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Integrating gene expression profiles with certain proteins can improve our understanding of the fundamental mechanisms in

protein-ligand binding. This paper spotlights the integration of gene expression data and target prediction scores, providing

insight into Mechanism of Action (MoA). Compounds are clustered based upon the similarity of their predicted protein targets

and each cluster is linked to gene sets using Linear Models for Microarray Data. MLP analysis is used to generate gene sets

based upon their biological processes and a qualitative search is performed on the homogeneous target-based compound clusters

to identify pathways. Genes and proteins were linked through pathways for 6 of the 8 MCF7 and 6 of the 11 PC3 clusters.

Three compound clusters are studied; i) The target-driven cluster involving HSP90 inhibitors, geldanamycin and tanespimycin

induces differential expression for HSP90-related genes and overlap with pathway response to unfolded protein. Gene expression

results are in agreement with target prediction and pathway annotations add information to enable understanding of MoA. ii) The

antipyschotic cluster shows differential expression for genes LDLR and INSIG-1 and is predicted to target CYP2D6. Pathway

steroid metabolic process links the protein and respective genes, hypothesizing the MoA for antipsychotics. A sub-cluster

(verepamil and dexverepamil), although sharing similar protein targets with the antipsychotic drug cluster, has a lower intensity

of expression profile on related genes, indicating that this method distinguishes close sub-clusters and suggests differences in

their MoA. Lastly, iii) the thiazolidinediones drug cluster predicted peroxisome proliferator activated receptor (PPAR) PPAR-

alpha, PPAR-gamma, acyl CoA desaturase and significant differential expression of genes ANGPTL4, FABP4 and PRKCD. The

targets and genes are linked via PPAR signalling pathway and induction of apoptosis, generating a hypothesis for the MoA of

thiazolidinediones. Our analysis show one or more underlying MoA for compounds and were well-substantiated with literature.
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1 Introduction

Understanding protein target and off-target effects of bioactive

compounds is a critical challenge in the field of drug discov-

ery. These effects are of great importance as bioactive com-

pounds that indicate a certain therapeutic effect could cause in-

advertent phenotypic effects by binding to unexpected protein

targets, thus resulting in disruption of compound efficacy.1

The mechanism of action (MoA) of compounds could provide

insight into inadvertent phenotypic effects. Although many at-

tempts have been made to understand MoA, this still remains

a challenge in the field.2

Existing methods used to understand the MoA of com-

pounds involve analysing chemical structures, transcriptional

responses following treatment and text mining. Phenotypic

readouts have also been recently used to explore MoA.3, 4
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Studies by Young et al. show that integrated analysis of phe-

notypic screening features and ligand targets could identify

MoA.5 Other studies scrutinizing gene expression profiles

also have given insight into drug MoA and further prediction

of drug targets.6 Applications using gene expression profiles

to observe several genes and signalling pathways concurrently

enrich the understanding of underlying mechanisms. Many re-

searchers have focused their interest on the delineation of gene

expression profiles, in order to identify those key genes and

gene clusters whose expressions alter disease state.7, 8 These

gene alteration patterns are identified in order to underpin the

mechanism of disease.

In order to experimentally determine gene expression vari-

ations as described above, microarray techniques have been

developed to measure almost any change in biological activity

that can be reflected in an altered gene expression pattern.9, 10

Using such high-end technology, compound effects can be

measured to provide extensive understanding on the effect that

genomic scale alterations have at a cellular level. This tech-

nique is capable of simultaneously providing information on

the expression of a few thousand genes at a time.11 Microar-

rays facilitate the discovery of novel and unexpected functions

of genes. This method is very well established and has a wide

range of applications such as the identification of novel dis-

ease subtypes, development of new diagnostic tools and iden-

tification of underlying mechanisms of disease or drug re-

sponse.12, 13 In addition, gene expression profiles also help

in identifying therapeutic protein targets understanding gene

function, as well as establishing diagnostic, prognostic and

predictive markers of disease.14

Due to the advances in the genome studies, there is a

wealth of microarray data that has been deposited in public

databases such as Expression Atlas, which is a subset of Ar-

rayExpress.15, 16 Other public databases such as Connectiv-

ity Map (CMap) consist of drug-like compounds tested for

gene expression in four cell lines. However, it is largely un-

known how a compound exactly modulates gene expression

and only a few data analysis approaches exist. One of the com-

monly used approaches in comparing gene signatures is the

Kolmogorov-Smirnov statistical method, which was used in

the CMap study.17, 18 The CMap study aims to construct large

libraries of drug and gene signatures and provides a pattern-

matching tool that detects signature similarities in order to es-

tablish a relationship between disease and therapeutic MoA.

The libraries were used to design the method that compares

gene signatures to diseases in the database and predict the con-

nection; the MoA. Due to the ability of finding connections

and similarities between the genes, disease and drugs, the re-

sults are termed connectivity maps. The database consists of

1309 diverse bioactive compounds on four different cell lines,

where nearly 800 of the compounds are currently available in

the market.17, 18 Another study based on the CMap data was

carried out by Iorio et al., where they developed an automated

approach to exploit the similarity in gene expression profiles

following drug treatment. A drug network was constructed in

order to relate compounds based upon gene expression rank-

ing from the CMap tool. The drug MoA was determined based

upon the collective population3 Khan et al. and the hypothesis

that chemical structures of drugs (encoded in 3D) impact the

drug response. This resulted in specific patterns of gene ex-

pression, which established a statistical relationship between

the occurrences of patterns in both chemical and biological

space.19 The work of Gardner et al. shows that Genetic Net-

works and MoA of compounds could be interpreted by gene

expression profiles to study the SOS pathway in Escherichia

coli.20.

Iskar et al. used the CMap data to analyse drug-induced

differential gene expression of drug targets in three cell lines.

Different sets of drug features, such as chemical similarity and

Anatomical Therapeutic Chemical (ATC, based on therapeutic

and chemical properties of the compound MoA), were used to

show that homogeneous gene expression profiles were reliable

with mean centring. The chemical structural similarity, mea-

sured by the tanimoto coefficient, indicated that coefficients

greater than 0.85 show similar biological responses and tend

to have similar gene expression profiles. The same is also seen

with compounds that share the same ATC code. Furthermore,

Iskar et al. quantified the concept of a feedback loop using

computationally normalized data and scoring methods appli-

cable to gene expression readouts. From the Search Tool for

Interactions of Chemicals (STITCH), 4849 CMap arrays and

40,656 drug target association provided 1290 drug-target re-

lations.21, 22 The studies also showed that nearly 8% of the

drug-induced targets were differentially regulated. They also

identified unknown drug-induced target expression changes,

some of which could be linked to the development of drug

tolerance in patients.6, 23

In our study, we propose a new approach which aims

to link chemical space to protein target and gene expres-

sion space, thus providing a better insight into the MoA of

compound clusters. To achieve this goal, there is a need

for additional data from which the link between compounds

and protein target space can be formed. Public chemoge-

nomics databases such as ChEMBL and PubChem contain

large amounts of bioactivity data that aid in machine learn-

ing approaches. These approaches extrapolate from knowl-

edge to classify new and orphan ligands for potential protein

targets, or off-targets, based upon the similarity of the chem-

ical structures. The target prediction algorithm based upon

the Naı̈ve Bayesian classifier was employed to predict prob-

able protein targets for compounds without target informa-

tion (Figure 1).24, 25 The resulting prediction provides each

test compound with probable protein targets and their respec-

tive scores, representing the likelihood of binding to 477 pro-
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tein targets.25, 26 Target prediction approaches have been re-

cently applied in a variety of areas27, such as the elucidation

of MoA of compounds used in traditional medicine (including

ayurvedic and Chinese medicine28) and are also used in ex-

amining ADR29. However, to the best of our knowledge, this

is the first study employing in silico target prediction in the

context of gene expression data analysis.

Fig. 1 Target prediction overview. The orphan compound

fingerprint information is fed into the algorithm, which predicts the

likelihood (score) of binding to proteins based upon prior

knowledge. This method establishes the link between the compound

and protein targets, further linking it to the MoA

In addition, protein targets do not influence gene expres-

sion changes directly; they work through signalling cascades.

Pathway databases provide information for linking genes and

protein targets. Databases such as KEGG and GO have been

used in the study to rationalise the findings.30 Repositories

(KEGG and GO) have information relating to a wide range of

organisms, which makes it flexible enough to integrate infor-

mation from different databases and thus to study the func-

tionality of recently discovered genes.31 As shown in Fig-

ure 2, the MoA relationships were established in the follow-

ing way; compound and gene expression via microarray data,

compound and protein target via the target prediction algo-

rithm and protein target and gene expression (CMap) via path-

way information. Hence, for a given gene expression read-

out without knowledge of the protein targets modulated, our

approach gives an understanding into the MoA of the com-

pounds. By studying three particular clusters benzoquinone

antineoplastic antibiotics, antipsychotic drugs and antidiabetic

and anti-inflammatory drugs, we were able to find evidence of

compounds perturbing certain genes and proteins thus trigger-

ing one or more pathways. Hence, giving insights into the

possible MOA of the compounds.

Fig. 2 Mechanism of Action of a compound. The compound to

protein target information is derived from the target prediction

algorithm and the phenotypic gene expression information is curated

from experimentally annotated data. To complete the triangle,

KEGG and GO pathway information is annotated for the genes and

proteins and are overlapped to find similar pathways.

2 Materials and Methods

2.1 Gene Expression Data.

2.1.1 The CMap Dataset. The CMap dataset was ex-

tracted from the Connectivity map server and consisted of

1309 drug-like compounds with their respective genome-wide

expression profiles. In our study, the analysis for MCF7

(breast cancer epithelial cell) and PC3 (human prostate can-

cer) cell lines, containing 75 and 101 compounds respectively,

were retained after filtering for compounds administered for a

duration of 6 hours and a maximum concentration of 10µM.

When multiple instances of compounds were found, the aver-

age gene expression level was used.

2.1.2 Pre-processing Raw Gene Expression Data.

The extracted gene-expression data was pre-processed using

the Factor Analysis for Robust Microarray Summarization

(FARMS) method 1.8.2,32 by separate arrayType/cellType

combination. For an elaborate discussion about the FARMS

methods, we refer to Section S2.1 in the supplementary in-

formation. The log ratio was calculated per compound versus

the vehicle. If multiple vehicles were present in the dataset,

the vehicle closest to spatial median of all vehicles was used.

The expression set was then filtered using informative/non-

informative calls (I/NI calls),33 where genes that were classi-

fied as non-informative were excluded. Two types of arrays

were used in the experiment and thus only genes common

to both arrays were retained. Furthermore, only genes with

abs(log ratio)>1 for minimum 1 sample were kept.
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2.2 Target Prediction Data.

2.2.1 Target Prediction Algorithm. The target predic-

tion algorithm developed by Koutsoukas et al., is a probabilis-

tic machine learning algorithm for predicting protein targets of

bioactive molecules, which employs the Laplacian-modified

Naı̈ve Bayes classifier (NB). Chemical similarity is the under-

lying principle of the method which is built on the approach

that, if compounds are similar in structural space they trig-

ger similar targets. Compounds structural features (Extended

Connectivity Fingerprints 4) are used as molecular descrip-

tors. The NB classifier can be illustrated using the following

equation.26

P(C = ω|D = f ) =

(

P(D = f |C = ω)P(C = ω))

(P(D = f ))

)

In this equation, the probability of a compound belonging

to class ω given descriptor f is calculated. P(C = ω) is the

priori probability of class ω and P(D = f ) is a priori proba-

bility of the features, f . P(D = f |C = ω), is the key value in

this equation, which is the likelihood of the feature f given

the class ω . This probability is estimated by the NB classifier

from the training set (discussed below), which assumes that

the features are independent of each other for a given class.

It has been observed before that the NB classifier is still an

effective classifier in cases where features are correlated. In

machine learning practices, a training set is employed for the

classifier to learn from the examples and make predictions for

the unseen dataset; the test set. The classifier is trained on

a large benchmark dataset of bioactive compounds retrieved

from the publicly available ChEMBL database, which is a

repository of small bio-active molecules extracted from sci-

entific literature. The training dataset covers 477 human pro-

tein targets with around 190,000 protein-ligand associations,

based upon the reported bioactivities (Ki/Kd/IC50/EC50) be-

ing equal or better than 10 µM with a confidence score of 8

or 9. These rules for extracting compounds ensured reliable

compound-target associations for training the model. The tar-

get prediction algorithm performance was evaluated by 5-fold

cross validation.26

2.2.2 Predicted Protein Binding Probability Scores.

The output file of the target prediction algorithm for a given

compound is a list of ChEMBL protein targets and a score

quantifying the compound’s binding likelihood to the target.

The rank is based on the likelihood (NB score) of a query com-

pound being active against each of the protein targets. With

this data, target prediction matrix scores for the 76 and 101

compounds for the 2 cell lines (MCF7 and PC3 respectively)

were generated for all the available protein targets.

2.2.3 Data Binarisation. Although it is common to use

empirically derived global score cut-offs for bioactivity pre-

dictions, in this approach class-specific confidence score cut-

offs were calculated internally in order to increase the accu-

racy of our predictions.34 These compound bioactivity pro-

files were represented as a binary matrix, where 1 represents

a likelihood of compound binding to the protein target and 0

represents otherwise, with respect to the individual score cut-

offs.

2.3 Clustering of Compounds.

The first stage of analysis comprises the clustering of com-

pounds into groups exhibiting a high degree of both intra-

cluster similarity and inter-cluster dissimilarity, according to

the target prediction scores. The distance between compounds

was based upon the Tanimoto coefficient, which is a widely

used and well-established distance measure for binary val-

ues.35 Our implementation is an agglomerative hierarchical

clustering approach. Each compound is absorbed into increas-

ingly large clusters until the dataset is expressed as a single

cluster composed of all compounds. The previously generated

binary profile matrix was then used to compute the similarity

between each compound bioactivity profile. The hierarchi-

cal clustering method employed here generates strictly nested

structures, which can be presented graphically using dendro-

grams.

2.4 Feature Selection.

Feature selection was performed by applying Fisher’s exact

test, target-by-target, with the given cluster of compounds

as one group and the rest of compounds as the other group.

To integrate the gene expression data in the analysis, genes

that were regulated by a particular cluster of compounds of

interest were chosen.36 The Linear Models for Microarray

Data (Limma) method was used to assess differential expres-

sion.37, 38

The Benjamini-Hochberg false discovery rate (BH-FDR)

method was used to adjust for multiplicity. Protein targets and

genes were ranked based upon their adjusted p-values.39

2.5 Pathway Analysis.

Once the lists of genes and protein targets had been obtained,

a pathway analysis was conducted in order to interpret the bio-

logical function of the selected subset of genes/protein targets.

2.5.1 Overlapping Pathway Search Using KEGG and

GO Databases. Pathway information was extracted from the

KEGG and GO databases for the gene sets and protein targets

involved in our study.30 The protein targets and gene sets to-

gether with their pathways were used as input for the pathway-

oriented approach.40, 41 Interesting sets of genes and protein
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targets from a particular cluster were then examined for com-

mon pathways. Identification of overlapping pathway(s) en-

ables biological interpretation of the results. This pathway-

oriented approach does not involve any statistical analysis and

is dependent on the quality of information available in both

databases.

2.5.2 Gene Set Analysis Using Mean Log p-value

(MLP) Analysis. MLP analysis, in contrast with the path-

way search presented in the previous section, does not involve

pre-selection of genes prior to the analysis. Genes are catego-

rized into gene sets according to their functional relationship.

A gene set is most likely significant if many of the genes com-

prising that set have small p-values obtained from the test of

differential expression. Our algorithm uses the LIMMA test

statistics for this, as discussed in section 2.4.42–44 The MLP

method can be used to identify which biological pathways ap-

pear to be most affected and their interconnections may be

visualised using a GO graph. More details about the MLP

method is given in the supplementary section S2.2.

3 Results and Discussion.

The hierarchical clustering of compounds according to the

similarity of their target prediction profiles, based upon the

477 ChEMBL targets, is presented in Figure 3 for the MCF7

and PC3 cell lines. Several interesting target-based compound

clusters (with Tanimoto coefficient > 0.5) are identified in

each cell line; 8 from MCF7 and 11 from PC3 (numbered

in their respective heatmaps). The target prediction data de-

pends upon the structural make-up of the compounds; hence

a compound cluster observed in one cell line will also hold

for another line, given that all member compounds are present

in both cell lines. This is the case for cluster 3 of MCF7 and

cluster 4 of PC3, which contain the same set of compounds;

estradiol, alpha-estradiol and fulvestraat. The number of pre-

dicted targets found for each compound present in MCF7 and

PC3 cell lines is shown in Figure S1.

This study hypothesises that compounds stimulating simi-

lar targets will also trigger similar genes and pathways. Each

compound set is expected to be associated with a number of

genes (differentially expressed between the subset of com-

pounds in the cluster and the rest of the compounds in the

set). In this paper, heatmaps and volcano plots are used for

the visualisation of predicted active protein targets and differ-

entially expressed genes, respectively, for a given compound

cluster of interest.

In the next step, pathway analysis is used to deduce the

MoA of the compound cluster. Many statistical approaches

have been developed for pathway analysis.45 For the analy-

sis presented in this paper, two approaches have been used;

the first is a pathway-oriented approach in which KEGG and
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Fig. 4 Volcano plot. -log(P-value) Vs. fold change. Every gene is

represented by a dot in the graph. Genes HSPA6, HSPA4L,

DNAJB4 and HSPH1 at the top have the smallest P-values (i.e. the

highest evidence for statistical significance) when testing for

differentially expressed genes between the cluster of interest and

other compounds in the set. Genes at the left and right-hand sides of

the graph have the largest effect size (fold-change). The HSP-related

genes for sub-cluster containing benzoquinone antineoplastic

antibiotic compounds in the plot are seen to be highly significant,

thus suggesting their role in the MoA of these compounds.

GO pathways are retrieved for the gene and protein target sets

for sub-clusters of interest and common pathways are studied;

and the second is gene set enrichment analysis using MLP in

which the focus is on coordinated differential expression of a

set of functionally related genes.

This analysis flow is illustrated for 3 of the 19 identified

clusters in the following sections. Results for the other homo-

geneous target-prediction-based sub-clusters are summarised

in Table S1 for MCF7 and Table S2 for PC3. The MoA for

6 of the 8 MCF7 clusters and 6 of the 11 PC3 clusters, are

established using our integrated approach.

3.1 Benzoquinone Antineoplastic Antibiotic.

3.1.1 Associating Genes with Compounds. The first

compound cluster studied consists of the compounds gel-

danamycin and tanespimycin from cluster 7 of the MCF7 cell

line. Both compounds are benzoquinone antineoplastic an-

tibiotics, which are used to inhibit the function of heat shock

protein 90 (HSP90).46, 47 In Figure 4 the top differentially

expressed genes between these 2 compounds and other com-
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a) MCF7 (75 compounds) b) PC3 (101 compounds)

Fig. 3 Heatmaps with dendrograms showing compound similarity scores based upon protein target prediction data for the a) MCF7

and b) PC3 cell lines. The colour is scaled such that darker colours represent increased similarity among the compounds, while similarities

below the 90th percentile are represented in white. Compound clusters with high Tanimoto coefficient (> 0.5) are identified and numbered in

the heatmaps, leading to 8 subclusters for MCF7 and 11 clusters for PC3. Subcluster 3 of MCF7 and subcluster 4 of PC3 cell line represent

the same set of 22 compounds present in both the datasets. Given that these compounds share similar predicted protein targets, they form

defined therapeutic type sub-clusters.

pounds in the set are displayed. Gene HSPA1B shows a per-

turbation of an above 2-fold change in both the compounds

and also shows a -log(P-value) greater than 50 in the volcano

plot (Figure 4). The HSP90AB1 gene shows a fold change

above 1.2 in both the compounds and was found to be sta-

tistically significant. Other genes such as HSPA6, HSPA4L,

DNAJB4, HSPH1 were all found to be statistically signifi-

cant with a fold change above 1. Literature shows that protein

HSP90 is encoded by the HSP90AB1 gene.48 The compounds

are seen to perturb similar type of genes, thus showing that

clustering compounds based upon targets is useful in bringing

compounds of similar therapeutic class together.

3.1.2 Associating Protein Targets to Compounds. The

clustering of compounds based upon protein target similar-

ity is presented in Figure 5a, highlighting the cluster of gel-

danamycin and tanespimycin. This clustering is identical

to that presented in Figure 3a, with geldanamycin and tane-

spimycin as cluster 7. Figure 5b represents the set of protein

targets that are likely to bind to these two compounds, based

upon the results from protein-target prediction. The expres-

sion profile plot for the top differentially expressed genes of

this compound cluster clearly shows these two compounds in-

duce a relatively higher expression than the rest (Figure 5c).

The ordering of compounds in the x-axis is the same for all

plots. The top 5 protein targets are Transcription factor AP-1

(AP-1), Transient receptor potential cation channel subfamily

V member 1 (TPCC), Tyrosine protein kinase BTK (BTK),

Heat shock protein HSP90 alpha (HSP90), Protein kinase C

zeta type (PKCZ) and G-protein coupled receptor 55 (GPCR).

3.1.3 Using Pathways to Understand MoA . Identifica-

tion of the protein targets and genes regulated by the com-

pounds can already provide information about the MoA. How-

ever, searching for the pathway(s) can provide a deeper in-

sight, or more interpretable information, compared to a short

list of potentially functionally-unrelated protein targets and

genes. This qualitative search of common pathways between

targets and genes is dependent upon the completeness of the

KEGG and GO pathway databases (see Table S1 and Table

S2). As a consequence, a lack of completeness may return

empty results.

In the studied cluster, the pathway “response to the unfolded

protein” (GO:006986) was found to be an overlapping path-

6 | 1–12

Page 6 of 12Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



th
io

rid
az

in
e

ch
lo

rp
ro

m
az

in
e

pr
oc

hl
or

pe
ra

zi
ne

tri
flu

op
er

az
in

e
flu

ph
en

az
in

e
am

itr
ip

ty
lin

e
cl

oz
ap

in
e

ha
lo

pe
rid

ol
ve

ra
pa

m
il

de
xv

er
ap

am
il

fu
lv

es
tra

nt
es

tra
di

ol
al

ph
a−

es
tra

di
ol

ex
em

es
ta

ne
pr

ed
ni

so
lo

ne
de

xa
m

et
ha

so
ne

flu
dr

oc
or

tis
on

e
LM

−1
68

5
SC

−5
81

25
ro

fe
co

xi
b

ex
is

ul
in

d
di

cl
of

en
ac

4,
5−

di
an

ilin
op

ht
ha

lim
id

e
flu

fe
na

m
ic

 a
ci

d
N

−p
he

ny
la

nt
hr

an
ilic

 a
ci

d
TT

N
PB

pr
ob

uc
ol

su
lin

da
c

su
lin

da
c 

su
lfi

de
in

do
m

et
ac

in
M

K−
88

6
fe

lo
di

pi
ne

ni
fe

di
pi

ne
ni

tre
nd

ip
in

e
ce

le
co

xi
b

W
−1

3
m

et
fo

rm
in

te
tra

et
hy

le
ne

pe
nt

am
in

e
ph

en
fo

rm
in

ph
en

yl
 b

ig
ua

ni
de

ge
ni

st
ei

n
qu

er
ce

tin
re

sv
er

at
ro

l
bu

te
in

st
au

ro
sp

or
in

e
im

at
in

ib
bu

cl
ad

es
in

e
tio

gu
an

in
e

LY
−2

94
00

2
ca

lm
id

az
ol

iu
m

fa
su

di
l

no
co

da
zo

le
ci

cl
os

po
rin

tri
ch

os
ta

tin
 A

co
lc

hi
ci

ne
qu

in
pi

ro
le

m
on

as
tro

l
no

rd
ih

yd
ro

gu
ai

ar
et

ic
 a

ci
d

do
pa

m
in

e
be

ns
er

az
id

e
ta

m
ox

ife
n

ra
lo

xi
fe

ne
to

m
el

uk
as

t
va

lp
ro

ic
 a

ci
d

ar
ac

hi
do

ny
ltr

ifl
uo

ro
m

et
ha

ne
15

−d
el

ta
 p

ro
st

ag
la

nd
in

 J
2

ar
ac

hi
do

ni
c 

ac
id

ta
ne

sp
im

yc
in

ge
ld

an
am

yc
in

ta
cr

ol
im

us
si

ro
lim

us
ilo

pr
os

t
pa

cl
ita

xe
l

tre
tin

oi
n

ol
ig

om
yc

in 

 

 
 T

ar
ge

t P
ro

te
in

s 

AP−1

BTK

HSP90

PKCZ

TPCC

GPCR

1
2

3
4

5
6

 

lo
g 2

 fo
ld

 c
ha

ng
e

HSP90AB1
HSPA6
HSPA4L
DNAJB4
HSPH1
HSPA1B
ADCY7
AHSA1

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(a) Protein target similarity-based clustering

(b) Heatmap showing the top predicted targets of compounds tanespimycin and geldanamycin

(c) Profiles plot of the top differentially expressed genes for compounds tanespimycin and geldanamycin

compounds ordered according to (a)

compounds ordered according to (a)

Fig. 5 Genes and Protein targets regulated by compounds geldenamycin and tanespimycin. (a) Protein-target similarity-based

hierarchical clustering of compounds; (b) heatmap of the proteins target (rows) and compounds(columns) coloured according to

activation/inactivation of protein targets; (c) the profile plot of the top differentially expressed genes with compounds ordered according to

((a)) in the x-axis and fold-change in the y-axis. The selected compound sub-cluster contains the only compounds that predicted the targets

represented in blue. Thus, some genes are particularly perturbed with respect to the sub cluster selected. The targets are Transcription factor

AP-1 (AP-1), Transient receptor potential cation channel subfamily V member 1 (TPCC), Tyrosine protein kinase BTK (BTK), Heat shock

protein HSP90 alpha (HSP90), Protein kinase C zeta type (PKCZ) and G-protein coupled receptor 55 (GPCR). The genes (HSP90AB1,

HSPA6, HSPA4L, DNAJB4, HSPH1, HSPA1B, ADCY7 and AHSA1) studied here do not have high perturbation for other compounds,

suggesting the hypothesis that the targets and the genes are linked.

way involving the predicted protein target heat shock protein

HSP90 alpha and the genes HSP90AB1, HSPA6, HSPA4L,

DNAJB4, HSPA1B and DNAJB1. Literature has also shown

that HSP90 inhibition is associated with the activation of

unfolded protein response. Moreover, the compound gel-

danamycin is a known inhibitor of HSP90, thus modulating

the unfolded protein response.49

Similarly, the overlap between HSP protein and the genes

HSP90B1, HSPA1B, HSPA1A and HSP90AA1 show re-

sponse to the KEGG pathway “antigen processing and presen-

tation”. The genes and proteins in the overlap are known to be

involved in these pathways (Table S1). A study carried out
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by Albert 50 also supports our finding that HSP plays a role

in antigen processing and presentation, where these proteins

are released during cell death in order to bind to cell surface

receptors of the antigen-presenting cells.

Table 1 Overlapping Pathways. Pathway Search involving the top

protein targets and genes regulated by the compounds geldenamycin

and tanespimycin.

Pathway Target Genes

HSP90B1

Heat shock HSPA6

response to protein 90 alpha HSPA4L

unfolded protein DNAJB4

HSPA1B

HSP90B1

antigen processing Heat shock HSPA1B

and presentation protein 90 alpha HSPA1A

HSP90AA1

3.1.4 Gene Set Enrichment Analysis Using the Mean

minus log p-value (MLP) Method. GO and KEGG pub-

lic pathway databases lack updated annotations from the lit-

erature.51 MLP analysis bridges this gap by identifying sig-

nificantly affected biological processes or gene sets consist-

ing of functionally related genes. The top 5 set of significant

GO terms according to their structure in the ontology are dis-

played in Figure 6. The MLP results agree with those from the

pathway search and literature on the pathway “response to un-

folded protein”, which is on the top gene set in the analysis.49

The pathway search provides information on known existing

gene-pathway links, whereas MLP analysis shows statistically

enriched pathways that are significant (with or without avail-

able literature evidence). While the pathway search makes use

of top differentially expressed genes, providing 5 genes linked

to this pathway, the MLP analysis can provide an enriched set

of genes biologically linked through the “response to unfolded

protein” pathway. Using the LIMMA p-values as the input, the

HSP and DNAJ-related genes are shown to dominate this gene

set (Figure 7).

The MLP method therefore provides statistically significant

genes and also the significance of each gene in the pathway

of interest. The gene set enrichment analysis is a good start

when there is limited pathway information, in understanding

the MoA of compounds.

3.2 Antipsychotic Drugs.

A cluster based on the MCF7 cell line consists of well-

known antipsychotic drugs (amitriptyline, clozapine, thiori-

dazine, chlorpromazine, trifluoperazine, prochlorperazine and

fluphenazine), which share the predicted protein targets mus-

carinic, histamine, dopamine and adrenergic receptors and cy-

GO:0035966\
response to topolo\

gically incorrect protein

GO:0006986\
response to unfold\

ed protein

GO:0006457\
protein folding\

GO:0061077\
chaperone−mediated\

 protein folding

GO:0042026\
protein refolding\

Fig. 6 GO pathways containing the top 5 gene sets with MLP

for benzoquinone antineoplastic antibiotic compounds. Every

ellipse represents a gene set. The colour indicates the significance:

the darker, the more significant. The connectors indicate that the

gene sets are related. The lower the GO term is in the graph, the

more specific is the gene set

tochrome P450 2D6 (Figure S3). Antipsychotics drugs are

known to be promiscuous therefore identifying selective pro-

tein targets are difficult.52 Figure S2 displays the top genes

regulated by the compounds which include genes INSIG1,

IDI1, SQLE, MSMO1, etc. The protein target CYP2D6, a

member of the enzyme family Cytochromes P450 (CYP), is

known to metabolise drugs53 and to play a key role in the

synthesis of steroid, cholesterol and prostacyclins.54, 55 Lit-

erature studies have shown that CYP2D6 greatly influences

the metabolism of antipsychotics drugs.56 Pathway analysis

information was also added to relate the MoA of the antipsy-

chotics. A search of an overlapping pathway was executed

on the antipsychotic cluster, where genes INSIG-1, LDLR

and protein target CYP2D6 were observed to overlap with

“steroid metabolic process pathway”. This observation com-

plies with the study by Polymeropoulos et al., in which it was

shown that genes INSIG-1 and LDLR were up-regulated by

antipsychotic drugs that also influenced the steroid biosynthe-

sis.57. While these genes show significance for the antipsy-

chotic drugs, they remain unperturbed for the other compound

sub-clusters. The neighbouring compound cluster (verapamil

and dexverapamil) of calcium channel binders are known to

have antipsychotic effects, thus large numbers of similar tar-

gets are predicted.58, 59 The genes (IDI1, SQLE, MSMO1, IN-

SIG1, MNT, SRSF7, HMGCS1 and CCR1) also have similar

gene perturbation on this sub-cluster.
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HSPH1:heat shock 105kDa/110kDa protein 1

DNAJB4:DnaJ (Hsp40) homolog, subfamily B, mem

AARS:alanyl−tRNA synthetase

HSPA4L:heat shock 70kDa protein 4−like

PPP1R15A:protein phosphatase 1, regulatory (i

DNAJA1:DnaJ (Hsp40) homolog, subfamily A, mem

HSPA1B:heat shock 70kDa protein 1B

HSPA2:heat shock 70kDa protein 2

HSPA4:heat shock 70kDa protein 4

HSPA5:heat shock 70kDa protein 5 (glucose−reg

HSPA6:heat shock 70kDa protein 6 (HSP70B’)

HSPA8:heat shock 70kDa protein 8

HSP90AA1:heat shock protein 90kDa alpha (cyto

HSP90AB1:heat shock protein 90kDa alpha (cyto

DNAJB1:DnaJ (Hsp40) homolog, subfamily B, mem

Significance

0 10 20 30 40

Fig. 7 Significance plot of top functionally related genes

contributing in the pathways “response to unfolded proteins”.

The plot represents the top 15 genes contributing with the level of

significance in the bar for the respective pathways in the MLP

analysis for geldanamycin and tanespimycin compound cluster. The

height of a bar represents -log10(geneStatistic)) of the gene

indicated on the y-axis. Unlike the overlap method for pathways

search, which uses a short list of annotated genes and targets, MLP

makes use of all the p-values obtained from LIMMA analysis to

identify gene sets enriched in small p-value. In this case, MLP

results agree with the overlap pathway method and therefore can be

used where genes and targets are not annotated with pathways in

KEGG and GO.

Furthermore, MLP indicated that the “steroid metabolic

process” pathway was significantly enriched in the antipsy-

chotic sub-cluster. Enrichment was also observed for the path-

ways “cholesterol biosynthesis process”, “sterol biosynthesis

process”, “cholesterol metabolic process”, “sterol metabolic

process” and “steroid biosynthesis process” (Figure S4). The

gene Dhcr24, as shown in the Figure S5, is predicted to be

highly significant on the ”cholesterol biosynthetic process”

and is known to code for the protein cholesterol-synthesizing

enzyme seladin-1, which agrees with the study by Crameri

et al..60, 61 Another gene in the list, G6PD, was also known

to regulate the pathway through protein sterol regulatory

element-binding proteins (SREBP).62 Studies by Iskar et al.

have shown that the genes LDLR, INSIG1, IDI1, SQLE and

HMGCS1 are responsible for the “cholesterol metabolic pro-

cess”23 (Figure S5), which is in accordance with our results.

As stated by Polymeropoulos et al. “activation of antipsy-

chotics by genes associated with lipid homeostasis is not just a

common off-target effect of these drugs but rather the common

central mechanism by which they achieve their antipsychotic

activity.”57

In the compounds clustered based upon protein target simi-

larity, compounds verepamil and dexverepamil shared protein

targets such as the hydroxytryptamine receptor, the adrener-

gic receptor, the histamine H1 receptor, the dopamine recep-

tor and the muscarinic acetylcholine receptor M4. Although

they share similar protein targets, the intensity of gene ex-

pression profiles were different indicating that the method can

clearly distinguish between close sub-clusters and thus sug-

gesting differences in their MoA. SREBP and cholesterol-

synthesizing enzyme seladin-1 were not predicted by the tar-

get prediction algorithm, as they were out of the applicability

domain.

3.3 Antidiabetic and Anti-inflammatory Drugs.

A PC3 cell line cluster (Table S2) comprising of thiazolidine-

diones (rosiglitazone and troglitazone drugs) was found to

have both antidiabetic and anti-inflammatory effects.63, 64 In

silico target prediction algorithm indicated that these com-

pounds were likely to bind to the peroxisome proliferator ac-

tivated receptor gamma (PPAR-gamma), peroxisome prolifer-

ator activated receptor alpha (PPAR-alpha) and acyl CoA de-

saturase. Spiegelman has shown the MoA of antidiabetic thia-

zolidinediones to induce activation of PPAR gamma and thus

regulate genes involved in glucose and lipid metabolism.65

Gene expression profiles of genes FABP4 and ANGPTL4 have

fold changes of 3 and 1 respectively. Studies have shown that

antidiabetic thiazolidinediones are ligands for the nuclear re-

ceptor PPAR, which exert their anti-hyperglycaemic effects by

regulation of the PPAR responsive genes and also that gene

FABP4 is rapidly up-regulated upon PPAR gamma ligand ad-

ministration; this confirms our finding of this gene showing

high fold change.15, 66 A study by Pal et al. showed that the

gene ANGPTL4 is responsible for epidermal differentiation

mediated via the PPAR protein.67

During overlap pathway analysis, genes FABP4 and

ANGPTL4 were found to share pathway “PPAR signalling”

with proteins PPAR-gamma, PPAR-alpha and acyl CoA desat-

urase. Confirming our observation, antidiabetic thiazolidine-

diones in pathway hsa03320 of the KEGG database induce

“PPAR signaling pathway” by perturbing genes FABP4 and

ANGPTL4 and PPAR proteins. This indicates that the MoA

of antidiabetic thiazolidinediones involves PPAR signalling.

There was overlap of the pathway “induction of apopto-

sis” with gene PRKCD and protein target PPAR-gamma. In

the study by Elrod and Sun, thiazolidinediones were shown

to have potential for inducing apoptosis in cancer cells by

binding to protein PPAR-gamma.68 In our study on thiazo-

lidinediones, we also observed that gene PRKCD is down-

regulated substantially when compared to other compounds in

the dataset showing selectivity for this particular gene. Hence
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suggesting gene PRKCD to be involved in the MoA for thia-

zolidinediones.

3.4 Other Compound Clusters.

Of the 8 and 11 compound clusters identified in the respec-

tive MCF7 and PC3 cell lines, our approach was able to link

the genes and targets via pathway(s) for 6 compound clus-

ters in each cell line. Some of the links (compound-genes,

compound-target and genes-pathway-target), however, lacked

literature support (Table S1 for MCF7 and S2 for PC3). The

target prediction similarity data also produces many single-

tons, which are compounds that do not share any targets with

remaining compounds in the set, thus providing a limited num-

ber of clusters to be investigated.

4 Conclusions

Combining target-based compound similarity with corre-

sponding gene expression information provides a better under-

standing of compound cluster behaviour, both on the bioactiv-

ity level and on the transcriptional level. Ideally, any target-

driven compound cluster can be investigated using this analy-

sis flow, but it is more logical to prioritize clusters with com-

pounds that share at least half of the targets. This compound

cluster selection requires choosing an arbitrary cut-off for the

Tanimoto similarity score, which is 0.5 in this case. Studies

by Hert et al. and Martin et al. show mean nearest neighbour

similarity across different activity classes are between 0.3 and

0.7, and therefore 0.5 is a reasonable value to describe similar-

ity.69,70 Increasing this cut-off value would mean filtering out

other compound clusters for the next level of analysis, while

decreasing this value would allow for more compound clus-

ters to be analysed. However, in practice, the choice largely

depends on which compound sets are of most interest to the

researcher.

Analysis was performed upon all selected homogeneous

target-driven compound clusters, but focus was placed on the

MoA of three compound clusters; benzoquinone antineoplas-

tic antibiotics, antipsychotic drugs and antidiabetic and anti-

inflammatory drugs.

Analysis of the benzoquinone antineoplastic antibiotic drug

sub-cluster gave insight into their MoA through the HSP genes

and the HSP90-alpha protein. Further pathway study directed

us to the underlying MoA though ”antigen processing and

presentation” and ”response to the unfolded protein”. In the

sub-cluster study of antipsychotic drugs, our integrated ap-

proach was able to narrow down the MoA of the compound

to protein target CYP2D6 and genes INSIG-1 and LDLR. In

addition, the pathway analysis confirmed the MoA through

”steroid metabolic process pathway”. Furthermore, in the an-

tidiabetic and anti-inflammatory drugs sub-cluster, the MoA

of the compounds was found to involve genes FABP4 and

ANGPTL4 and protein PPAR and pathway analysis confirmed

”PPAR signalling” as being involved in the underlying MoA

of these compounds. All these analysis were confirmed by

literature evidence. Note that these studied compound clus-

ters (antipsychotic drugs, antidiabetic and anti-inflammatory

drugs) along with other CMap compounds, were selected to

represent a broad range of activities not necessarily related to

oncology, and were profiled only in cancer cell lines due to

practical limitations. An assessment of the extent of the re-

sults to be cell line specific is therefore not feasible here.

Although a large amount of information is present in pub-

lic databases, KEGG and GO lack annotations.51 MLP analy-

sis thus provided the statistical information required to enrich

genes in the pathways of interest. This approach enabled us to

gain valuable insight into known MoA of compounds and also

provides a means by which new (or previously unestablished)

MoA can be discovered.

This paper therefore presents a pragmatic approach to

dataset integration, involving relatively few stages of statis-

tical analysis. The method was designed to capture the differ-

ent associations (if they exist) between compounds, genes and

targets, in order to gain insight regarding the MoA of com-

pounds. This approach is not only limited to the use of gene

expression and target prediction data, however; the technique

can be more generally used to find links between two datasets

measured against the same set of observations. The technique

may also be improved by integrating more sophisticated simi-

larity functions, which could more accurately predict the clus-

tering of compounds based upon the affinity to common tar-

gets and thus provide an even more powerful predictive tool.
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and H. Göhlmann, Bioinformatics, 2007, 23, 2897–902.

34 G. V. Paolini, R. H. B. Shapland, W. P. van Hoorn, J. S. Mason and A. L.

Hopkins, Nat. Biotechnol., 2006, 24, 805–815.

35 P. Willett, J. Barnard and G. Downs, J. Chem. Inf. Model., 1998, 38, 983–

996.

36 R. A. Fisher, J. Roy. Statist. Soc., 1922, 85, pp. 87–94.

37 G. K. Smyth, J. Michaud and H. S. Scott, Bioinformatics, 2005, 21, 2067–

2075.

38 G. K. Smyth, Stat. Appl. Genet. Mol. Biol., 2004, 3, 397–420.

39 Y. Benjamini and Y. Hochberg, J. Roy. Statist. Soc. Ser. B, 1995, 57, 289–

300.

40 S. Liggi, G. Drakakis, A. E. Hendry, K. M. Hanson, S. C. Brewerton,

G. N. Wheeler, M. J. Bodkin, D. A. Evans and A. Bender, Mol Inf, 2013,

32, 1009–1024.

41 S. Liggi, G. Drakakis, A. Koutsoukas, I. CortesCiriano, P. MartnezA-

lonso, T. E. Malliavin, A. Velazquez-Campoy, S. C. Brewerton, M. J.

Bodkin, D. A. Evans, R. C. Glen, J. A. Carrodeguas and A. Bender, Fu-

ture Med. Chem., 2013, Submitted.

42 N. Raghavan, D. Amaratunga, J. Cabrera, A. Nie, J. Qin and M. McMil-

lian, Journal of Computational Biology, 2006.

43 N. Raghavan, A. De Bondt, W. Talloen, D. Moechars, H. W. H. Göhlmann
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