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ABSTRACT 

Since aberrant cell signaling pathways underlie majority of pathophysiological morbidities, 

kinase inhibitors are routinely used for pharmacotherapy. However, most kinase inhibitors suffer from 

adverse off-target effects. Inhibition of one kinase in a pathogenic signaling pathway elicits multiple 

compensatory feedback signaling loops, reinforcing the pathway rather than inhibiting it, leading to 

chemoresistance. Thus, development of novel computational strategies providing predictive evidence to 

inhibit specific set of kinases to mitigate an aberrant signaling pathway with minimum side-effects is 

imperative. First, our analyses reveal that many kinases contain intrinsically disordered regions, which 

may participate in facilitating protein-protein interactions at the kinome level. Second, we employ 

kinome-wide approach to identify intrinsic disorder and streamline a methodology that adds to the 

knowledge of therapeutically targeting kinase cascades to treat diseases. Further, we find that within the 

kinome network, some kinases with intrinsically disordered regions have high topological score, likely 

acting as kinome modulators. Third, using network analysis, we demonstrate that 5 kinases emerge as 

topologically most significant, forming kinome sub-networks, comprising of other kinases and 

transcription factors that are known to serves as drivers of disease pathogenesis. To support these 

findings, we have biologically validated the interplay between kinome modulators SRC and AKT kinases 

and uncovered their novel function in regulating transcription factors of the SMAD family. Taken 

together, we identify novel kinome modulators driven by intrinsic disorder, and biologically validate the 

thesis that therapeutic disruption of the function of kinome modulators engaged in regulatory cross-talk 

between disparate pathways can lead to reduced oncogenic potential in cancer cells. 

 

INTRODUCTION 

Kinases and phosphatases control phosphorylation-dephosphorylation cycles of proteins, 

regulating a myriad of biological processes, including cell-growth, differentiation and behavior.1 In 

human kinome, there are 518 kinases comprising of 10 groups based on their sequence and structural 

features.2 Kinases phosphorylate more than 90% of cellular proteins at least once during their lifetime, 
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altering their activity, sub-cellular localization, turn-over and macromolecular interactions, thereby, 

affecting intracellular signaling pathways.3 Thus, dysregulation of kinase function underlie diseases and 

pathological conditions, including metabolic and neurological disorders, infectious diseases, and most 

importantly, cancer.4, 5 Therefore, protein kinase inhibitors (PKIs) are widely used to inhibit aberrant 

kinase activity for therapy. Unfortunately, poor PKI selectivity and low efficacy associated with acquired 

resistance due to compensatory signaling within or across kinase pathways have limited their use in the 

clinic.   

The major drawbacks in using known kinase inhibitors are as follows. First, the ATP cleft 

targeted by type I PKIs display very high promiscuity due to the conserved ATP binding site and requires 

a high dose to be effective, causing severe toxicities.6-9 Second, while the competitive non-ATP type II 

and covalent PKIs are specific and efficient, they have met with adverse side effects, including toxicity, 

due to irreversible covalent binding to unanticipated kinases.10-14 In contrast, purely allosteric PKIs, 

generally small molecules, targeting allosteric region outside the catalytic domain of the kinase have high 

selectivity and therefore are being intensely sought.15-20  Thus, identifying allosteric PKIs remains an 

active area of research that continues to evolve.21 Therefore, identification of novel targeting approaches 

to critical kinases within the kinome is imperative to reduce toxicity and poor efficacy.14  

Apart from the above limitations, the pleotropic action of PKIs affects activity of multiple 

kinases, perturbing kinome-level functions. It has been postulated that these off-target effects can be 

circumvented by targeting protein-protein interaction (PPI) interfaces to abrogate pathogenic kinase-

kinase interactions (KKIs).22, 23 Indeed, since PPI surfaces are unique on each signaling kinase, targeting 

PPIs by peptides/peptidomimetics can be highly selective, which reduces oncogenic signaling.22-27 Taken 

together, these observations indicate that identification and targeting of functionally important allosteric 

flexible regions coupled with disruption of PPIs at the kinome level is required to efficiently dampen 

pathogenic signaling cascades driven by aberrant kinase activity.  

Functionally important allosteric flexible stretches of protein are often embedded in intrinsically 

disordered regions (IDRs), playing important regulatory roles in protein structure and function.28  IDRs 
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also facilitate PPI networks by virtue of their structural plasticity, giving higher functional adaptability to 

a protein and, in turn, to the entire PPI network.29, 30 By the same token, IDRs in kinases provide structural 

adaptability and versatility while increasing specificity, allowing stringent substrate discrimination.31, 32 

Indeed, IDRs, particularly adjacent to phosphorylation sites on kinase substrates (which will be a kinase 

in KKI network), enhance reciprocal accessibility and adaptability, facilitating kinase action.33 These 

IDRs in kinases likely enhance their structural and functional repertoire, enabling multiple disparate 

interactions with diverse kinase substrates (or other kinases); a property central to forming intricate, yet 

efficient, regulatory signaling kinase interaction networks.34-37 Thus, it is plausible that pathogenic KKI 

networks can be disrupted by therapeutically targeting IDRs, making them ideal drug targets.38-41 

Unfortunately, since KKI networks themselves remain poorly defined, the role of IDRs in 

mediating KKIs and their functions in kinome networks remains unknown. While dynamic nature of the 

kinome and its reprogramming in response to single kinase inhibitors have been studied, the concept of 

entire human kinome as a singular entity for targeting in cancer therapy has only recently emerged.42-48 

Indeed, the emerging concept that cancer treatment will require a cocktail of kinase inhibitors together 

with other drugs reinforces the thesis that cancers will have to be targeted at the kinome level.42, 44, 49 

Since intrinsic disorder facilitate PPIs, we hypothesize that identifying IDRs will uncover important 

kinases forming hubs in KKI networks that will prove vital to understanding the inner-workings of KKI 

networks, which by extension, can be used to develop targeted drugs.  

Therefore, in the present study we have performed a system wide analysis of the human kinome 

utilizing protein intrinsic disorder as a tool to reveal IDR driven important kinase hubs, their KKI 

networks, and defined their distinct roles in the pathogenesis of cancer and other diseases. Our study 

reveals that 417 of 504 human kinases (83%) have IDRs, prompting us to build a KKI network to 

elucidate the role of IDRs at the kinome level. Further investigation of KKIs reveals a unique subset of 

kinases involved in progression of specific diseases.  We also discover a subset of kinases that emerges as 

critical hubs driving KKIs via phosphorylation mediated activation, a cardinal feature that drives 

pathogenesis of cancer and other diseases. Based on our predictive model, we propose and validate a 
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multiple kinase sub-network in lung cancer cells and elucidate the relationship between critical kinome 

modulators SRC (proto-oncogene tyrosine-protein kinase Src), a member of the TK group, and AKT 

(RAC-alpha serine/threonine-protein kinase), a member of the AGC group. Our analysis also reveals a 

new role for SRC in the regulation of SMAD (also known as MADH or mothers against decapentaplegic 

homolog) activity that influences proliferation of lung cancer cells. We particularly show that while SRC 

and SMAD do not interact physically, their presence in our KKI network was sufficient to assert direct 

functional role in cell processes. Because such functional interactions cannot be revealed by proteomic 

approaches, we believe, this strategy also provides a novel method to identify functional molecular cross-

talk, which is not based on physical association, yet may be critical in drug targeting.  In summary, we 

have performed a first of its kind systems analysis of the human kinome, utilizing intrinsic disorder as an 

operating function, and demonstrated that IDRs facilitate KKIs. Using this approach, we propose and 

validate a new functional interaction, demonstrating SRC dependent SMAD inactivation, making this 

network a viable drug target in treating cancer with high SRC activity. 

MATERIALS AND METHODS 

Derivation of Kinases and Disorder Prediction 

List of 518 kinases was compiled as published by Manning et al.2 Kinase domain information and 

FASTA sequences were retrieved from UniProt (www.uniprot.org).50 Proteins without confirmed kinase 

domains in the UniProt were not considered for the disorder prediction. Disorder analysis for the 504 

kinases was performed using the PONDR-FIT software.51 The software assigns a disorder score to each 

amino acid residue of a protein. Residues with disorder scores of greater than 0.5 were considered to be 

residues with structure breaking propensities, or intrinsically disordered residues. We defined an IDR as a 

long disordered region with a stretch of at least 25 such intrinsically disordered residues. 

Validation of Disorder Prediction 

IDRs prediction was performed using two different methods. First, crystal structures of 11 different 

kinases, one from each kinase group, were visualized using PyMOL. There was a complete overlap of 

predicted IDRs and missing regions from the crystal structures. Second, MobiDB52, 53, a database tool of 
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protein disorder and mobility annotation was used to compare predicted IDRs and all crystal/NMR 

structures of a given kinase deposited in Protein Data Bank (PDB) database (www.rcsb.org)54. A 

consensus structured regions (i.e., combination of all deposited crystal structures of a given kinase) were 

overlapped with predicted IDRs.  The predicted IDR were interrogated for concordance with 

experimentally validated protein structures.   100% concordance was interpreted as an IDR completely 

overlapping with absence of structure in the protein. For example, an IDR of 100 amino acid length with 

20 of its residues overlapping a consensus structure was considered to be having 80% concordance with 

PDB.  

Derivation of Kinome PPIs and network analysis 

Experimentally validated protein-protein interaction (PPI) data for the 518 kinases comprising 10 groups 

was compiled using manual data curation and various softwares including Database of Interacting 

Proteins (DIP)55-57, Interologous Interaction (I2D) Database58, 59, InnateDB60, 61, IntAct62, MatrixDB63, 64, 

The Molecular INTeraction Database (MINT)65-68, Molcon (http://www.ebi.ac.uk/Tools/ 

webservices/psicquic/view/main.xhtml), The Microbial Protein Interaction Database (MPIDB)69 and 

BioGRID70, 71.  For intragroup associations, PPI information for each kinase from an individual group was 

overlapped by VENN selections with PPI information of all other kinases from the same group (e.g. AGC 

group kinase with other AGC group kinases).  Intergroup associations were identified by performing 

VENN selections of individual kinases from each of the 10 groups with kinases from every group (e.g. 

AGC group kinase with all kinases from remaining 9 groups). Individual PPI networks for intra and 

intergroup associations were constructed and visualized using Cytoscape.72, 73 Network analysis was 

performed to identify topologically significant hubs from the PPI networks using Network Analyzer74 and 

CentiScaPe plug in tools.75 

Disease enrichment analysis of the kinome 

Kinases from the different groups were analyzed using the Core Analysis option in the IPA software 

(Ingenuity® Systems, www.ingenuity.com). Disease enrichment profiles were generated for each group 

of kinases by selecting “Diseases and Disorders” from the “Customize Chart” function under the “Disease 
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and Function” output. Heat-maps representing distribution of each disease across kinase group were 

generated using P-Values for individual diseases and groups (Supplementary Table S2). 

Cell Culture, transfection, and gene assays 

H1650 (ATCC# CRL-5883) and H292 (ATCC# CRL-1848) cells were cultured in RPMI medium 

(Invitrogen) with 10% fetal bovine serum and 5% mixture of penicillin G, streptomycin and Plasmocin 

(Invitrogen) in a 5% CO2 incubator at 37 °C. Transient transfections into H292 cells were done using the 

PEI method.76 Briefly, 6-well plates at 30–50% confluence were transfected with up to 4µg of myr-AKT 

(a kind gift from Dr. Sellers, Harvard Medical School, Dana-Farber Cancer Institute) or (CA-SRC 

Addgene Plasmid 13660). 2µg SBE4-Luc (Addgene Plasmid 16495) was used as an artificial reporter of 

SMAD activity. Activity response was normalized with pBV-Luc empty vector (Addgene Plasmid 

16539). Total DNA was normalized with corresponding amounts of pCDNA as a negative control. Two 

days after transfection, luciferase assays were performed using 50 µl of the supernatant. The light units 

were assayed by luminometry (MLX, Microtiter Luminometer, DYNEX, McLean, Virgina, USA) 

Cell proliferation assay with inhibitor treatments 

Cell proliferation assays were performed using Cell Counting Kit-8 (Fluka, Biochemika). 1.2 x 104cells 

were plated in each well of a 96 well plate and cultured in RPMI growth medium as described above. 16 

hours after plating the cells, growth medium was removed. Cell culture medium containing 500nM of Src 

specific inhibitor Dasatinib (BMS-354825; Selleck chemicals, Houston, USA) or 100nM of AKT specific 

inhibitor MK-2206 2HCl (Selleck Chemicals) or both was added to appropriate wells. DMSO was used as 

a toxicity test for negative controls. 24 hours after drug treatment, the cell numbers in triplicate wells 

were measured as a function of absorbance (450 nm) of reduced WST-8 (2-(2-methoxy-4-nitrophenyl)-3-

(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt). 

Western blots analysis 

Proteins were isolated after either the inhibitor treatment (Dasatinib) or transfections (with CA-SRC) and 

separated by SDS-PAGE on a 10% gel and electroblotted to nitrocellulose membrane (0.1µm; 

Inivtrogen). Blots were blocked with either 5% TBST (10 mM Tris, pH 8, 150 mM NaCl, 0.1% Tween 
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20) or 5% milk and incubated in primary antibody to p-AKT (#9271; Cell Signaling), p-SMAD2/3 

(11769; Santa Cruz) or β-actin (A5060; Sigma-Aldrich) overnight at 4°C. Primary antibodies to p-AKT 

and β-actin were used at 1:1000 dilutions. p-SMAD2/3 antibody was used at 1:500 dilutions. Peroxidase-

conjugated AffiniPure Goat Anti-Rabbit IgG secondary antibody (Jackson ImmunoResearch 

Laboratories, INC.) was used at 1:10,000 concentration. Blots were developed by chemiluminescence 

(Pierce Biotechnology) and autoradiographed. Cells were inhibited with 500nM of Dasatinib - BMS-

354825 (specific inhibitor of SRC) for 15 mins following which, proteins were isolated and analyzed as 

mentioned above. 

 

RESULTS 

Kinases engage in transient interactions to phosphorylate their target proteins, eliciting myriad 

cellular signaling events. Because hyper-activation of kinases causes aberrant signaling in several 

pathologies, inhibiting kinases has emerged as a therapeutic strategy.14 However, PKIs have met with 

limited success because of their target promiscuity and toxicity. Recognizing IDRs as a structural feature 

influencing kinase activity that can be exploited as drug targets33, 77-81, we performed structural and 

functional analyses of the kinome, investigating how IDRs influence KKIs and KKI networks that may 

involve non-kinase proteins (as shown in the pipeline; Figure 1). We designed a strategy to identify 

functionally most relevant kinases using three parametric filters: intrinsic disorder, topological 

significance via network analysis, and disease enrichment analysis. We identified 5 kinases that were 

consider being most significant, thus called “kinome modulators”, which likely act as hub proteins82, 

herein called hub-kinases, central to modulating KKI network structure and function at the kinome level 

(Figure 1).  

Prevalence of intrinsic disorder in the Kinome 

We analyzed 504 kinases and computationally predicted intrinsic disorder in their structure using 

PONDR-FIT.28, 51 Our analyses revealed that 417 of the 504 kinases (83%) contain IDRs (Figure 2A; 
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Supplementary Table S1). Intrinsic disorder was observed in kinases amongst all 10 kinase groups.  At 

least 70% of kinases in each group have IDRs with the exception of RGC group comprising of only five 

kinases2 (Figure 2A). To validate the prediction of IDRs in kinases, a kinase with solved structure that 

had missing segments was examined. A hallmark of an IDR is its inability to yield discernible electron 

density required to resolve its three-dimensional structure.83 Upon querying the Protein Data Bank (PDB) 

database, SRPK2, a Serine/Arginine rich protein-specific kinase of CMGC (cyclin-dependent kinase 

[CDK], mitogen-activated protein kinase [MAPK], glycogen synthase kinase [GSK3], CDC-like kinase 

[CLK]) group implicated in replication of Hepatitis B Virus,84, 85 was found to have its crystal structure 

coordinates deposited (PDB-ID: 2X7G) with several regions missing, likely due to lack of crystallization. 

Our disorder prediction revealed that SRPK2 has two long IDRs, one at its N-terminus (amino acids 1-62) 

and the other in the middle of its kinase domain (amino acids 242-516)  (Supplementary Table S1). 

Likewise, analysis of crystal structures of 10 other kinases revealed regions that did not crystalize 

corresponded to our prediction of IDRs (Supplementary Figure S1). Using PyMol,86 a tool used for 

crystal structure visualization, the rendering of coordinates of the solved crystal structure of all eleven 

kinases revealed that our predicted IDRs in these kinases indeed matched with the missing residues in 

these structures, providing a proof of principle to our prediction of IDRs (Figure 2B).  

To further support our IDR prediction, we correlated the degree of concordance between 100 

random IDRs derived from 43 different kinases and their existing structural features present in a 

comprehensive database tool called MobiDB52, 53. This database predicts protein disorder and mobility 

annotations (using what methods??), and superimpose them on to the structural features derived from X-

ray and NMR studies. The tool combines all known crystal structures of a given protein to generate 

consensus experimentally validated structured regions. We analyzed 100 random IDRs from 43 different 

kinases and plotted the percentage of the amino acid residues which were in concordance with the 

experimentally validated crystal structures (see materials and methods). The analysis revealed that 66% of 

the IDRs had a complete overlap with unstructured regions derived from PDB structures, while 85% of 

the IDRs had 80% or higher overlap. (Figure 2D; Supplementary Table S8). Having established the 
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validity of the IDR prediction by correlating the absence of IDRs in known crystal structures, we used this 

method and predicted that 83% of the kinases contained IDRs, suggesting that IDRs are common in 

kinases. 

Aberrant KKIs Underlie Cancer Pathogenesis 

Intrinsic disorder in proteins is functionally important.87 However, Intrinsic disorder and its 

function at the kinome level remain undetermined. We probed the entire kinome and identified kinases 

that are rich in IDRs.  Using this information, we performed diseases enrichment analysis using ingenuity 

pathway analysis (IPA) and revealed that subsets of kinases were associated with specific diseases (Figure 

3A, Supplementary Table S2). Since aberrant cell signaling by dysfunctional kinases is associated with 

cancer and myriad other pathologies,88 it is plausible that IDRs within these kinases may participate in 

driving the pathogenesis. Therefore, we hypothesized that dysfunctional kinases that are rich in IDRs 

drive aberrant signaling via KKIs driving disease pathogenesis.  To test this hypothesis, we examined 

whether individual kinases and kinase groups that are enriched in IDRs may represent a group or groups 

of disease conditions. Indeed, our analysis revealed cancer to be the most significant disease driven by 

aberrant kinase function (Figure 3A). Three kinase groups (TK – Tyrosine Kinase, AGC – containing 

PKA/PKG/PKC, and Atypical kinases) are most significantly associated with cancer. Of the three groups, 

the TK-group of kinases are most significantly associated with cancer (77 of 90 kinases, Supplementary 

Table S2), indicating that tyrosine kinases are central to cancer pathogenesis, supporting previous 

findings in the clinic89-91. TK-group of kinases were also found to participate in various other diseases and 

disorders (Figure 3A), suggesting that there may be a strong association between certain pathogenic 

process with this unique sub-set of kinases.  

Dysregulation in intricate gene and protein networks underlie disease pathogenesis.92 Because 

kinases are highly implicated in a number of diseases and disorders, we hypothesized that enrichment of 

cancer as a top disease may be due to dysregulated KKI networks. To test this hypothesis, we first 

developed PPI networks of kinases interacting with other kinases from the same kinase group (intra-group 

KKIs). TK group had the highest number of interactions; 87% of TK-group kinases interacted amongst 
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themselves, resulting in a total of 292 interactions (Figure 3B & C), indicating that functions of TK-group 

kinases are widely influenced by interactions amongst themselves. For the entire kinome, 612 intra-group 

interactions were identified, where both the participating kinases in a given interaction belonged to the 

same group (Figure 3C & Supplementary Table S3). Remarkably, 84% of kinases participating in these 

intra-group interactions contained IDRs (Supplementary Tables S1 and S3), supporting the notion that 

IDRs in intra-group KKIs that contribute to biological function when disrupted may lead to diseases. 

Kinases engage in Inter- and Intra-Group Interactions Utilizing Disordered Regions 

The kinase groups are categorized based on their functional and structural similarities.2 We tested 

the hypothesis that intra-group kinases, having similar domain structures, are likely to provide 

complementary surfaces that may interact with each other, which in turn, would lead to a higher number 

of interactions as compared to interactions between kinases from different groups (inter-group). 

Surprisingly, our results show that approximately 2.5 times more (1498 interaction) inter-group KKIs 

were identified as opposed to 610 intra-group interactions, indicating that KKIs utilize distinct and 

divergent regions of the kinases to engage in physical and functional interactions. Taken together, for 

both types of interactions, we identified 2108 interactions that comprised 385 kinases (Supplementary 

Table S3). Since 83% of these 385 kinases consisted of IDRs (Supplementary Table S3), the likelihood of 

IDRs within these kinases contributing to these interactions is high. We tested this possibility by 

analyzing all 501 kinases for molecular recognition features (MoRFs)93, which are short regions within 

IDRs that facilitate PPI via disorder-to-order transition. We predicted a total of 2129 MoRFs within 501 

kinases (Supplementary Table S9). We also observed a positive relationship between percentage 

disorderliness of a kinase and the number of predicted MoRFs.(Figure 4B), providing a possible 

mechanism of how IDRs can contribute to the 2108 KKIs. These KKIs had IDRs on interacting surfaces 

of both kinases, or an IDR on one kinase surface (Supplementary Table S3). Detailed analysis revealed 

that 90% of the interactions had at least one disordered region, further suggesting that IDRs may play a 

role in forming KKI networks (Figure 4A, Supplementary Table S3).  
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Our analysis revealed that 77% of the kinome participates in KKI (Set-A; Supplementary Table 

S3), which are associated with vital biological processes. By the same token, the remaining 23% of 

kinases in the kinome (Set-B; Supplementary Table S3) does not participate in KKIs; however they play 

important roles in cellular processes and disease pathogenesis. Therefore, to identify and distinguish 

functional roles of these two distinct set of kinases, we subjected these two sets to differential disease 

enrichment analysis using Ingenuity Pathway Analysis (IPA) software.  Indeed, cancer was the most 

enriched disease driven by KKIs, while the set of kinases that did not engage in KKIs were involved in 

diseases that did not feature “cancer” in the top five disease groups (Figure 4C). Taken together, our 

results show that a distinct group of kinases drives pathogenesis of specific diseases, and that there is a 

considerable crosstalk between kinases likely involving IDRs in KKIs. More importantly, 90% of KKIs 

comprise of IDRs (Figure 4A, Supplementary Table S3), and aberrant interactions in these KKIs, in part, 

underlie pathogenesis of cancer. Our results provide preliminary but critical insights that will help design 

molecules that target KKIs for pharmacotherapy of cancer. 

Topological analysis reveals SRC and AKT as two of the most significant kinome modulators 

Having established that KKIs play a major role in the pathogenesis of cancer, critical hub kinases 

driving KKIs were sought as they may be used as drug targets. From graph theory, for kinases to be 

defined as hubs they have to interact with a high number of other kinases, thereby radiating a network at 

the systems level. It is possible that identification of such network involving multiple kinase as well as 

non-kinase hub proteins may become ideal for therapeutic targeting.94 Therefore, we sought to identify 

these hub kinases (HKs). Our approach comprised of a three-pronged strategy that involved all10 kinase 

groups (Figure 5A). In the first set X, we identified 92 HKs that are highly interacting intra-group kinases 

(Supplementary Table S4). In the second set Y, we identified 84 HKs that are highly interacting inter-

group kinases (Supplementary Table S4). While the third set Z of 76 HKs were derived by applying 

topological analysis, using degree centrality as a measure,95, 96 to each group’s KKIs (Supplementary 

Table S4)(Figure 5Ai). We further obtained a fourth set containing 40 HKs common to all the above three 

sets (Figure 5Aii). This is an enriched set of HKs that likely engage in critical cellular functions and 
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influence the kinome.  Further, a secondary topological analysis (Figure 5Aiii) was performed for the 40 

HKs, revealing a final list of 5 most significant kinases that we call kinome modulators (KMs). These 

KMs were identified based on their degree centrality. Figure 5B depicts the kinase group, the degree 

centrality and the total number of interactions for the 5 KMs. These 5 KMs participated in a total of 174 

KKIs and involved 127 unique kinases that make up approximately 25% of the kinome (Supplementary 

Table S5). A TK-group member, SRC, emerged as the most significant KM amongst the 5 KMs. 

Supporting the significance of IDRs in kinases, 4 of the 5 KMs showed IDR enrichment, highlighting the 

importance of IDRs in imparting versatile functions not only to the function of the kinase protein,  but to 

the entire kinome. 

Since kinases are considered as signal transducers, apart from extensive cross-talk mediated by 

KKIs, interaction of kinases with non-kinase substrate proteins also have crucial effects on a variety of 

cellular processes. Therefore, interaction of non-kinase proteins within the sub-network formed by 5 KMs 

was sought at the proteome level.  Analyses of non-kinase proteins facilitating functional interactions of 

the 5 KMs at the proteome level identified a proteome-wide interactome consisting of 1200 interactions 

with 963 unique proteins (Fig 5C; Supplementary Table S5). Since cancer showed up as the most affected 

diseases driven by KKIs, causing uncontrolled growth, proliferation, dysregulation in cell death and 

survival pathways,97, 98 we hypothesized that proteins interacting with KMs may involve proteins 

participating in providing robustness to the cell survival machinery. To test the hypothesis, we subjected 

the interactome of the 5 KMs to disease and functional enrichment. Indeed, disease enrichment profile 

revealed cancer as the most enriched disease, while functional enrichment identified “Cell Death and 

Survival” as the most enriched function, indicating that the KMs exert cancer pathogenesis via its 

interactome comprising of 963 proteins (Supplementary Tables S6 and S7). Network analysis on this 

interactome using IPA revealed significant number of non-kinase proteins that likely synergize with the 

KMs and help drive cancer pathogenesis. 8 of these proteins that interacted with at least 4 of the 5 KMs 

(Figure 5D) were considered to be functionally most significant. Interestingly, 2 of these proteins were 

transcription factors SMAD3 and STAT3 (Signal Transducer and Activator of Transcription 3) critical in 
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driving oncogenesis99-102 (Figure 5D, highlighted). Thus, the interactions of kinases with non-kinase 

proteins revealed a putative network that bridged kinases with target transcription factors, providing an 

ideal entrée to identifying target molecules in cancer treatment. Indeed, STAT3 is a well-established 

target for cancer therapy.102, 103 Likewise role of SMAD3 in cancer is well established100. Taken together, 

our analysis identified 5 KMs, which emerged from 518 kinases, as interacting directly with 25% of the 

kinome, influencing cancer pathogenesis via KKIs. Importantly, our studies demonstrated that multiple 

KMs interact with important transcription factors, expanding the repertoire of possible kinome sub-

networks that may influence critical cellular processes.  

Two regulatory hub kinases, SRC and AKT relay inhibition of SMAD activity 

Our KKI network analysis revealed a physical interaction between the two KMs, SRC and AKT 

kinases, representing TK and AGC groups respectively104. These two kinase groups play a significant role 

in driving pathogenesis of myriad diseases including cancer91, 105 (Figure 3A). Therefore, we hypothesized 

that SRC and AKT, being KMs, engage in the formation of a functional sub-network. To test this 

hypothesis, we interrogated the existence of such a sub-network that would underlie a physiological 

process in vivo. To achieve this goal, first, we independently inhibited SRC and AKT activity by dasatinib 

and MK-2206 respectively in a highly proliferative H292 human lung cancer cell line. While both 

reduced cell proliferation up to ~50%, simultaneous inhibition of both SRC and AKT further reduced 

proliferation of the H292 human lung cancer cells significantly by ~70% (Figure 6A). Our results 

reinforce the concept that a sub-network driving cell proliferation was being modulated by the two KMs 

SRC and AKT kinases, targeting of which abrogated cell proliferation. Second, to further confirm our 

hypothesis that AKT and SRC form a functional sub-network, we used H1650 lung cancer cell line with 

very high AKT (due to loss of PTEN) and SRC activity (due to EGFR exon 20 deletion).106  We 

examined the SRC-AKT crosstalk in H1650 lung cancer cells. Indeed, simultaneous inhibition of these 

two KMs significantly reduced proliferation of cells despite having hyperactive AKT and SRC (Figure 

6B), providing a novel clinical rationale that a combination of SRC and AKT inhibitors may be a superior 

therapeutic strategy for treating lung cancer patients. 
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Although inhibition of SRC and AKT in our KKI network revealed functional relatedness 

between these two KMs, we also wanted to test whether SRC could influence the two transcription factors 

STAT3 and SMAD3 present in our network (Figure 5C). While SRC mediated STAT3 activation is 

known,107, 108 the relationship between SRC and SMAD3 remains unexplored.  Interestingly, although our 

analysis revealed that SMAD3 is a part of our sub-network, it does not interact with SRC kinase directly. 

However, since SRC is a part of the sub-network, we hypothesized that activity of SMADs was indirectly 

influenced by SRC. To test this hypothesis, we overexpressed constitutively active form of SRC (CA-

SRC) and examined the role of SMADs by measuring the luciferase activity of an artificial promoter-

reporter plasmid comprising multiple canonical SMAD Binding Elements (SBE-promoter)109 (Figure 6C). 

CA-SRC significantly inhibited SBE-promoter activity by 60% (Figure 5C, lane 3), suggesting an indirect 

effect of SRC on SMAD mediated transcriptional activity. To define how SRC activity was relayed onto 

SMAD, most likely via an intermediary protein, we performed the following experiment. Given that 

inhibition of SMAD by AKT is well established110, 111 and SRC directly regulates AKT in our sub-

network,104 we tested the hypothesis that inhibition of SMADs by CA-SRC may be, in part, mediated via 

AKT signaling.  Supporting this concept, we discovered that dasatinib mediated inhibition of SRC 

activity indeed reduced p-AKT levels in H292 and H1650 lung cancer cells (Figure 6D). To further 

confirm this result, we over-expressed a constitutively active form of AKT called myr-AKT 

(myristoylated-AKT). Increasing concentration of myr-AKT significantly decreased SMAD-mediated 

transcriptional activity by ~60% (Figure 6E) consistent with previous reports.110, 111 While overexpression 

of CA-SRC increased p-AKT levels, it decreased p-SMAD2/3 levels (Figure 7A), indicating that SRC is 

likely mediating its inhibitory activity on SMAD2/3 via activation of AKT. Taken together, we validated 

the proposed model of a sub-network comprising of KMs and transcription factor SMAD2/3 (Figure 7B), 

confirming our newly predicted relationships between the KMs and their target proteins despite lack of 

physical interactions. Taken together, we demonstrate that top KMs are able to regulate each other in a 

sub-network, driving tumorigenic properties of lung cancer cells via transcription factors. This 
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coordination between kinase hubs and transcription factors can be exploited to elicit therapeutic benefits 

in lung cancer patients. 

 

DISCUSSION AND CONCLUSIONS 

Recent large scale systems level proteomic studies have revealed that most pathological 

conditions are driven by perturbation in PPIs at the network level, including interactions amongst 

kinases.112-114 As a result, current approaches of targeting one kinase in a signaling pathway are not 

sufficient to inhibit pathogenic signaling. Moreover, sustained use of kinase inhibitors not only show 

toxicity due to off-target activities, but also elicits de novo signaling feedback loops leading to dynamic 

rewiring of kinase signaling cascades,46, 47 reinforcing aberrant signaling rather than suppressing it. Thus, 

there is an unmet need to understand the signaling networks at the kinome level. For this purpose, 

identifying and targeting hub kinases or kinome modulators within the kinome, for therapeutic ends is 

imperative.  

In the present study, using structural informatics on the entire human kinome, we have discovered 

that IDRs may play a significant role in expanding KKI repertoire. It is plausible that the inherent 

structural and functional plasticity of the IDRs that are present in the proteins may readily rewire 

signaling associated with pathogenesis of various diseases as speculated before33, 38, 51, 115. Our analysis 

will prompt further investigation to establish causative relationship between IDRs and KKIs. Moreover, 

the dynamic rewiring of the kinome signaling via KKIs following chemotherapy is an area of active 

research46, 47, 116-118. These aberrant yet robust alternative signaling pathways activated following 

chemotherapy may, in part, emanate from such rewiring potential of KKI via IDRs, causing 

chemoresistance. Such hitherto unexplored mechanism needs to be considered to understand and mitigate 

chemoresistance. These IDRs are therefore potential drug target regions residing and functioning within 

critical hub kinases. Our analysis also reveals an unprecedented amount of cross-talk within the kinases 

themselves, contributing to diseases pathogenesis and progression. Combining computational and systems 

biology approaches with extensive data-mining, we have identified and validated the biology of a KKI 
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sub-network comprising SRC and AKT.  Our analysis uncovered a new role of SRC kinase in modulating 

SMAD activity via AKT in lung cancer cells. Such functional kinase-transcription factor interactions with 

no direct physical interactions are thus readily detected by our approach, filling a significant technical 

gap, which will complement proteomic approaches that are designed to identify only direct PPI based 

functional networks.  

IDRs and their ability to confer pliancy to the functional proteome potentiate PPIs and increases 

functional repertoire of the proteins in various signaling cascades.29, 30 However, the presence of IDRs and 

their potential roles in the human kinome had remained hitherto unexplored. Given the versatility of 

kinases and their ability to affect virtually all signaling pathways, herein we performed structural analysis 

of the human kinome.  Our analyses revealed that 83% of human kinases have IDRs, supporting the 

notion that presence of IDRs may render kinases highly versatile yet functionally specific. Our studies 

also discovered hub kinases containing IDRs with a functional advantage, allowing them to recognize 

their interaction partners and also in interacting with multiple proteins.119  

To test the hypothesis that kinases engage in KKI and reciprocate functional modulation, which 

in turn may optimize their roles and activities either via PTMs and/or PPIs, several PPI databases were 

probed. We derived a kinome network of experimentally validated KKIs to reveal extensive interactions 

across as well as within each of the ten kinase groups. We found that KKIs are widespread and plays 

regulatory roles in the kinome, which will strengthen our understanding of the rewiring within the kinome 

during and after therapeutic treatments. Furthering our hypothesis that IDRs drive KKIs, we also 

discovered that 90% of the KKIs (1906 of 2108 kinases) occur when at least one of the two interacting 

kinases has an IDR, suggesting functioning of the KKI network may involve IDRs and, by extension, 

kinase cascades in pathophysiologically relevant signaling events. For example, our analysis revealed that 

while a distinct set of 116 kinases exclusively interact with non-kinase proteins, it is the KKIs within the 

remaining 385 kinases that underlie cancer pathogenesis. Further, detailed examination of our functional 

enrichment of the kinases also revealed that distinct kinases were associated with specific diseases, 

providing functional and clinical relevance to studying these kinases and their relevance in the kinome.  
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The propensity of hub proteins and genes to drive a network of diseases has necessitated a 

network medicine approach to tackle diseases reflecting complex intracellular and intercellular 

networks.120 Cancer therapy suffers from the dynamic ability of the kinome to bypass single kinase 

inhibition by activating other kinases. Thus, our study proposes that an understanding of kinase network-

modules derived from experimentally validated KKI networks is necessary to discover components of the 

compensatory signaling responses causing drug-resistance. We derived and validated a SRC and AKT 

driven network, supporting the notion that KMs are functionally interconnected. One way by which KMs 

likely interact is via IDRs. Interestingly, a common IDR in the AKT C-terminus functionally interacts 

with SRC and also participates in inhibition of SMAD phosphorylation.104, 111 Thus, it is plausible that 

inhibition of SRC inactivates AKT via this IDR, which in turn will increase SMAD activity, as reflected 

in our studies.  Having identified a new role for SRC in influencing AKT-SMAD axis, we also showed 

that SRC and AKT activity concertedly increased the proliferation of cancer cells. Our results support this 

concept since SRC inhibitor can significantly inhibit proliferation of lung cancer cells harboring hyper-

activated AKT and SRC.  

In summary, we provide evidence that systems level exploration of the human kinome through 

structural analysis leads to identification of new molecular relationships among apparently distinct kinase-

driven pathways. Using our approach, similar kinase sub-network modules can be validated using in vitro 

as well as in vivo models to identify new roles of kinases. Additionally, our study also reveals new target 

regions in the form of IDRs that can be utilized to design small molecule drugs/peptidomimetics to 

disrupt kinase hubs. Given that while our present analysis is limited to a small subset of experimentally 

validated KKIs, we believe that the same approach can be utilized on a larger set of predicted kinase-

substrate and kinase-kinase relationships, providing new therapeutic opportunities. In addition, studies 

that reveal high confidence predictions of kinase-substrate relationships121 and drug side-effects122 can be 

utilized to predict relationships within the KKIs and ascertain IDRs in kinase networks mediating disease 

pathogenesis providing cues to novel drug development strategies. 
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FIGURE LEGENDS 

Figure 1: Flowchart depicting approach leading to identification of Kinome Modulators.  

(A1) 504 human kinases subjected to PONDR-FIT to predict intrinsic disorder in the human kinome. 

Long stretches of Intrinsically Disordered Regions (IDRs) were identified in 83% of the human kinome 

(417 of 504 kinases). Kinome dendrogram illustration is reproduced courtesy of Cell Signaling 

Technology, Inc. (www.cellsignal.com). (A2) Disease Enrichment Analysis using Ingenuity Pathway 

Analysis (IPA) revealed Cancer as the most enriched disease in addition to specific kinase groups driving 

a specific set of diseases and disorders. (B) To understand the mechanisms behind enrichment of different 

diseases, we analyzed the KKIs of the entire kinome and built protein-protein interaction (PPI) network. 

(C) A closer look at the KKIs revealed two sets of interactions. (C1): Interactions between kinases from 

two different groups, and (C2): Interactions between kinases from the same group. Combining the two 

sets, we constructed a vibrant KKI network of 385 kinases. These 385 kinases were most enriched in 

cancer pathogenesis. Interestingly, 90% of the 2100 identified interactions were mediated by disordered 

kinases. (D) Topological analysis was performed to identify hub kinases essential to the kinase interaction 

network. We identified 5 topologically most significant “kinome modulators”, 4 of which are intrinsically 

disordered kinases. These kinome modulators interact with each other, augmenting high cross-talk within 

the entire kinome. We proposed and validated the interplay between SRC and AKT kinases and reveal a 

new role of SRC in modulation of SMAD activity via p-AKT. 

Figure 2: Wide-spread Prevalence of Intrinsic Disorder in the Kinome. (A) PONDR-FIT analysis 

predicts Intrinsically Disordered Regions in 83% Kinases. PONDR-FIT analysis was used to predict 

Intrinsically Disordered Regions (IDRs) in 417 of 504 (83%) human kinases categorized in 10 groups. A 

region was considered an IDR if a stretch of 25 or more consecutive amino acids had a disorder score of 

0.5 or more. The colors of the bars represent color coding of different Kinase Groups followed throughout 

the paper. Of note, RGC group has only 5 kinases. (B&C) IDRs are unable to crystallize. The protein 

structure of SRPK2 was obtained from PDB database (pdb: 2X7G). PyMOL visualization reveals missing 

structured regions from the crystallized parts of the protein. Numbers in horizontal cartoon are AA 
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residue number indicative of predicted IDRs and crystallized structured regions. The structure shows 

missing N-term IDR and missing part of the Kinase Domain (KD) represented by red dotted line. (D) 

85% of IDRs are absent in solved structures of their respective proteins. We analyzed 100 IDRs, which 

were randomly picked from a total of 43 proteins to query their presence in their solved structures. We 

reveal that 66 out of 100 IDRs (66%) had complete or concordance while 85 out of 100 IDRs (85%) had 

80% or higher concordance with solved structures. We utilized MobiDB (see materials and methods) to 

analyze the solved structures. MobiDB database combines all deposited crystal structures (through NMR 

and X-ray crystallography) to generate consensus structured regions. Red-filled circles represent 66 IDRs 

that had complete concordance (100%); green-filled circles represent 19 IDRs that had high concordance 

(>80%); black-filled circles represent 15 IDRs with poor concordance (<80%).  

Figure 3: Intra-group interaction analysis highlights Tyrosine Kinase Group. (A) Disease 

Association analysis enriches Cancer as the most significant disease driven by 339 kinases. The heat map 

shows group-wise participation of kinases in various diseases. The analysis was done using Ingenuity 

Pathway Analysis (IPA). IPA core analysis revealed significant enrichment of Cancer across all Kinase 

groups, specifically in TK and AGC groups. (B) Protein-Protein Interaction (PPI) data mining revealed a 

high number of “Intra-group” PPIs. Here, a network is created using 292 interactions found among 77 

Kinases out 90 Kinases belonging to TK groups – the largest of all 10 groups. Software used: Cytoscape. 

(C) List of kinase groups participating in the number of intra-group interactions. “Kinases” refers to the 

number of kinases in each group that participate in intra-group interactions.  

Figure 4: Aberrant KKI underlie cancer pathogenesis. 

(A) Kinome level PPI analysis enriches TK group as the highest interacting kinase group. Further analysis 

of PPIs within (intra-) and between (inter-) kinase groups identified a total of 2108 interactions within 393 

of 504 kinases. This data is used to create a Group-Group Interaction (GGI) model. Size of the circle 

corresponds to the total number of interactions (Inter- and Intra-group) the kinases from a specific group 

participates in. Color of the circle represents per cent DO-DO/DO-O (red) or O-O (blue) interactions. (B) 

Proteins with increased disorderliness are rich in molecular recognition features (MoRFs). We analyzed 
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501 proteins and calculated their degree of disorderliness (in percentage) as per the following formula:  

(AA with disorder score ≥ 0.5 ÷ total number of AA in the protein) X 100.  We used MoRFPred to predict 

MoRFs in 501 proteins, which were then normalized to the protein size (number of MoRFs ÷ Total length 

of protein). Scatterplot graph with linear trend-line generated in Excel program determined positive 

relationship between the degree of disorderliness and number of MoRFs. (C) Two sets of kinases were 

created: Set-A) Kinases that interact with other kinases; Set-B) kinases that do not interact with other 

kinases. Disease enrichment analysis was performed on the two sets using IPA and the top 5 disease 

profile is shown. Disease enrichment analysis of two sets of kinases reveals Cancer to be most enriched 

by kinases that interact with other kinases. On the other hand, kinases that interact exclusively with non-

kinase proteins do not significantly participate in pathogenesis of cancer. –log (P-value) represents the 

number of molecules in a given pathway that meet cut criteria, divided by the total number of molecules 

that belong to the disease pathway. Dotted orange line represents the threshold value for enrichment for 

each disease and disorder 

Figure 5: Topological Analysis reveals SRC and AKT as two of the most significant Kinome 

Modulators. (A) Workflow for identifying most significant Kinome Modulators. (i) 3 Sets were created. 

Top 10 interacting kinases from each kinase group’s Set-X) intragroup interactions, Set-Y) intergroup 

interactions, and Set-Z) Topologically significant kinases. (ii) 40 kinases common to the three lists were 

used for the secondary topological analysis (iii) to identify 5 most significant hubs called “Kinome 

Modulators” (KMs) based on degree centrality. (B) The 5 most significant KMs were identified. The table 

shows the top 5 kinases and their degree centrality scores. (C) Identification of non-kinase proteins 

interacting with KMs. Interactome of the KMs (red) reveal non-kinase proteins (green) that interact with 

multiple Kinome Modulators. (D) List of non-kinase proteins against the number of Kinome Modulators 

each protein is interacting with. 2 Transcription factors (SMAD3 and STAT3) are highlighted. 

Figure 6: Validation of regulatory interplay between two hub kinases, SRC and AKT, reveals 

previously unidentified SRC driven p-AKT mediated inhibition of SMAD activity. (A&B) Lung 

cancer cells respond better to dual inhibitions of SRC and AKT. Dual inhibition of SRC and AKT in (A) 
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H292 cells or (B) H1650 cells with dasatinib and MK-2206 respectively shows more effective inhibition 

of proliferation as judged by percent increase in cell number.  Error bars represent SE of n = 6 (C) SRC 

inhibits SMAD activity. Increasing amounts of CA-SRC (0µg, 2µg, and 4µg) significantly reduces 

SMAD activity as assessed by artificial SMAD reporter SBE4-Luc. Experiments were repeated twice in 

triplicate. Error bars represent SE of n = 3. (D) SRC affects phosphorylation of AKT. Inhibition of SRC 

with 500nM dasatinib in H292 cells or H1650 cells for 15 minutes significantly reduces p-AKT levels. 

Expression was normalized to β-Actin levels. Error bars represent SE of three independent experiments. 

(E) AKT inhibits SMAD activity. Luciferase activity shows decreased SMAD activity via artificial 

SMAD reporter SBE4-Luc in response to increasing amount of myr-AKT (0µg, 2µg, and 4µg) after 

transfection in H292 cells. Expression values were normalized to transfections without myr-AKT. Error 

bars represent SE of n = 6. (A-E: * = P-value < 0.05, ** = p-values < 0.001). 

Figure 7: SRC inhibits SMAD activity via AKT modulation. (A) SRC inhibits activated SMAD via p-

AKT. Western blots show increased p-AKT and reduced p-SMAD2/3 in response to transient transfection 

of H292 cells with increasing amounts of CA-SRC. Experiments were performed in duplicates. (B) 

Proposed model shows SRC affecting p-AKT levels and the downstream proliferative mechanism via 

SMAD-3 transcription factor.  

 

 

 

FIGURE LEGEND FOR GRAPHICAL ABSTRACT 

Table of Content Entry: We reveal presence of intrinsically disordered regions in human kinome and 

build a kinase-kinase interaction network identifying novel SRC-SMAD relationship. 

 

 

Page 27 of 34 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 28 of 34Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 29 of 34 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 30 of 34Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 31 of 34 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 32 of 34Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 33 of 34 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 34 of 34Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t




