This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Absorption of Caffeine in Fermented Pu-er tea is Inhibited in Mice

Ye-wei Huang1,2,3, Huan-huan Xu2,3, Su-min Wang2,3, Yi Zhao1,2,3, Yu-min Huang2,3, Run-bo Li2,3, Xuan-jun Wang2,3*, Shu-mei Hao4* and Jun Sheng2,3*

1College of Life Science, Jilin University, Changchun, 130012, People’s Republic of China.

2Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, People’s Republic of China.

3Tea research Center of Yunnan, Kunming, 650201, People’s Republic of China.

4Yunnan University, Kunming, 650091, People’s Republic of China.
Abstract

Caffeine present in number of dietary sources consumed worldwide. Although its pharmacokinetics has been intensively explored, little is known about complexed caffeine (C-CAF) in aqueous extraction of fermented Pu-er tea. The major components of C-CAF are oxidative tea polyphenols (OTP) and caffeine. Furthermore, the C-CAF can be precipitated in low pH solution. After administrating the same amount of total caffeine and comparing the peak level of plasma caffeine with the coffee (contains 0.11 ± 0.01 % C-CAF) group, the results showed that the caffeine/OTP (contains 66.67 ± 0.02 % C-CAF) group and the instant Pu-er tea (contains 23.18 ± 0.02 % C-CAF) group were 33.39 % and 25.86 % lower, respectively. The concentration of the metabolites of caffeine supports the idea that the absorption of the C-CAF was inhibited in mice. Congruent with this result, the amount of caffeine detected in mice excrement showed that more caffeine was eliminated in the caffeine/OTP group and the Pu-er tea group. The locomotor activity tests of mice demonstrated that the caffeine/OTP group and Pu-er tea group were more peaceful than coffee group. Our findings demonstrated that caffeine can be combined with OTP and the absorption of C-CAF is inhibited in mice, thus decreasing the irritation effect of caffeine. This may also be developing as a slow release formulation of caffeine.

Key words: absorption, caffeine, complexed caffeine, fermented Pu-er tea, oxidative tea polyphenols
Introduction

Caffeine (1, 3, 7-trimethylxanthine), a naturally occurring plant xanthine alkaloid\(^1\), was first isolated in the eighteenth century\(^2\). Caffeine is present in a number of dietary sources consumed worldwide (i.e., coffee, tea, soft drinks – cola, cocoa beverages, and chocolate bars)\(^3-5\). About 87 % of the world’s population consumes caffeine with an average of 193 mg per day. Among adults 18 years and older, the daily intake ranges between 166 and 336 mg per day\(^1,6,7\). Caffeine is considered as a stimulant of the central nervous system for its ability to enhance alertness and can inhibit lipid absorption in ovariectomized rats\(^2,4,8\). The efficacy and side effects of caffeine have been extensively studied\(^3,6,9-12\), caffeine is generally recognized as safe by the Food and Drug Administration. However, excessive caffeine use can result in serious health problems and, in rare cases, death\(^13,14\).

One of the most common side effects of caffeine consumption is sleep loss. Some reported experiments about the negative effects of caffeine on sleep have consistently found that caffeine shortens total sleep time, prolongs sleep latency, and changes the duration of light and deep sleep\(^15\). Sleep loss is a major reason that people are reluctant to consume caffeinated beverages, namely tea and coffee. Fermented Pu-er tea is a unique fermented tea produced in Yunnan province of China\(^16\), it has been consumed by Chinese people for centuries and has recently become more popular functional beverage in Asian, Europe and America\(^17,18\). A mass of oxidative tea
polyphenols (OTP) in fermented Pu-er tea are produced during the fermentation process19,20. During the stage of fermentation, caffeine content has been found to increase 21. Contrary to assumption, it is believed that the influence of fermented Pu-er tea on sleep is significantly less in comparison with other kinds of tea or coffee. Unlike coffee or other kinds of tea, many people can enjoy Pu-er tea before sleep.

The above discrepancy laid the groundwork for us to investigate the effects of caffeine in fermented Pu-er tea. We previously found that caffeine in fermented Pu-er tea can be divided into two kinds as complexed caffeine (C-CAF) and free caffeine (F-CAF), and that the C-CAF content can be evaluated by Low-pH Precipitate Method22. In this study, our primary objective was to compare the content of C-CAF in different kinds of tea and coffee samples, and then probe into the material basis of C-CAF formation. On account that mouse stomach acidity has a pH of about 2.0, we postulated that caffeine from Pu-er tea can be precipitated with other components in stomach when administered orally. Resultantly, the absorption of caffeine in Pu-er tea may be unavoidably influenced. To test this hypothesis, our second objective was to investigate the difference between the absorption of caffeine in coffee, fermented Pu-er tea and OTP. Our experiment results demonstrated that: one, fermented Pu-er tea has a larger amount of C-CAF than non-fermented Pu-er tea, green tea, black tea, oolong tea and coffee; two, C-CAF was principally combined with OTP; and three, the absorption of C-CAF in fermented Pu-er
tea was inhibited in mice and the effect of caffeine was influenced significantly. Our findings provide a theoretical basis for the phenomenon of the mitigation insomnia effects of fermented Pu-er tea in comparison with other kinds of tea or coffee.

Materials and methods

Chemicals and reagents. Caffeine was purchased from Aladdin. Theobromine was purchased from Shanghai Yuanye biological technology co., LTD. Paraxanthine, theophylline and sodium dihydrogen phosphate were purchased from Sigma-Aldrich. 8-chlorotheophylline was purchased from Tokyo chemical industry co., LTD. Methanol used in the mobile phases were of HPLC-grade reagent purchased from Tedia Co. Inc. Deionized water was prepared using the Purifier (FST-UV-20, Shanghai Fushite instrument equipment Co., Ltd. Shanghai, China) and was degassed by ultrasonic cleaning machine (SK-18TC, Shanghai Kudos ultrasonic instrument Co., Ltd. Shanghai, China).

Samples and preparation of HPLC infusion. Fourteen Chinese tea samples of various types, including three fermented Pu-er tea, two Non-fermented Pu-er tea, three black tea, two oolong tea, and four green tea, which were made into aqueous extract powder. Moreover, three coffee samples, one instant essence of Pu-er tea (Deepure, Yunnan tasly deepure biological tea group co., LTD.), one OTP, one TPS, one Pu-er tea theabrownin (PTTB), and one Pu-er tea polysaccharide (PTPS) sample were also made into aqueous
extract power. Supporting information of all samples is listed in Table 1. The preparation process of OTP, TPS, PTPS and PTTB was showed in the “Supplementary Experimental Procedures” of Electronic Supplementary Information.

Preparation of HPLC infusion: 800mg of the sample was dissolved in 40 mL ultrapure water and was shocked by Vortex Mixer for 2 min and then was centrifuged at 800 ×g for 10 min. The resulting supernatant was diluted 10-folds and filtered through a 0.45μm membrane and subjected to HPLC to determine the content of caffeine and its metabolites of the sample. In addition, the 20 g/L sample solution would be used for Low-pH Precipitate Method and Chloroform Extraction as described below.

HPLC-VWD analysis. A 50 μL sample was analyzed using an autosampler (G1329B, 1260ALS, Agilent, USA), a ultraviolet detector (G1314F, 1260VWD, Agilent, USA) at wavelength 274 nm, and HPLC pump (G1311B, 1260Quat Pump, Agilent, USA) at 0.6 mL/min flow at 30°C (G1316A, 1260TCC, Agilent, USA) through a C18 ODS column (ZORBAX SB-C18 4.6mm × 250mm, 5 Micron, Agilent, USA) with a guard column (ZORBAX Eclipse Plus-C18, 4-Pack, Analytical Guard Column, 4.6mm×12.5mm, 5-Micron, Agilent, USA). The mobile phase was 73 % 0.1 mol/L sodium dihydrogen phosphate and 27 % methanol, filtered through a 0.45 micron filter. Concentrations of caffeine and its metabolites were determined in mg/L for all of the samples.

Determination of C-CAF content of the samples by Low-pH Precipitate
Method. The C-CAF content of the samples was evaluated by Low-pH Precipitate Method as previously described23. In brief, the poly-phenolic hydroxyl contained components were precipitated under acidic conditions (pH ≤ 2) and then dissolved with alkaline solution. Conveniently, if caffeine was combined with the Poly-phenolic hydroxyl contained components, the C-CAF content of the samples can be determined in the precipitate dissolved solution by HPLC.

Sample preparation: Hydrochloric acid was added to 12mL of 20 g/L sample solution for adjusting acidity to pH 1.5 and was shocked by Vortex Mixer for 2min and centrifuged at 1600 × g at 25 °C for 30 min. The precipitate and supernatant were separated and the precipitate was weighed by sensitive balance. The precipitate was dissolved NaOH solution (pH = 10). Then, the supernatant and precipitate solution were diluted with deionized water to 13mL. The caffeine content of the supernatant and precipitate was determined by HPLC.

Checkout of C-CAF content of the samples through chloroform extraction. The linear regression equation of the balance line of caffeine distribution between water and chloroform was $y = 15.02x$ at 25 °C. X and y mean that caffeine concentration (g/L) of aqueous phase and chloroform phase respectively when the distribution achieves equilibrium. The correlation coefficient $R = 0.9942$. It has no significant effect on the caffeine extraction between pH = 2.28 ~ 11.37 when $x < 0.6$ g/L24. To checkout content of C-CAF
of the samples, we determined caffeine distribution ratio of the samples between chloroform phase and aqueous phase.

Sample preparation: 5mL chloroform was added to 5 mL of 20 g/L sample solution and was shocked by Vortex Mixer for 2 min and centrifuged at 800 ×g at 25 °C for 15 min. Then, the aqueous phase solution was diluted 10 folds with deionized water. The caffeine content was determined by HPLC.

Mice. Healthy virgin inbred BALB/c mice (7–8 weeks old) composed of male and female in equal numbers from Nanjing Peng-sheng biotechnology Co., Ltd, China, were used in the animal experiments. Mice were maintained in a controlled environment (12 h light/12 h dark cycle; humidity 50–60 %; ambient temperature 24°C ± 1°C) and were administered standard laboratory food and water ad libitum. All mice experiments were performed in the animal facility according to institutional guidelines and were approved by the Institutional Animal Care and Use Committee of Yunnan Agricultural University. Adverse events were not observed.

Group designations and caffeine administration. The BALB/c mice composed of male and female in equal numbers were divided at random into coffee group, fermented Pu-er tea group, and caffeine added OTP group. Coffee (85.91 g/L), fermented Pu-er tea (31.77 g/L) and OTP (31.77 g/L) with additional caffeine were prepared in deionized water (the caffeine content of the three samples are equivalent to 2.5 g/L) and administered via intragastric administration (0.2 mL/10g). The caffeine dose (50 mg/kg) was selected based
on its pharmacokinetic profile in mice compared with humans, which is well below the lethal dose of approximately 10 g in humans11. Caffeine doses were also based on the finding that 50 mg/kg of caffeine in rodents corresponds to approximately 10 cups of coffee for humans, but caffeine is metabolized up to 6 times faster in mice than in humans5,25. The mice were feed-deprived for 12 hours before the intragastric administration.

Levels of caffeine and its metabolites in plasma. Levels of caffeine and its metabolites in plasma were determined by HPLC as described by Youngberg3 et al. with modifications. In brief, the blood samples were taken at various intervals (5, 10, 20, 40, 60, 120, 240, 360, 480 min) after the caffeine administration. As the internal standard, 3.33 mg/L of 8-chlorotheophylline was added to each sample. 150 µl samples of subject plasma were extracted in 1 mol/L HCl and 3 mL methylene chloride. The organic layer was evaporated to dryness and reconstituted in 0.1 mol/L HCl solution. Plasma levels of caffeine and its metabolites were determined by HPLC with the same chromatographic condition as “HPLC-VWD analysis” part. For caffeine, paraxanthine, theophylline and theobromine in plasma: the limit of quantitation (mg/L) was 0.05, 0.10, 0.105 and 0.035; the limit of detection (mg/L) was 0.025, 0.045, 0.060, 0.015; the response factor was 1.005, 0.456, 0.514 and 0.906; and the overall extraction recovery from human plasma was 85.28 ± 2.31 %, 57.13 ± 0.87 %, 60.10 ± 0.39 % and 72.84 ± 0.87 %, respectively. The recovery for the internal standard (8-chlorotheophylline) was 90.89 ± 1.07 %. The precision and
accuracy for the analytes were within the acceptable range (< 7 %). The assay validation was showed in the “supplemental data” of Electronic Supplementary Information.

Excrement sample extraction. The excrement samples were taken 8 hours after the caffeine administration, and then dried and ground to powder. 5 mL methanol (70 %) was added to a 200 mg powder sample, shocked by Vortex Mixer for 2 min, and then extracted by ultrasound-assisted for 30 min at room temperature. Finally, the caffeine concentration was determined by HPLC.

Evaluation of locomotor activity. Locomotor activity was monitored with a mouse activity monitor system (ZZ-6, Taimeng, Chengdu Technology & Market Co. Ltd., Chengdu, China), which monitored the horizontal (locomotion) and vertical (rearing) movements of the mice. The individual compartments (L=15; W=12; H=10 cm) were put in a dimly lit and quiet room. The mice were feed-deprived for 12 hours before the experiment. Groups of female BALB/c mice were first thoroughly habituated to the test environment over a 30 min period. Then, they were removed from the open field, administrated with coffee, fermented Pu-er tea, and caffeine added OTP aqueous solution (which were equivalent to caffeine at 5 mg/kg) or water respectively via intragastric administration (0.2 mL/10 g), and replaced in the compartments for an additional 90 min. The 5 mg/kg test dose of caffeine was chosen on the basis of previous dose-effect studies performed in our laboratory. This dose is a little higher than the threshold of stimulant effect of caffeine for the female mice.
Locomotor activity was recorded during the 90 min following the caffeine administration. The floor and walls of the chamber were cleaned with ethanol (70%) and dried with paper towels between each mouse exposure26-28.

Statistical analyses. All values were presented as mean ± the standard error of the mean (SEM). Differences within groups were analyzed with repeated measures one-way ANOVA, Two-tailed $p < 0.05$ was considered to be statistically significant. All analyses were performed using SPSS 17.0 (Chicago, IL, USA) and GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, CA, USA).

Results

C-CAF content of the samples. Previous research has shown that tea contains theobromine and theophylline in addition to caffeine29. Therefore, in the current study, we set out to observe plasma levels of caffeine and its metabolites, by initially evaluating the content of caffeine, theophylline, theobromine and paraxanthine of the samples (Supplemental Table 1). There was a large amount of caffeine in the tea samples, whereas, there was slight amount of caffeine in the OTP. In addition, the tea and coffee samples contain small amounts of theophylline and theobromine. There was a relatively high level of theobromine in the fermented Pu-er tea samples, but only trace amounts of paraxanthine in the tea and coffee samples.

To evaluate and compare the C-CAF content of all samples, we next determined the C-CAF content by Low-pH Precipitate Method (Table. 1). Nearly a quarter of the caffeine in fermented Pu-er tea was C-CAF. What's
more, about three-quarters of the caffeine in the caffeine added OTP sample was C-CAF. Only about one-tenth of caffeine in the black tea samples, however, was C-CAF. In the non-fermented Pu-er tea, oolong tea, green tea and caffeine added TPS there was just a moderate level of C-CAF. Curiously, the C-CAF levels of PTPS and caffeine added PTTB were also high. In addition to fermented Pu-er tea, the C-CAF percent of the caffeine added OTP, PTPS and caffeine added PTTB samples were also obviously greater than the percent of precipitate volume (Table. 1 and Supplemental Table 2). These results indicate that, compared to the other samples, fermented Pu-er tea, caffeine added OTP, PTPS, and caffeine added PTTB samples contained more C-CAF, and caffeine in these samples abounded in the precipitate components; while there was hardly any C-CAF in the coffee samples.

To further characterize the combination of caffeine with other components of the samples, the fermented Pu-er tea, OTP and coffee samples were examined through Chloroform Extraction (Fig. 1). The OTP were mainly distributed in the aqueous phase. The caffeine concentration ratio of the Chloroform phase to aqueous phase was determined with significant differences (P < 0.001) among the coffee, fermented Pu-er tea and OTP samples. For the fermented Pu-er tea and OTP samples, the balance of caffeine distribution between water and chloroform was shifted severely. The caffeine concentration ratio of the Chloroform phase to aqueous phase in descending order was as follows: coffee samples, fermented Pu-er tea
samples and OTP samples. These results indicate that caffeine in the OTP and fermented Pu-er tea samples was combined with OTP which belonged to the aqueous phase.

Effect of pH on the formation of caffeine contained precipitate. To further probe into whether or not fermented Pu-er tea aqueous extract or OTP can be precipitated in the condition of mouse stomach, we examined the association between the formation of precipitate and solution acidity (*Fig. 2 A, B*). Plenty of precipitate was formed at pH = 1.5 in the OTP and fermented Pu-er tea solution (*Fig. 2 A*) and the C-CAF percent of the OTP and fermented Pu-er tea samples was high (*Fig. 2 B*). Compared to the pH of 1.5, in spite of the precipitate quantity, the percentage of C-CAF was less at pH 3.5, but obvious precipitate was still formed. Consequently, the fermented Pu-er tea and OTP might be precipitated by internal conditions of the mouse stomach.

Plasma levels of caffeine and its metabolites. The results above suggest that the caffeine in fermented Pu-er tea was combined with OTP and the C-CAF may be precipitated in mouse gastric juice. Nearly the same as pure caffeine, there is hardly any C-CAF in coffee. Therefore, coffee was selected as a control group to investigate whether the absorption of caffeine was influenced by combining with OTP. Following the coffee, fermented Pu-er tea and caffeine added OTP administration, plasma levels of caffeine, and its metabolites were determined at different time points (*Fig. 3 A, B, C, D*).

Following the sample solutions administration, plasma levels were not
significantly different 5 or 10 min later. However, compared to the coffee group, plasma caffeine levels of the fermented Pu-er tea group and the caffeine added OTP group were significantly reduced at 20 min and 40 min after ingestion (P<0.05). Moreover, there were significant differences of plasma caffeine levels between the coffee group and the caffeine added OTP group at 60 min and 120 min after ingestion (P<0.01). There were not significant differences between the coffee group and the fermented Pu-er tea group 40 min after ingestion (Fig. 3 A).

For paraxanthine and theophylline, the plasma levels of the fermented Pu-er tea group and the caffeine added OTP group were higher than the coffee group in the early stage (5 min to 60 min). In contrast, the plasma levels of the two groups above were lower than the coffee group after 120 min (Fig. 3 B, C). Noteworthy, the plasma theobromine levels of the fermented Pu-er tea group were far higher than the other two groups before 360 min (P < 0.05) (Fig. 3 D). Compared to the coffee group, the plasma theobromine levels of the caffeine added OTP group were higher in the early stage (5 min to 60 min), with the most significant difference occurring 10 min after ingestion (P<0.01). Interestingly, the plasma levels of theobromine of the caffeine added OTP group were also lower than the coffee group after 120 min.

Excrement levels of caffeine. Given that the absorption of C-CAF in fermented Pu-er tea and OTP was decreased within a prescribed time limit, we speculated that the absorption of C-CAF must be either delayed or inhibited in
mice. To ascertain the cause of this, the excrement levels of caffeine were examined (Fig. 4).

Excrement levels of caffeine from the fermented Pu-er tea group and caffeine added OTP group were significantly higher than that of the coffee group (P < 0.0001). The result indicates that more caffeine was excreted in the fermented Pu-er tea group and the caffeine added OTP group compared to the coffee group. In all probability, the absorption of C-CAF was inhibited.

Locomotor activity levels. The result above suggested that caffeine can be combined with OTP, and the absorption of C-CAF can be inhibited in mice. To better understand the biological significance of that, we then performed another experiment for monitoring the locomotor activity of mice to elucidate the effects of C-CAF (Fig. 5).

The locomotor activity levels of the water and caffeine added OTP groups were lower than the coffee group, significantly (P < 0.05). The fermented Pu-er tea group was also lower than the coffee group (P = 0.14). These results indicate that the effect of caffeine in vivo was inhibited in the fermented Pu-er tea group and the caffeine added OTP group.

Discussion

To clarify the absorption of C-CAF in mice, it is necessary to discuss the total caffeine, C-CAF and caffeine metabolites content of the samples, and probe into which components can combine with caffeine. Previous studies34-36 have reported that total sugar (14.47-27.62 %), caffeine (2.35-10.43 %) and
catechins (29.86-78.66 %) were found to be the main chemical components of tea cream in the green tea concentrate. Furthermore, the effect of caffeine on tea cream and haze of tea infusions is dependent on the presence of sufficient substances within pyrogallol groups. Our previous study also showed that the caffeine in fermented Pu-er tea can be categorized into F-CAF and C-CAF. However, fermented Pu-er tea contained trace free tea catechins. The major catechins were transformed to OTP due to the specific feature of the catechin – a strong anti-oxidant and easily oxidated in the fermentation process. Theaflavins, thearubigins and theabrownins are the main complex phenolic compounds deriving from the oxidation of catechins and their gallates during the fermentation process. Theaflavins undergo further oxidation during fermentation to form more polymerized thearubigins, and then condensed theabrownins. The OTP still contained a large amount of benzene groups even though their chemical structure is not cleared, because the original catechins retain at least one benzene ring and the absorption curve of the OTP has characteristic peaks of benzene. The OTP was characterized as polymeric organic acid, which can be precipitated by adjusting the pH value to 2. Coincidentally, an increased level of C-CAF in tea is associated with the increased degree of oxidization or fermentation during the processing of tea. There is abundant OTP in fermented Pu-er tea, which is closely associated with a high level of C-CAF. Accordant with previous studies, the C-CAF content of fermented Pu-er tea is far higher than black tea, green tea, and
In order to investigate the material basis of the C-CAF we attempted to separate PTPS and PTTB – two main components in Pu-er tea32. In doing so, we found that PTTB can be precipitated with PTPS during the alcohol sedimentation process, and PTPS and PTTB are difficult to separate. In essence, OTP is the principal component of the PTPS and PTTB samples. The significantly lower C-CAF content of PTTB to that of OTP may result from the fact that PTTB was mixed with other components, TPS for example. As another major component in the extraction of tea, TPS is a kind of poly-sacchride that may be, during the fermentation process, hydrolyzed to oligosaccharides and monosaccharides. In keeping with this interpretation, results of Chloroform Extraction for caffeine are consistent with the results of the Low-pH Precipitate Method. These results highlight the importance of OTP in the formation of C-CAF and demonstrated that OTP is the main material basis for the formation of C-CAF in fermented Pu-er tea.

As the major stimulant compound to human central nervous system30, caffeine is known to form complexes by self-association and with tea catechins. The Crystalline structure of the complexes of (-)-catechin (CA) and (-)-catechin-3-O-gallate (Cg) with caffeine have shown that CA formed a 1 : 1 complex with caffeine by intermolecular hydrogen bonds, whereas Cg formed a 2 : 4 complex with caffeine by face-to-face and offset π-π interactions and intermolecular hydrogen bonds31,32. The 1H-NMR spectra data indicated that
the chemical shift for caffeine between reference sample (free caffeine) and the complex of OTP & caffeine sample changed little (Supplemental Figure 2, Supplemental Table 3 and Supplemental Figure 3). These results suggest that OTP and caffeine formed a complex by intermolecular forces but without covalent bonds combination.

Moreover, we should note that the effect of pH on tea solids extraction yield was significant. Total solids extracted between pH levels 2 to 11 varied from 270 to 290 g/kg tea, but figures were doubled at pH 1.1. One can speculate that pH is also a key factor to the precipitate quantity of the fermented Pu-er tea and OTP aqueous solution. Considering that caffeine can be combined with OTP and can form a precipitate with OTP in a Low-pH solution, we sought to determine if the C-CAF can be precipitated in the condition of mouse stomach. For this purpose, we examined the precipitate quantity and percent of C-CAF of the samples at the pH similar to the stomach. The results showed that the caffeine in fermented Pu-er tea and OTP samples might be precipitated in the condition of mouse stomach. In addition, it’s worth noting that the content of C-CAF in the coffee samples was very low.

After ascertaining the above results, we examined whether the absorption of the C-CAF was influenced in mice. To address this issue, we investigated the plasma levels of caffeine and its metabolites after the mice were administrated caffeine contained samples. In agreement with previous reports, our study showed that the mice plasma caffeine concentration of the coffee
group peaked 20min after the ingestion of caffeine (50 mg/kg). In marked
contrast, the plasma levels of caffeine of the fermented Pu-er tea and caffeine
added OTP group varied marginally between 10 and 40 min, and were
significantly lower than the coffee group. The simplest explanation for this
observation is that the absorption of caffeine in fermented Pu-er tea and OTP
was reduced, significantly.

Caffeine from coffee or other beverages is absorbed by the small intestine
within 45 min of ingestion and moves through cellular membranes with the
same efficiency that it is absorbed and circulated to tissues of the body. It is
eliminated by first-order kinetics. Caffeine is metabolised by CYP enzymes
(de-methylation), xanthine oxidase (formation of uric acid metabolites) and/or
N-acetyltransferase (acetylation) in the liver, and through enzymatic action
results in three metabolites: paraxanthine, theophylline, and theobromine. In
contrast to caffeine, the plasma levels of paraxanthine and theophylline in the
fermented Pu-er tea group and caffeine added OTP group were higher than
the coffee group in the early stage (5min to 60min), but were lower than the
coffee group after 120 min. Nevertheless, the paraxanthine and theophylline
intake from the fermented Pu-er tea group and caffeine added OTP group is
not more than the coffee group (Table 1). One postulate for the above results
is that some components (probably OTP) influenced the distribution or
metabolism of caffeine in the mice. However, owing to more caffeine was
absorbed and metabolized by the mice in the coffee group, the plasma levels
of paraxanthine and theophylline in the fermented Pu-er tea group and caffeine added OTP group were lower than the coffee group after 120 min. As a result of the dramatically higher theobromine content of fermented Pu-er tea in comparison to the coffee and OTP groups (Table 1), the fermented Pu-er tea group plasma levels of theobromine were far higher than the other two groups before 360 min.

To assist in determining if the significantly lower plasma levels of caffeine found in the fermented Pu-er tea and caffeine added OTP group were the result of caffeine metabolism, we tested the mice’s excrement levels of caffeine. Our findings confirmed that the absorption of C-CAF was inhibited in mice and was excreted, in part. The popularity of investigating caffeine has generated more interest from scientists of late due to the potentially harmful effects it has on our health\(^2\). Caffeine is a non-selective antagonist for adenosine receptors\(^{27}\). Several studies confirm that the activation of adenosine receptors A\(_1\) and A\(_2\alpha\), as well as the regulation of adenosine production and degradation, is essential for sleep induction and proper control of the sleep-wakefulness cycle\(^{44}\). The results of locomotor activity of mice indicate that the irritation effect of caffeine was inhibited when complexed with OTP.

To our knowledge, this is the first report that investigated the absorption of C-CAF in mice. Several main findings were obtained that might advance the theoretical framework by potentially illustrating why different sources of caffeine have different effects on humans. If the total caffeine intake is
consistent, the high level of C-CAF may be beneficial for people with sensitivity
to caffeine to reduce the side effects of caffeine, such as insomnia. Moreover,
this may be meaningful for developing some low F-CAF level products.

Conclusions

In conclusion, our results showed that OTP formed with caffeine to
become the C-CAF contained in fermented Pu-er tea. The absorption of this
C-CAF is inhibited in mice and may be the same in humans. What's more, the
effect of caffeine was influenced significantly when it was combined with OTP.
Taken together, this offers insight into the influences of fermented Pu-er tea on
sleep loss are diminished in comparison with other forms of caffeine and/or
caffeine containing products.

Associated content

Abbreviations Used
C-CAF, complexed caffeine; F-CAF, free caffeine; OTP, oxidative tea
polyphenols; PTPS, Pu-er tea polysaccharide; PTTB, Pu-er tea theabrownin;
TPS, tea polysaccharides.

Acknowledgments

J.S., S.H., X.W. and Y.H. designed the research; Y.H., H.X., S.W., Y.Z., Y.M.H.
and R.L. conducted the research; Y.H., H.X. and S.W. analyzed the data; Y.H.
performed statistical analysis and wrote the manuscript; and J.S., S.H. and
X.W. had primary responsibility for final content. All authors read and approved
the final manuscript. The financial supports are the Natural Science
Foundation of Yunnan Province, China (no. 2012FB151) and foundation of Scientific and Technical Innovation of Yunnan Province, China (no. 2009AB021).

Supplementary Material

Refer to Web version on PubMed Central for the preparation process of OTP, TPS, PTPS and PTTB; the content of caffeine, theophylline, theobromine and paraxanthine of the samples (Supplemental Table 1); the percent of precipitate volume of the samples (Supplemental Table 2); “Assay Validation” for Levels of caffeine and its metabolites in plasma (Supplemental Figure 1); and 1H NMR spectra data for caffeine (Supplemental Figure 2, Supplemental Table 3 and Supplemental Figure 3).

Author information

Corresponding Author

*(X.W.) Phone: +8615912579655. Fax: +8687165226711. E-mail: wangxuanjun@gmail.com; haosm@sina.com (S. H.); shengj@ynau.edu.cn (J. S.).

Notes

The authors declare no competing financial interest.
References

13. Temple, J. L. Caffeine Use in Children: What we know, what we have left to learn, and why we should worry. Neurosci Biobehav Rev. 2009, 6, 793–806.

15. Byrne, E. M.; Johnson, J.; McRae, A. F.; Nyholt, D. R.; Medland, S. E.; Gehrman, P. R.; Heath, A. C.; Madden, P. A.; Montgomery, G. W.; Chenevix-Trench, G.; Martin, N. G. A
genome-wide association study of caffeine-related sleep disturbance: confirmation of a role for a common variant in the adenosine receptor. Sleep 2012, 35, 967-975.

32. Xu, Y. Q.; Chen, S. Q.; Yuan, H. B.; Tang, P.; Yin, J. F. Analysis of cream formation in green
44. Mazzotti, D. R.; Guindalini, C.; Pellegrino, R.; Barrueco, K. F.; Santos-Silva, R.; Bittencourt, L. R.; Tuflk, S. Effects of the adenosine deaminase polymorphism and caffeine intake on sleep parameters in a large population sample. Sleep 2011, 34, 399-402.
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Sample Name</th>
<th>F-CAF, mg/L</th>
<th>C-CAF, mg/L</th>
<th>C-CAF, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermented Pu-erh Tea</td>
<td>Gold bud tribute pu-erh tea</td>
<td>1716.13±0.93</td>
<td>486.54±3.81</td>
<td>22.09±0.14</td>
</tr>
<tr>
<td></td>
<td>TAETEA pu-erh tea (7592)</td>
<td>1318.77±0.48</td>
<td>378.47±2.68</td>
<td>22.30±0.13</td>
</tr>
<tr>
<td></td>
<td>Brick pu-erh tea</td>
<td>1370.85±0.22</td>
<td>267.63±1.13</td>
<td>16.33±0.06</td>
</tr>
<tr>
<td>Non-Fermented Pu-erh Tea</td>
<td>Moonlight White pu-erh tea</td>
<td>2530.20±0.50</td>
<td>60.23±0.47</td>
<td>2.32±0.02</td>
</tr>
<tr>
<td></td>
<td>Bangwei pu-erh tea</td>
<td>1179.72±1.25</td>
<td>11.27±0.20</td>
<td>0.94±0.02</td>
</tr>
<tr>
<td>Black Tea</td>
<td>Changning black tea (first grade)</td>
<td>1100.19±1.41</td>
<td>115.78±0.64</td>
<td>9.52±0.04</td>
</tr>
<tr>
<td></td>
<td>MAKEMY black tea</td>
<td>1830.36±1.22</td>
<td>261.60±0.52</td>
<td>12.50±0.02</td>
</tr>
<tr>
<td></td>
<td>Dianhong black tea</td>
<td>1443.38±0.11</td>
<td>118.37±0.49</td>
<td>7.58±0.03</td>
</tr>
<tr>
<td>Oolong Tea</td>
<td>Tieguanyin oolong tea</td>
<td>1033.37±7.51</td>
<td>6.29±0.47</td>
<td>0.60±0.04</td>
</tr>
<tr>
<td></td>
<td>Da Hung Pao oolong tea</td>
<td>1460.97±4.83</td>
<td>69.08±0.51</td>
<td>4.52±0.05</td>
</tr>
<tr>
<td>Green Tea</td>
<td>Longjing green tea</td>
<td>1474.15±0.46</td>
<td>13.63±0.24</td>
<td>0.92±0.02</td>
</tr>
<tr>
<td></td>
<td>Biluochun green tea</td>
<td>1399.68±2.39</td>
<td>20.78±0.84</td>
<td>1.46±0.06</td>
</tr>
<tr>
<td></td>
<td>Huihong green tea</td>
<td>1387.57±4.29</td>
<td>8.80±0.06</td>
<td>0.63±0.00</td>
</tr>
<tr>
<td></td>
<td>Yunnan green tea</td>
<td>1411.13±1.57</td>
<td>10.91±0.27</td>
<td>0.77±0.02</td>
</tr>
<tr>
<td>Coffee</td>
<td>Nescafe coffee</td>
<td>550.58±0.40</td>
<td>0.63±0.06</td>
<td>0.11±0.01</td>
</tr>
<tr>
<td></td>
<td>Maxwell House coffee</td>
<td>664.36±0.19</td>
<td>0.98±0.02</td>
<td>0.15±0.00</td>
</tr>
<tr>
<td></td>
<td>Yunnan Pasteral coffee</td>
<td>702.01±0.45</td>
<td>0.76±0.03</td>
<td>0.11±0.00</td>
</tr>
<tr>
<td>Instant Fermented Pu-erh Tea</td>
<td>Deepure instant essence of pu-erh tea</td>
<td>1162.04±0.65</td>
<td>350.63±0.62</td>
<td>23.18±0.02</td>
</tr>
<tr>
<td>OTP</td>
<td>OTP</td>
<td>45.92±0.44</td>
<td>146.95±0.61</td>
<td>76.19±0.16</td>
</tr>
<tr>
<td>PTPS</td>
<td>PTPS</td>
<td>262.13±0.73</td>
<td>165.80±2.06</td>
<td>38.74±0.34</td>
</tr>
<tr>
<td>Mixture of TPS and caffeine</td>
<td>Caffeine added TPS</td>
<td>1085.51±0.99</td>
<td>34.92±0.07</td>
<td>3.12±0.01</td>
</tr>
<tr>
<td>Mixture of OTP and caffeine</td>
<td>Caffeine added OTP</td>
<td>415.83±0.58</td>
<td>831.85±0.42</td>
<td>66.67±0.02</td>
</tr>
<tr>
<td>Mixture of PTTB and caffeine</td>
<td>Caffeine added PTTB</td>
<td>825.93±0.23</td>
<td>317.33±0.24</td>
<td>27.76±0.02</td>
</tr>
<tr>
<td>Caffeine</td>
<td>Caffeine</td>
<td>1234.68±0.63</td>
<td>0.70±0.05</td>
<td>0.06±0.00</td>
</tr>
</tbody>
</table>

\(^{1}\)Data were presented as mean ± SEM of three independent experiments. C-CAF, complexed caffeine; F-CAF, free caffeine; OTP, oxidative tea polyphenols; PTPS, Pu-er tea polysaccharide; PTTB, Pu-er tea theabrownin; TPS, tea polysaccharides.
Figures

FIGURE 1

[Bar chart showing the ratio of different beverages, including Maxwell House coffee, Yunnan Pastoral coffee, Nescafe coffee, Brick Pu-er tea, Gold bud tribute Pu-er tea, TAETEA Pu-er tea (7592), Deepure instant essence of Pu-er tea, caffeine added OTP, OTP.

FIGURE 2

(A) Precipitate quantity g

(B) Percent of C-COF

[Charts showing the effect of pH and fermentation on precipitate quantity and percent of C-COF.]
FIGURE 3

A

B

C

D

FIGURE 4
Figure captions

FIGURE 1. Caffeine concentration ratio of Chloroform phase to aqueous phase. Data were presented as mean ± SEM and were analyzed with repeated measures (n=4) one-way ANOVA. Two-tailed p<0.05 was considered to be statistically significant (**P<0.001 vs. coffee samples). OTP, oxidative tea polyphenols.

FIGURE 2. Effect of pH on the formation of precipitate. Data were presented as mean ± SEM and were analyzed with repeated measures (n=3) one-way ANOVA. OTP, oxidative tea polyphenols.

FIGURE 3. Plasma levels of caffeine (A), paraxanthine (B), theophylline (C) and theobromine (D). Data were presented as mean ± SEM. Differences within groups at different time points were analyzed with repeated measures (n=6) one-way ANOVA, Two-tailed p<0.05 was considered to be statistically significant. (*P<0.05, **P<0.01 and ***P<0.001 vs. coffee group). OTP, oxidative tea polyphenols.
FIGURE 4. Excrement levels of caffeine. Data were presented as mean ± SEM. Differences within groups were analyzed with repeated measures (n=9) one-way ANOVA, Two-tailed p<0.05 was considered to be statistically significant. (**P<0.001 vs. coffee samples). OTP, oxidative tea polyphenols.

FIGURE 5. Locomotor activity levels after caffeine administration. Data were presented as mean ± SEM. Differences within groups were analyzed with repeated measures (n=6) one-way ANOVA, Two-tailed p<0.05 was considered to be statistically significant. (*P<0.05, vs. coffee group). OTP, oxidative tea polyphenols.