This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion

Quirós-Sauceda A.E.a, Palafox-Carlos H.a, Sáyago-Ayerdi S.G.b, Ayala-Zavala J.F.a,
Bello, L.A.c, Álvarez-Parrillad, E., de la Rosad L. A., González-Córdova, A.F.a,
González-Aguilar G.A.a,*

a Centro de Investigación en Alimentación y Desarrollo, AC (CIAD, AC)
Carretera a la Victoria Km 0.6
La Victoria, Hermosillo, Sonora 83000, México

b Instituto Tecnológico de Tepic
Av. Tecnológico 2595
Tepic, Nayarit 63175, México

c Centro de Desarrollo Bióticos del IPN (CEPROBI)
Carretera Yautepec-Jojutla Km 8.5
Col. San Isidro, Yautepec, Morelos 62731, México

d Universidad Autónoma de Ciudad Juárez (UACJ)
Anillo Envolvente del PRONAF y Estocolmo s/n
Cd. Juárez, Chihuahua, 32310, México

*Author to whom correspondence should be addressed.
Phone: (6622) 89-24-00 ext 272
Fax: (6622) 80-04-22
E-mail: gustavo@ciad.mx
Abstract

Dietary fiber and phenolic compounds are two recognized dietary factors responsible for potential effects on human health; therefore, they have been widely used to increase functionality of some foods. This paper focuses on showing the use of both compounds as functional ingredients to enrich foods; and at the same time describes the use of a single material that combines the properties of two compounds. However, the last part of the work describes some facts related to the dietary fiber and phenolic compounds interaction, which could affect the bioaccessibility and absorption of phenolics in the gut. In this sense, the purpose of the present review is to compile and analyze evidence relating to the use of dietary fiber and phenolic compounds to enhance technological and nutritional properties of foods, and hypothesized some of the possible effects in the gut after their ingestion.

Key words: dietary fiber, phenolic compounds, functional ingredients, bioaccessibility, bioavailability
Introduction

Dietary fiber and phenolic compounds are two plant food constituents that are associated with many health benefits and have been demonstrated to reduce risk for developing cancer and some chronic diseases\(^1\). Therefore, the intake and the use of these compounds as functional ingredients to enrich foods have been increasing in order to provide health benefits to consumers\(^2\,\,^3\). Dietary fiber has an essential role in intestinal health and appears to be significantly associated with a reduction of cholesterol and modification of the glycaemic response\(^4\). Furthermore, phenolic compounds have potent antioxidant properties and free radical scavenging that protect against oxidative damage to important biomolecules\(^5\). All these properties are associated with the chemical structures of these compounds, that determine their subsequent physiologic and nutritional properties as functional ingredients\(^6\).

Dietary fiber and phenolic compounds are generally studied separately, probably because of differences in their chemical structures, physicochemical and biological properties, and metabolic pathways\(^7\). However, there is scientific evidence suggesting that indigestible components of dietary fiber (polysaccharides) can be associated to other food constituents, such as phenolic compounds\(^7\,\,^8\). This interaction can occur during fruit ripening, food processing or during the gastrointestinal process, and can be ascribed to the ability of polysaccharides to bind and trap phenolic compounds at several sites\(^7\). Therefore, dietary fibers with associated phenolic compounds have become increasingly interesting, as these could be useful for the food industry to enhance the bioactive and technological properties of products.
While some authors have identified dietary fiber with associated phenolic compounds with an exceptional biological antioxidant capacity from mango peels, unripe whole mango, pineapple shells, guava pulp, grape pomace and other vegetable materials9-12. This material promises enhancing functional properties of foods and at the same time increase the antioxidant capacity of the product with exceptional effects on human health13-17. However, the antioxidant activity \textit{in vivo} of dietary fibers with associated phenolic compounds is still disputed, because the bioavailability of the antioxidants is no guarantee, due the evidences indicating that dietary fiber may negatively affect the release and absorption of some molecules, including phenolic compounds18.

In this context, the aim of this review is to analyze the use of dietary fiber and phenolic compounds as advantage functional ingredients, as well as to describe the chemical interaction that can arise between these two molecules (fiber and phenolics), which can provide functionality to the food but may impact on the bioactive effects of the compounds after their intake.

\textbf{Dietary fiber and phenolic compounds}

Dietary fiber and phenolic compounds are two important plant constituents that are associated with multiple physiological effects; so their study, consumption and use as functional ingredients have widely increased19. According to AACC20 and DeVries \textit{et al.}21 dietary fiber is defined as “the remnants of the edible part of plants or analogous carbohydrates that are resistant to digestion and absorption in the human small intestine, with complete or partial fermentation in the large intestine”. Non starch polysaccharides are consider as the main dietary fiber components and they are classified by their solubility as
insoluble (IDF) and soluble dietary fiber (SDF). IDF includes cellulose, hemicellulose or quitin, however resistant starch is also consider a type of IDF; whereas the SDF includes non-starch polysaccharides such as pectins, β-glucans, gums, mucilages, oligosaccharides or inulin\(^{22}\). Besides, other indigestible compounds can be considered as part of the dietary fiber structure, such as resistant protein, phenolic compounds, waxes, saponins, phytates, and phytoesterols that exist in plant cell structures\(^{23}\). In fact, some works hypothesize that several bioactive benefits of dietary fiber are determined by the action of some linked compounds, such as phenolic compounds\(^{24,25}\).

High dietary fiber diets are associated with improvement in gastrointestinal health and reduction and treatment of some cardiovascular diseases and some forms of cancer\(^{26,27}\). Indeed, a reduction of hyperlipidemia, hypertension, modification of the glucose tolerance and insulin response and increased satiety and hence some degree of weight management are other physiological effects associated with dietary fiber consumption in humans\(^4\). Furthermore, dietary fiber is widely used to enrich foods, because it can impart some functional properties (e.g. increase water holding capacity, emulsification and/or gel formation, viscosity, adsorption/binding or fermentability)\(^6\). In this sense, consumption of dietary fiber rich foods as well as the use of dietary fiber as functional ingredient has increased.

Phenolic compounds are other important bioactive compounds identified in plant foods, and represent a wide variety of compounds characterized by a phenolic structure (aromatic ring bearing one or more hydroxyl groups)\(^{28}\). They are present in all plant organs, having great significance in plant physiology and protecting plants against pathogens, parasites, predators and plagues\(^{29}\). Their structure is diverse, and can be classified into different
groups as a function of the number of phenol rings that they contain, and structural
elements that bind these rings into one another. Distinctions are thus made between
phenolic acids, flavonoids, lignans, and stilbenes. In addition to this diversity, phenolic
compounds may be associated with carbohydrates (singles and complex), lipids, organic
acids, and as mentioned, some phenolic compounds can also be linked to cell wall
components (cellulose, hemicelluloses, lignin).

The consumption of foods rich in phenolic compounds is associated to various
physiological effects, such as preventing cancer and some chronic diseases, due to their
potent antioxidant properties and free radical scavenging. Thus, the consumption and
incorporation of these molecules to foods have been increasing, in order to enhance health
promotion. Phenolic compounds are widely ubiquitous in fruits, vegetables, cereals, nuts
and furthermore in plant-based beverages such as wine, beer and tea. However, the
biological properties and health effects of phenolic compounds depend on their respective
intake and bioavailability, which can be affected by different factors including the binding
of phenolic compounds within the food matrix, especially dietary fiber. The
maximum concentration in plasma rarely exceeds 1 µM after the consumption of 10-100 mg
of a single phenolic compound. Nevertheless, the total plasma phenol concentration is
probably higher due to the presence of metabolites formed in the body’s tissues.

Therefore, dietary fiber and phenolic compounds are two food constituents which
present distinct functional properties. However, recent evidence suggest that phenolics-
carbohydrates complexes present in food are generally higher than that of simpler
compounds, and these type of interaction have been underestimated in many papers mainly
due to analytical problems. Due the importance and interest of different researchers to
elucidate the biological role of this complex, more studies are being developed. Regarding to these molecules Saura-Calixtro32 established a new concept for those polyphenols attached to macromolecules such as fiber, which is well described in the next section.

Dietary fiber with phenolic compounds associated: a new concept and a potential food ingredient

Nowadays, dietary fiber concept has evolved towards broader concept where healthy effects attributed only to non-starch polysaccharides and lignin components; is changing in order to consider that food as a complex matrix capable of carrier other non-digestible foods constituents that are resistant to digestion and absorption in the human small intestine, with complete or partial fermentation in the large intestine8, 24, 25. Phenolic compounds are the most abundant antioxidants in plant foods that can be found chemically associated with the fiber matrix (Figure 1). In this sense, the concept of “antioxidant dietary fiber” has been recently introduced and was defined as a dietary fiber concentrate, containing significant amounts of natural antioxidants (mainly phenolic compounds) associated with non digestible compounds32. This material combines the physiological properties of both dietary fiber and phenolic compounds, and promises to be a potential food ingredient useful to enhance the bioactive and technological properties of products (Figure 2).

The most abundant phenolic compounds linked to dietary fiber belong to the chemical class of hydroxycinnamic acids. In fruits, these type of compounds are mainly polymeric tannins and after hydrolysis the most common phenolic compounds are gallic and ellagic acid35. However, in cereals the main compound linked to fiber is ferulic acid followed by
diferulic acids, and by sinapic, p-coumaric and caffeic acid. In this conjunction, it is estimated that around 2.5% of the dietary fiber content present in fruits is associated with phenolic compounds. Indeed, 95% of grain phenolic compounds are linked to dietary fiber polysaccharides, mainly α-arabinoxylans, as diferulates covalently bound through ester bonds.

There are certain requirements that the material should have to be considered as an “antioxidant dietary fiber” and a potential food ingredient: (1) dietary fiber content should be higher than 50% on a dry matter basis. (2) one gram of “antioxidant dietary fiber” should have a capacity to inhibit lipid oxidation equivalent to, at least, 200 mg of vitamin E and a free radical scavenging capacity equivalent to, at least, 50 mg of vitamin E. (3) the antioxidant capacity must be an intrinsic property, derived from natural constituents of the material. In this context, it can be suggested that phenolic compounds could be dietary fiber constituents in some food matrices, and that these compounds could confer the antioxidant activity attributed to the dietary fiber as beneficial effect. However, the physiological antioxidant effect of dietary fibers with associated phenolic compounds is still disputed, because the chemical interaction between these two molecules might prevent the release and absorption of phenolics.

Sources of dietary fiber with associated phenolic compounds

In order to take advantage of the properties of this new dietary fiber concept, some authors investigated plant foods sources of dietary fiber with phenolic compounds associated. Table 1 shows the difference in total dietary fiber and phenolic compounds content from different whole fruits, byproducts and antioxidant dietary fiber; being this last one the once
that presents the greatest bioactive properties. In recent years, the search of novel source of dietary fiber with antioxidant properties focused widely in plant food by-products. Jiménez-Escrig9 reported that pulp and peel of guava fruit are a good source of natural antioxidants, that could be used to obtain dietary fiber with antioxidant activity. In another study, Chantaro12 reported the feasibility of using carrot peels, a byproduct from food industry, to produce dietary fiber with antioxidants associated (phenolic compounds and carotenoids), which may be used as a food ingredient. Pineapple shells were reported as a promising source of dietary fiber (70.6\%) containing a high concentration of associated phenolics (mainly myricetin) that exhibit antioxidant activity. This property together with the neutral color and flavor makes it a suitable fiber for a wide range of applications as a food ingredient10. Vergara-Valencia \textit{et al.}43 obtained a mango dietary fiber concentrate with antioxidant capacity which could be an alternative for the development of products with balanced dietary fiber components and low glycemic response. Lecumberri \textit{et al.}44 obtained a dietary fiber powder with intrinsic antioxidant capacity (derives from soluble polyphenols and condensed tannins) from cocoa. The by-products of Prensal Blanc white grape (\textit{Vitis vinifera}) are an excellent source of dietary fiber with antioxidant properties46. Nilnakara \textit{et al.} obtained an antioxidant dietary fiber powder from cabbage outer leaves47. Rufino \textit{et al.}11 reported that BRS-Pará acaí fruits can be considered as an excellent source of dietary fiber/antioxidants associated.

In general, there is increasing interest to find new sources of dietary fibers with specific bioactive constituents that may add new healthy properties to the traditionally commercialized products. Fruits, cereals and grains are a potential source of this material. However, as mentioned, agronomic by-products, such as peels, seeds and unused flesh, can
present similar or even higher contents of these bioactive compounds, and have traditionally been undervalued. Nevertheless, it is widely known that plant foods are an excellent source for both isolated phenolic compounds and dietary fiber.

Dietary fiber and phenolic compounds as functional ingredients

In recent years, interest in nutrition and disease prevention is driving consumer demand for value-added foods or functional foods enriched with an ingredient able to provide or promote a beneficial action for human health\(^5\). These compounds are the so-called functional ingredients, which provide benefits additional to nutritional and energetic; and at the same time are able to improve the technological functionality of a food. The term “functional ingredient” is meant to convey the function of these new ingredients, which is to produce a positive health outcome via physiological activity in the body\(^6\). It has become recognized that these compounds markedly influence quality of life factors, such as modulation of performance or reducing risk of acquiring a variety of diseases, by modifying one or more physiologic processes\(^7\). There are a diverse group of compounds classified as functional ingredients, for example, carotenoids, flavonoids, dietary fiber, phenolic compounds, allyl compounds, glucosinolates, and peptides, among others.

Dietary fiber and phenolic compounds holds all the characteristics required to be considered as important functional ingredients, due to their physiological roles. Dietary fiber play an important role increasing the volume of fecal bulk, decreasing the time of intestinal transit, cholesterol and glycaemia levels, trapping substances that can be dangerous for the human organism (mutagenic and carcinogenic agents), stimulating intestinal microflora proliferation, etc\(^4\). Moreover, dietary fiber improves technological
properties of the food, such as water-holding capacity, swelling capacity, increasing viscosity, texture or gel formation which is essential in formulating certain food products54 (Figure 2). In the case of beverages and drinks, the addition of dietary fiber increases their viscosity and stability. Additionally, fiber-rich byproducts may be incorporated into food products as inexpensive, non-caloric bulking agents for partial replacement of flour, fat or sugar, as enhancers of water and oil retention and to improve emulsion or oxidative stabilities54. Also, phenolic compounds are involved in decreasing the risk of chronic diseases, such as cardiovascular disease and cancer, and are useful against lipid peroxidation in food processing19, 55. There are many benefits that these compounds provide as functional ingredients; therefore, dietary fiber with associated phenolic compounds is a novel promising material for the food processing and nutrition industry, because it combines the properties of both molecules in a single material.

Various foods such as bread, meat, fish and beverages13, 56, 57 have been enriched with different sources of dietary fiber and phenolic compounds with satisfactory results (Table 2). The literatures contain many reports about addition of dietary fiber to food products such as baked goods, beverages, confectionery, dairy, frozen dairies, meat, pasta and soups. Among the most known and consumed dietary fiber enriched foods are breakfast cereals and bakery products such as integral breads and cookies61, 62, as well as milk and meat derived products. Some types of soluble fibers, such as pectins, inuline, guar guam and carboximethyl-cellulose, are utilized in milk products62. Guar gum and inuline are added during cheese processing to decrease its %fat without losing its organoleptic characteristics. Moreover, for the elaboration of jams and marmalades, the most common added fibers are those consisting of pectins with different degree of esterification, obtained mainly from...

54
fruits and are a factor in keeping the stability of the final product64. On the other hand, phenolic compounds as functional ingredients act as an antimicrobials, antioxidants, flavorings and thickener agents2. In general, phenolic compounds are added mainly into meat and fresh-cut fruits and vegetables to avoid enzymatic browning, lipid oxidation, bacterial contamination and increase the antioxidant capacity and health benefits of products. Therefore, delaying lipid oxidation and preventing bacterial cross-contamination are highly relevant to food processors. However, phenolic compounds are also attracting more and more attention not only due to their antioxidants properties, but as anticarcinogenic and anti-inflammatory agent. Among the most common materials used as a source of phenolic compounds are herb extracts and citrus fruits69.

Several patents have been published about the addition of this product to increase the health benefits status of the supplemented foods. For example, Myllymäki73 claimed the formulation of a rye cereal product having higher dietary fiber and phenolic content. This cereal is a good source of dietary fiber (38\%) and also contains a significant fructan concentration (7g/100g), which according to the suggested new dietary-fiber concept is also a component of dietary fiber.

Another patent reports the preparation process and health benefits of a grape antioxidant dietetic fiber concentrate74. The powder obtained from black or white grape skins had the following characteristics expressed in dry weight: total dietary fiber content of 65-80\%, content of bioactive compounds 15-25\% (soluble and insoluble condensed tannins, flavonoids, proanthocyanidins and other polyphenols), 11 to 15\% protein, 5 to 8\% crude fat74. According to these authors, the incorporation of dietary fiber and phenolic compounds can be utilized for the preparation of functional foods assumedly useful to improved health.
benefits and technological properties. However, these studies need to be accompanied by quality and sensory evaluations.

Dietary fiber with associated phenolic compounds obtained from wine grape pomace was added to yogurt, and salad dressings. The addition resulted in 35-65% reduction of peroxide values in all samples. Total phenolic content and DPPH radical scavenging activity were 958-1340 mg GAE/kg product and 710-936 mg AAE/kg product, respectively. The addition was mostly liked by consumers based on the sensory study. Fibers extract from *Lentinus edodes* mushrooms containing 514 g/kg of (1-3)-beta-glucans was added to wheat flour. Replacement of a portion of wheat flour with the extract resulted in lower values of pasting parameters and also caused significant changes in starch gelatinization. When the same extract was incorporated into cake formulations, batter viscosity increased with more shear-thinning behaviors and elastic properties improved. However further studies are needed to find the health benefits of this addition, and particularly the presence of associated phenolic compounds in edible mushrooms.

The use of dietary fiber with associated phenolic compounds from grape has been reported to inhibit food lipid oxidation. Sanchez-Alonso *et al.* observed a 57% lipid inhibition measured by TBARS in frozen minced mackerel patties, treated with 2% grape antioxidant dietary fiber. Authors reported that this protective effect could be either by the chelation action of fiber over prooxidant metals, or the antioxidant capacity of the polyphenols present in the material. Similar results were observed for raw and cooked chicken hamburgers stored 14 days at 4°C, in which not only the lipid oxidation was inhibited, but also an increase of radical scavenging capacity in fortified hamburgers was observed. Even though there are no studies of the effect of these protected food products...
over total plasma oxidative status of consumers, it may be hypothesized that the consumption of these products may exert a beneficial effect over the consumer as a result of less free radical intake.

Although great achievements have been made by using dietary fiber and phenolic compounds as functional ingredients, as well as the material that combines both molecules; further investigations about structure and functionality within the food matrices (proteins, lipids and water activity) and the bioavailability effects after intake are needed.

Dietary fiber effect over phenolic compounds in the human digestive tract

As stated above, in recent years, there is a growing interest among researchers on the formulation of food products with dietary fiber and phenolic compounds due to their linkage to human health. However, consumption of food rich in some nutrients or bioactive compounds not guarantees their bioavailability in the digestive tract, therefore, its biological effect is not insured\(^7\). The bioavailability or absorption in the gut is in many cases quite uncertain or varies for the same food depending on processing conditions, presence of other compounds, and so on. Furthermore, there are some specific factors that could affect the absorption of the molecules in the gut, such as food microstructure, structure and molecular weight of the compound, and chemical interactions between food constituents\(^9\). This last factor is very relevant because recent scientific data appear to demonstrate that in the case of certain nutrients and bioactive compounds the state of the matrix of natural foods or the microstructure of processed foods may improve or hinder their nutritional response *in vivo*. In fact, it has recently been stated that the generation of functional foods fortified with fiber rich and phenolic compounds could result in a loss of
absorption of the antioxidants, because fiber may trap the antioxidant molecules, decreasing the proposed food functionality\(^\text{18}\). However, some evidence suggests that phenolic compounds entrapped into dietary fiber can reach the colon and exert a biological effect, playing an important role in the intestinal health\(^\text{24}\).

The next sections describe the possible interactions that may arise between phenolic compounds and dietary fiber, and how these interactions can affect the adequate bioavailability of these compounds.

Dietary fiber and phenolic compounds chemical interactions

As previously described, some plant foods are rich sources of dietary fiber that carry putatively bioactive compounds embedded in it, phenolic compounds in particular; these indicate that both molecules are able to interact chemically in the food matrix\(^\text{7}\). Phenolic compounds have both hydrophobic aromatic rings and hydrophilic hydroxyl groups with the ability to bind to polysaccharides and proteins at several sites on the cell wall surface\(^\text{7}\). They are linked by hydrogen bonding (between the hydroxyl group of phenolic compounds and oxygen atoms of the glycosidic linkages of polysaccharides), hydrophobic interactions, and covalent bonds such as ester bonds between phenolic acids and polysaccharides ([Figure 3](#)). Interactions can be dependent on size particle, specific porosity and surface properties, which can restrict the size of the molecules that penetrate. Pore size in the cell wall can range from 4 to 10 nm in diameter, which may restrict penetration of phenolic compounds with molecular masses larger than 10 kDa (equivalent to 34 units to catechin)\(^\text{78}\).

Dietary fiber can interact and bind during gastrointestinal digestion with antioxidants present in the food matrix. These interactions can be trough either hydrogen bonds, strong
(covalent) or through physicochemical entrapment exerted by dietary fiber18. Considering that these bonds are weak, they are stable only above a minimum critical length, and their formation and disruption often occur as sharp, cooperative processes in response to comparatively small changes in, for example pH or solvent quality in the gastrointestinal tract (that is the nature and concentration of dissolved solids in the chyme). In this context, the possible interactions that may arise between dietary fiber and phenolic compounds can decrease or delay their absorption in the gut as mentioned in early sections.

\textit{Effect on bioaccessibility and bioavailability}

Bioavailability is defined as the proportion of a nutrient that is digested, absorbed, and utilized in normal metabolism; bioaccessibility is a commonly used term to describe the amount of an ingested nutrient that is available for absorption in the gut after digestion18, 77. In this sense, bioavailability strictly depends on bioaccessibility, and it is well know that the biological properties of nutrients and bioactive compounds, such as phenolic compounds, depend on this release-absorption process. It has been reported that phenolic compounds are released from the food matrix in the upper area of the gastrointestinal tract by direct solubilization in the intestinal fluids at physiological conditions (37 °C, pH 1-7.5) and/or by the action of digestive enzymes (enzymatic hydrolysis of protein, carbohydrates, and lipids favors the release of phenolics from the food matrix)24. These accessible compounds (low molecular weight phenolics) are at least partially absorbed through the small intestine mucosa. However, another part of phenolics are not bioaccessible; these compounds pass undissolved and unaltered through the upper intestine in association with the food matrix, including dietary fiber, which alters the efficiency of the physical,
enzymatic, and chemical digestion processes. Moreover, this bioavailability can be even lower for large molecular weight food polyphenols, as is the case of hydrolyzable and condensed tannins and complex flavonoid conjugates with several sugars and acylated with hydroxycinnamic acids. Therefore, it is generally accepted that the bioavailability of phenolics is rather low, even though high variability in the bioavailability of the different polyphenols may be observed, and expressed as the relative urinary excretion of the intake range from 0.3% for anthocyanins to 43% for isoflavones such as daidzin.

Several factors can explain this variability, among them food matrix, particularly dietary fiber components, plays an important role. There is ample evidence that the physical state of the food polysaccharides play a key role in the bioaccessibility of many bioactive food components, such as antioxidants. It is known that dietary fiber can reduce the bioavailability of macronutrients and biomolecules, especially fat, and some minerals and trace elements in the human digestion. In general, the two main effects of dietary fiber in the foregut are to prolong gastric emptying time and to retard absorption of nutrients. Both are dependent on the physicochemical characteristics of the fiber, and in particular, its influence on the viscosity of the bolus. Dietary fiber can act in the small intestine in three main physical forms: as soluble polymer chains in solution, as insoluble macromolecular assemblies, and as swollen, hydrated, sponge-like networks. Therefore, the dominant factors involved in the influence of dietary fiber on antioxidant digestion are: 1) physical trapping of antioxidants within structured assemblies such as fruit tissue, and 2) enhanced viscosity of gastric fluids restricting the peristaltic mixing process that promotes transport of enzymes to their substrates, bile salts to unmicellized fat, and soluble antioxidants to the gut wall. For these reason, interactions of phenolic compounds with dietary fiber is
expected, and may affect their releasing during digestion and interfere with absorption in
the gut18.

In this context, the limited bioavailability of antioxidants associated with dietary fiber is
determined by their low bioaccessibility in the small intestine due to the physical and
chemical interactions between antioxidants and the indigestible polysaccharides of cell
wall. However, all non-absorbable antioxidants reach the large intestine and remain in the
colic lumen where they may contribute to a healthy antioxidant environment78.

\textbf{Functional and biological properties in the gut}

Dietary fiber associated with phenolic compounds possess some functional and
biological properties, such as antioxidant capacity and colonic fermentation87. The
appreciable amount of phenolic compounds linked or entrapped by dietary fiber provides a
significant antioxidant capacity that may have pronounced effects into biological systems,
such as gastrointestinal tract. Phenolic compounds associated with dietary fiber may have
significant effects in intestinal health. The antioxidant dietary fiber is transported largely
unaltered along the small intestine all the way to the colon. The intestinal microbiota
ferments the antioxidant dietary fiber matrices and phenolic compounds are gradually
released in the intestinal lumen and partially absorbed by gut epithelial cells. Therefore,
non-absorbable phenols and non-fermented phenolic compounds remain in the colonic
tissue scavenging free radicals and counteracting the effects of dietary fiber pro-oxidants7
(Figure 4). At the same time, the partial or total fermentation of dietary fiber constituents
(cellulose, hemicelluloses, pectins, resistant starch, fructans, arabinoxylans, etc) release
several beneficial short-chain fatty acids (SCFA), such as phenylacetic, phenylpropionic
These compounds may exert systemic effects in conjunction with phenolic compounds, for example the induction of cellular differentiation and apoptosis. Moreover, epidemiological studies have shown an inverse association between dietary fiber with associated antioxidants consumption and colon cancer, mainly due to the effect of SCFA (butyrate hypothesis) on the modulation of genes associated with this disease. Recently, Lizarraga et al. analyzed the effect of consumption of grape antioxidant fiber over 26393 mice genes, observing that 363 genes were unregulated and 641 down regulated. From the analysis of these results, the authors suggested that the beneficial health effect was because its consumption downregulated nuclear receptor signaling, lipid biosynthesis (TNF and PPARα) and energy metabolism, pathways associated with obesity and cancer. At the same time, antioxidant and detoxification enzymes (Fase I and II), apoptotic (BFAR and CARD14), immune system and tumor suppression genes (NBL1) were unregulated. These results clearly show the beneficial effect of dietary fiber with associated phenolic compounds. In particular, phenolic compounds, dietary fiber components and their metabolites come into contact with the gut wall for up to several hours (more than 24). For these reason, the antioxidant environment formed into the colon could modulate the incidence of certain kind of degenerative diseases such as colon cancer.

Furthermore, the beneficial effect of consumption of dietary fiber with phenolic has been associated with the proliferation of lactobacillus, and in a less degree Bifidobacterium, both in vitro and in vivo, and an inhibition of pathogenic bacteria (Escherichia coli, Clostridium), that improves the overall gastrointestinal health. This beneficial effect may be explained in terms of the presence of phenolic compounds such as (+)-catechins, (−)-
epicatechin and (-)-epicatechin-3-O-gallate, and tannins in the material, which exert antimicrobial activity against pathogenic bacteria in the gut. The same authors suggested that dietary fiber with phenolic compounds embedded, modifies the gut morphology improving gastrointestinal absorption.

Conclusion and future research

The use of phenolic compounds and dietary fiber as food ingredients is of great interest not only as means of improving the functionality of food products, but also to formulate functional foods with health benefits, such as reducing cholesterolmia, modifying the glucaemic response, prevention the development of cancer and some other cardiovascular disease. Furthermore, it is well known the physicochemical association between these two bioactive compounds (fiber and phenolic compounds) that has created a new material that combines the functional properties of both fiber and antioxidants (mainly antioxidant capacity) and in last few years it has been used as a functional ingredient. However, there is evidence that this association may not be only exert beneficial effects, but also some non-wanted effects, because dietary fiber may affect the bioaccesibility and bioavailability of phenolic compounds, and consequently reduce its healthy and biological effects. Nevertheless, it has been stated that due to this fiber-phenolic compounds interactions, an appreciable amount of phenolic compounds are carried out by dietary fiber through the gastrointestinal tract, producing antioxidant metabolites in the colon and creating an antioxidant environment for the prevention of diseases such as colon cancer. However, future research is needed to verify this hypothesis.
In this context, research on dietary fiber/phenolic compounds association offers to be a very promising area. Future work is needed to elucidate the real contribution of functional foods enriched with dietary fiber to the wellbeing of consumers. For this reason, more studies on bioaccessibility and bioavailability, both in vitro and in vivo, from different formulations in new products and sources of dietary fiber/phenolic compounds are needed. In addition, the role of fiber as a control-released system of bioactive compounds in colon must be study with more detail.

References

Figure 1. Phenolic compounds linked to dietary fiber in fruit matrix.
Figure 2. Incorporation of dietary fiber with antioxidant activity into foods to enhance its properties.
Figure 3. Types of interactions between phenolic compounds and dietary fiber.
Figure 4. Colon antioxidant environment formed by the action of intestinal microbiota that ferment the dietary fiber matrices and, phenolic compounds are gradually released at the intestinal lumen and partially absorbed into gut epithelial cells.
Table 1. Total dietary fiber (TDF) and extractable polyphenols (EP) in raw fruits, fruits byproducts and sources of antioxidant dietary fiber.

<table>
<thead>
<tr>
<th></th>
<th>TDF (% dry matter)</th>
<th>EP (mg GA/g dry matter)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw fruit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White guava</td>
<td>5.3</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Red guava</td>
<td>2.7</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Carambola</td>
<td>2.7</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Mango</td>
<td>1.8</td>
<td>0.5</td>
<td>36</td>
</tr>
<tr>
<td>Papaya (cv. Red Lady)</td>
<td>1.7</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Blueberries</td>
<td>2.4</td>
<td>5.3</td>
<td>37</td>
</tr>
<tr>
<td>Grape</td>
<td>1.5</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Pineapple</td>
<td>1.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Apple</td>
<td>3.2</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>1.1</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Strawberry</td>
<td>2.3</td>
<td>3.6</td>
<td>38</td>
</tr>
<tr>
<td>Durian</td>
<td>1.2</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Snake fruit</td>
<td>1.1</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Mangosteen</td>
<td>0.9</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Byproduct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banana peel</td>
<td>7.6</td>
<td>9.2</td>
<td>39</td>
</tr>
<tr>
<td>Guava peel</td>
<td>-</td>
<td>58</td>
<td>9</td>
</tr>
<tr>
<td>Mango peel</td>
<td>28</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>Mango seed</td>
<td>-</td>
<td>117</td>
<td>40</td>
</tr>
<tr>
<td>Jackfruit seed</td>
<td>-</td>
<td>27</td>
<td>41</td>
</tr>
<tr>
<td>Carrot peel</td>
<td>45</td>
<td>13</td>
<td>42</td>
</tr>
<tr>
<td>Pomegranate peel</td>
<td>-</td>
<td>249</td>
<td>45</td>
</tr>
<tr>
<td>Grape stem</td>
<td>77</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Antioxidant dietary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fiber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cocoa powder</td>
<td>60</td>
<td>1.3</td>
<td>44</td>
</tr>
<tr>
<td>Guava pulp</td>
<td>48</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Guava peel</td>
<td>49</td>
<td>77</td>
<td>9</td>
</tr>
<tr>
<td>Jamaica</td>
<td>33</td>
<td>61</td>
<td>45</td>
</tr>
<tr>
<td>Orange-lime</td>
<td>69</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Pineapple shells</td>
<td>70</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cauliflower</td>
<td>6.0</td>
<td>3.4</td>
<td>48</td>
</tr>
<tr>
<td>Mango peel</td>
<td>51</td>
<td>96</td>
<td>49</td>
</tr>
<tr>
<td>Cabbage leaf</td>
<td>51</td>
<td>3.4</td>
<td>50</td>
</tr>
<tr>
<td>Acai</td>
<td>71</td>
<td>15</td>
<td>51</td>
</tr>
</tbody>
</table>
Table 2. Effect of functional foods enriched with dietary fiber, phenolic compounds and dietary fiber with phenolic compounds associated.

<table>
<thead>
<tr>
<th>Functional food</th>
<th>Functional ingredient</th>
<th>Source</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cookies and bread</td>
<td>Dietary fiber</td>
<td>Mango</td>
<td>Products with balanced components and low predicted glycemic index response</td>
<td>43</td>
</tr>
<tr>
<td>Bologna cooked sausages</td>
<td>Dietary fiber</td>
<td>Lemon albedo</td>
<td>Similar sensory properties to conventional sausages but improvement in the nutritional properties</td>
<td>59</td>
</tr>
<tr>
<td>Cookies</td>
<td>Dietary fiber</td>
<td>Extruded wheat bran</td>
<td>Dietary fiber content was increased and the glycemic index was low</td>
<td>60</td>
</tr>
<tr>
<td>Yogurt</td>
<td>Dietary fiber</td>
<td>Acacia</td>
<td>Greater therapeutic effects in patients with irritable bowel syndrome</td>
<td>61</td>
</tr>
<tr>
<td>Cupcakes</td>
<td>Dietary fiber</td>
<td>Oat and wheat</td>
<td>Addition of 30% dietary fiber improved quality characteristics of cupcakes. Also prolonged the shelf-life of the cakes by delaying the moisture loss and the increase in crumb firmness</td>
<td>64</td>
</tr>
<tr>
<td>Fresh potatoes</td>
<td>Phenolic compounds</td>
<td>Oregano</td>
<td>Increase antioxidant activity and reduction of</td>
<td>66</td>
</tr>
<tr>
<td>Food Product</td>
<td>Dietary Fiber or Phenolic Compounds</td>
<td>Associated Ingredient</td>
<td>Health Benefit</td>
<td>Page</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------------</td>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Bread</td>
<td>Phenolic compounds (proanthocyanidins)</td>
<td>Grape seed</td>
<td>High antioxidant activity and reduce the Nε (carboxymethyl) lysine formation, related to health risks</td>
<td>67</td>
</tr>
<tr>
<td>Cooked pork meat patties</td>
<td>Phenolic compounds</td>
<td>Rapeseed and pine bark</td>
<td>Inhibition of protein oxidation between 42 and 64%</td>
<td>68</td>
</tr>
<tr>
<td>Cheese product</td>
<td>Phenolic compounds</td>
<td>Herb extracts (cinnamon stick, oregano, clove, pomegranate peel, and grape seed)</td>
<td>Plant extracts were effective against Listeria monocytogenes, Staphylococcus aureus, and Salmonella enterica. Also, extracts increased the stability of cheese against lipid oxidation</td>
<td>69</td>
</tr>
<tr>
<td>Dough biscuits</td>
<td>Dietary fiber with phenolic compounds associate</td>
<td>Mango peel</td>
<td>Dietary fiber and polyphenols content increase 14% and 90%, respectively.</td>
<td>71</td>
</tr>
<tr>
<td>Cake</td>
<td>Dietary fiber with phenolic compounds associate</td>
<td>By-product of apple juice</td>
<td>Increase the dietary fiber and polyphenols content, to 14% and 7.16 m/g, respectively</td>
<td>72</td>
</tr>
<tr>
<td>Yogurt and salad dressing</td>
<td>Dietary fiber with antioxidants associated</td>
<td>Wine grape pomace</td>
<td>Increase dietary fiber and total phenolic content, also delay lipid oxidation of samples during</td>
<td>73</td>
</tr>
<tr>
<td>Ingredient</td>
<td>Treatment</td>
<td>Effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish mince</td>
<td>Dietary fiber with phenolic compounds</td>
<td>Prevent lipid oxidation during 5 months of frozen storage at -20 °C. Also, reduced total yield after thawing and cooking after up to 3 months of frozen storage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>horse mackerel</td>
<td>Fucus vesiculosus spp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maccaroni products</td>
<td>Dietary fiber with phenolic compounds</td>
<td>Enhance nutritional and technological quality. The dietary fiber content increase 9% and exhibited improved antioxidant properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>products</td>
<td>associated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mango peel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>