Core Module Biomarker Identification with Network Explo-
ration (COMBINER)116. However, only a limited number
of these algorithms have been previously used for PTSD re-
search (e.g., SVM64, Logistic regression65, COMBINER116).
Currently used methods for PTSD identify biomarker panels
by considering combinations of single, unrelated genes or
gene sets associated with known pathways. However, none of
these methods utilize known molecular interaction networks,
which can provide useful insight into network perturbations
associated with PTSD, and has shown improvement in
classification performance and stability for diseases such
as cancer117. Generally, classification performance can be
quantified in several ways; some of the most common include:
prediction error rate, sensitivity, precision, F-score and area
under the receiver operating characteristic curve (AUC).
The choice of which specific classification algorithm to use
is critical, as an incorrectly chosen classifier often leads to
poor performance. In this case, one must try to select a more
appropriate algorithm given factors such as size of the training
set, preselection of features given as input to the algorithm,
the dimensionality of the dataset, and a potential imbalance
in class sample sizes. In addition, algorithm parameters
can often be more optimally tuned to improve classification
performance. Further information addressing the above can
be found in published reviews118–121.

In order to derive mechanistic insights for a given con-
dition, the systems biology approach also attempts to predict
interaction networks between different chemical species. To
do this, the expression levels of genes, proteins, and metabo-
lites are first measured using high-throughput technologies.
Depending on the nature of the species under study, different
types of interaction networks can be inferred. For example,
network analysis of gene expression data gives rise to gene
regulatory networks, while a similar analysis of protein
expression data generates signal transduction networks. The
inferred relationships between species range from physical
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interactions (e.g., between transcription factors and their
target genes) to functional interactions (e.g., correlated ex-
pression between groups of genes). Statistical methods such
as regression and correlation analysis122, mutual information-
based approaches123, Bayesian networks124, and probabilistic
graphical models125 have all been used to predict interactions
between species. Detailed reviews of this topic can be found
in the following references122,124,126–129.

An important challenge in the systems biology approach is
the fusion of information from multiple “omics” sources130.
Zhao et al. have used machine learning techniques to perform
unsupervised gene biomarker selection in cancer by inte-
grating both mRNA and miRNA data131,132. Ye et al. have
identified Alzheimer’s disease biomarkers by combining MRI
data, demographic information, and genetic information133.
Finally, Xiang et al. have identified Alzheimer’s biomarkers
by combining proteomics, PET, MRI and CSF datasets134.
However, to our knowledge there are no studies performing
heterogeneous data integration for the analysis of PTSD.

4 Model studies

In this section we review representative studies employing
systems tools to investigate PTSD. The first two studies
use ordinary differential equation (ODE) models to obtain
a mathematical description of the disorder, while those
remaining use statistical and machine learning techniques.

Subjects with PTSD are known to have altered fear con-
ditioning responses. As a first case study we highlight the
work done by Li et al.136, where they performed systems
modeling of neurons in the lateral amygdala (LA) region (a
key site of synaptic events that contribute to fear learning).
Using experimental data from the literature, the authors built a
computational network model consisting of ten neurons found
in the amygdala—eight pyramidal cells and two GABAergic
interneurons. Their twin-compartment model represents a
soma (diameter of 15 µm; length of 15 µm) and the dominant
apical dendrite. The authors derived ODEs for somatic
and dendritic membrane potentials by balancing different
current sources (e.g. intrinsic, synaptic currents and electrode
current). They then used their model to demonstrate the
characteristic abilities of the LA in both fear conditioning and
extinction. Their results suggest that fear expression is deter-
mined by a balance between pyramidal cell and interneuron
excitations. Furthermore, the authors show that fear memory
is stored in the pyramidal cells, whereas extinction memory
is stored in both interneurons and pyramidal cells. Finally,
results from the model suggests that fear memory is not erased
fully by extinction; rather, it is inhibited by interneurons that
undergo synaptic plasticity during extinction training. As

emphasized by the authors, their model for the plasticity of
inhibitory synapses in the LA improves understanding of the
fear mechanism.

Mathematical models of varying complexity have been
proposed to describe the circadian dynamics of the HPA
axis (see Vinther et al.137 and references therein). An
ordinary differential equation model for cortisol dynamics
in the HPA axis has been developed by Sriram et al.135(see
Figure 3), where they seek to understand the mechanism
leading to hypocortisolemia in PTSD and hypercortisolemia
in depressed patients. The developed model and its estimated
parameters support Yehuda’s hypothesis that hypocorti-
solemia in PTSD is due to the strong negative feedback loop
operating in the neuroendocrine axis under severe stress138.
The model was used to simulate in silico patients whose
behavior suggested that, due to disrupted negative feedback
loops, cortisol levels are different in normal, PTSD and
depressed subjects during the night. Moreover, the model
predicted transitions from normal to diseased states due to
changes in the strength of the negative feedback loop and the
stress intensity in the neuro-endocrine axis.

Animal models have been used to investigate the effects
of trauma and draw parallels with PTSD and other neurode-
generative disorders in humans. Next we consider a recent
study by Hammamieh et al. where they developed a “social-
defeat” model by exposing male C57BL/6J mice to aggressor
mice for six hours daily for five or 10 days in total, using a
“cage-within-cage resident-intruder” protocol140. The mice
showed significant behavioral, physiological, and histological
changes associated with the trauma stressor. Furthermore,
seven brain regions, including the hippocampus, amygdala,
and medial prefrontal cortex, as well as whole blood were
harvested and the corresponding whole-cell mRNA popula-
tions were extracted. In order to understand the underlying
molecular principles, Yang et al.139 used a computational
tool entitled COre Module Biomarker Identification with
Network Exploration (COMBINER). This approach using
machine learning and statistical tools, was first developed by
Yang et al.116. COMBINER provides a novel method for
the identification of disease biomarkers. Designed to take
multiple data cohorts as input, COMBINER identifies gene
module biomarkers that are consistent across the population of
samples and constructs their associated regulatory networks.
The social defeat study identified common differentially
expressed genes in multiple brain regions as well as between
the brain and blood. These DEGs were used to obtain the core
disease module (see Figure 4). Many of the resulting modular
gene networks were found to be previously associated with
PTSD, depression, and other neurodegenerative diseases.
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Fig. 3 Regulatory network of cortisol in the HPA axis. Stress induces the secretion of corticotropin release hormone (CRH) in the
hypothalamus that in turn activates the release of adreno-corticotropin hormone (ACTH) in the anterior pituitary gland. ACTH moves to the
adrenal cortex and stimulates cortisol (CORT). The secreted cortisol binds to glucocorticoid receptors (G) to form a complex GR followed by
dimerization. Cortisol complex GR binds to both CRH and ACTH to down regulate the production of cortisol. This closed loop gives rise to a
negative feedback in the circuit that is vital in maintaining the homeostasis of the system during stress135.

Studies141,142 have indicated that subjects with PTSD
also have a higher risk of cardiovascular conditions, including
increased basal heart rate and blood pressure, higher risk for
hypertension and stroke. A recent study by Cho et al.143

used a systems approach to study the effect of traumatic
experiences on heart function using the animal model devel-
oped by Hammamieh et al.140. In particular, they found that
myocarditis was a frequently detected pathology in stressed
subject mice, suggesting a stress-associated heart injury.
The authors studied the temporal expression of mRNA and
miRNA in heart samples obtained from stressed and control
animals, providing a characterization of the heart tissue
repair process in response to stress-induced tissue injury.
Inflammatory-related genes were found to be significantly
regulated after as little as one day of exposure to stress,
and most of the changes in gene expression returned to
normal levels after a recovery period. Additionally, key
molecular processes involved in classical wound healing in
the heart tissues of subject mice were identified, including the
chemokine signaling pathway, extracellular remodeling and
epithelial to mesenchymal transition (EMT). Taken together,
the results of Cho et al.143 suggest a molecular basis for the
observed higher risk of cardiovascular disorders in PTSD
patients, further illustrating the increased likelihood of cardiac
dysfunction induced by long-term stress exposure.

Blood samples are one of the most common sources for
obtaining biological data. A gene expression study of the
peripheral blood mononuclear cells (PBMC) has been per-

formed by Segman et al.69. In this study, blood samples were
collected for subjects visiting the emergency room following
trauma as well as after a four month follow-up visit. The
aim of the study was to identify the PTSD gene expression
signature by applying differential expression analysis, clas-
sification, and functional enrichment of the blood samples
collected. Differential expression analysis identified DEGs
as genes which were significantly (p < 0.05) expressed using
three methods: t-test, Threshold Number of Misclassifications
(TNoM), and the Info144 method. The number of DEGs
identified by the intersection of these three methods is 408,
574, and 656 genes for the emergency room, four month
follow-up, and combined times points, respectively. Next,
a Naive Bayesian Classifier was trained and tested using
leave-one-out cross validation (LOOCV) on the samples from
the emergency room (ER) (6 PTSD, 5 control) and the four
month follow-up (5 PTSD, 4 control). The ER and follow-up
classifiers had misclassification error rates of 18% and 11%,
respectively with all misclassifications being false positives.
Additionally, gene ontology enrichment analysis was used to
understand the biological pathways related to the identified
PTSD signature. Terms significantly enriched in DEGs from
the differential expression analysis were determined using
the hypergeometric p-value and a false discovery rate (FDR)
cutoff of 0.1. Terms related to RNA processing, metabolism,
and binding as well as nucleic acid metabolism and binding
were found to be significant. Overall, this exploratory
analysis presented both gene and pathway-level analysis of
PTSD mRNA signatures from blood, the result of which
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Fig. 4 Blood-brain gene network for a “social defeat” mouse model. (a) Nine core gene expression modules identified by COMBINER.
The core modules consist of only those genes that are expressed in both blood and multiple brain regions (which include the amygdala,
hippocampus, hemibrain, medial PFC, septal region, stria terminalis and ventral striatum). Known protein-protein interactions (PPIs) are
marked by lines connecting genes—blue lines denote within-module interactions, while gray lines denote between-module interactions. (b)
The color scale for the blood expression level of each gene in the nine modules, as indicated by the colored circles in (a). (c) Putative
biological functions of the expression modules as inferred using KEGG annotation. The above figure has been adapted from Yang et al.139.

require further validation in larger studies to understand their
usefulness as molecular markers of PTSD.

In addition to gene expression signatures in blood, there
has been increasing interest in epigenetic markers of PTSD,
specifically DNA methylation. The changes in DNA methy-
lation can occur during development, but also later in life
in response to an individual’ss environment and experience.
These epigenetic changes can create long-term changes in
gene expression, resulting in disease phenotypes involving
perturbed biological function. The first published epigenetic
study of PTSD79 identified genes which were uniquely
methylated or unmethylated in those who developed PTSD,
compared to control subjects who had experienced similar
levels of trauma. This exploratory study of methylation in
14,000 genes over 23 PTSD and 77 control samples identified
approximately 400 genes which were uniquely methylated
or unmethylated in PTSD subjects using the Wilcoxon test
(p < 0.01). To understand the related biology, the authors
used functional annotation clustering (FAC) analysis to
identify Gene Ontology terms that were enriched in the set
of uniquely methylated and unmethylated genes. Terms
related to both the innate and adaptive immune system were
identified as the most significantly enriched. This finding was
further strengthened by an independent measure of immune
function: the amount of antibodies to a common herpesvirus,
CMV. Antibody levels were significantly different in PTSD
vs control subjects (p=0.016). Finally, the authors used
ANOVA to assess the contributions of comorbid diseases and
found that only a small number of genes showed differential

methylation across groups divided by comorbidity, indicating
that the PTSD methylation findings are specific to PTSD
and not affected by the increased rates of major depressive
disorder or generalized anxiety disorder in PTSD populations.

5 Conclusions and Future Challenges

As stated in the Introduction, post-traumatic stress disorder
is the only psychological disorder for which the onset of the
pathological condition is fairly precise, i.e., occurring after
an extreme traumatic event. A wealth of often contradictory
physiological findings point to the underlying complex-
ity of the disorder. Although considered a psychological
disorder, PTSD also affects the functioning of numerous
non-neurological systems in the body, including the immune,
endocrine and cardiovascular systems. In order to understand
the relationship between the progression of PTSD and these
other systemic responses, specific details about the molec-
ular mechanism must be unraveled. In particular, details
analogous to the increased negative feedback identified
in the HPA axis135 must be identified to understand the
cardiovascular and immunological changes that frequently
occur in PTSD. However, identifying the relevant components
in these systems is further complicated by the high rates
of comorbid diseases (biological noise) and experimental
artifacts from high-throughput experiments (experimental
noise). Addressing these challenges will require careful
consideration and likely novel adaptations to current machine
learning strategies, including the use (or development) of
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data integration techniques that can accommodate data from
multiple biological length scales.

The complexity of the disorder has posed a great chal-
lenge to the identification of biomarkers for diagnostic,
prognostic and therapeutic applications. The time dependent
profile, different for each subject, further complicates the
diagnosis. A recent clinical study89 has shown three different
trajectories of symptom progression: rapid-remitting (fast
decrease of symptoms in one to five months), slow-remitting
(symptoms decrease after 15 months) and non-remitting (per-
sistent symptoms). In order to understand the three clinical
trajectories from a biological perspective and to explore the
prognostic and therapeutic opportunities, it is increasingly
evident that integration of both the biological and the clinical
manifestations of PTSD is essential. Additionally, if these
symptom trajectories or other distinct subtypes of PTSD
exist, the choice of how and where these subgroups should be
integrated or separated for biomarker identification analysis
must be systematically explored. Specifically, the biological
mechanism of PTSD development must be extensively studied
(using longitudinal data) in all potential subtypes of PTSD
to determine if overlapping signals exist. In the absence of
overlapping biological mechanisms, multi-class classification
strategies may be required. Since PTSD originates in the
brain, it is extremely difficult to collect samples for scientific
study. Alternatively, animal models are used to correlate with
clinical findings, thus enabling one to draw inferences that
may lead to diagnostic and therapeutic solutions.

Many animal models that exhibit one or more “PTSD-
specific” symptoms have been proposed, including predator-
exposure145–147, exposure to single prolonged stress148, and
exposure to foot shock149,150 with additional stress. However
none to date have been widely accepted as an ideal model
for PTSD. These models approximately mimic physiological
and tissue-level responses in human PTSD subjects and
have helped in identifying biological processes, such as the
HPA axis, neurotransmitter receptor system, and others (see
review by Pitman et al.12), that may be involved in PTSD.
In the model studies section of this review, we presented
a study by Cho et al.143 based on the social defeat mouse
model140 that identifies key short-term physiological and
histological changes that occur in PTSD-like mice. These
changes, including cardiac histopathology differences as well
as increased weight gain, show similarities to established
comorbid PTSD phenotypes of obesity and cardiovascular
disease. In addition to gaining insight into development and
progression of PTSD, animal models may also provide an
avenue for pharmacological studies. For example, the social
defeat mouse model responds to chronic (but not acute) expo-
sure to antidepressant medication, which agrees with human

PTSD responses. In general, these proposed animal models
of PTSD have shown agreement with previously identified
pharmacological, organismal and tissue-level responses in
humans. However, to the best of our knowledge, no study
to date has compared long-term animal model response with
human PTSD subjects. These long-term responses, as well
as detailed cellular and molecular changes across all time
scales must be carefully addressed in future studies to more
conclusively identify how well animal model findings can be
translated to understand PTSD in humans.

In light of the complexity of the PTSD disease mech-
anism, a systems approach integrating both the clinical
findings and animal validation studies is necessary to un-
derstand the underlying mechanisms driving PTSD and its
variants. Such an approach establishes a multidimensional
research direction combining patients, published animal
models and mathematical analysis tools. The goals of such
an approach is to (1) identify the differentially expressed
genomic, proteomic and metabolic drivers of PTSD; (2)
identify approaches to diagnose different clinically observed
PTSD trajectories; (3) identify possible biological risk factors,
prognostic indicators, and therapeutic strategies; (4) identify
the underlying molecular principles to facilitate detailed
studies of relevant molecular networks. In order to achieve
these goals there is a need to integrate heterogeneous exper-
imental data (e.g., molecular and neuroimaging data) from
different studies by employing new or existing mathematical
tools to uncover useful information from large noisy datasets
(on the order of a million data points per subject). In this
paper we outline the preliminary studies that pave the way
for a multidisciplinary integrated systems biology approach,
and highlight some current challenges to identifying and
understanding the molecular underpinnings of post-traumatic
stress disorder.
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