JAAS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/jaas

Journal of Analytical Atomic Spectrometry Accepted Manusc

Figure 1

Figure 2

Journal of Analytical Atomic Spectrometry Accepted Manusc

Journal of Analytical Atomic Spectrometry

Figure 3

Figure 4

Figure 5

Instrument Neptune Neptune Plus RF forward power 1340 W 1280 W Reflect RF power < 3 W < 3 W Cool Gas 16 L/min 16 L/min Auxiliary Gas 0.8 L/min 0.8 L/min Sample Gas 1.2 L/min 0.8 L/min Sample cones Sample cone Ni Sample cone Ni Skinmer cones High performance High performance Integration time 0.131 s for each cycle; 1 cycle; 200 blocks/cycle 0.131 s for each cycle; 1 cycle; 200 blocks/cycle Laser ablation system ATLex 300si, ArFexcimer, wavelength UV 193 nm Image: Structure St	Mass spectrometry pa	rameters	
RF forward power1340 W1280 WReflect RF power< 3 W< 3 WCool Gas16 L/min16 L/minAuxiliary Gas0.8 L/min0.8 L/minSample Gas1.2 L/min0.8 L/minSample conesSample cone NiSample cone NiSkimmer conesHigh performanceHigh performanceIntegration time0.131 s for each cycle; 1 cycle; 200 blocks/cycle0.131 s for each cycle; 1 cycle; 200 blocks/cycleIsotopesSr (Nd)Nd (Hf)Laser ablation systemATLex 300si, ArFexcimer, wavelength UV 193 nmEnergy density3.18 J/cm ²	Instrument	Neptune	Neptune Plus
Reflect RF power< 3 W< 3 WCool Gas16 L/min16 L/minAuxiliary Gas0.8 L/min0.8 L/minSample Gas1.2 L/min0.8 L/minSample conesSample cone NiSample cone NiSkimmer conesHigh performanceHigh performanceIntegration time0.131 s for each cycle; 1 cycle; 200 blocks/cycle0.131 s for each cycle; 1 cycle; 200 blocks/cycleIsotopesSr (Nd)Nd (Hf)Laser ablation systemATLex 300si, ArFexcimer, wavelength UV 193 nmEnergy density3.18 J/cm ²	RF forward power	1340 W	1280 W
Cool Gas16 L/min16 L/minAuxiliary Gas0.8 L/min0.8 L/minSample Gas1.2 L/min0.8 L/minSample conesSample cone NiSample cone NiSkimmer conesHigh performanceHigh performanceIntegration time0.131 s for each cycle; 1 cycle; 200 blocks/cycle0.131 s for each cycle; 1 cycle; 200 blocks/cycleIsotopesSr (Nd)Nd (Hf)Laser ablation systemATLex 300si, ArFexcimer, wavelength UV 193 nmEnergy density3.18 J/cm ²	Reflect RF power	< 3 W	< 3 W
Auxiliary Gas0.8 L/min0.8 L/minSample Gas1.2 L/min0.8 L/minSample conesSample cone NiSample cone NiSkimmer conesHigh performanceHigh performanceIntegration time0.131 s for each cycle; 1 cycle; 200 blocks/cycle0.131 s for each cycle; 1 cycle; 200 blocks/cycleIsotopesSr (Nd)Nd (Hf)Laser ablation systemATLex 300si, ArFexcimer, wavelength UV 193 nmEnergy density3.18 J/cm²	Cool Gas	16 L/min	16 L/min
Sample Gas1.2 L/min0.8 L/minSample conesSample cone NiSample cone NiSkimmer conesHigh performanceHigh performanceIntegration time0.131 s for each cycle; 1 cycle; 200 blocks/cycle0.131 s for each cycle; 1 cycle; 200 blocks/cycleIsotopesSr (Nd)Nd (Hf)Laser ablation systemATLex 300si, ArFexcimer, wavelength UV 193 nmEnergy density3.18 J/cm²	Auxiliary Gas	0.8 L/min	0.8 L/min
Sample conesSample cone NiSample cone NiSkimmer conesHigh performanceHigh performanceIntegration time0.131 s for each cycle; 1 cycle; 200 blocks/cycle0.131 s for each cycle; 1 cycle; 200 blocks/cycleIsotopesSr (Nd)Nd (Hf)Laser ablation systemATLex 300si, ArFexcimer, wavelength UV 193 nmEnergy density3.18 J/cm²	Sample Gas	1.2 L/min	0.8 L/min
Skimmer conesHigh performanceHigh performanceIntegration time0.131 s for each cycle; 1 cycle; 200 blocks/cycle0.131 s for each cycle; 1 cycle; 200 blocks/cycleIsotopesSr (Nd)Nd (Hf)Laser ablation systemATLex 300si, ArFexcimer, wavelength UV 193 nmEnergy density3.18 J/cm²	Sample cones	Sample cone Ni	Sample cone Ni
Integration time 0.131 s for each cycle; 1 cycle; 200 blocks/cycle 0.131 s for each cycle; 1 cycle; 200 blocks/cycle Isotopes Sr (Nd) Nd (Hf) Laser ablation system ATLex 300si, ArFexcimer, wavelength UV 193 nm Energy density 3.18 J/cm ²	Skimmer cones	High performance	High performance
IsotopesSr (Nd)Nd (Hf)Laser ablation systemAnalyte G2)Laser systemATLex 300si, ArFexcimer, wavelength UV 193 nmEnergy density3.18 J/cm²	Integration time	0.131 s for each cycle; 1 cycle; 200 blocks/cycle	0.131 s for each cycle; 1 cycle; 200 block
Laser ablation system (Analyte G2)Laser systemATLex 300si, ArFexcimer, wavelength UV 193 nmEnergy density3.18 J/cm²	Isotopes	Sr (Nd)	Nd (Hf)
Laser systemATLex 300si, ArFexcimer, wavelength UV 193 nmEnergy density3.18 J/cm²	Laser ablation system	(Analyte G2)	
Energy density 3.18 J/cm ²	Laser system	ATLex 300si, ArFexcimer, wavelength UV 193 nm	
	Energy density	3.18 J/cm ²	
Spot size 130µm for MAD, 110µm for AP1 and LV-1, 85µm for AFK and ZrkA, 65µm for NW-1,50µm for SI	Spot size	130µm for MAD, 110µm for AP1 and LV-1, 85µm for	AFK and ZrkA, 65µm for NW-1,50µm for SDG
		()	

Journal of Analytical Atomic Spectrometry Accepted Manuscript

Cup	L4	L3	L2	L1	С	H1	H2	Н3	H4
				Nej	otune				
\mathbf{Sr}^*	⁸³ Kr	83.5	⁸⁴ Sr	⁸⁵ Rb	⁸⁶ Sr	86.5	⁸⁷ Sr	⁸⁸ Sr	⁸⁹ Y
Nd ^{**}	¹⁴² Nd	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁷ Sm	¹⁴⁹ Sm	¹⁵⁰ Nd	¹⁵⁴ Sm
				Neptu	ne Plus				
Nd [*]	142Nd	143Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁷ Sm	¹⁴⁹ Sm	¹⁵⁰ Nd	¹⁵⁴ Sm
\mathbf{Hf}^{**}	¹⁷² Yb	¹⁷³ Yb	¹⁷⁵ Lu	¹⁷⁶ Hf	¹⁷⁷ Hf	¹⁷⁸ Hf	¹⁷⁹ Hf	¹⁸⁰ Hf	¹⁸² W

Table 2 Faraday cup configuration of Neptune and Neptune plus for Sr-Nd-Hf isotopic measurement

* means simultaneous measurement of Sr-Nd isotope. ** means simultaneous measurement of Nd-Hf isotope.

2		
3 4	1	To be revised by the Journal of Analytical Atomic Spectrometry (Technical Note)
5	2	Intended for Young scientists in China Schemed Issue
0 7	3	Feb 17th 2015
8 9	4	
10 11	5	In situ simultaneous measurement of Rb-Sr/Sm-Nd or Sm-Nd/Lu-Hf isotopes in natural
12 13	6	minerals by using laser ablation multi-collector ICP-MS
14 15	7	Chao, Huang, Yue-Heng, Yang*, Jin-Hui, Yang, Lie-Wen, Xie
16 17	8	
18 10	9	State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese
20	10	Academy of Sciences, P. B. 9825, Beijing, 100029, P. R. China
21	11	
23	12	* Corresponding author. Tel: +86-010-82998599 Fax: +86-010-62010846
25 26	13	E-mail: <u>yangyueheng@mail.iggcas.ac.cn</u>
27 28	14	
29 30	15	Abstract This paper presents a combined methodology of simultaneously measuring Rb-Sr/Sm-Nd
31 32	16	or Sm-Nd/Lu-Hf isotopes in natural minerals by means of two multiple collector inductively coupled
33 34	17	plasma mass spectrometers (MC-ICP-MSs) connected to a 193 nm excimer laser ablation system.
35 36	18	The ablated materials carried out of the HelEx cell by helium gas are split into two gas streams with
37	19	different proportions into the Neptune for Sr (or Nd) analyses and Neptune Plus for Nd (or Hf)
30 39	20	analyses. Experiments show that different proportions of the ablated material for the Neptune and
40 41	21	Neptune Plus MC-ICPMS (3:7, 5:5 and 7:3, respectively) do not show any significant bias for the
42 43	22	Sr-Nd isotopes on apatite or Nd-Hf isotopes on loparite within analytical uncertainties. Therefore, we
44 45	23	conclude that this technique is suitable to simultaneously measure Rb-Sr and Sm-Nd or Sm-Nd and
46 47	24	Lu-Hf isotopes on natural minerals, such as apatite, perovskite, loparite and eudialyte for Sr-Nd
48 49	25	isotopes and eudialyte and zirconolite for Nd-Hf isotopes.
50 51	26	
52	27	1. Introduction

Rb-Sr, Sm-Nd and Lu-Hf isotopes are not only important tracers in geochemistry and geochronology, but also important tools for deciphering petrogenesis and crust-mantle evolution in our planet.¹⁻⁸ The rapid development in recent years in multi-collector inductively coupled plasma

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

In this paper, we developed a technique for simultaneous determination of Rb-Sr/Sm-Nd or

mass spectrometry combined with laser ablation technique (LA-MC-ICP-MS) make it possible to rapidly determine *in situ* Sr or Nd or Hf isotopes in minerals with such isotope composition (*e.g.*, apatite, perovsikte loparite, zircon, eudialyte and zirconalite). This technique is a more powerful tool to constrain geological processes than whole rock analysis.⁶⁻¹³ The different elements in geology used for radiogenic isotope studies vary significantly depending on their chemical and physical properties, therefore the sensitivity of the different isotope systems will vary depending on particular petrological processes. A good example is the difference in the Sm-Nd system, in which both elements share similar chemical and physical characteristics, and the Rb-Sr system, in which both elements are strongly fractionated. Therefore, a combined study of two or more isotopic systems can more accurately and precisely constrain the petrogenesis and crust-mantle evolution on Earth.

The routine analytical technique of *in situ* Sr, Nd or Hf isotope can only measure one element at a time. Therefore to measure Sr-Nd-Hf isotopes of natural minerals, three different analyses must be carried out. In that case, it will not be in situ simultaneous determinations of Sr-Nd-Hf isotopes because the information provided is not obtained from the same volume of material. The synthetic analysis of multiple isotopes of the same volume of material is the main trend of in situ Sr, Nd and Hf isotopic analysis in the near future.¹⁴⁻¹⁷ For example, the first simultaneous measurements of U-Pb/Lu-Hf isotopes, and trace elements in zircon reference materials were reported by Yuan et al.. The materials were measured using a quadrupole ICP-MS (Elan6100 DRC) and a MC-ICP-MS (Nu Plasma HR), and the results agree with the reference values. Xie et al., also performed in situ simultaneous measurements of U-Pb/Lu-Hf isotopes, and trace elements in zircon and baddelevite reference materials using a quadrupole ICP-MS (Agilent 7500a) and a MC-ICP-MS (Neptune). The results also agree with the reference values. As in our study the authors did not find any evidence of increased elemental fractionation when the aerosol is split in different proportions. Tollstrup et al., used a HR-ICP-MS (ELEMENT XR) and a MC-ICP-MS (NEPTUNE Plus) to carry out simultaneous measurements of U-Pb ages and Lu-Hf isotopes in zircon. In that study, it was found that U-Pb ages of various reference materials were accurate within 0.3-2.5% (2 σ) compared to the TIMS value, and ${}^{176}\text{Hf}{}^{177}\text{Hf}$ ratio were accurate within 0.28–0.73% (2 σ) relative to solution MC-ICP-MS value, demonstrating the potential of the simultaneous measurement of both isotope ratios and trace elements.

Page 11 of 20

Journal of Analytical Atomic Spectrometry

Sm-Nd/Lu-Hf isotopes during *in situ* laser ablation using two MC-ICP-MS's (Neptune and Neptune plus) and an excimer ArF laser-ablation system (Analyte G2) hosted at the Institute of Geology and Geophysics, Chinese Academy of Sciences. This method is validated by simultaneous measurements of Sr-Nd isotopes on apatite, perovskite, loparite and eudialyte or Nd-Hf isotopes on eudialyte and zirconolite. The results are consistent with previously reported values, which indicate the reliability and robustness of our analytical protocol.

2. Experimental methodology

2.1. Instrumentation

All accessory mineral investigated in this study were analyzed at the State Key Laboratory of Lithospheric Evolution, the Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing. The Analyte G2 laser ablation system (Photon Machines, USA) is powered by an ATLex 300si 193nm excimer laser. It has full (0-100%) energy attenuation, beam homogenization optics and maximum energy density of 15 J/cm². Laser spot sizes vary between 1-150 µm and include circular, square, cross and slit-shaped spots. Pulse width is less than 4 ns, and frequency varies from 1 to 300 Hz. It is equipped with an ANU HelEx 2-volume cell having 100 cm square useful sample area which allows for the efficient transport of sample into the mass spectrometer. This cell minimizes washout times and enables sequential, rapid, reliable analysis of multiple ablation sites. A laser repetition rate of 12 Hz was used in this study, and spot sizes ranged from 40µm to 130µm, depending on the Sr, Nd and Hf concentration of the samples. Helium was used as the carrier gas within the ablation cell.

Journal of Analytical Atomic Spectrometry Accepted Manuscript

Sr, Nd and Hf isotopic analysis were carried out by Thermo Fisher Scientific Neptune and Neptune Plus MC-ICP-MSs (Bremen, Germany) combined with the Analyte G2, as shown in Fig.1. The detailed description of the instruments can be found in elsewhere. The Sr, Nd and Hf isotopic data were acquired by static multi-collection in low-resolution mode using nine Faraday collectors. The detailed parameters are summarized in Tables 1 and 2.

Figure 1

Tables 1 & 2

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

The 193 nm laser beam is generated from ATLex 300si 193nm Excimer laser, homogenized by optics, modulated to the right spot size by the aperture finally reaching the surface of the samples. The ablated sample aerosol carried out of the HelEx cell by helium is split into two proportions using an Y-shaped connector, one transported to the Neptune and the other to the Neptune Plus. Both of them can be adjusted by two gas flow controller between the Y-shaped connector and the gas mixers to achieve different gas flow ratios and ensure sufficient signals for Sr-Nd or Nd-Hf isotopic analyses. The sample aerosol of two gas streams was mixed with Ar sample gas from two MC-ICP-MSs prior to introducing the aerosol into the plasma. 2.2. Data reduction

In situ Sr, Nd and Hf isotopic measurements using LA-MC-ICP-MS were described in detail, therefore we only provide here a brief description of the data reduction procedure. For Sr isotopic analysis, the potential isobaric interferences were taken into account for Kr. Yb. Er and Rb. The interference of ⁸⁴Kr and ⁸⁶Kr on ⁸⁴Sr and ⁸⁶Sr, respectively, was removed using the 40 s Kr gas baseline measurement. The interference of Er and Yb at Sr masses was monitored using the isotopic abundances of Er and Yb.¹⁹ The natural ratio of ⁸⁵Rb/⁸⁷Rb was used to correct for isobaric interference of ⁸⁷Rb on ⁸⁷Sr by the exponential law. Finally, the ⁸⁷Sr/⁸⁶Sr, ⁸⁷Rb/⁸⁶Sr, ⁸⁴Sr/⁸⁶Sr and ⁸⁴Sr/⁸⁸Sr ratios were normalized using the exponential law.^{4, 5, 12}

For Nd isotopic analysis, the isobaric interference of ¹⁴⁴Sm on ¹⁴⁴Nd is significant. We used the measured ¹⁴⁷Sm/¹⁴⁹Sm ratio to calculate the Sm fractionation factor and the measured ¹⁴⁷Sm intensity by using the natural ¹⁴⁷Sm/¹⁴⁴Sm ratio to estimate the Sm interference on mass 144. The interference-corrected ¹⁴⁶Nd/¹⁴⁴Nd ratio can then be used to calculate the Nd fractionation factor. Finally, the ¹⁴⁷Sm/¹⁴⁴Nd, ¹⁴³Nd/¹⁴⁴Nd and ¹⁴⁵Nd/¹⁴⁴Nd ratios were normalized using the exponential law.^{12, 18}

For Hf isotopic analysis, the isobaric interference of ¹⁷⁶Lu on ¹⁷⁶Hf is negligible due to the low ¹⁷⁶Lu/¹⁷⁷Hf in the zirconolite (normally < 0.0002) and eudialyte (normally < 0.001). In this study, ¹⁷⁶Lu/¹⁷⁵Lu = 0.02655 was used to extract the interference of ¹⁷⁶Lu to ¹⁷⁶Hf. However, the ¹¹⁸ interference of ¹⁷⁶Yb on ¹⁷⁶Hf must be carefully corrected since the contribution of ¹⁷⁶Yb to ¹⁷⁶Hf ¹¹⁹ could profoundly affect the accuracy of the measured ¹⁷⁶Hf/¹⁷⁷Hf ratio. During analysis, an isotopic ¹²⁰ ratio of ¹⁷⁶Yb/¹⁷²Yb = 0.588673 was applied. Finally, the ¹⁷⁶Yb/¹⁷⁷Hf, ¹⁷⁶Lu/¹⁷⁷Hf, ¹⁷⁶Hf/¹⁷⁷Hf ratios

125

126

1		
2		
3		
4		
5		
6		
7		
8		
9		
1	0	
1	1	
1	2	
1	3	
1	4	
1	5	
1	6	
1	7	
1	'n	
י 1	0 0	
ו ר	ე ი	
2	0 4	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
2	8	
2	9	
3	0	
3	1	
3	2	
3	3	
3	4	
3	5	
3	6	
3	7	
2	י 8	
2	a	
⊿ ∧	0	
- 1	1	
+ ∧	ר י	
4 1	2	
4	ა ⊿	
4 1	4	
4	5	
4	6	
4	1	
4	8	
4	9	
5	0	
5	1	
5	2	
5	3	
5	4	
5	5	
5	6	
5	7	
5	8	
5	g	

60

were normalized using the exponential law given in reference.¹⁰

123 **2.3. Investigation for simultaneous determination**

Figure 2

Because of the different concentrations of Sr, Nd and Hf in the analyzed minerals, the 127 128 proportions of ablated aerosol carried into the Neptune and Neptune Plus MC-ICP-MSs were 129 adjusted to obtain precise data for Sr, Nd and Hf isotopic compositions. In this case, the main question is whether there is any mass fractionation when different proportion of ablated material is 130 131 carried into the Neptune and Neptune Plus MC-ICP-MSs simultaneously. In this paper, our *in-house* 132 reference materials for apatite (SDG) and loparite (LOP01) were used to answer the above question. The SDG apatite comes from the Sandaogou alkaline ultramafic complex in Inner Mongolia, 133 China.²⁰ and the LOP01 loparite comes from the eudialyte lujavrites layered intrusion from the 134 western part of the complex between the Alluaiv and Punkaruaiv Mountains, Greenland.²¹ 135

The SDG apatite was ablated using Analyte G2 laser ablation system, with 12 Hz frequency and 136 50 µm spot size. Three different proportions (3:7, 5:5 and 7:3) of ablated materials were split into 137 two MC-ICP-MS's (Neptune and Neptune plus) for the measurement of Sr and Nd isotopic 138 compositions. The obtained mean 87 Sr/ 86 Sr ratios of SDG apatite by Neptune was 0.70302 ± 11 (2SD, 139 n = 10, [3:7] (Fig. 2a), 0.70301 ± 04 (2SD, n = 10, [5:5]) (Fig. 2c) and 0.70304 ± 02 (2SD, n = 10, [5:5]) 140 [7:3]) (Fig. 2e), respectively, whereas, the obtained mean 143 Nd/ 144 Nd ratios by the Neptune plus was 141 0.510924 ± 29 (2SD, n = 10, [3:7]) (Fig. 2b), 0.510907 ± 27 (2SD, n = 10, [5:5]) (Fig. 2d) and 142 0.510911 ± 43 (2SD, n = 10, [7:3]) (Fig. 2f), respectively (see appendix Table 1). The achieved 143 ⁸⁷Sr/⁸⁶Sr ratios are in agreement within analytical errors and are the same as the reference value of 144 0.70300 ± 01 (2SD, n = 5) by the solution method.¹² The ¹⁴³Nd/¹⁴⁴Nd ratios are also identical within 145 analytical errors with the reference value of 0.510918 ± 14 (2SD, n = 5) by the solution method.¹² 146

147 The same analytical procedure was used to measure the Sr and Nd isotopic compositions of 148 loparite (LOP01), with a spot size of 40 μ m. The mean ⁸⁷Sr/⁸⁶Sr ratios of LOP01 measured by the 149 Neptune were: 0.70360 ± 13 (2SD, n = 10, [3:7]) (Fig. 2g), 0.70361 ± 06 (2SD, n = 10, [5:5]) (Fig. 150 2i); and 0.70364 ± 04 (2SD, n = 10, [7:3]) (Fig. 2k), respectively. They are consistent within

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

analytical errors and are identical to the reference value of 0.70362 ± 04 (2SD, n = 3) measured by TIMS. The obtained mean ¹⁴³Nd/¹⁴⁴Nd ratios by the Neptune plus was 0.512467 ± 17 (2SD, n = 10, [3:7]) (Fig. 2h), 0.512452 ± 21 (2SD, n = 10, [5:5]) (Fig. 2j) and 0.512459 ± 45 (2SD, n = 10, [7:3]) (Fig. 2l), respectively (see appendix Table 2). They are identical within analytical errors and are the same as the reported value of 0.512468 ± 18 (2SD, n = 5) by the TIMS method. Therefore, we concluded that there is no significant mass fractionation when different proportions of ablated material were carried into the Neptune and the Neptune Plus MC-ICP-MSs.

3. Results

3.1. Sr-Nd simultaneous measurement

We first present our *in situ* simultaneous Sr-Nd isotopic analyses (Sr measured in the Neptune and Nd in the Neptune Plus) for apatite, loparite, eudialyte and perovskite (see appendix Table 3).

Figure 3 & 4

3.1.1. Apatite

AP1 is an *in-house* apatite reference material probably from Madagascar.¹² ID-TIMS analysis for this apatite standard gave a weighted mean ²⁰⁶Pb/²³⁸U age of 475 Ma.²² The ⁸⁷Sr/⁸⁶Sr isotopic data are shown in Fig. 3a, yielding a mean 87 Sr/ 86 Sr ratio of 0.71137 ± 14 (2SD, n = 10). The mean value is identical to the reported solution value of 0.71137 ± 03 (2SD, n = 14) within analytical errors. The results show that the obtained 143 Nd/ 144 Nd ratio of AP1 apatite is 0.511348 ± 47 (2SD n = 10) (Fig. 3b), consistent with the published value of 0.511352 ± 24 (2SD, n = 12).¹² The corresponding ϵ Nd(t) value of -18.2 ± 0.90 (2SD, n = 10) is almost identical to the ϵ Nd(t) value of -18.2 ± 0.50 (2SD, n = 10) by the solution method.¹²

MAD apatite is an international reference material from the 1st Mine Discovery in Madagascar,¹² with a TIMS U-Pb age of 485.2 ± 0.8 Ma.^{22, 23} The simultaneous in situ ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd isotopic data are listed in Table 3 and shown in Figs. 3c and 3d. The results show that the mean ⁸⁷Sr/⁸⁶Sr ratio of MAD apatite is 0.71190 ± 10 (2SD, n = 10) (Fig. 3c), which is identical to the solution mean value of 0.71180 ± 03 (2SD, n = 11)¹² within analytical errors. The ¹⁴³Nd/¹⁴⁴Nd result of the MAD apatite is 0.511346 ± 31 (2SD, n = 10) (Fig. 3d), consistent with the published 183 NW-1 apatite is from a carbonatite in the Prairie Lake alkaline carbonatite complex in Ontario, 184 Canada^{6-8, 22, 24, 25} with a U–Th–Pb age of 1160 ± 5 Ma measured by SIMS.²⁵ Our results show that 185 the mean ⁸⁷Sr/⁸⁶Sr ratio of NW-1 apatite is 0.70248 ± 10 (2SD, n = 10) (Fig. 3e), identical to the 186 solution mean value of 0.70250 ± 02 (2SD, n = 11)¹² within analytical errors. The ¹⁴³Nd/¹⁴⁴Nd ratio 187 of the NW-1 apatite is 0.512096 ± 45 (2SD, n = 10) (Fig. 3f), consistent with the published value of 188 0.512104 ± 11 (2SD, n = 7).¹² The corresponding ε Nd(t) value of 3.58 ± 0.85 (2SD, n = 10) is almost 189 identical to value of 3.77 ± 0.14 (2SD, n = 7) by the solution method.¹²

3.1.2. Perovskite

The AFK perovskite standard was extracted from an irregular pegmatite body collected from the Afrikanda complex in the Kola Peninsula, Russia.²⁶ The TIMS analyses yielded a weighted mean $^{206}Pb/^{238}U$ age of 382 ± 1 Ma.²⁶ Our results indicates a mean $^{87}Sr/^{86}Sr$ of 0.70340 ± 08 (2SD, n = 10) (Fig. 4a), which is similar to the TIMS mean value of 0.70335 ± 04 (2SD, n = 5)²⁶ within analytical errors. The $^{143}Nd/^{144}Nd$ ratio of this standard is 0.512610 ± 49 (2SD, n = 10) (Fig. 4b), consistent with the published value of 0.512609 ± 27 (2SD, n = 3).²⁶ The corresponding $\varepsilon Nd(t)$ value of $5.88 \pm$ 0.86 (2SD, n = 10) is almost identical to the value of 5.83 ± 0.58 (2SD, n=3) by the solution method.²⁶

3.1.3. Loprite

Kramm and Kogarko²⁷ reported a whole rock Rb–Sr isochron age for the Lovozero and Khibiny (Kola Peninsula, Russia) loprite standard of 370.4 ± 6.7 Ma. Our results show that the mean ⁸⁷Sr/⁸⁶Sr ratio is 0.70361 ± 11 (2SD, n = 10), consistent with the TIMS mean value of 0.70362 ± 04 (2SD, n = 3) within analytical errors (Fig. 4c). The ¹⁴³Nd/¹⁴⁴Nd ratio of this standard is 0.512463 ± 71 (2SD, n = 10) (Fig. 4d), identical to the published value of 0.512468 ± 18 (2SD, n = 5). The corresponding ϵ Nd(t) of 4.05 ± 1.39 (2SD, n = 10) is similar to the ϵ Nd(t) value of 3.72 ± 0.70 (2SD, n=5) by the solution method.

 3.1.4. Eudialyte

Journal of Analytical Atomic Spectrometry

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

The LV01 eudialyte standard comes from a pegmatitic syenite occurring in the Lovozero alkaline complex (Kola Peninsula, Russia). The LA-ICP-MS analyses yielded a weighted mean 206 Pb/ 238 U age of 376 ± 6 Ma.⁶ The mean 87 Sr/ 86 Sr ratio is 0.70399 ± 05 (2SD, n = 10) (Fig. 4e), which is the same as the reported TIMS mean value of 0.70392 ± 02 (2SD, n = 3)⁶ within analytical errors. The ¹⁴³Nd/¹⁴⁴Nd ratio for this standard is 0.512641 ± 43 (2SD, n = 10) (Fig. 4f), consistent with the published value of 0.512702 ± 28 (2SD, n = 2).⁶ The corresponding ϵ Nd(t) of 3.89 ± 0.82 (2SD, n = 10) is almost identical to the ε Nd(t) value of 4.94 ± 0.62 (2SD, n=2) by the solution method.⁶

3.2. Nd-Hf simultaneous measurement

We conducted *in situ* simultaneous Nd-Hf isotopic analyses (Nd measured in the Neptune and Hf measured in the Neptune Plus) for eudialyte and zirconolite (see appendix Table 4).

Figure 5

3.2.1. Eudialyte

As shown in Fig. 5a, twelve analyses of LV01 eudialyte standard yield a mean ¹⁴³Nd/¹⁴⁴Nd ratio of 0.512658 ± 66 (2SD), consistent with the published value of 0.512702 ± 28 (2SD, n = 2).⁶ The corresponding ϵ Nd(t) value is 4.20 ± 1.25 (2SD, n = 12), similar within errors of the solution TIMS method value of 4.94 ± 0.62 (2SD, n=2). Moreover, as displayed in Fig. 5b, the twelve analyses of LV01 eudialyte give a mean ¹⁷⁶Hf/¹⁷⁷Hf ratio of 0.282806 ± 57 (2SD), which is well within the error of the reported TIMS mean value of 0.282761 ± 18 (2SD, n = 5).⁶ The corresponding ϵ Hf(t) of 8.79 ± 1.99 (2SD, n = 12) is similar to the ϵ Hf(t) value of 7.08 ± 0.66 (2SD, n=5) by the solution method.⁶

3.2.2. Zirconlite

The ZrkA zirconolite standard was collected in the Phalaborwa Mine, Loolekop complex (Gauteng province, Republic of South Africa), which consist of a single prismatic crystal lacking any matrix. The reported age on this standard is ~2060Ma on SIMS Pb-Pb.⁷ The measured Nd isotopic data is displayed on the Fig. 5c with a mean 143 Nd/ 144 Nd data of 0.512339 ± 35 (2SD, n = 12), consistent with the published value of 0.512323 ± 08 (2SD, n=5).⁷ The corresponding εNd(t) value is

Journal of Analytical Atomic Spectrometry

-6.47 ± 1.26 (2SD, n = 12), which is similar within uncertainty of the solution TIMS value of -5.60 ± 0.20 (2SD, n=5). The Hf isotopic analysis measured in this study give a mean 176 Hf/ 177 Hf ratio of 0.281263 ± 51 (2SD, n = 12) (Fig. 5d), which is well within the error of the reported solution mean value of 0.281296 ± 05 (2SD, n = 5).⁷ The corresponding ϵ Hf(t) of -8.03 ± 1.79 (2SD, n = 12) is almost identical to the ϵ Hf(t) value of -6.80 ± 0.20 (2SD, n=5) by the solution method.⁷

4. Discussion

Natural mineral usually have complex crystal structures, i.e., fine-scale zoning as well as growth zoning. Such growth zones can be distinct both in composition and age in a single grain or sub-grain scale.^{17, 28} Therefore, it is better for researchers to conduct *in situ* analysis in either thin section or grain epoxy mounts with a spatial resolution to suit the problem being addressed.^{16, 29, 30} Previous *in* situ Sr, Nd and Hf isotopic measurements on different minerals were conducted on more than one ablation event using different volume of ablated materials, which increases the level of sampling uncertainty because of the discrimination in the ablation volumes, depths and locations.¹⁷ Taking into account the widely used Sr-Nd (e.g., $[{}^{87}\text{Sr}/{}^{86}\text{Sr}]_i - \varepsilon_{Nd}t$) or Nd-Hf (e.g., $\varepsilon_{Nd}t - \varepsilon_{Hf}t$) diagrams to trace the petrogenesis and evolution of the Earth, our in-situ simultaneous Sr-Nd or Nd-Hf isotopic analysis of the same volume of material brings an ideal solution to the sampling limitations mentioned above.

Journal of Analytical Atomic Spectrometry Accepted Manuscript

In contrast to previous analytical techniques of different ablated material in different analytical sessions, our developed method maximizes the amount of useful isotopic data that can be obtained from a single spot analysis by using two MC-ICP-MS's. This technique is much suitable for natural minerals with enriched Sr and Nd contents, such as apatite, perovskite, loprite and eudialyte.^{6, 12, 21, 26} and those with relatively enriched Nd and Hf concentrations, i.e., zirconolite and eudialyte.7, 26 Furthermore, as shown in Appendix Tables 3 and 4, the precision and accuracy of Sr, Nd and Hf isotopes, measured using our developed methodology were assessed and evaluated by using five natural mineral from the reference materials in the collection of our laboratory, demonstrating the applicability and robustness of our developed approach.

Nevertheless, the main limitation of simultaneous measurement is that the signal strength on each
MC-ICP-MS decreases when compared to the separate measurements of Sr, Nd or Hf isotopes. This
drawback happens because the total volume of ablated material is split into two MC-ICP-MS

Journal of Analytical Atomic Spectrometry Accepted Manuscri

instruments. The tables in the appendix provide more information on the extent of the loss of signal intensity. Additionally, not all minerals can be simultaneously measured using our method due to their lower element concentrations and potential interferences. Only the minerals with high concentrations of Sr, Nd and Hf can be used for the simultaneous determination of Sr, Nd and Hf isotopic compositions with reasonable analytical precisions (e.g., Eudialyte). According to our study, more than 1000 ppm of Sr is enough to yield data with a precision of ± 0.0001 if a large spot size is used (Appendix Table 3). For Nd isotopic analysis, the deviation requirement for practical geological application is $\pm 2\varepsilon$ units, corresponding to a ¹⁴³Nd/¹⁴⁴Nd data deviation of ± 0.0001 .⁶⁻⁸ More than ~ 1000 ppm of Nd is enough for most Nd enriched accessory minerals. As for simultaneous Nd-Hf isotopic measurement, only a few minerals (e.g., eudialyte and zirconolite) are feasible if they contain relatively high concentrations of Nd and Hf (Appendix Table 4).

5. Conclusion

We present an analytical protocol for using laser ablation (Analyte G2) together with two MC-ICP-MSs to measure Sr-Nd or Nd-Hf isotopes simultaneously for a single ablation event. There are insignificant variations in the Sr, Nd and Hf isotopic ratios when the different proportions of ablated material were carried into the Neptune and Neptune Plus MC-ICP-MSs, indicating that there is no evident elemental (or isotopic) fractionation during transportation of laser ablation aerosol. Sr, Nd and Hf isotopic values for eight samples of five natural minerals obtained by this method are identical to the reference values within analytical errors, indicating the feasibility of using the proposed method. Our technique is of value in applications required Sr, Nd and Hf isotopic compositions from a single sampling site, which provides a powerful tool for petrogenetic studies related to the geological evolution of our planet.

295 Acknowledgements

This work was financially supported by the Natural Science Foundation of China (NSFC Grants 41221002, 41403002, 41473012 and 41273021). We are greatly indebted to Dr. Yamirka Rojas-Agramonte for correcting the English during our submission and revision. Two anonymous reviewers are also grateful for critical and insightful comments that greatly improved this manuscript.

_	
	0
	-
	U
	6
	0
	~
	U
	0
	()
	~
	U
	()
-	
	U
	-
	0
-	
	U
	(1)
	*
	0
	J
	<i>(</i>)
	0
	い い こ
	Dic Dic
	D U U
	tomic
	Atomic S
	Atomic S
	Atomic S
	II Atomic S
	al Atomic S
	cal Atomic S
	cal Atomic S
	iical Atomic S
	rtical Atomic S
	ytical Atomic S
	Iytical Atomic S
	alytical Atomic S
	alytical Atomic S
	nalytical Atomic S
	nalytical Atomic S
	Analytical Atomic S
	Analytical Atomic S
	r Analytical Atomic S
	of Analytical Atomic S
	of Analytical Atomic S
	of Analytical Atomic S
	I of Analytical Atomic S
	al of Analytical Atomic S
	al of Analytical Atomic S
	nal of Analytical Atomic S
	rnal of Analytical Atomic S
	urnal of Analytical Atomic S
	urnal of Analytical Atomic S
	ournal of Analytical Atomic S
	ournal of Analytical Atomic S
	Journal of Analytical Atomic S

1			
2			
3 4	301		
5	302	Refer	rences
7	303	1.	P. D. Kinny and R. Maas, Rev Mineral Geochem, 2003, 53, 327-341.
8	304	2.	T. M. Harrison, J. Blichert-Toft, W. Muller, F. Albarede, P. Holden and S. J. Mojzsis, Science, 2005, 310,
9	305		1947-1950.
10 11	306	3.	C. J. Hawkesworth and A. I. S. Kemp, Chem Geol, 2006, 226, 144-162.
12	307	4.	Y. H. Yang, F. Y. Wu, S. A. Wilde, X. M. Liu, Y. B. Zhang, L. W. Xie and J. H. Yang, Chem Geol, 2009, 264,
13	308		24-42.
14	309	5.	Y. H. Yang, F. Y. Wu, L. W. Xie, J. H. Yang and Y. B. Zhang, Acta Petrol Sin, 2009, 25, 3431-3441.
15 16	310	6.	F. Y. Wu, Y. H. Yang, M. A. W. Marks, Z. C. Liu, Q. Zhou, W. C. Ge, J. S. Yang, Z. F. Zhao, R. H. Mitchell and
17	311		G. Markl, Chem Geol, 2010, 273, 8-34.
18	312	7.	F. Y. Wu, Y. H. Yang, R. H. Mitchell, F. Bellatreccia, Q. L. Li and Z. F. Zhao, Chem Geol, 2010, 277, 178-195.
19	313	8.	F. Y. Wu, Y. H. Yang, R. H. Mitchell, Q. L. Li, J. H. Yang and Y. B. Zhang, Lithos, 2010, 115, 205-222.
20 21	314	9.	G. L. Foster and D. Vance, J Anal Atom Spectrom, 2006, 21, 288-296.
22	315	10.	F. Y. Wu, Y. H. Yang, L. W. Xie, J. H. Yang and P. Xu, Chem Geol, 2006, 234, 105-126.
23	316	11.	C. R. M. McFarlane and M. T. McCulloch, Chem Geol, 2007, 245, 45-60.
24	317	12.	Y. H. Yang, F. Y. Wu, J. H. Yang, D. M. Chew, L. W. Xie, Z. Y. Chu, Y. B. Zhang and C. Huang, Chem Geol,
25 26	318		2014, 385, 35-55.
27	319	13.	L. Xu, Z. Hu, W. Zhang, L. Yang, Y. Liu, S. Gao, T. Luo and S. Hu, J Anal Atom Spectrom, 2015, 30, 232-244
28	320	14.	L. W. Xie, Y. B. Zhang, H. H. Zhang, J. F. Sun and F. Y. Wu, Chinese Sci Bull, 2008, 53, 1565-1573.
29	321	15.	H. L. Yuan, S. Gao, M. N. Dai, C. L. Zong, D. Gunther, G. H. Fontaine, X. M. Liu and C. Diwu, Chem Geol,
30 31	322		2008, 247, 100-118.
32	323	16.	D. L. Tollstrup, L. W. Xie, J. B. Wimpenny, E. Chin, C. T. Lee and Q. Z. Yin, Geochem Geophy Geosy, 2012,
33	324		13.
34	325	17.	D. J. Goudie, C. M. Fisher, J. M. Hanchar, J. L. Crowley and J. C. Ayers, Geochem Geophy Geosy, 2014, 15,
35	326		2575-2600.
37	327	18.	Y. H. Yang, J. F. Sun, L. W. Xie, H. R. Fan and F. Y. Wu, <i>Chinese Sci Bull</i> , 2008, 53, 1062-1070.
38	328	19.	Y. H. Yang, F. Y. Wu, L. W. Xie, Z. Y. Chu and J. H. Yang, <i>Spectrochim Acta B</i> , 2014, 97, 118-123.
39	329	20.	H. Y. Zhou, J. Z. Geng, Y. R. Cui and H. M. Li, Acta Geologica Sinica, 2012, 33, 857-864.(In Chinese with
40 ⊿1	330		English Abstract)
42	331	21.	R. H. Mitchell, F. Y. Wu and Y. H. Yang, <i>Chem Geol</i> , 2011, 280, 191-199.
43	332	22.	Q. Zhou, Ph. D., University of Chinese Academy of Sciences and Institute of Geology adn Geophysics, Chinese
44	333		Academy of Science, 2013. (In Chinese with English Abstract)
45 46	334	23.	S. N. Thomson, G. E. Gehrels, J. Ruiz and R. Buchwaldt, <i>Geochem Geophy Geosy</i> , 2012, 13.
47	335	24.	Y. Sano, T. Ovama, K. Terada and H. Hidaka, <i>Chem Geol</i> , 1999, 153, 249-258.
48	336	25.	O. L. Li, X. H. Li, F. Y. Wu, O. Z. Yin, H. M. Ye, Y. Liu, G. O. Tang and C. L. Zhang, Gondwang Res. 2012, 21,
49	337		745-756.
50 51	338	26.	F. Y. Wu, A. A. Arzamastsev, R. H. Mitchell, O. L. Li, J. Sun, Y. H. Yang and R. C. Wang, Chem Geol. 2013.
52	339		353. 210-229.
53	340	27.	U. Kramm and L. N. Kogarko, <i>Lithos</i> , 1994, 32, 225-242.
54	341	28	M J Kohn and J D Vervoort Geochem Geophy Geosy 2008 9
55 56	342	29	Z. C. Liu, F. Y. Wu, Y. H. Yang, J. H. Yang and S. A. Wilde <i>Chem Geol</i> 2012, 334, 221-239
57	343	30	M. L. Williams and M. J. Jercinovic. J Metamorph Geol 2012, 30, 739-752
58	2.0	20.	
59			
60			11

	\bigcirc
	_
1	
	~
	Y
	5
	Π
	U
	1
1	
	\mathbf{O}
	1
	X
	U
	E.
1	
1	L,
	1
	2
	~
1	
	U
	Ň
	Y
	0
	\mathbf{D}
1	
	0
,	
1	
	0
_	
1	
	At
	Ati
	At
	al Ate
	al Ato
	cal At
	IICAL At
	TICAL AT
	ytical Ato
	Iytical At
	alytical Ate
	alytical At
	nalytical At
	Nnalytical At
	Analytical At
	Analytical At
	t Analytical Ate
	ot Analytical Ate
	of Analytical At
	l of Analytical At
	al of Analytical At
	al of Analytical At
	nal of Analytical At
	rnal of Analytical At
	irnal of Analytical At
	urnal of Analytical At
	ournal of Analytical At
	ournal of Analytical At
	Journal of Analytical At

Figure Captions Figure 1. Schematic illustration for analytical protocol of *in situ* simultaneous Sr-Nd or Nd-Hf isotopic analyses of accessory minerals. The experimental setup of the Aanlyte G2 laser ablation, and simultaneous determination of Sr (Nd) isotope on the Neptune MC-ICP-MS and Nd (Hf) isotope on the Neptune Plus MC-ICP-MS. Figure 2. ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd ratio of *in situ* simultaneous Sr-Nd isotope analyses for SDG apatite and LOP01 loparite measured using different gas ratios. For SDG, the gas stream (Sr): the gas stream (Nd) = 3.7 (a, b), the gas stream (Sr): the gas stream (Nd) = 5.5 (c, d), and the gas stream (Sr): the gas stream (Nd) = 7:3 (e, f). For LOP01, the gas stream (Sr): the gas stream (Nd) = 3:7 (g, h), the gas stream (Sr): the gas stream (Nd) = 5:5 (i, j), and the gas stream (Sr): the gas stream (Nd) = 7:3 (k, j) = 7:3 (k, j) 1). Figure 3. ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd ratio of *in situ* simultaneous Sr-Nd isotope analyses for AP1 apatite (a, b), MAD apatite (c, d) and NW-1 apatite (e, f). **Figure 4.** ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd ratio of *in situ* simultaneous Sr-Nd isotope analyses for AFK perovskite (a, b), LOP01 Loprite (c, d) and LV01 eudialyte (e, f). Figure 5. ¹⁴³Nd/¹⁴⁴Nd and ¹⁷⁶Hf/¹⁷⁷Hf ratio of *in situ* simultaneous Nd-Hf isotope analyses for LV01 eudialyte (a, b) and ZrkA zirconolite (c, d).