# JAAS

Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/jaas

# GRAPHICAL ABSTRACT

The method of simple dilution of seminal plasma allowed sufficiently sensitive and reproducible simultaneous measurement of 20 elements in seminal plasma by ICP-MS.



Journal of Analytical Atomic Spectrometry Accepted Manuscri

#### 

# Multielement analysis of human seminal plasma by octopole reaction cell ICP-MS

Tanja Živković\*, Blanka Tariba, Alica Pizent

Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia

#### tzivkovic@imi.hr

This study describes optimisation and validation processes for the simultaneous determination of Ag, As, B, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Se, Sn, and Zn in seminal plasma samples by inductively coupled plasma mass spectrometry (ICP-MS) using the octopole reaction system (ORS) collision/reaction cell. Two sample pre-treatment procedures, i.e. digestion and dilution, were explored and compared with regard to linearity, detection and quantification limits obtained on a real sample, and precision. To verify the accuracy of these methods, serum and urine QC materials were used, while spiked seminal plasma pooled samples were used to assess precision and recovery. Although both pre-treatment methods allowed sensitive and reproducible analyses, the method of simple dilution of seminal plasma 1+19 with aqueous solution containing 0.01 mmol L<sup>-1</sup> EDTA, 0.004% v/v NH<sub>3</sub>, and 0.07% v/v TritonX-100 was chosen due to the reduced time of analysis and risks of sample contamination. The proposed method was applied for the simultaneous determination of 20 elements in seminal plasma of 76 adult men with suspected infertility, and the results were compared against recent data from the literature. We investigated the element distribution depending on smoking habits and the results of the comparison between 37 smokers and 39 non-smokers showed significantly higher concentrations of Cd in seminal plasma of smokers as well as dependence on increases in the number of cigarettes smoked per day (P=0.004). In addition, our results are the first to provide data for Ag and B concentrations in human seminal plasma.

 Key-words: trace elements, heavy metals, optimization, validation, pre-treatment method

#### **1** Introduction

Seminal plasma is composed of secretions from the male accessory glands, including prostate, seminal vesicles, and epididymis. It provides a safe surrounding and nutrition for spermatozoa, influencing spermatozoa survival and overall fertilization success. Therefore, imbalances in its physiological composition can be related to infertility.<sup>1, 2</sup>

Alongside a wide variety of both organic and inorganic chemical constituents such as sugars, lipids, hormones, enzymes, and vitamins, seminal plasma also contains various chemical elements that can influence male semen quality. The adverse effects of certain elements on human male reproduction have been reviewed recently.<sup>3, 4</sup> It has been indicated that even low-level exposure to lead (Pb) and cadmium (Cd) could adversely affect reproductive health. On the other hand, elements such as copper (Cu), selenium (Se) and zinc (Zn) are cofactors of many enzymes and metalloproteins involved in a wide range of biological processes and are necessary for spermatogenesis, DNA metabolism and repair, and gene expression.<sup>5, 6</sup> Moreover, these elements can reduce the adverse effects of toxic elements.<sup>5, 7-10</sup> One of the most important non-occupational source of potentially harmful elements is tobacco smoke. It contains approximately 30 metal ions, including Cd, Pb, nickel (Ni), and chromium (Cr) and could considerably contribute to increasing body burden.<sup>11</sup> Their concentration could also be increased in seminal plasma.<sup>12-14</sup> Therefore, determinations of the presence and level of various elements in seminal plasma have an important role in the evaluation of reproductive health in men as well as in exposure prevention plans.

In the last twenty years, an increasing number of publications have reported the concentration of some elements in human seminal plasma, mostly with respect to semen quality and

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

infertility problems.<sup>15-19</sup> Although inductively coupled plasma-mass spectrometry (ICP-MS) is one of the most suitable techniques for the simultaneous determination of trace elements in biological fluids because of its rapidity, low limits of detection, wide linear dynamic range, and minimum sample quantity needed for analysis, only a few studies have used ICP-MS for multi-element determination in human seminal plasma.<sup>20-22</sup> Furthermore, all of these studies provided little or no information about analytical procedures including sample preparation and validity of results, which makes it difficult to compare the published data. In addition, there has been no recent study on multielement status in seminal plasma from European men. Moreover, data for silver (Ag) and boron (B) are still lacking.

The aim of this paper was to: a) determine the most suitable preparation method for the simultaneous determination of Ag, arsenic (As), B, calcium (Ca), Cd, cobalt (Co), Cr, Cu, iron (Fe), potassium (K), lithium (Li), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), Ni, Pb, Se, tin (Sn), and Zn in human seminal plasma by ICP-MS; b) optimize and validate this method; c) determine the concentrations of these 20 elements in 76 men with no-occupational exposure to metals; d) assess the influence of smoking habits on multielement seminal plasma content.

The complexity of the matrix, limited sample volume, very low concentrations of many elements in seminal plasma and the risk of contamination during sample collection and handling, as well as the wide concentration range of elements of interest can cause problems in their reliable quantification. Therefore, the development of a sensitive, easily applicable and accurate method for multi-element analysis of seminal plasma could present an analytical challenge.

#### Experimental

#### 2.1 Instrumentation

The development of the method was carried out using an Agilent 7500cx ICP-MS (Agilent Technologies, Waldbronn, Germany) with an Octopole Reaction System (ORS) collision/reaction

#### Journal of Analytical Atomic Spectrometry

cell in order to minimize the influence of possible interferences. The ORS was operated in one of 3 different modes: no-gas for measurement of Ag (m/z=107), B (m/z=11), and Li (m/z=7), hydrogen for Cr (m/z=52) and Se (m/z=78), and helium mode for As (m/z=75), Ca (m/z=43), Cd (m/z=114), Co (m/z=59), Cu (m/z=63), Fe (m/z=56), K (m/z=39), Mg (m/z=24), Mn (m/z=55), Mo (m/z=95), Na (m/z=23), Ni (m/z=60), Pb (m/z=208), Sn (m/z=118) and Zn (m/z=68). High purity (99.999% V/V) argon, helium and hydrogen were used as cell gases in order to minimize the potential problems caused by unidentified reactive contaminant species in the cell. The 7500cx ICP-MS was equipped with an integrated auto sampler, MicroMist glass concentric nebulizer, a Scott Quartz spray chamber and Ni sampler and skimmer cones, all from Agilent Technologies. Instrumental settings were optimised daily using the software auto-tune function to obtain good sensitivity, low production of oxides (<1%) and doubly charged ions (<2%). Typical optimized instrumental conditions and measurement parameters are listed in Table 1. For internal standardisation, scandium (Sc, m/z=45), germanium (Ge, m/z=72, m/z=74), rhodium (Rh, m/z=103), terbium (Tb, m/z=159), iridium (Ir, m/z=193), and lutetium (Lu, m/z=175) were used.

An UltraCLAVE IV (Milestone Srl, Sorisole, Italy) with integrated software was used for microwave assisted digestion of samples. Details of the procedure are provided in Table 2. The instruments operate under positive pressure maintained by the HVAC (heating, ventilating, and an air-conditioning) system with HEPA filters.

#### 2.2 Reagents and standards

Individual standard solutions (1000±7 mg L<sup>-1</sup> in 4-10% HNO<sub>3</sub> or 20% HCl) for the determination of total Ag, As, B, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Se, Sn, and Zn and internal standard elements, i.e. Sc, Ge, Rh, Tb, Ir, and Lu were obtained from SCP SCIENCE (SCP Science, Quebec, Canada).

The following commercial chemicals were used: suprapur nitric acid (65% HNO<sub>3</sub>) and hydrochloric acid (30% HCl) from Merck (Merck, Darmstadt, Germany); ammonia solution (35%

Journal of Analytical Atomic Spectrometry Accepted Manuscript

 $NH_3$ ) and Triton X-100 from BDH Chemicals Ltd (BDH Chemicals Ltd, Poole, England); ethylenediaminetetraacetic acid diammonium salt hydrate (97% EDTA) from Sigma-Aldrich (Sigma-Aldrich, Tokyo, Japan). Nitric acid was purified using the MILESTONE SubPUR/DuoPUR sub-boiling distillation system (Milestone Srl, Sorisole, Italy). The water used was purified with the TKA GenPure Ultra pure water system (TKA Niederelbert, Germany) with specific resistivity of 18.2 MQ\*cm.

Since no suitable reference material for seminal plasma was available, we used standard reference material for serum and urine. Control materials were ClinChek<sup>®</sup> Serum Controls and ClinChek<sup>®</sup> Urine Controls, lyophilised for Trace Elements, Levels I and II (Recipe, Munich, Germany), and Seronorm<sup>TM</sup> Trace Elements Serum L-1 and L-2 (Sero AS, Billingstad, Norway).

Particular attention was paid to precautions against external contamination. All equipment and laboratory glassware were soaked in 10% v/v HNO<sub>3</sub> for 24 h, then rinsed with ultrapure water and dried in a clean box until use.

#### **2.3 Analytical procedures**

 Initial investigations on the optimisation of the method were conducted with pooled seminal plasma and quality control materials to determine the most suitable sample preparation for the analysis. To obtain optimal analytical characteristics for most analysed elements in seminal plasma, several steps were performed and optimised.

Calibration curves were constructed from calibration standards added in: A, aqueous solution containing 0.01 mmol L<sup>-1</sup> EDTA, 0.004% v/v NH<sub>3</sub>, and 0.07% v/v TritonX-100; AN, aqueous solution containing 1% v/v HNO<sub>3</sub>; AP, pool of seminal plasma diluted with aqueous solution A; and DP, deproteinised seminal plasma diluted with aqueous solution AN. Calibration standards were chosen to ensure all samples fell within the expected range. Internal standardisation was achieved by adding Sc, Ge, Rh, Tb, Ir, and Lu single element standards to diluents. The final concentration of internal standards in all sample and calibration solutions was 1  $\mu$ g L<sup>-1</sup>.

#### Journal of Analytical Atomic Spectrometry

This study took simple dilution and digestion of samples into consideration as possible sample preparation methods. In the procedure of simple dilution, an aliquot of 150  $\mu$ L of well mixed seminal plasma was diluted 1+19 with aqueous solution A. For the microwave-assisted digestion procedure, an aliquot of 250  $\mu$ L of seminal plasma was diluted 1+4 with 50% v/v HNO<sub>3</sub> in quartz glass vessels and digested according to the programme described in Table 2. Colourless digestion solutions without visible precipitate and high recovery results for the most of measured elements in pooled seminal plasma indicated that the samples were completely digested. After cooling, the digested solution of seminal plasma was diluted up to 5 mL with ultrapure water. In addition, an aliquot of 300  $\mu$ L was further diluted 1+9 with 1% v/v HNO<sub>3</sub>.

Each sample was prepared and analysed in duplicate. Blanks, reference materials, and calibration standards were prepared in the same way as the samples and analysed accordingly. The calibration and instrument sensitivity control was performed by re-analysing selected calibration standard every 30 analyses.

For Ca, K, Li, Mg, and Na only aqueous calibrations were utilised. For B, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sn, and Pb, both aqueous and matrix-matched calibrations were utilised.

#### 2.4 Study population

The seminal plasma samples for multi-element concentration determination were obtained from 76 men with suspected infertility, recruited at the Department of Endocrinology and Reproductive Medicine, University Clinic "Vuk Vrhovac" in Zagreb, Croatia. A questionnaire including data on age, place of residence, occupation, dietary habits, smoking habits, alcohol consumption, and medical and occupational history was completed by a physician for each subject. The participants, aged 32 (23-42) years, were not occupationally exposed to metals. The mean and SD of body mass index was  $26.1\pm3.5$  kg m<sup>-2</sup>. The mean semen volume of the participants was 3.2 mL, mean sperm concentration was  $61.6 \times 10^6$  mL<sup>-1</sup>, and the average percentage of progressively motile sperm was

#### Journal of Analytical Atomic Spectrometry

21.4%. In addition to seminal plasma Zn, other parameters of prostate secretory function such as acid phosphatase and citric acid were also measured, and the mean±SD values were 2189±1276 U per ejaculate and 81±39 mmol per ejaculate, respectively. Out of the 76 men, 37 were cigarette smokers and 39 non-smokers. Participants in the group of smokers smoked 14±9 cigarettes per day.

All of the participants were asked to fast in the preceding 10 h and abstain from alcohol in the preceding 24 h. They all gave their informed consent before inclusion in the study. The study was performed in compliance with the ethical standards of the Helsinki Declaration, and was approved by the ethics committees of both institutions.

#### **2.5 Sample collection**

 The ejaculate was collected by masturbation in a metal-free glass container after abstinence from sexual activity in the preceding 4 days. After the ejaculate liquefaction (approximately 15 min), the seminal plasma was obtained by centrifugation at 1,500g for 10 min at room temperature. An aliquot of approximately 500  $\mu$ L of seminal plasma was decanted into a metal-free polypropylene microtube. The samples were frozen and stored at -20 °C until analysed by ICP-MS. Before analysis, seminal plasma samples were thawed at room temperature and then mixed gently for homogenisation.

For the development of analytical method and matrix-matched calibration, a pool of seminal plasma samples was prepared using seminal plasma collected from healthy participants, non-smokers with no occupational exposure to metals.

#### 2.6 Statistics

Statistical analyses were performed using Statistica 12 for Windows (StatSoft Inc., Tulsa, OK, USA). The data were analysed using Shapiro-Wilks test for normality. Because of the skewed distribution of most of the analysed elements, their values were transformed by logarithm. The results relating to the verification of our method are expressed as mean±SD, whereas the results of

 elements concentration in seminal plasma in our participants are expressed as mean $\pm$ SE, median and 5<sup>th</sup>-95<sup>th</sup> range. The difference between the groups was assessed by Student's t-test. Correlation analysis between variables was performed by Pearson's test. The level of statistical significance was set at P<0.05.

#### **3 Results and discussion**

#### **3.1 Pre-treatment method optimization**

During the daily instrument optimisation, instrumental parameters such as the gas flow rate, radio frequency (RF) power, and lens setting were chosen to reduce the doubly charged ions or oxide formation. Moreover, to reduce possible plasma-based or matrix interferences, <sup>23, 24</sup> ORS with helium collision mode was used for the measurement of most elements. In helium collision mode, separation between analyte and polyatomic ions is based on Kinetic Energy Discrimination (KED). To be precise, all polyatomic ions are larger than analyte ions of the same mass. Due to more collisions with the He cell gas, polyatomics lose more energy than analyte ions preventing them to pass through to the analyser. This separation allows the multi-element measurement within a wide range of concentrations using constant operating conditions for As, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sn, and Zn in a complex matrix such as seminal plasma. In hydrogen mode, simple reactions with hydrogen remove argon-based polyatomic ions by charge, proton or atom transfer.<sup>25</sup> This mode was used to measure Cr and Se. Standard ("no-gas") mode was used for Ag, B, and Li. Further correction for instrumental drifts and matrix effects included the addition of internal standards to all samples and standards. Memory effects were reduced by adjusting the speed of peristaltic pump during rinse time and by increasing the number of rinsing cycles. Therefore, no interferences were observed at m/z values selected in this study.

Seminal plasma samples are very complex due to the high matrix protein content and it was necessary to perform sample treatment prior to analysis. The usual sample preparation methods for determining elements in seminal plasma found in literature are sample digestion or direct dilution.

Journal of Analytical Atomic Spectrometry Accepted Manuscri

We included both preparation methods in our initial investigation to find the most suitable method which should be simple, sensitive, accurate and precise, with minimal volume and manipulation of the sample required, and to be useful for the simultaneous measurement of macro- and microelements in the same sample. Sample digestion method is usually the method of choice because of the elimination of organic matter which reduces the matrix effect. However, this method increases the analysis time and risk of sample loss or contamination. The direct dilution method is faster and simpler, and requires minimal manipulation of samples. The disadvantage of this method could be its possible matrix effects.

#### 3.2 Comparison between analytical parameters obtained by dilution and digestion method

To investigate the matrix influence on determination of selected elements in seminal plasma, the slopes for aqueous and matrix-matched calibration graphs were compared by Wilcoxon signed-rank test. Significant difference was found between the slopes of calibration graphs A and AP for As (P=0.003), B (P=0.003), Cd (P=0.041), Pb (P=0.004), Se (P=0.003), Sn (P=0.008) and Zn (P=0.035), and between AN and DP for B (P=0.028), Sn (P=0.028) and Zn (P=0.043). The results indicate that there is a matrix effect on these elements and calibration needs to be prepared on pooled seminal plasma samples (matrix-matched calibration). For simplicity, matrix-matched calibration with pooled seminal plasma was utilised for most elements. However, due to high endogenous concentrations of Ca, K, Li, Mg, Na, and Zn in seminal plasma, aqueous calibration was chosen for these elements.

The limit of detection (LOD) was calculated as 3-times the SD of ten measurements of pool seminal plasma sample and was equivalent to the element concentration in seminal plasma. Comparative results for LOD and the limit of quantification (LOQ=10 SD) between dilution and digestion methods are shown in Table 3. For most measured elements, the obtained LOD and LOQ values were lower for diluted than for digested samples. The only exception was Ni with LOQ of 0.037  $\mu$ g L<sup>-1</sup> and 0.018  $\mu$ g L<sup>-1</sup> for diluted and digested samples, respectively. Several authors have

#### Journal of Analytical Atomic Spectrometry

previously reported LOD or LOQ values for the measured elements, and only a few used ICP-MS methods. Values obtained for Ca, Mg, and Zn<sup>26</sup> and for Co and Cr<sup>27</sup> in diluted seminal plasma were 5 to 10 times higher than our LOD values, although reported values were obtained on blank samples. Contrary to our results, Li et al.<sup>20</sup> obtained lower LOD values for As (0.01  $\mu$ g L<sup>-1</sup>), Cu (0.01  $\mu$ g L<sup>-1</sup>), Mn (0.01  $\mu$ g L<sup>-1</sup>), Pb (0.001  $\mu$ g L<sup>-1</sup>), and Se (0.1  $\mu$ g L<sup>-1</sup>) in microwave digested samples. The authors did not specify the method for LOD calculation; however, these values are more similar to our LOD values obtained using blank samples (results not shown).

Using the appropriate calibration approach, different methods of sample preparation were evaluated with serum reference material ClinChek for As, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Mo, Ni, Se, Sn, and Zn, which had available certified values. The results based on six measurements of each sample (Table 4) showed good agreement between certified and measured concentrations for most elements measured by both preparation methods. Measured values for Cd, Fe, Mg, Ni, and Sn, obtained by digestion method, were significantly different (P<0.05, Student's t-test) from certified values. Using the dilution method, only the values for Fe and Sn were significantly different from the certified values. It should be stressed, however, that all of these measured values were within the control range and therefore would be considered satisfactory.

In addition, recovery tests were performed by adding adequate amounts of analyte to diluted as well as digested solution of pooled seminal plasma. Samples were spiked with concentrations of 0.01  $\mu$ g L<sup>-1</sup> for Ag, 0.05  $\mu$ g L<sup>-1</sup> for Cd, Co, Cr, Mo, and Sn, 0.1  $\mu$ g L<sup>-1</sup> for B, Mn, and Ni, 0.2  $\mu$ g L<sup>-1</sup> for As and Se, 7  $\mu$ g L<sup>-1</sup> for Cu and Fe, 150  $\mu$ g L<sup>-1</sup> for Li and Zn, 1 mg L<sup>-1</sup> for Ca and Mg, 4 mg L<sup>-1</sup> for K and 7 mg L<sup>-1</sup> for Na. Each measurement was performed in duplicate. Recoveries obtained for diluted samples ranged from 92% for B to 110% for K, whereas recoveries for digested samples ranged from 81% for Ni to 123% for B (Figure 1).

Comparison between different sample preparation methods was reported by only one group of authors. Results for the determination of Ca, Cu, Fe, Mg, Zn, Mn, and Se in bovine semen samples by quadrupole-ICP-MS showed good agreement between the method of dilution 1:50 with a solution containing 0.01% v/v Triton X-100 and 0.5% v/v nitric acid and microwave digestion.<sup>28</sup> Authors also compared aqueous and matrix-matching calibration for dilution method and found no interference for measured elements.

Although both pre-treatment methods resulted in acceptable results, we chose the method of dilution for further investigation. Our results showed that the method of simple dilution of seminal plasma 1+19 with aqueous solution A (containing 0.01 mmol L<sup>-1</sup> EDTA, 0.004% v/v NH<sub>3</sub>, and 0.07% v/v TritonX-100) was adequate to satisfy the majority of crucial requirements for most elements. Moreover, the selected dilution factor was sufficient to overcome accumulation of seminal plasma residue on the nebulizer.

#### 3.3 Analytical parameters

In the concentration ranges used for calibration, the linearity of calibration curves resulted in correlation coefficients  $\geq 0.999$  for all elements. The LODs and LOQs obtained in this study (Table 3) are satisfactory and suitable for seminal plasma element determination by selected dilution method.

The accuracy of the chosen method was controlled daily using ClinChek<sup>®</sup> Serum Controls with two levels of element concentrations and the obtained results were within the control range (Table 4). However, ClinChek<sup>®</sup> Serum Controls is certified only for As, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Mo, Ni, Se, Sn, and Zn, whereas there is no certified values for Ag, B, Ca, K, Na, and Pb. Therefore, Seronorm<sup>™</sup> Trace Elements Serum with two levels of element concentrations was also used, although it provides certified values for Ca, Co, Cr, Cu, Fe, Li, Mg, Mn, Ni, Se, and Zn, and approximate values for Ag, As, B, Cd, K, Mo, Na, Pb, and Sn. The obtained results (Table 5) were in good agreement with certified or approximate values for the most of measured elements. Table 5 also shows results of the analyses of ClinChek<sup>®</sup> Urine Control. Precision was controlled by analysing an aliquot of pooled seminal plasma. The relative standard deviation (RSD) of five replicate measurements ranged between 0.11% for Co and 1.83% for Ag when measured on the

#### Journal of Analytical Atomic Spectrometry

same day and between 0.39% for Ca and 7.27% for Ag when measured on different days. In addition, precision (RSD) and trueness, presented as the recovery of added concentration, were calculated on the basis of eight replicate measurements of spiked pooled seminal plasma samples. Samples were spiked with three levels of added element and the results are shown in Table 6. Precision was in the range from 0.26% (Na, low level) to 7.61% (Cr, low level). Recovery ranged from 90% to 110% for almost all analytes except for B (88%), and Zn (89%) at a middle level of added concentration and for B (88%) at a high level.

#### 3.4 Element concentration in human seminal plasma

The developed method was applied for the determination of 20 essential and non-essential elements in 76 men with suspected infertility and no-occupational exposure to metals. The results are shown in Table 7. Concentrations measured in seminal plasma were one or more orders of magnitude higher than LOQ values for all elements except for Li. Only Li concentrations were below LOD of 0.017 mg L<sup>-1</sup> in 31% (24/76) of samples. Therefore, for the statistical analysis, the measured concentrations below the LOD were assigned to LOD/2. A very low concentration of <1  $\mu$ g L<sup>-1</sup> was found for Ag, Cd and Sn, whereas a concentration of several hundred mg L<sup>-1</sup> was found for Ca, K, Zn and Na.

Besides us, only Katayama et al.<sup>22</sup> reported Li values in seminal plasma and their results were within a narrower range of values than ours (Table 8). No published results for Ag or B were found. Our values for Ca, Co, Na, Ni, and Se were more or less similar to those found in other studies (Table 8), whereas the results for As, Pb and Sn were lower than those of other authors.<sup>21, 22</sup>

For some elements, however, literature data varies over a wide range. For example, the reported values for Zn ranged from  $<10^{-2}$  mg L<sup>-1</sup> in men referred for fertility treatment from India<sup>29</sup> to about 10<sup>3</sup> mg L<sup>-1</sup> in normozoospermic, oligospermic and azoospermic men from Ghana.<sup>30</sup> Both authors used atomic absorption spectrometry (AAS) for the measurement of Zn in several groups of men divided according to semen quality parameters. The reported AAS value for Cu in

Journal of Analytical Atomic Spectrometry Accepted Manuscript

Journal of Analytical Atomic Spectrometry Accepted Manuscrip

normozoospermic men was  $15.5\pm5.0 \ \mu g \ L^{-1}$  in men from India<sup>29</sup>, but  $(173.29\pm19.3)*10^3 \ \mu g \ L^{-1}$  in men from Iraq.<sup>31</sup> Considerably different Fe values were reported for oligozoospermic men from Lucknow, India by Shukla et al.<sup>29</sup> (59.7±5.7  $\mu g \ L^{-1}$ ) and by Pant and Srivastava<sup>32</sup> (46.67±15.95)\*10<sup>3</sup> $\mu g \ L^{-1}$ , but the reason behind the difference in the two findings is hard to explain. Elevated levels of Pb in seminal plasma were found in IVF patients from the US<sup>16</sup>, and of Cd in Nigeria<sup>17</sup>, although these studies were performed in occupationally unexposed subjects. Because analytical or validation parameters were reported only occasionally, it is possible that the observed discrepancies between the reported concentrations were the result of analytical difficulties due to different techniques or preparation methods used; however, they could also be the result of different geographical origin, dietary habits or differences in physiological state among the participants.

In addition, lifestyle such as smoking habits and alcohol consumption could also have a considerable impact. Tobacco smoking is one of the most important non-occupational sources of metal exposure. Among several thousands of potentially toxic chemicals, elements such as Cd, As, Cr, Pb, and Ni are identified in tobacco smoke and accumulate in tissues and fluids through smoking. However, only several studies (Table 8b) have reported element concentration in seminal plasma with regard to smoking habits and their results are inconsistent. For example, a significant difference was found for Zn in seminal plasma between smokers and non-smokers among infertile patients from China<sup>33</sup> and fertile men from Egypt,<sup>34</sup> whereas no significant difference for Ca, Mg, Zn, Na, and K was found between smokers and non-smokers among the groups of fertile and infertile subjects from Iran.<sup>18</sup> In the group of infertile men, seminal plasma levels of Pb and Cd were higher in smokers than in non-smokers.<sup>14</sup> Highly significant<sup>12, 35</sup> or no significant<sup>36</sup> difference in seminal plasma Cd between smokers and non-smokers was found. The results of our study showed significantly higher Cd in seminal plasma of smokers than non-smokers (P=0.02), whereas there was no significant difference in other measured elements between the groups (Table 7). In addition, Cd in seminal plasma significantly increased with a higher number of cigarettes smoked per day (r=0.393, P=0.004). Figure 2 shows seminal plasma Cd values with regard to the number of

cigarettes smoked per day. It is important to note that these results were obtained from the group of 39 non-smokers and 37 smokers, of whom only 9 smoked 20 or more cigarettes per day.

## Conclusions

The method of simple dilution of seminal plasma 1+19 with aqueous solution A (containing 0.01 mmol L<sup>-1</sup> EDTA, 0.004% v/v NH<sub>3</sub>, and 0.07% v/v TritonX-100) allowed sufficiently sensitive and reproducible simultaneous measurement of 20 elements in seminal plasma by ICP-MS. The use of ORS collision/reaction cell minimized the influence of interferences. The method of dilution was selected due to reduced time of analysis and risks of sample contamination and was applied for the simultaneous determination of 20 elements in seminal plasma of 76 adult men with suspected infertility. The first data for Ag and B concentration in human seminal plasma were proposed, although these results have not been verified. Our results also showed a significantly higher concentration of Cd in seminal plasma of smokers than in non-smokers and this value depended on the increasing number of cigarettes smoked per day (p=0.004).

# Acknowledgements:

This study was supported by the Ministry of Science, Education, and Sports of the Republic of Croatia (Grant no. 022-0222411-2408). We gratefully acknowledge Božo Čolak, MD and Kristijan Peroš, MD, and their team from the andrology unit of The Vuk Vrhovac Clinic in Zagreb, for their efforts in recruiting of participants and collecting seminal plasma samples. We would also like to thank our participants for their collaboration.

# References

- 1 N. S. Juyena and C. Stelletta, J. Androl., 2012, **33**, 536-551.
- T. Mann and C. Lutwak-Mann. *Male Reproductive Function and Semen*. Springer-Verlag, Berlin, 1981.

- 3 J. J. Wirth and R. S. Mijal, *Syst. Biol. Reprod. Med.*, 2010, **56**, 147-167.
- 4 A. Pizent, B. Tariba and T. Živković, Arh. Hig. Rada Toksikol., 2012, 63(Suppl. 1), 35-46.
- 5 S. Telišman, Arh. Hig. Rada Toksikol., 1995, 46, 459-476.
- 6 M. Fenech, *Food Chem. Toxicol.*, 2002, **40**, 1113-1117.

- W. Y. Wong, G. Flik, P. M. W. Groenen, D. W. Swinkels, C. M. G. Thomas, J. H. J. Copius-Peereboom, H. M. W. M. Merkus and R. P. M. Steegers-Theunissen, *Reprod. Toxicol.*, 2001, 15, 131-136.
- 8 A. Pizent, J. Jurasović and S. Telišman, J. Trace. Elem. Med. Biol., 2003, 17, 199-205.
- 9 M. Lazarus, Arh. Hig. Rada Toksikol., 2010, 61, 357-369.
- 10 V. Matović, A. Buha, Z. Bulat and D. Đukić-Ćosić, *Arh. Hig. Rada Toksikol.*, 2011, 62, 6576.
- WHO study group on tobacco product regulation. Report on the scientific basis of tobacco product regulation: Fourth report of a WHO study group, WHO Technical Report series, No. 967. World Health Organization, Geneva, Switzerland, 2012.
- 12 S. Telišman, J. Jurasović, A. Pizent and P. Cvitković, *Int. Arch. Occup. Environ. Health*, 1997, 70, 243-248.
- S. Telišman, P. Cvitković, J. Jurasović, A. Pizent, M. Gavella and B. Ročić, *Environ. Health Perspect.*, 2000, 108, 45-53.
- A. R. Kiziler, B. Aydemir, I. Onaran, B. Alici, H. Ozkara, T. Gulyasar and M. C. Akyolcu, *Biol. Trace. Elem. Res.*, 2007, **120**, 82-91.
- D. I. Lewis-Jones, I. A. Aird, M. M. Biljan and C. R. Kingsland, *Hum. Reprod.*, 1996, 11, 2465-2467.
- 16 S. Benoff, G.M. Centola, C. Millan, B. Napolitano, J. L. Marmar and I. R. Hurley, *Hum. Reprod.*, 2003, **18**, 374-383.
- 17 O. Akinloye, A. O. Arowojolu, O. B. Shittu and J.I. Anetor, *Reprod. Biol.*, 2006, 6, 17-30.
- 18 A. H. Colagar, E. T. Marzony, and M. J. Chaichi, *Nutr. Res.*, 2009, 29, 82-88.

H. M. Wu, D. T. Lin-Tan, M. L. Wang, H. Y. Huang, C. L. Lee, H. S. Wang, Y. K. Soong and J. L. Lin, Reprod. Biol. Endocrinol., 2012, 10, 91; http://www.rbej.com/content/10/1/91, (accessed May 2014). P. Apostoli, S. Porru, C. Morandi and A. Menditto, J. Trace Elem. Med. Biol., 1997, 11, 182-184. P. Li, Y. Zhong, X. Jiang, C. Wang, Z. Zuo and A. Sha, Biol. Trace Elem. Res., 2012, 148, 1-6. M. Katayama, S. Kaneko, K. Takamatsu, T. Tsukimura and T. Togawa, J. Mol. Biomark. Diagn., 2013, 4; http://omicsonline.org/determination-of-trace-metals-in-human-seminalplasma-using-inductively-coupled-plasma-mass-spectrometry-and-multivariate-statisticalanalyses-for-sperm-parameters-2155-9929.1000147.pdf, (accessed May 2014). E. McCurdy and G. Woods, J. Anal. At. Spectrom., 2004, 19, 607-615. E. McCurdy, G. Woods and D. Potter, Agilent Technologies, Inc., 2006.; http://www.chem.agilent.com/Library/applications/5989-4905EN.pdf, (accessed May 2014). W. Moellmer, T. G. Miller, S. Wilbur and E. Soffey, Spectroscopy 2007; http://www.chem.agilent.com/cag/other/Spectroscopy%20Great%20Salt%20Lake.pdf, (accessed May 2014). M. B. Sørenson, I. A. Bergdahl, N. H. Hjøllund, J. P. E. Bonde, M. Stoltenberg and E. Ernst, Mol. Hum. Reprod., 1999, 5, 331-337. V. S. Nikolaou, A. Petit, D. J. Zukor, C. Papanastasiou, O. L. Huk and J. Antoniou, J. Arthroplasty, 2013, 28, 161-167. G. F. M. Aguiar, B. L. Batista, J. L. Rodrigues, P. O. Luccas and F. Barbosa Jr, J. Braz. Chem. Soc., 2012, 23, 573-580. K. K. Shukla, A. A. Mahdi, V. Mishra, S. Rajender, S. N. Sankhwar, D. Patel and M. Das, Reprod. Biomed. Online, 2011, 22, 421-427.

- 30 N. Amidu, W. K. B. A. Owiredu, M. A. T. Bekoe and L. Quaye, *J. Med. Biomed. Sci.* 2012, 1, 14-20.
- 31 O. F. Abdul-Rasheed, *Oman Med. J.*, 2010, **25**, 168-172.

- 32 N. Pant and S. P. Srivastava, Biol. Trace Elem. Res., 2003, 93, 31-38.
- 33 R. Z. Liu, J.C. Gao, H. G. Zhang, R. X. Wang, Z. H. Zhang and X.Y. Liu, J. Intern. Med. Res., 2010, 38, 923-928.
- 34 E. A. Taha, A. M. Ez-Aldin, S. K. Sayed, N. M. Ghandour and T. Mostafa, *Urology*, 2012, 80, 822-825.
- 35 C. Keck, G. Bramkamp, H. M. Behre, C. Müller, F. Jockenhövel, E. Nieschlag. *Reprod Toxicol.* 1995, **9**, 35-40.
- 36 S. Benoff, R. Hauser, J. L. Marmar, I. R. Hurley, B. Napolitano and G. M. Centola, *Mol. Med.*, 2009, 15, 248-262.

Page 19 of 37

#### Journal of Analytical Atomic Spectrometry

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 2<br>2   |  |
| 0        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 10       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 20       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 22       |  |
| 3Z       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 30       |  |
| ۸U       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 77<br>10 |  |
| 40       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 55       |  |
| 50       |  |
| 5/       |  |
| 58       |  |
| 59       |  |
| 60       |  |

Table 1 Optimized instrumental conditions and measurement parameters used in different gas modes

| ICP-MS Agilent 7500cx             |          |          |        |  |  |  |  |
|-----------------------------------|----------|----------|--------|--|--|--|--|
| Gas mode                          | No-gas   | Hydrogen | Helium |  |  |  |  |
| Parameter                         |          | Value    |        |  |  |  |  |
| RF Power / W                      | 1550     | 1550     | 1550   |  |  |  |  |
| Rf Matching / V                   | 1.72     | 1.73     | 1.72   |  |  |  |  |
| Smpl depth / mm                   | 8.3      | 8.3      | 8.3    |  |  |  |  |
| Torch-H / mm                      | 0,3      | 0.3      | 0.3    |  |  |  |  |
| Torch-V / mm                      | 0        | 0        | 0      |  |  |  |  |
| Carrier Gas / L min <sup>-1</sup> | 0.92     | 0.92     | 0.92   |  |  |  |  |
| Makeup Gas / L min <sup>-1</sup>  | 0.15     | 0.15     | 0.15   |  |  |  |  |
| Nebulizer pump / Rps              | 0.08     | 0.08     | 0.08   |  |  |  |  |
| SC Temp / °C                      | 2        | 2        | 2      |  |  |  |  |
| Extract lens 1 / V                | 0.5      | 0.5      | 0      |  |  |  |  |
| Extract lens 2 / V                | -126     | -120     | -120   |  |  |  |  |
| Omega bias / V                    | -24      | -24      | -24    |  |  |  |  |
| Omega lens / V                    | -0.6     | -0.6     | -0.6   |  |  |  |  |
| Cell entrance / V                 | -26      | -26      | -26    |  |  |  |  |
| Cell exit / V                     | -30      | -48      | -44    |  |  |  |  |
| Quadrupole bias / V               | -3       | -14      | -14.5  |  |  |  |  |
| Octopole bias / V                 | -6       | -18      | -18    |  |  |  |  |
| Gas flow / mL min <sup>-1</sup>   | Not used | 3.8      | 3.1    |  |  |  |  |

Table 2 Program of the MILESTONE UltraCLAVE IV used for digestion of seminal plasma samples analysed by ICP-MS

| Step | t (min) | E (W) | T1 (°C) | T2 (°C) | P (bar) |
|------|---------|-------|---------|---------|---------|
| 1    | 10      | 1000  | 80      | 60      | 100     |
| 2    | 10      | 500   | 130     | 60      | 100     |
| 3    | 4.5     | 1000  | 180     | 60      | 120     |
| 4    | 6.5     | 1000  | 220     | 60      | 130     |
| 5    | 20      | 1000  | 220     | 70      | 130     |
| 6    | 40      | 0     | 20      | 20      | 10      |

Table 3 Comparison of limit of detection (LOD) and quantification (LOQ) determined after dilution or digestion of the seminal plasma pooled sample

| Element                  | L        | DC        | LOQ      |           |  |
|--------------------------|----------|-----------|----------|-----------|--|
|                          | Dilution | Digestion | Dilution | Digestion |  |
|                          | method   | method    | method   | method    |  |
| Ag (μg L <sup>-1</sup> ) | 0.001    | 0.006     | 0.004    | 0.021     |  |
| As (µg L⁻¹)              | 0.019    | 0.059     | 0.064    | 0.198     |  |
| B (μg L <sup>-1</sup> )  | 0.127    | 0.889     | 0.423    | 2.964     |  |
| Ca (mg L⁻¹)              | 0.193    | 0.538     | 0.644    | 1.795     |  |
| Cd (µg L⁻¹)              | 0.003    | 0.013     | 0.012    | 0.044     |  |
| Co (μg L <sup>-1</sup> ) | 0.006    | 0.016     | 0.022    | 0.053     |  |
| Cr (µg L⁻¹)              | 0.004    | 0.044     | 0.014    | 0.148     |  |
| Cu (μg L <sup>-1</sup> ) | 0.192    | 1.491     | 0.639    | 4.969     |  |
| Fe (μg L <sup>-1</sup> ) | 0.278    | 2.103     | 0.926    | 7.009     |  |
| K (mg L⁻¹)               | 0.445    | 1.578     | 1.484    | 5.259     |  |
| Li (mg L <sup>-1</sup> ) | 0.017    | 0.130     | 0.056    | 0.434     |  |
| Mg (mg L <sup>-1</sup> ) | 0.203    | 0.266     | 0.678    | 0.886     |  |
| Mn (μg L <sup>-1</sup> ) | 0.027    | 0.040     | 0.091    | 0.132     |  |
| Mo (μg L <sup>-1</sup> ) | 0.008    | 0.080     | 0.027    | 0.265     |  |
| Na (mg L <sup>-1</sup> ) | 2.832    | 4.681     | 9.440    | 15.60     |  |
| Ni (μg L <sup>-1</sup> ) | 0.011    | 0.005     | 0.037    | 0.018     |  |
| Pb (μg L <sup>-1</sup> ) | 0.006    | 0.114     | 0.020    | 0.379     |  |
| Se (µg L <sup>-1</sup> ) | 0.263    | 0.837     | 0.878    | 2.790     |  |
| Sn (μg L <sup>-1</sup> ) | 0.007    | 0.057     | 0.024    | 0.191     |  |
| Zn (mg L <sup>-1</sup> ) | 0.218    | 0.325     | 0.726    | 1.082     |  |

Journal of Analytical Atomic Spectrometry Accepted Manuscri

Table 4 Comparison of dilution and digestion methods for multielement determination using ClinChek serum control samples

|                          | ClinChek Serum Control, Level 1 |           |           | ClinChek Serum Control, Level 2 |            |            |  |
|--------------------------|---------------------------------|-----------|-----------|---------------------------------|------------|------------|--|
| Element                  | Certified value                 | Measure   | ed value  | Certified value                 | Measur     | ed value   |  |
|                          | Mean (Range)                    | Mean      | ± SD      | Mean (Range)                    | Mear       | ו ± SD     |  |
|                          |                                 | Diluted   | Digested  | -                               | Diluted    | Digested   |  |
|                          |                                 | samples   | samples   |                                 | samples    | samples    |  |
| As (μg L <sup>-1</sup> ) | 14.3 (11.4-17.2)                | 14.2±0.3  | 13.7±0.8  | 27.5 (22.0-33.0)                | 26.8±0.6   | 26.3±1.6   |  |
| Cd (µg L <sup>-1</sup> ) | 0.233 (0.163-0.303)             | 0.20±0.01 | 0.21±0.02 | 4.42 (3.32-5.53)                | 4.91±0.27  | 5.09±0.28  |  |
| Co (µg L <sup>-1</sup> ) | 0.380 (0.228-0.532)             | 0.33±0.03 | 0.46±0.11 | 1.75 (1.23-2.28)                | 1.90±0.05  | 1.61±0.16  |  |
| Cr (µg L⁻¹)              | 1.15 (0.863-1.44)               | 1.28±0.04 | 1.18±0.23 | 6.54 (5.23-7.85)                | 6.29±0.12  | 6.6±0.45   |  |
| Cu (µg L <sup>-1</sup> ) | 817 (654-980)                   | 858±5     | 832±17    | 1625 (1300-1950)                | 1703±24    | 1569±28    |  |
| Fe (µg L <sup>-1</sup> ) | 866 (779-953)                   | 941±4     | 862±7     | 1698 (1528-1868)                | 1699±9     | 1589±2     |  |
| Li (mg L <sup>-1</sup> ) | NA                              |           |           | 8.63 (7.77-9.49)                | 7.94±1.3*  | 8.9±0.87*  |  |
| Mg (mg L <sup>-1</sup> ) | 12.5 (11.3-13.8)                | 12.9±0.4* | 13.4±0.1* | 26.1 (23.5-28.7)                | 25.7±0.9*  | 27.7±0.3*  |  |
| Mn (μg L <sup>-1</sup> ) | 23.7 (19.0-28.4)                | 23.5±0.3  | 24.9±1.8  | 23.7 (19.0-28.4)                | 23.4±0.9   | 24.5±0.7   |  |
| Mo (μg L <sup>-1</sup> ) | 1.08 (0.756-1.40)               | 1.19±0.17 | 0.96±0.26 | 5.22 (3.92-6.53)                | 5.70±0.26  | 5.62±0.35  |  |
| Ni (μg L <sup>-1</sup> ) | 3.95 (2.96-4.94)                | 4.29±0.18 | 4.80±0.78 | 10.1 (8.08-12.1)                | 10.16±0.37 | 11.75±0.09 |  |
| Se (µg L <sup>-1</sup> ) | 83.3 (62.5-104)                 | 86.3±2.5  | 83.0±5.3  | 129 (103-155)                   | 139±1.6    | 134.8±4.9  |  |
| Sn (μg L <sup>-1</sup> ) | 0.980 (0.686-1.27)              | 0.74±0.06 | 0.77±0.06 | 77.2 (61.8-92.6)                | 78.63±1.61 | 84.00±0.80 |  |
| Zn (μg L <sup>-1</sup> ) | 943 (754-1132)                  | 937±11*   | 1029±13*  | 1884 (1601-2167)                | 1850±100*  | 1819±88*   |  |

\*Measured according to aqueous calibration.

Journal of Analytical Atomic Spectrometry Accepted Manuscri

Table 5 Results of the analyses of reference materials Seronorm<sup>™</sup> Trace Elements and ClinChek<sup>®</sup> Urine Control with respect to certified or approximate values

| Seronorm <sup>™</sup> Trace Elements Serum |                                |               |                                |           |  |
|--------------------------------------------|--------------------------------|---------------|--------------------------------|-----------|--|
|                                            | L-1                            |               | L-2                            |           |  |
| Element                                    | Certified value                | Measured      | Certified value                | Measured  |  |
|                                            | Approximate value <sup>a</sup> | value         | Approximate value <sup>a</sup> | value     |  |
|                                            | Mean (Range)                   | $Mean \pm SD$ | Mean (Range)                   | Mean ± SD |  |
| Ag (μg L <sup>-1</sup> )                   | 0.16 <sup>a</sup>              | 0.17±0.01     | 0.23 <sup>a</sup>              | 0.24±0.02 |  |
| As (μg L⁻¹)                                | 0.47 <sup>a</sup>              | 1.60±0.08     | 0.67 <sup>a</sup>              | 1.02±0.09 |  |
| Β (μg L <sup>-1</sup> )                    | 154 <sup>a</sup>               | 196±2         | 203 <sup>a</sup>               | 200±1     |  |
| Ca (mg L <sup>-1</sup> )                   | 94.2 (88.5-99.9)               | 93.3±1.2*     | 145 (136-154)                  | 135±1*    |  |
| Cd (µg L <sup>-1</sup> )                   | 0.126 <sup>a</sup>             | 0.134±0.018   | 0.13 <sup>a</sup>              | 0.13±0.01 |  |
| Co (µg L <sup>-1</sup> )                   | 1.2 (0.9-1.5)                  | 1.1±0.1       | 3.2 (2.8 – 3.6)                | 2.9±0.3   |  |
| Cr (µg L <sup>-1</sup> )                   | 1.5 (1.1-1.9)                  | 2.1±0.1       | 4.8 (4-5.6)                    | 4.8±0.3   |  |
| Cu (µg L <sup>-1</sup> )                   | 1691 (1523-1859)               | 1666±80       | 2887 (2689-3085)               | 2794±195  |  |
| Fe (µg L <sup>-1</sup> )                   | 1.39 (1.23-1.55)               | 1.38±0.13     | 2.03 (1.77-2.29)               | 1.93±0.13 |  |
| K (mg L <sup>-1</sup> )                    | 135 <sup>ª</sup>               | 133±1*        | 240 <sup>a</sup>               | 242±1*    |  |
| Li (mg L <sup>-1</sup> )                   | 5741 (5397-6085)               | 4959±33*      | 10950 (10293 - 11607)          | 9205±46*  |  |
| Mg (mg L <sup>-1</sup> )                   | 20.1 (18.6-21.6)               | 19.4±0.8*     | 40.8 (37.7-43.9)               | 38.8±0.4* |  |
| Mn (μg L <sup>-1</sup> )                   | 15 (13.2-16.8)                 | 14.4±1.0      | 19.9 (17.7-22.1)               | 19.0±1.0  |  |
| Mo (µg L⁻¹)                                | 0.7 <sup>a</sup>               | 0.6±0.1       | 0.9 <sup>a</sup>               | 0.9±0.1   |  |
| Na (mg L <sup>-1</sup> )                   | 2998 <sup>a</sup>              | 2957±143*     | 3736 <sup>a</sup>              | 3823±5*   |  |
| Ni (μg L <sup>-1</sup> )                   | 5.8 (4.5-7.1)                  | 5.9±0.5       | 9.8 (8.6-11)                   | 10.0±0.3  |  |
| Pb (μg L⁻¹)                                | 1.02 <sup>a</sup>              | 1.01±0.1      | 1.11 <sup>a</sup>              | 0.9±0.1   |  |
| Se (µg L <sup>-1</sup> )                   | 107 (93-121)                   | 101±5         | 163(143-183)                   | 140±2     |  |
| Sn (μg L⁻¹)                                | 0.52 <sup>a</sup>              | 0.51±0.1      | 0.51 <sup>a</sup>              | 0.50±0.1  |  |
| Zn (μg L <sup>-1</sup> )                   | 1738 (1596-1880)               | 1647±8*       | 2520 (2108-2932)               | 2469±2*   |  |
|                                            |                                | ClinChek®     | Urine Control                  |           |  |
|                                            | Level 1                        |               | Level 2                        |           |  |
| As (μg L <sup>-1</sup> )                   | 44.5 (35.7-53.5)               | 41.0±1.7      | 84.5 (67.6-101)                | 71.9±3.9  |  |
| Cd ( $\mu$ g L <sup>-1</sup> )             | 2.42 (1.94-2.90)               | 2.5±0.1       | 14.7 (11.8-17.6)               | 15.2±0.7  |  |
| Co (µg L <sup>-1</sup> )                   | 2.25 (1.8-2.7)                 | 2.3±0.07      | 35.6 (28.5-42.7)               | 34.5±1.7  |  |
| Cr (µg L⁻¹)                                | 4.23 (3.30-5.08)               | 4.34±0.35     | 20.3 (16.2-24.4)               | 19.6±1.0  |  |
| Cu (µg L <sup>-1</sup> )                   | 58.6 (46.9-70.3)               | 60.6±2.0      | 111 (88.8-133)                 | 108.2±5.7 |  |
| Fe (μg L <sup>-1</sup> )                   | 40.9 (32.7-49.1)               | 45.4±2.6      | 225 (180-270)                  | 230.7±11  |  |
| Mg (mg L⁻¹)                                | 20.5 (16.4-24.6)               | 19.1±0.6*     | 46.9 (39.9-53.9)               | 42.2±2.0* |  |
|                                            |                                |               |                                |           |  |

# Journal of Analytical Atomic Spectrometry

| Mn (μg L <sup>-1</sup> ) | 4.18 (3.34-5.02) | 4.35±0.15 | 19.7 (18.8-23.6) | 19.5±1.0 |
|--------------------------|------------------|-----------|------------------|----------|
| Ni (µg L⁻¹)              | 6.22 (4.98-7.46) | 7.3±1.3   | 44.7 (35.8-53.6) | 43.3±0.1 |
| Pb (μg L <sup>-1</sup> ) | 24.0 (19.2-28.8) | 25.3±1.0  | 64.3 (51.4-77.2) | 62.4±3.1 |
| Se (µg L <sup>-1</sup> ) | 29.3 (23.4-35.2) | 24.6±0.6  | 79.0 (63.2-94.8) | 61.1±3.6 |
| Sn (μg L <sup>-1</sup> ) | 4.81 (3.85-5.77) | 4.51±0.1  | 9.50 (7.60-11.4) | 9.7±0.5  |
| Zn (μg L <sup>-1</sup> ) | 215 (161-269)    | 222±11    | 536 (429-643)    | 480±32   |
|                          |                  |           |                  |          |

\*Measured according to aqueous calibration

 Journal of Analytical Atomic Spectrometry Accepted Manuscript

Journal of Analytical Atomic Spectrometry Accepted Manuscr

Table 6 Precision (RSD) and trueness (presented as the recovery) of spiked pooled seminal plasma samples spiked with 3 levels of added element concentrations, calculated on the basis of 8 replicate measurements

|         | Spike (Added concentration) (µg L <sup>-1</sup> ) |                 |                  |                 |                  |                 |  |  |
|---------|---------------------------------------------------|-----------------|------------------|-----------------|------------------|-----------------|--|--|
| Element | Precision<br>(%)                                  | Trueness<br>(%) | Precision<br>(%) | Trueness<br>(%) | Precision<br>(%) | Trueness<br>(%) |  |  |
|         | 0.0                                               | 05              | 0.               | .1              | 0                | .4              |  |  |
| Ag      | 3.00                                              | 91              | 1,41             | 98              | 2.21             | 98              |  |  |
| As      | 0.95                                              | 101             | 1.13             | 99              | 0.85             | 99              |  |  |
| Cd      | 5.69                                              | 98              | 1.47             | 101             | 1.94             | 99              |  |  |
| Со      | 3.23                                              | 101             | 0.64             | 100             | 1.39             | 101             |  |  |
| Cr      | 7.61                                              | 101             | 6.75             | 99              | 1.55             | 99              |  |  |
| Mn      | 0.71                                              | 103             | 1.01             | 96              | 1.50             | 97              |  |  |
| Ni      | 1.64                                              | 103             | 0.78             | 99              | 1.23             | 99              |  |  |
| Pb      | 2.29                                              | 97              | 6.85             | 107             | 1.43             | 101             |  |  |
| Sn      | 4.60                                              | 96              | 5.89             | 105             | 1.95             | 98              |  |  |
|         | 0.                                                | .3              |                  | 2               | 2                | 4               |  |  |
| В       | 0.54                                              | 92              | 0.87             | 88              | 2.74             | 88              |  |  |
| Мо      | 0.36                                              | 99              | 1.28             | 98              | 1.23             | 100             |  |  |
| Se      | 1.65                                              | 103             | 0.98             | 96              | 1.83             | 100             |  |  |
|         |                                                   | 1               | 7                |                 | 10               |                 |  |  |
| Cu      | 0.77                                              | 104             | 0.66             | 101             | 0.65             | 97              |  |  |
| Fe      | 1.40                                              | 103             | 0.74             | 101             | 0.58             | 97              |  |  |
|         | 3                                                 | 0               | 30               | 00              | 40               | 00              |  |  |
| Li      | 1.42                                              | 103             | 0.93             | 100             | 0.29             | 100             |  |  |
|         | 50                                                | 00              | 100              | 000             | 200              | 000             |  |  |
| Са      | 0.85                                              | 105             | 0.73             | 101             | 0.36             | 100             |  |  |
| Mg      | 0.85                                              | 105             | 0.73             | 101             | 0.36             | 100             |  |  |
| Zn      | 0.72                                              | 96              | 0.68             | 89              | 0.91             | 103             |  |  |
| К       | 0.34                                              | 105             | 0.56             | 101             | 1.33             | 101             |  |  |
| Na      | 0.26                                              | 104             | 0.50             | 102             | 1.62             | 100             |  |  |

#### Journal of Analytical Atomic Spectrometry

Table 7 Mean±SE, median and 5<sup>th</sup>-95<sup>th</sup> percentile range for the element concentration in seminal plasma in 76 men, including 37 smokers and 39 non-smokers, and significance of the difference between the groups regarding smoking habits (p; t-test)

| Element                  | Total (N=76)          | Smokers (N=37)       | Non-smokers (N=39)   | р     |
|--------------------------|-----------------------|----------------------|----------------------|-------|
| Ag (μg L <sup>-1</sup> ) | 0.089±0.004           | 0.089±0.006          | 0.090±0.007          | 0.926 |
|                          | 0.086 (0.038-0.163)   | 0.087 (0.038-0.148)  | 0.081 (0.033-0.177)  |       |
| As (μg L⁻¹)              | 2.235±0.344           | 2.389±0.520          | 2.088±0.459          | 0.605 |
|                          | 1.029 (0.249-8.754)   | 1.308 (0.249-10.829) | 0.931 (0.246-6.318)  |       |
| B (μg L <sup>-1</sup> )  | 52.62±3.12            | 50.71±3.95           | 54.38±4.80           | 0.938 |
|                          | 50.44 (21.09-110.90)  | 45.90 (21.98-88.99)  | 53.79 (20.29-123.73) |       |
| Ca (mg L <sup>-1</sup> ) | 260.2±9.7             | 254.8±12.8           | 260.3±12.2           | 0.653 |
|                          | 237.0 (155.8-425.9)   | 238.1 (130.3-385.7)  | 237.2 (158.3-414.2)  |       |
| Cd (µg L⁻¹)              | 0.169±0.013           | 0.197±0.021          | 0.142±0.013          | 0.020 |
|                          | 0.127 (0.057-0.399)   | 0.148 (0.065-0.502)  | 0.118 (0.051-0.317)  |       |
| Co (μg L <sup>-1</sup> ) | 0.574±0.093           | 0.487±0.065          | 0.656±0.171          | 0.443 |
|                          | 0.415 (0.222-1.340)   | 0.427 (0.188-0.676)  | 0.413 (0.245-1.549)  |       |
| Cr (µg L⁻¹)              | 0.517±0.045           | 0.434±0.035          | 0.535±0.069          | 0.133 |
|                          | 0.411 (0.216-1.138)   | 0.392 (0.216-0.962)  | 0.418 (0.208-1.482)  |       |
| Cu (µg L⁻¹)              | 86.02±3.32            | 82.04±4.68           | 89.88±4.69           | 0.123 |
|                          | 83.21 (42.26-143.14)  | 79.76 (36.10-143.14) | 85.68 (50.41-156.54) |       |
| Fe (μg L <sup>-1</sup> ) | 101.89±3.79           | 104.63±5.09          | 99.36±5.61           | 0.296 |
|                          | 94.74 (62.31-156.41)  | 99.87 (55.88-156.41) | 93.58 (62.31-197.91) |       |
| K (mg L⁻¹)               | 908.8±28.2            | 884.3±37.1           | 916.2±35.4           | 0.237 |
|                          | 866.9 (525.6-1388.5)  | 848.5 (506.2-1304.3) | 866.9 (575.4-1363.0) |       |
| Li (mg L⁻¹)              | 5.404±1.168           | 4.454±1.581          | 6.280±1.716          | 0.971 |
|                          | 1.041 (<0.017-29.065) | 0.939 (<0.017-30.20) | 1.484 <0.017-29.06)  |       |
| Mg (mg L <sup>-1</sup> ) | 93.29±4.81            | 93.02±6.95           | 93.55±6.76           | 0.707 |
|                          | 83.21 (39.24-168.80)  | 85.22 (28.33-168.80) | 82.33 (39.24-169.35) |       |
| Mn (μg L⁻¹)              | 4.026±0.252           | 3.873±0.307          | 4.175±0.400          | 0.439 |
|                          | 3.639 (1.424-9.160)   | 3.363 (1.191-6.768)  | 3.715 (1.424-10.975) |       |
| Mo (μg L <sup>-1</sup> ) | 1.322±0.065           | 1.283±0.115          | 1.359±0.066          | 0.720 |
|                          | 1.210 (0.792-2.120)   | 1.082 (0.748-2.037)  | 1.264 (0.829-2.142)  |       |
| Na (mg L⁻¹)              | 2663±20               | 2670±31              | 2657±25              | 0.769 |
|                          | 2674 (2354-2956)      | 2666 (2323-3002)     | 2681 (2397-2895)     |       |
| Ni (μg L⁻¹)              | 1.709±0.121           | 1.656±0.121          | 1.762±0.210          | 0.686 |
|                          | 1.374 (0.942-3.916)   | 1.495 (0.985-3.916)  | 1.323 (0.902-6.492   |       |
| Pb (μg L <sup>-1</sup> ) | 0.363±0.041           | 0.313±0.037          | 0.410±0.070          | 0.653 |
|                          | 0.259 (0.071-1.161)   | 0.252 (0.015-0.565)  | 0.259 (0.071-1.619)  |       |
| Se (µg L <sup>-1</sup> ) | 46.41±1.99            | 46.97±4.20           | 45.43±2.42           | 0.926 |

# Page 26 of 37

Journal of Analytical Atomic Spectrometry Accepted Manuscr

# Journal of Analytical Atomic Spectrometry

|                          | 44.82 (23.17-85.28)   | 41.22 (19.74-94.70)   | 44.32 (26.34-82.32)   |       |
|--------------------------|-----------------------|-----------------------|-----------------------|-------|
| Sn (μg L <sup>-1</sup> ) | 0.221±0.022           | 0.207±0.027           | 0.234±0.034           | 0.482 |
|                          | 0.173 (0.050-0.625)   | 0.156 (0.044-0.464)   | 0.200 (0.050-0.649)   |       |
| Zn (mg L <sup>-1</sup> ) | 132.03±7.88           | 134.61±12.00          | 129.58±10.44          | 0.953 |
|                          | 120.37 (38.34-265.82) | 125.51 (30.94-278.92) | 119.04 (44.40-256.80) |       |

| Element                  | Technique    | Subjects                           | Ν   |                 | Concent                 |
|--------------------------|--------------|------------------------------------|-----|-----------------|-------------------------|
| As (μg L <sup>-1</sup> ) | ICP-MS       | Normal                             | 28  | Mean±SD         | 53.16±1                 |
|                          |              | Abnormal                           | 21  |                 | 68.62±4                 |
|                          | ICP-MS       | Normozoospermic                    | 28  | Mean±SD         | 17.1±1                  |
|                          |              | Oligozoospermic                    | 28  |                 | 13.6±8                  |
|                          |              | Azoospermic                        | 28  |                 | 11.4±8                  |
| Ca (mg L <sup>-1</sup> ) | ICP-MS       | Control / normal<br>semen analysis | 15  | Mean<br>(Range) | 158 (89-                |
|                          | ICP-MS       | Normozoospermic                    | 28  | Mean±SD         | 230.41±7                |
|                          |              | Oligozoospermic                    | 28  |                 | 403.81±8                |
|                          |              | Azoospermic                        | 28  |                 | 179.24±3                |
|                          | F-AAS        | Fertile men                        | 50  | Median<br>(IQR) |                         |
|                          |              | S-TTP                              |     |                 | 533 (450                |
|                          |              | L-TTP                              |     |                 | 470 (391                |
|                          | Colorimetric | Subfertile                         | 103 | Mean±SD         | 244.49±6                |
|                          |              | Fertile                            | 107 |                 | 240.48±                 |
| Cd (µg L <sup>-1</sup> ) | ICP-MS       | Control / normal semen analysis    | 15  | Mean<br>(Range) | 1 ( <loi< td=""></loi<> |
|                          | ICP-MS       | Normozoospermic                    | 28  | Mean±SD         | 0.2±0                   |
|                          |              | Oligozoospermic                    | 28  |                 | 0.8±0                   |
|                          |              | Azoospermic                        | 28  |                 | 0.5±0                   |
|                          | AAS          | Men with proven<br>fertility       | 12  | Mean±SD         | 0.38±0                  |
|                          |              | Normozoospermic                    | 44  |                 | 0.43±0                  |
|                          |              | Unselected patients                | 118 |                 | 0.44±0                  |
|                          | AAS          | IVF patients                       | 91  | Mean±SD         | 0.294±0                 |
|                          |              |                                    |     | Median          | 0.280 (0.09             |

| Element                        | Technique    | Subjects                           | Ν   |                 | Concentration                                          | Country            | Reference |
|--------------------------------|--------------|------------------------------------|-----|-----------------|--------------------------------------------------------|--------------------|-----------|
| As (μg L <sup>-1</sup> )       | ICP-MS       | Normal                             | 28  | Mean±SD         | 53.16±16.39                                            | China              | 21        |
|                                |              | Abnormal                           | 21  |                 | 68.62±41.66                                            |                    |           |
|                                | ICP-MS       | Normozoospermic                    | 28  | Mean±SD         | 17.1±12.7                                              | Japan              | 22        |
|                                |              | Oligozoospermic                    | 28  |                 | 13.6±8.8                                               |                    |           |
|                                |              | Azoospermic                        | 28  |                 | 11.4±8.0                                               |                    |           |
| Ca (mg L <sup>-1</sup> )       | ICP-MS       | Control / normal<br>semen analysis | 15  | Mean<br>(Range) | 158 (89-219)                                           | Italy              | 20        |
|                                | ICP-MS       | Normozoospermic                    | 28  | Mean±SD         | 230.41±78.33                                           | Japan              | 22        |
|                                |              | Oligozoospermic                    | 28  |                 | 403.81±82.68                                           |                    |           |
|                                |              | Azoospermic                        | 28  |                 | 179.24±30.81                                           |                    |           |
|                                | F-AAS        | Fertile men                        | 50  | Median<br>(IQR) |                                                        | Denmark            | 26        |
|                                |              | S-TTP                              |     |                 | 533 (450-672)                                          |                    |           |
|                                |              | L-TTP                              |     |                 | 470 (391-541)                                          |                    |           |
|                                | Colorimetric | Subfertile                         | 103 | Mean±SD         | 244.49±64.13                                           | The<br>Netherlands | 7         |
|                                |              | Fertile                            | 107 |                 | 240.48±56.11                                           |                    |           |
| Cd ( $\mu$ g L <sup>-1</sup> ) | ICP-MS       | Control / normal semen analysis    | 15  | Mean<br>(Range) | 1 ( <lod-3)< td=""><td>Italy</td><td>20</td></lod-3)<> | Italy              | 20        |
|                                | ICP-MS       | Normozoospermic                    | 28  | Mean±SD         | 0.2±0.6                                                | Japan              | 22        |
|                                |              | Oligozoospermic                    | 28  |                 | 0.8±0.4                                                |                    |           |
|                                |              | Azoospermic                        | 28  |                 | 0.5±0.3                                                |                    |           |
|                                | AAS          | Men with proven<br>fertility       | 12  | Mean±SD         | 0.38±0.64                                              | Germany            | 35        |
|                                |              | Normozoospermic                    | 44  |                 | 0.43±0.69                                              |                    |           |
|                                |              | Unselected patients                | 118 |                 | 0.44±0.73                                              |                    |           |
|                                | AAS          | IVF patients                       | 91  | Mean±SD         | 0.294±0.091                                            | USA                | 16        |
|                                |              |                                    |     | Median          | 0.280 (0.091-0.692)                                    |                    |           |

# Journal of Analytical Atomic Spectrometry

|                          |        |                                                            |    | (Range)           |                   |         |  |
|--------------------------|--------|------------------------------------------------------------|----|-------------------|-------------------|---------|--|
|                          | AAS    | Normozoospermic                                            | 40 | Mean (CI)         | 1100 (1010-1180)  | Nigeria |  |
|                          |        | Oligozoospermic                                            | 40 |                   | 650 (590-710)     |         |  |
|                          |        | Azoospermic                                                | 20 |                   | 1570 (1440-1830)  |         |  |
| Co (μg L <sup>-1</sup> ) | ICP-MS | Normozoospermic                                            | 28 | Mean±SD           | 1.4±1.3           | Japan   |  |
|                          |        | Oligozoospermic                                            | 28 |                   | 7.2±9.5           |         |  |
|                          |        | Azoospermic                                                | 28 |                   | 5.3±8.2           |         |  |
|                          | ICP-MS | Patients with metal-<br>on-metal total hip<br>arthroplasty | 11 | Median<br>(Range) | 2.89 (1.15-6.1)   | Canada  |  |
|                          |        | Control                                                    | 5  |                   | 1.12 (0.71-1.94)  |         |  |
| Cr (µg L <sup>-1</sup> ) | ICP-MS | Control / normal semen analysis                            | 15 | Mean<br>(Range)   | 1.2 (0.2-2)       | Italy   |  |
|                          | ICP-MS | Normozoospermic                                            | 28 | Mean±SD           | 32.2±16.2         | Japan   |  |
|                          |        | Oligozoospermic                                            | 28 |                   | 19.9±4.8          |         |  |
|                          |        | Azoospermic                                                | 28 |                   | 19.4±8.3          |         |  |
|                          | ICP-MS | Patients with metal-<br>on-metal total hip<br>arthroplasty | 11 | Median<br>(Range) | 0.57 (0.06-1.995) | Canada  |  |
|                          |        | Control                                                    | 5  |                   | 0.06 (0.06-1.35)  |         |  |
| Cu (μg L <sup>-1</sup> ) | ICP-MS | Control / normal semen analysis                            | 15 | Mean<br>(Range)   | 75 (8-135)        | Italy   |  |
|                          | ICP-MS | Normal                                                     | 28 | Mean±SD           | 195.00±45.24      | China   |  |
|                          |        | Abnormal                                                   | 21 |                   | 222.76±0.91       |         |  |
|                          | ICP-MS | Normozoospermic                                            | 28 | Mean±SD           | 570.3±214.2       | Japan   |  |
|                          |        | Oligozoospermic                                            | 28 |                   | 760.1±685.4       |         |  |
|                          |        | Azoospermic                                                | 28 |                   | 443.2±268.1       |         |  |
|                          | F-AAS  | Oligozoospermic                                            | 17 | Mean±SD           | 566.2±325.2       | India   |  |
|                          |        | Oligoasthenozoo-                                           | 14 |                   | 604.7±218.4       |         |  |

|             |        | spermic                     |     |         |                                |                    |  |
|-------------|--------|-----------------------------|-----|---------|--------------------------------|--------------------|--|
|             |        | Asthenozoospemic            | 12  |         | 622.9±424.4                    |                    |  |
|             |        | Azoospermic                 | 7   |         | 387.6±81.3                     |                    |  |
|             | AAS    | Subfertile                  | 103 | Mean±SD | 349.52±247.84                  | The<br>Netherlands |  |
|             |        | Fertile                     | 107 |         | 374.94±235.13                  |                    |  |
|             | AAS    | Normozoospermic             | 41  | Mean±SD | (173.29±19.3)*10 <sup>3</sup>  | Iraq               |  |
|             |        | Oligozoospermic             | 43  |         | (169.52±15.77)*10 <sup>3</sup> |                    |  |
|             |        | Azoospermic                 | 35  |         | (128.34±21.83)*10 <sup>3</sup> |                    |  |
|             | AAS    | Fertile                     | 75  | Mean±SD | 28.7±10.7                      | India              |  |
|             |        | Normozoospermic             | 25  |         | 15.5±5.0                       |                    |  |
|             |        | Oligozoospermic             | 25  |         | 10.5±4.9                       |                    |  |
|             |        | Asthenozoospermic           | 25  |         | 11.4±4.5                       |                    |  |
| Fe (µg L⁻¹) | ICP-MS | Normozoospermic             | 28  | Mean±SD | (13.88±8.44)*10 <sup>3</sup>   | Japan              |  |
|             |        | Oligozoospermic             | 28  |         | (17.74±8.23)*10 <sup>3</sup>   |                    |  |
|             |        | Azoospermic                 | 28  |         | (16.21±8.27)*10 <sup>3</sup>   |                    |  |
|             | F-AAS  | Oligozoospermic             | 17  | Mean±SD | (46.67±15.95)*10 <sup>3</sup>  | India              |  |
|             |        | Oligoasthenozoo-<br>spermic | 14  |         | (35.73±16.52)*10 <sup>3</sup>  |                    |  |
|             |        | Asthenozoospemic            | 12  |         | (43.10±18.42)*10 <sup>3</sup>  |                    |  |
|             |        | Azoospermic                 | 7   |         | (46.35±15.87)*10 <sup>3</sup>  |                    |  |
|             | AAS    | Fertile                     | 75  | Mean±SD | 68.0±17.8                      | India              |  |
|             |        | Normozoospermic             | 25  |         | 60.6±10.4                      |                    |  |
|             |        | Oligozoospermic             | 25  |         | 59.7±5.7                       |                    |  |
|             |        | Asthenozoospermic           | 25  |         | 51.5±5.9                       |                    |  |
| K (mg L⁻¹)  | ICP-MS | Normozoospermic             | 28  | Mean±SD | >3000                          | Japan              |  |
|             |        | Oligozoospermic             | 28  |         | >3000                          |                    |  |

# Page 30 of 37

Journal of Analytical Atomic Spectrometry Accepted Manuscr

# Journal of Analytical Atomic Spectrometry

|                          |              | Abnormal                           | 21  |                 | 127 57±22 60 |                    |    |
|--------------------------|--------------|------------------------------------|-----|-----------------|--------------|--------------------|----|
|                          | ICP-MS       | Normal                             | 28  | Mean±SD         | 103.96±25.00 | China              | 2  |
| Mn (μg L <sup>-1</sup> ) | ICP-MS       | Control / normal<br>semen analysis | 15  | Mean<br>(Range) | 5 (2-10)     | Italy              | 20 |
|                          |              | Fertile                            | 107 |                 | 89.95±24.31  |                    |    |
|                          | Colorimetric | Subfertile                         | 103 | Mean±SD         | 87.52±26.74  | The<br>Netherlands | 7  |
|                          |              | Azoospermic                        | 35  |                 | 55.9±6.9     |                    |    |
|                          |              | Oligozoospermic                    | 43  |                 | 57.0±6.5     |                    |    |
|                          | AAS          | Normozoospermic                    | 41  | Mean±SD         | 126.2±22.8   | Iraq               | 3  |
|                          |              | Azoospermic                        | 7   |                 | 8.55±2.72    |                    |    |
|                          |              | Asthenozoospemic                   | 12  |                 | 13.63±0.68   |                    |    |
|                          |              | Oligoasthenozoosp<br>ermic         | 14  |                 | 12.29±6.84   |                    |    |
|                          | F-AAS        | Oligozoospermic                    | 17  | Mean±SD         | 14.34±4.60   | India              | 3  |
|                          |              | Azoospermic                        | 28  |                 | 78.30±18.03  |                    |    |
|                          |              | Oligozoospermic                    | 28  |                 | 20.09±6.56   |                    |    |
|                          | ICP-MS       | Normozoospermic                    | 28  | Mean±SD         | 90.22±19.48  | Japan              | 22 |
|                          |              | L-TTP                              |     |                 | 100 (56-118) |                    |    |
|                          |              | S-TTP                              |     |                 | 86 (57-134)  |                    |    |
|                          |              |                                    |     | (IQR)           |              |                    |    |
|                          | ICP-MS       | Fertile men                        | 50  | Median          |              | Denmark            | 26 |
| Mg (mg L⁻¹)              | ICP-MS       | Control / normal semen analysis    | 15  | Mean<br>(Range) | 75 (37-151)  | Italy              | 20 |
|                          |              | Azoospermic                        | 28  |                 | 0.316±0.038  |                    |    |
|                          |              | Oligozoospermic                    | 28  |                 | 0.372±0.072  |                    |    |
| Li (mg L <sup>-1</sup> ) | ICP-MS       | Normozoospermic                    | 28  | Mean±SD         | 0.479±0.213  | Japan              | 22 |
|                          |              |                                    |     |                 |              |                    |    |

# Journal of Analytical Atomic Spectrometry

|                          | ICP-MS | Normozoospermic                                             | 28  | Mean±SD           | 7.4±4.6                                                | Japan   |  |
|--------------------------|--------|-------------------------------------------------------------|-----|-------------------|--------------------------------------------------------|---------|--|
|                          |        | Oligozoospermic                                             | 28  |                   | 6.5±1.3                                                |         |  |
|                          |        | Azoospermic                                                 | 28  |                   | 5.8±2.2                                                |         |  |
| Mo (μg L <sup>-1</sup> ) | ICP-MS | Normozoospermic                                             | 28  | Mean±SD           | 11.2±23.0                                              | Japan   |  |
|                          |        | Oligozoospermic                                             | 28  |                   | 3.1±1.4                                                |         |  |
|                          |        | Azoospermic                                                 | 28  |                   | 3.2±1.2                                                |         |  |
|                          | ICP-MS | Patients with metal-<br>on-metal total hip<br>arthroplasty  | 11  | Median            | 1.44                                                   | Canada  |  |
|                          |        | Control                                                     | 5   |                   | 1.41                                                   |         |  |
| Na (mg L <sup>-1</sup> ) | ICP-MS | Normozoospermic                                             | 28  | Mean±SD           | >3000                                                  | Japan   |  |
|                          |        | Oligozoospermic                                             | 28  |                   | >3000                                                  |         |  |
|                          |        | Azoospermic                                                 | 28  |                   | >3000                                                  |         |  |
| Ni (μg L <sup>-1</sup> ) | ICP-MS | Control / normal semen analysis                             | 15  | Mean<br>(Range)   | 6 (2-11)                                               | Italy   |  |
| Pb (μg L <sup>-1</sup> ) | ICP-MS | Control / normal semen analysis                             | 15  | Mean<br>(Range)   | 3 ( <lod-12)< td=""><td>Italy</td><td></td></lod-12)<> | Italy   |  |
|                          | ICP-MS | Normal                                                      | 28  | Mean±SD           | 74.84±22.41                                            | China   |  |
|                          |        | Abnormal                                                    | 21  |                   | 84.00±5.56                                             |         |  |
|                          | ICP-MS | Normozoospermic                                             | 28  | Mean±SD           | 36.1±15.3                                              | Japan   |  |
|                          |        | Oligozoospermic                                             | 28  |                   | 79.2±32.2                                              |         |  |
|                          |        | Azoospermic                                                 | 28  |                   | 47.4±13.1                                              |         |  |
|                          | AAS    | Control subjects /<br>no occupational<br>exposure to metals | 35  | Median<br>(Range) | 8.6 (4.2-16.6)                                         | Croatia |  |
|                          | AAS    | IVF patients                                                | 74  | Mean±SD           | 395.0±359.7                                            | USA     |  |
|                          |        |                                                             |     | Median<br>(Range) | 282.8 (<10-1650)                                       |         |  |
|                          | AAS    | Male partners of                                            | 341 | Mean±SD           | 2.19±1.45                                              | Taiwan  |  |
|                          |        |                                                             |     | (Range)           | (0.08-9.50)                                            |         |  |

# Journal of Analytical Atomic Spectrometry

1

| Se (µg L <sup>-1</sup> ) | ICP-MS | Control / normal semen analysis  | 15       | Mean<br>(Range)   | 77 (40-123)                 | Italy   | 20 |
|--------------------------|--------|----------------------------------|----------|-------------------|-----------------------------|---------|----|
|                          | ICP-MS | Normal                           | 28       | Mean±SD           | 73.16±20.35                 | China   | 2' |
|                          |        | Abnormal                         | 21       |                   | 103.79±37.89                |         |    |
|                          | ICP-MS | Normozoospermic                  | 28       | Mean±SD           | 61.8±65.4                   | Japan   | 22 |
|                          |        | Oligozoospermic                  | 28       |                   | 51.4±46.4                   |         |    |
|                          |        | Azoospermic                      | 28       |                   | 39.1±53.0                   |         |    |
| Sn (μg L⁻¹)              | ICP-MS | Normozoospermic                  | 28       | Mean±SD           | 119.5±8.2                   | Japan   | 22 |
|                          |        | Oligozoospermic                  | 28       |                   | 208.4±221.8                 |         |    |
|                          |        | Azoospermic                      | 28       |                   | 102.6±84.3                  |         |    |
| Zn (mg L <sup>-1</sup> ) | ICP-MS | Control / normal semen analysis  | 15       | Mean<br>(Range)   | 97 (80-172)                 | Italy   | 20 |
|                          | ICP-MS | Fertile men                      | 50       | Median            |                             | Denmark | 26 |
|                          |        |                                  |          | (IQR)             |                             |         |    |
|                          |        | S-TTP                            |          |                   | 106 (72-183)                |         |    |
|                          |        | L-TTP                            |          |                   | 113 (68-212)                |         |    |
|                          | ICP-MS | Normozoospermic                  | 28       | Mean±SD           | 6.798±5.012                 | Japan   | 22 |
|                          |        | Oligozoospermic                  | 28       |                   | 10.87±7.712                 |         |    |
|                          |        | Azoospermic                      | 28       |                   | 9.300±6.480                 |         |    |
|                          | AAS    | Referred for fertility treatment | 117<br>8 | Mean<br>(IQR)     | 117.6 (75.19-176.53)        | Canada  | 15 |
|                          | AAS    | IVF patients                     | 83       | Mean±SD           | 50.800±24.485               | USA     | 16 |
|                          |        |                                  |          | Median<br>(Range) | 43.74 (10.53-102.97)        |         |    |
|                          | AAS    | Fertile                          | 75       | Mean±SD           | (17.8±4.4)*10 <sup>-3</sup> | India   | 29 |
|                          |        | Normozoospermic                  | 25       |                   | (10.9±4.7)*10 <sup>-3</sup> |         |    |
|                          |        | Oligozoospermic                  | 25       |                   | (9.5±4.5)*10 <sup>-3</sup>  |         |    |
|                          |        | Asthenozoospermic                | 25       |                   | (8.8±3.9)*10 <sup>-3</sup>  |         |    |

| Normozoospermic            | 37                                                                                                                                               | Mean±SD                                                                                                                                  | 1012.0±22.4                                                                                                                                             | Ghana                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                            |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oligozoospermic            | 46                                                                                                                                               |                                                                                                                                          | 977.5±21.7                                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |
| Azoospermic                | 7                                                                                                                                                |                                                                                                                                          | 946.2±67.4                                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |
| Subfertile                 | 103                                                                                                                                              | Mean±SD                                                                                                                                  | 91.53±45.77                                                                                                                                             | The<br>Netherlands                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                             |
| Fertile                    | 107                                                                                                                                              |                                                                                                                                          | 91.53±45.77                                                                                                                                             |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |
| Oligozoospermic            | 17                                                                                                                                               | Mean±SD                                                                                                                                  | 4.62±1.78                                                                                                                                               | India                                                                                                                                                                                                                          | 32                                                                                                                                                                                                                                                            |
| Oligoasthenozoosp<br>ermic | 14                                                                                                                                               |                                                                                                                                          | 10.56±42.8                                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |
| Asthenozoospermic          | 12                                                                                                                                               |                                                                                                                                          | 6.60±33.05                                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |
| Azoospermic                | 7                                                                                                                                                |                                                                                                                                          | 5.02±15.48                                                                                                                                              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |
|                            | Normozoospermic<br>Oligozoospermic<br>Azoospermic<br>Subfertile<br>Fertile<br>Oligozoospermic<br>Oligoasthenozoosp<br>ermic<br>Asthenozoospermic | Normozoospermic37Oligozoospermic46Azoospermic7Subfertile103Fertile107Oligozoospermic17Oligoasthenozoosp14Asthenozoospermic12Azoospermic7 | Normozoospermic37Mean±SDOligozoospermic46Azoospermic7Subfertile103Mean±SDFertile107Oligozoospermic17Mean±SDOligoasthenozoosp14Azoospermic12Azoospermic7 | Normozoospermic37Mean±SD1012.0±22.4Oligozoospermic46977.5±21.7Azoospermic7946.2±67.4Subfertile103Mean±SD91.53±45.77Oligozoospermic17Mean±SD4.62±1.78Oligoasthenozoosp1410.56±42.8Azoospermic126.60±33.05Azoospermic75.02±15.48 | Normozoospermic37Mean±SD1012.0±22.4GhanaOligozoospermic46977.5±21.7Azoospermic7946.2±67.4Subfertile103Mean±SD91.53±45.77Fertile10791.53±45.77Oligozoospermic17Mean±SD4.62±1.78IndiaOligoasthenozoosp1410.56±42.8Azoospermic126.60±33.05Azoospermic75.02±15.48 |

S-TTP = short time-to-pregnancy (1-2 months); L-TTP = long time-to-pregnancy (7.5-11.5 months); IQR = inter-quartile range; CI = confidence interval

Table 8b Summary data of element concentration in seminal plasma reported in the literature regarding smoking habits

| Element                  | Technique | Subjects                            | Ν  |         | Concentration | Country | Reference |
|--------------------------|-----------|-------------------------------------|----|---------|---------------|---------|-----------|
| Ca (mg L <sup>-1</sup> ) | AAS       | Fertile non-<br>smokers             | 19 | Mean±SD | 244.9±55      | Iran    | 18        |
|                          |           | Fertile<br>smokers                  | 17 |         | 233.1±79.1    |         |           |
|                          |           | Infertile non-<br>smokers           | 21 |         | 219.6±68.1    |         |           |
|                          |           | Infertile<br>smokers                | 15 |         | 198.1±54.6    |         |           |
| Cd (µg L <sup>-1</sup> ) | AAS       | Normozoosp<br>ermic non-<br>smokers |    | Mean±SD | 0.42±0.67     | Germany | 35        |
|                          |           | Normozoosp<br>ermic<br>smokers      |    |         | 0.55±0.81     |         |           |

 $\begin{array}{c} 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \end{array}$ 

|             | AAS | Nonsmokers                             | 42  | Median  | 0.54 (0.17-1.67)    | Croatia |
|-------------|-----|----------------------------------------|-----|---------|---------------------|---------|
|             |     | Never<br>smoked                        | 33  | (Range) | 0.48 (0.17-1.09)    |         |
|             |     | Former<br>smokers                      | 9   |         | 0.62 (0.30-1.67)    |         |
|             |     | Smokers                                | 78  |         | 0.85 (0.29-3.56)    |         |
|             | AAS | Control smokers                        | 23  | Mean±SD | 18.7±5.0            | Turkey  |
|             |     | Control non-<br>smokers                | 22  |         | 12.4±2.7            |         |
|             |     | Infertile<br>smokers                   | 26  |         | 33.2±12.8           |         |
|             |     | Infertile non-<br>smokers              | 24  |         | 17.9±5.4            |         |
|             | AAS | Infertile                              | 16  | Median  | 0.279 (0.257-0.356) | USA     |
|             |     | SMOKERS                                |     | (IQR)   |                     |         |
|             |     | Infertile non-<br>smokers              | 107 |         | 0.285 (0.243-0.347) |         |
|             |     | General<br>population -<br>smokers     | 10  |         | 0.092 (0.082-0.118) |         |
|             |     | General<br>population –<br>non-smokers | 21  |         | 0.086 (0.073-0.105) |         |
| Mg (mg L⁻¹) | AAS | Fertile non-<br>smokers                | 19  | Mean±SD | 68.5±18.9           | Iran    |
|             |     | Fertile<br>smokers                     | 17  |         | 55.8±22.5           |         |
|             |     | Infertile non-<br>smokers              | 21  |         | 58.3±21.5           |         |
|             |     | Infertile<br>smokers                   | 15  |         | 50.7±21.3           |         |
| Na (mg L⁻¹) | AAS | Fertile non-<br>smokers                | 19  | Mean±SD | 2227.8±434.9        | Iran    |
|             |     | Fertile<br>smokers                     | 17  |         | 2103.9±363.6        |         |
|             |     | Infertile non-                         | 21  |         | 2086±339            |         |

|                          |                        | smokers                              |    |         |               |        |  |
|--------------------------|------------------------|--------------------------------------|----|---------|---------------|--------|--|
|                          |                        | Infertile<br>smokers                 | 15 |         | 2065.5±313.6  |        |  |
| Pb (μg L <sup>-1</sup> ) | AAS                    | Control smokers                      | 23 | Mean±SD | 293.0±38.3    | Turkey |  |
|                          |                        | Control non-<br>smokers              | 22 |         | 230.9±46.4    |        |  |
|                          |                        | Infertile<br>smokers                 | 26 |         | 473.8±76.0    |        |  |
|                          |                        | Infertile non-<br>smokers            | 24 |         | 283.3±38.7    |        |  |
| Zn (mg L <sup>-1</sup> ) | AAS                    | Fertile non-<br>smokers              | 19 | Mean±SD | 140.8±20.1    | Iran   |  |
|                          |                        | Fertile<br>smokers                   | 17 |         | 124.3±26.4    |        |  |
|                          |                        | Infertile non-<br>smokers            | 21 |         | 103.2±29.8    |        |  |
|                          |                        | Infertile<br>smokers                 | 15 |         | 80.7±26.5     |        |  |
|                          | F-AAS                  | Fertile non-                         | 80 | Mean±SD | 139.51±7.78   | Egypt  |  |
|                          |                        | SHIUKEIS                             |    | (Range) | (127.4-153.6) |        |  |
|                          |                        | Fertile                              | 80 |         | 101.21±11.03  |        |  |
|                          |                        | SHIUKEIS                             |    |         | (80.4-121.4)  |        |  |
|                          | Spectro-<br>photometry | Men with<br>suspected<br>infertility |    | Mean±SD |               | China  |  |
|                          |                        | Non-smokers                          | 79 |         | 155.6±68.0    |        |  |
|                          |                        | Smokers                              | 68 |         | 120.3±55.6    |        |  |

ųι

Journal of Analytical Atomic Spectrometry Accepted Manuscr

Figure 1 Recovery of seminal plasma samples spiked with 0.01  $\mu$ g L<sup>-1</sup> for Ag, 0.05  $\mu$ g L<sup>-1</sup> for Cd, Co, Cr, Mo and Sn, 0.1  $\mu$ g L<sup>-1</sup> for B, Mn and Ni, 0.2  $\mu$ g L<sup>-1</sup> for As and Se, 7  $\mu$ g L<sup>-1</sup> for Cu and Fe, 150  $\mu$ g L<sup>-1</sup> for Li and Zn, 1 mg L<sup>-1</sup> for Ca and Mg, 4 mg L<sup>-1</sup> for K and 7 mg L<sup>-1</sup> for Na.



