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Abstract 

Mitochondrion, a tiny energy factory, plays an important role in various biological processes 

of most eukaryotic cells. Mitochondrial defection is associated with a series of human 

diseases. Knowledge of the submitochondrial locations of proteins can help to reveal the 

biological functions of novel proteins, and understand the mechanisms underlying various 

biological processes occurring in the mitochondrion. However, experimental methods to 

determine protein submitochondria locations are costly and time consuming. Thus it is 

essential to develop a fast and reliable computational method to predict protein 

submitochondria locations. Here, we proposed a support vector machine (SVM) based 

approach for predicting protein submitochondria locations. Information from position-specific 

score matrix (PSSM), Gene Ontology (GO) and protein feature (PROFEAT) was integrated 

into the principal features of this model. Then a recursive feature selection scheme was 

employed to select the optimal features. Finally, an SVM module was used to predict protein 

submitochondria locations based on the optimal features. Through the jackknife 

cross-validation test, our method achieved an accuracy of 99.37% on benchmark dataset 

M317, and 100% on the other two datasets, M1105 and T86. These results indicate that our 

method is ecnomic and effective for acurate prediction of the protein submitochondrial 

location.  

Keywords 

Submitochondria location; Position-specific score matrix; Gene Ontology; PROFEAT; 

Support vector machine-Recursive feature elimination  
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Introduction 

Mitochondria plays an important role in various biological processes 
1-3

, including 

programmed cell death, oxidative phosphorylation, ion hemostasis and innate immune 

activation. A series of human diseases 4-6, such as Parkinson’s disease, diabetes mellitus, 

epilepsy, cardiac ischemia/reperfusion injury, Alzheimer’s disease and cancer, are 

associated with mitochondrial defects. Since the function of proteins are highly correlated 

with their locations, knowledge of the protein submitochondria location can be very helpful 

for understanding mechanisms of mitochondrial defects related diseases and developing novel 

drugs. As biochemical experiments 7 are time-consuming, tedious and costly. With a large 

number of protein sequences generated in the post-genomic age, it is highly desirable to 

develop effective computational systems to address this problem. Up to now, there are only 

few computational methods for identifing protein submitochondria location 
7, 8

, and their 

efficiencies are still not satisfactory. Therefore, a novel method for accurate and reliable 

protein submitochondria location prediction is essential.  

As a typical classification task, computational model for protein submitochondria 

localization consists of the following three components: i) protein feature representation; ii) 

algorithm selection for classification; iii) optimal feature selection. Formulating the protein 

sample by an effective mathematical expression is a critical factor to develop a powerful 

predictor for a protein system 9. Various methods have been proposed to extract features for 

protein localization prediction 10-13, which are commonly based on the protein sequence or 

sequence-related information, such as Terminal signaling peptides, amino acid composition 

(AAC), pseudo amino acid composition (PseAAC), polypeptide composition, functional 

domain composition, Position-Specific Iterative Basic Local Alignment Search Tool 

(PSI-BLAST) profile, and amino acid sequence reverse encoding. Compared with traditional 

monolithic approaches base on a single feature, the methods based on fusing multiple features 

have been widely used to improve the prediction performance in the protein subcellular 

prediction. In this study, we attempted to represent the protein sample through the fusion of 

information obtained from PROFEAT, gene ontology (GO) and PSSM. PROFEAT is a web 

server for retrieving frequently used sequence-derived features of proteins, such as amino acid 

composition, Geary autocorrelation, or sequence-order-coupling number14. While the GO 

could provide a dynamic controlled vocabulary of terms for describing gene product 

characteristics and gene product annotation data from GO Consortium member 
15

, enhancing 

the success rate in prediction significantly 
16

. We previously applied GO annotation to 

improve the prediction of multi-location protein subcellular localization 17. Besides, the 

position-specific score matrix (PSSM)18, derived from the PSI-BLAST program, contains the 

evolutionary information as well as some essential signatures of the protein families. 

PSSM-based features were often used to detect distant homology, especially in low similarity 

datasets.  

After representing protein sequence as a fixed-length numerical vector, a powerful 

classification algorithm should be used to operate the prediction. Many machine learning 

algorithms were developed for protein analysis in the last decade, such as the support vector 

machine (SVM), artificial neural network, fuzzy K-nearest neighbor (NN), optimized 

evidence-theoretic (OET)-KNN genetic algorithm and the Markov model. In this study, we 
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used SVM to operate submitochondria localization prediction for its flexibility, high 

computational efficiency and good generalization in high-dimensional input spaces in many 

classification tasks 
19, 20

. However, the original SVM format lacks the ability to filter out 

irrelevant, redundant or noise features, which may affect the system performance, including 

classification accuracy and computational efficiency. Thus, selecting relevant features is an 

important task in protein submitochondria localization prediction.  

Commonly used feature selection techniques can be attributed into three categories: filter, 

wrapper and embedded methods. Compared to filter and wrapper, Embedded methods could 

avoid high risk of overfitting and ignorance of feature dependencies by taking feature 

correlations into account and discretely removing only one feature from the whole feature 

vectors. Thus it is much more robust to data overfitting than other feature selection 

approaches 21. Generally, with the ability to take feature dependencies into account, 

embeddeds can yield better performance than other methods. Recursive Feature Elimination 

(SVM-RFE) 
21

 is one of the most popular embedded methods for SVMs. SVM-RFE conducts 

feature selection in a sequential backward elimination manner, which starts with the whole 

features and removes one feature each time. Some previous reports showed that features 

selected by SVM-RFE yield good classification performance in many applications, such as 

biomarker selection, gene selection, tissue detection 
22

 and so on.  

   In this study, an SVM-based model was developed to improve the prediction of protein 

submitochondria locations with recursively selecting features from PSI-BLAST profile, 

physical-chemical properties and protein functional annotations. Before inputted to an SVM 

classifier to perform the prediction, critical features were selected by SVM-RFE and 

prediction quality was examined by jackknife tests on three datasets. The results of all 

prediction performances show that our proposed approach is superior to those methods 
8, 23-27

 

ever reported.  

 

Materials and methods  

1. Datasets  

In this study, three benchmark datasets 26, 27 were used to evaluate the performance of our 

method (Table 1): M1105 dataset includes 1105 proteins distributed into 3 submitochondria 

locations. M317 dataset includes 317 proteins classified into 3 submitochondria locations. 

T86 dataset is an independent test dataset that includes 86 human mitochondria proteins and 

also classified into 3 locations. None of the proteins in the three datasets has ≥40% sequence 

identify to any other in the same subset.  

2. Feature preparation 

To develop a powerful predictor for protein analysis, one of the most important problems is 

how to formulate a protein sample with an effective mathematical expression or a discrete 

model that could keep considerable sequence order infotmation. To realize this, the concept of 

pseudo amino acid composition 28 or Chou's PseAAC 29 was proposed for representing the 

sample of a protein. Ever since the concept of PseAAC was introducted, it has been widely 

used in most of the areas of computational proteomics 
30, 31

. After the web-server ‘PseAAC’ 
32
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was established, three effective open access softwares, i.e., ‘PseAAC-General’ 33, ‘propy’ 34, 

and ‘PseAAC-Builder’ 35, were also built for the purpose. The first is for generating the 

general model of PseAAC, while the latter two for various modes of special PseAAC. In this 

work, we are to use a combination of evolutionary information, GO information and 

physicochemical/structural features to represent the protein samples via PseAAC.  

2.1. Linear predictive coding of the PSI-BLAST profiles 

The evolutional information involved in PSSM is highly useful for evaluate relationships in 

database searches. In this study, PSSM extracted from sequence profiles generated by 

PSI-BLAST was selected as the feature descriptor. We used the PSI-BLAST tool and NCBI 

non-redundant (NR) dataset on a local machine for creating PSSM for all proteins. The 

paremeters j and h are set to 3 and 0.001, respectively. Every PSSM element was scaled to the 

range from 0 to 1 using the standard sigmoid function:  

1
( )

1 x
f x

e−
=

+
   (1) 

where x is the original PSSM value.  

   Then, the linear predictive coding (LPC) scheme 36, a tool used mostly in audio signal 

processing and speech processing, was employed to parameterize the optimal signal. LPC is 

one of the most powerful speech analysis techniques, and provides extremely accurate 

estimates of speech parameters. The derived coefficients were used as quantitative features 

replacing signal intensities. Here, we used LPC analysis process to extract p features for each 

column of PSSM, and a 20×p feature vector was transformed from the PSSM for each 

protein.  

2.2. Gene function annotation features 

GO term data were obtained from ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/ 

(released on May 7, 2014). All accession numbers in three datasets were searched against the 

GO database to find the corresponding GO numbers. As the current GO terms did not cover 

all proteins, BLAST was used to search homologous proteins of protein P without known GO 

terms under the expect parameter E≤0.001, and collected proteins with ≥60% pairwise 

sequence similarity to P. Then, the geometrical center of these homologous GO features was 

used to represent protein P. Thus, we obtained 1,569, 879 and 423 different GO terms for 

M1105, M317 and T86, respectively. Finally, a feature vector was created to represent the 

GO terms for each protein as described in ref 
22

. Due to its low sequence similarity and large 

population size, M1105 was used to optimize the parameters in LIBSVM 37, and implemented 

to predict the submitochondria location of a query protein.  

2.3. Structural and physicochemical features by PROFEAT 

PROFEAT was designed for computing commonly-used structural and physicochemical 

features of proteins and peptides from their primary sequences 14, 38. These features include 

amino acid composition, dipeptide composition, Moran autocorrelation, 

sequence-order-coupling number, Geary autocorrelation, normalized Moreau–Broto 

autocorrelation and the composition, transition and distribution of various structural and 

physicochemical properties. Moreover, new feature groups such as pseudo-amino acid 
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composition (PAAC), amphiphilic PAAC (APAAC), total amino acid properties (TAAPs), and 

atomic-level topological descriptors are added in the new version of PROFEAT. The 

enhancements facilitate prediction of proteins, peptides, small molecules of different 

properties and molecular interactions. In this study, for a query protein, the sequence was 

inputted and all the PROFEAT features were selected. As a result, we got a 1080-dimension 

vector of PROFEAT feature.  

3. Feature extraction by SVM-RFE 

Due to the limitation of training data, a small amount of features usually result in a better 

generalization of machine learning algorithms (Occam’s razor) 
39

. To select a set of key 

features for reliable prediction of protein submitochondria locations, an SVM-RFE algorithm 

has been developed. Firstly, PSSM, PROFEAT and GO features of each protein were merged 

into a feature vector. All the feature vectors of proteins for each dataset were used to construct 

a feature matrix, where each row represents a sample and each column represented a feature. 

Then, training an SVM with a linear kernel, we ran the SVM-RFE algorithm to get a rank list 

of all features by removing only one feature with the smallest ranking criterion each time. The 

first item in the rank list was the most relevant to perform protein submitochondria location 

prediction, and the last item had the least relevant feature. Finally, we were able to select 

different top K features according to the ranking list.  

4. The SVM ensemble classifier 

Due to excellent generalization capabilities to converge to a single globally optimal solution, 

SVM is widely used in the bioinformatics applications 40-42, including predictions of protein 

subcellular location, membrane protein types, protein crystallization, zinc-binding sites and 

protein-binding RNA nucleotides. Compared to several other methods, SVM has some merits 

including the robustness against several types of model violations and outliers, the ability to 

learn well with only a few free parameters, and the computational efficiency 43. Due to the 

performance of SVM is decided by the type of kernel function, we used the most popular 

radial basis function (RBF) kernel 44 for its good performance in different prediction tasks. 

When training an RBF kernel SVM, we considered the parameter γ and regularization 

parameter C, which could affect the performance of protein submitochondria location 

prediction. In this study, the two parameters were also optimized based on M1105 dataset by a 

grid search strategy.  

   Prediction of protein submitochondria locations is usually formulated as a multi-class 

classification problem. This requires a multi-class analysis be broken down into a series of 

binary classifications, following either the one-against-one or the one-against-rest approach 
45

. 

In this study, the one-against-one strategy was employed for its better symmetry than 

one-against-rest strategy. Therefore, 3 2 / 2 3´ =  binary classification tasks were 

constructed for each dataset. However, feature vectors optimized by different datasets showed 

slight difference (Fig. 1). Finally, the SVM module predicted the submitochondria location of 

a protein using the top features and the optimal combination of the two parameters.  

5. Assessment of prediction performance 

In statistical prediction, the independent dataset test, subsampling test and jackknife test are 

three evaluation methods often used to examine a predictor for its prediction accuracy in 

practical applications 
46

. Among them, the jackknife test seems to be the most objective and 
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rigid 47, and thus was adopted in this study. The accuracy, overall accuracy and Matthew’s 

Correlation Coefficient (MCC) 48 were defined by:  

    

( ) i

i

TP
accuracy i

n
=    (2) 

    

1

M

i

i

TP

overall accuracy
N

==
å

   (3) 

    

( )
( )( )( )( )

i i i i

i i i i i i i i

TP TN FP FN
MCC i

TP FP TP FN TN FP TN FN

´ - ´
=

+ + + +
   (4) 

Here, N  denotes the total number of proteins, M  denotes the class number, in  is the number 

of proteins in class i . iTP , iFP , iTN  and iFN  denote true positives, false positives, true 

negatives, and false negatives in class i , respectively. It is instructive to point out that the above 

equation set is often used in literatures 
49-51

 for examining the performance quality of a 

predictor. For an intuitive interpretation about these metrics, particularly for Eq.4, see the 

aforementioned papers. The set of metrics is efficacious only for the single-label systems. For 

the multi-label systems which were frequently existent in system biology 52, an absolutely 

different set of metrics was defined in 53. A flowchart was provided in Fig. 2 to illustrate the 

prediction process of this method.  

Results and discussion 

1. Parameter selection 

The parameter γ of RBF kernel and regularization parameter C in LIBSVM should be 

determined to calculate the prediction accuracy. In this study, we ultilized a grid search 

strategy in M1105 dataset to select them via computing the best dimension Dim of protein top 

feature vector. Firstly, we built up an initial feature vector, which was integrated by PSSM, 

PROFEAT and GO features. Secondly, according to their importance, a ranking list of all the 

features was returned based on SVM-RFE. According to the ranking list, we calculated the 

prediction accuracies for top N features, where 
110 2 ( 1,2,3, ,8)nN n−

= × = L . We found 

that the accuracy at top80 ( 4n = ) reached 100% for M1105 dataset (Fig. 3). Finally, top80 

features and the corresponding parameters ( 512C = ,
41.221 10γ
−

= × , and 80Dim = ) were 

chosen as the optimal parameter group to calculate the accuracies for all three datasets.  

   As shown in Fig. 1, GO features consistently make up the majority of top80 features in 

each dataset, followed by PROFEAT and PSSM in turn. More than half of the top80 selected 

features were GO features for all three datasets. For instance, the number was up to 54 for 

M1105. These results indicated that the subcellular localization of a protein could be 

characterized by GO features.  
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2. Comparison with other methods 

To assess the performance of our predictor, we compared our method with several other 

previous methods on the three benchmark datasets with a jackknife test. Our method attained 

the best overall accuracy of 99.37%, which was higher than those achieved using methods 8, 

23-26 listed in Table 2 (from 14.17% to 4.42%). Moreover, in terms of the accuracy and MCC 

of all the three sites, our method also ranked the first. We noticed that the second best method 

listed in Table 2 also used the combined features and SVM algorithm, proving that the 

merged features and SVM algorithm were powerful for inferring the submitochondria 

location. We introduced dataset M1105 to further validate our predicting performance. We 

compared the results of our method and the method constructed by Fan 26. As can be seen 

from Table 3, our method achieved an overall accuracy of 100.00%, outperformed the latter 

in terms of the overall accuracy, as well as the accuracy and MCC of all the location sites. Of 

note, the accuracy of outer membrane in this method was 13.1% higher than that of the latter, 

suggesting that our method worked well on predicting submitochondria location. In fact, there 

are several GO terms describing submitochondrial locations. It could be a possible reason for 

our good performance. For example, Top80 features in dataset M1105 consisted of 54 GO 

terms. There are only six cellular compartment GO terms, i.e., mitochondrial inner membrane 

GO:0005743, mitochondrial matrix GO:0005759, mitochondrial outer membrane 

GO:0005741, GO:0031307, GO:0045040, and GO:0005742. After removing the six GO 

terms from top80 features, we got an overall accuracy of 93.68%, which was still better than 

existing methods. Next, each individual feature type is removed from the integrated feature 

vector to test its prediction power. To facilitate the comparison, Top80 selected features from 

any two groups of features based on SVM-RFE are input to the classifier for evaluating the 

contribution of the missing feature type. We found that the prediction accuracy based on 

PSSM+GO features was 74.73% for M1105, which was slightly lower than that by 

PSSM+PROFEAT and PROFEAT+GO features (75.55% and 75.82%). We also test the 

performance of the prediction based only on one group of features (also top80 features). The 

respective accuracies based on PSSM, PROFEAT and GO features were 72.99%, 75.09% and 

76.37%, which are also significantly lower than the overall accuracy by integration of all 

three types of features. For a human mitochondria protein dataset T86 with a small size, our 

method still achieved an overall accuracy of 100% (Table 4). The accuracies of the three 

subsets were 4.17%~13.33% improvements over the method constructed by Shi et al 
27

. 

It is important to note that when M1105 dataset was used to calibrate the parameters, the 

accuracy at top80 was the highest for M1105. While that was top40 and top20 for the two 

smaller datasets M317 and T86. It could explain why the prediction accuracies for the two 

small test datasets reached 100% based on top80 features. 

   To further demonstrate the prediction power of our method, receiver operating 

characteristic (ROC) curves on three datasets were implemented here. However, protein 

submitochondria location prediction was a multi-class prediction problem. To address this 

problem, we first transformed protein submitochondria location prediction to multiple binary 

classifiers using one-against-rest strategy, and then averaged all the binary ROC curves as the 

final output of a method. Figs. 4-6 showed the averaged ROC curves for three datasets by our 

method and the other three approaches. The area under curves (AUCs) of this method was 1 
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for all three datasets, which was significantly higher than those by PSSM, PROFEAT and GO 

features individually (e.g. AUCs were 0.8307, 0.8527 and 0.8547 for M1105, respectively).  

3. Case study 

   To further illustrate our methods, we predicted the submitochondria locations of 11 

proteins, most of which were related to colorectal cancer. As shown in Table 5, 10 of 11 

proteins were correctly predicted to the right submitochondria locations by our predictor 

based on three datasets. For example, P00395 is a mitochondrion inner membrane protein, 

which is involved in colorectal cancer, a complex disease characterized by malignant lesions 

arising from the inner wall of the colon and the rectum 54. In this study, it was consistently 

predicted as a mitochondrion inner membrane protein by our predictor on three datasets. 

Another example was Q9BRQ8, a mitochondrion outer membrane protein, which played an 

important role in EB1 colon cancer cells. Our predictor trained by all three datasets also 

correctly predicted it as a mitochondrion outer membrane protein. These results imply that 

our method is suitable for protein submitochondria location prediction.  

Conclusions 

In this work, an SVM-based model was constructed for the prediction of protein 

submitochondria localizations by selecting the optimal features from three kinds of important 

features, i.e., protein GO function annotation, amino acid physical-chemical properties and 

PSI-BLAST profile. The prediction performance of our method for three low similarity 

datasets was very promising (99.37% for M317 and 100% for M1105 and T86). It supported 

the assumption that an optimal combination of multi-features could improve the prediction 

accuracies for protein submitochondria location prediction. Moreover, the recrusive feature 

extraction strategy adopted here was highly powerful in getting the optimal features, thus it 

accelerated the computing procedure as well as improved the final prediction results. The 

good performances of our predictor for evaluating different datasets suggest that our method 

is adaptable to diverse datasets and can be applied as a useful tool in such predicting tasks.  

   Admittedly, there are still some challenges need to be addressed in submitochondria 

localization prediction. Although our method suffered from a little high computational 

complexity for feature ranking and the inconsistent features chosen by different datasets, it 

could effectively catch the core features and improve the prediction of protein 

submitochondria location. In addition, we mainly focused on the proteins with single location 

sites. Since proteins with multiple location sites might play a significant role in cellular 

metalism, we will develop our method by addressing this problem.  

   Now that serviceable web-servers show the future direction for developing more useful 

methods, models and predictors 55, 56, in our future work, we will attempt to provide a 

web-server for this method. 
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Table 1 The detailed information of three datasets in our predictor. 

Submitochondria location 
Number of proteins 

M317  M1105  T86 

Inner membrane 131  589  23 

Outer membrane 41  236  15 

Matrix 145  280  48 

Total 317  1105  86 
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Table 2 Prediction performance comparisons by jackknife test for dataset M317.  

Submitochondria 

locations 

SUBMITO 23 GP-LOC 24 
Predict_subMITO 

8 

MitoLoc-LRSVM4 

25 

Method 

constructed by Fan 

and Li 26 

The proposed 

method 

Accuracy 

(%) 
MCC 

Accuracy 

(%) 
MCC 

Accuracy 

(%) 
MCC 

Accuracy 

(%) 
MCC 

Accuracy 

(%) 
MCC 

Accuracy 

(%) 
MCC 

Inner membrane 85.50 0.79 83.21 0.80 91.8 0.79 89.31 0.84 94.70 0.91 100 0.99 

Outer membrane 51.20 0.64 78.05 0.77 66.1 0.63 78.05 0.74 99.30 0.96 100 1.00 

Matrix 94.50 0.78 97.24 0.85 96.4 0.79 93.79 0.87 80.50 0.84 98.61 0.99 

Total accuracy 85.20 - 89.00 - 89.7 - 89.90 - 94.95 - 99.37 - 
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Table 3 Prediction performance comparisons by jackknife test for dataset M1105.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Submitochondria 

locations 

Method constructed by Fan and Li 
26

 The proposed method 

Accuracy (%) MCC Accuracy (%) MCC 

Inner membrane 96.1 0.891 100.00 1.0000 

Outer membrane 86.9 0.890 100.00 1.0000 

Matrix 93.9 0.901 100.00 1.0000 

Total accuracy 93.57 - 100.00 - 
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Table 4 Prediction performance comparisons by jackknife test for dataset T86. 

Submitochondria 

locations 

Method constructed by Shi and Qiu 
27

 The proposed method 

Accuracy (%) MCC Accuracy (%) MCC 

Inner membrane 86.96 0.7954 100.00 1.0000 

Outer membrane 86.67 0.7427 100.00 1.0000 

Matrix 95.83 0.8357 100.00 1.0000 

Total accuracy 91.86 - 100.00 - 
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Table 5 Examples to show the predicted results by our predictor based on three datasets. 

Accession 

number 
 Entry name  

submitochondria 

location 
 

The proposed method 

Trained by M1105  Trained by M317  Trained by T86 

P00395  COX1_HUMAN  Inner membrane  Inner membrane  Inner membrane  Inner membrane 

Q9BRQ8  AIFM2_HUMAN  Outer membrane  Outer membrane  Outer membrane  Outer membrane 

O14521  DHSD_HUMAN  Inner membrane  Inner membrane  Inner membrane  Inner membrane 

P08074  CBR2_MOUSE  Matrix  Matrix  Matrix  Matrix 

Q8IWA4  MFN1_HUMAN  Outer membrane  Outer membrane  Outer membrane  Outer membrane 

O15239  NDUA1_HUMAN  Inner membrane  Inner membrane  Inner membrane  Inner membrane 

P00156  CYB_HUMAN  Inner membrane  Inner membrane  Inner membrane  Inner membrane 

P20000  ALDH2_BOVIN  Matrix  Matrix  Matrix  Matrix 

Q96E52  OMA1_HUMAN  Inner membrane  Inner membrane  Inner membrane  Inner membrane 

P22695  QCR2_HUMAN  Inner membrane  Outer membrane  Outer membrane  Matrix 

P00403  COX2_HUMAN  Inner membrane  Inner membrane  Inner membrane  Inner membrane 

Q969M1  TM40L_HUMAN  Outer membrane  Outer membrane  Outer membrane  Outer membrane 
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Figure legends 

Figure 1. Top80 features in the three datasets. 

 

Figure 2. The pipeline that goes from the query sequence to the final output and all 

intermediate steps. 

 

Figure 3. Comparison of prediction accuracies of different top features. 

 

Figure 4. The ROC curves of M1105 dataset. 

 

Figure 5. The ROC curves for M317 dataset. 

 

Figure 6. The ROC curves for T86 dataset. 
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