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Traditionally, electrostatic interactions are modelled using Ewald techniques, 

which provide a good approximation, but are poorly suited to GPU architectures. 

We use the GPU versions of the LAMMPS MD package to implement and assess 

the Wolf summation method. We compute transport and structural properties of 10 

pure carbon dioxide and mixtures of carbon dioxide with either methane or 

difluoromethane. The diffusion of pure carbon dioxide is indistinguishable when 

using the Wolf summation method instead of PPPM on GPUs. The optimum value 

of the potential damping parameter, α, is 0.075. We observe a decrease in accuracy 

when the system polarity increases, yet the method is robust for mildly polar 15 

systems. We anticipate the method can be used for a number of techniques, and 

applied to a variety of systems. Substitution of PPPM can yield a two-fold decrease 

in the wall-clock time. 

 

1   Introduction 20 

GPU architectures and their use in molecular dynamics (MD) simulations have 

attracted much recent attention1–4. Maximizing computational throughput on 

graphical processing units (GPUs)/hybrid architectures is of great interest. 

Decreasing the wall-clock time for each MD time step allows longer timescales to be 

sampled, giving greater confidence in the convergence of ensemble averages. GPUs 25 

have been widely adopted in various computational disciplines, due to the highly 

parallel design, low power consumption (FLOPS/watt) and commodity cost 

(£/FLOPs). The GPU architecture is optimised for processing massive amounts of 

parallel calculations, and so has many more cores than a CPU, but at the sacrifice of 

memory capabilities.  30 

 Electrostatic interactions can be divided into first-order effects, which comprise 

point charge interactions decaying reciprocally with respect to intermolecular 

distance and higher-order interactions that decay more rapidly. Electrostatic 

interactions can be modelled explicitly by various methods, including: cut -off 

truncation5–7, switched/shifted cut-off truncation8, Ewald9 and its mesh derivatives, 35 

particle mesh Ewald (PME)10, particle-particle particle mesh (PPPM)11 and 

smoothed particle mesh Ewald (SPME)12. The Ewald summation provides a good 

approximation for the electrostatic energy, as the algorithm accounts for periodicity  
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of the simulation domain, but it scales as O(N3/2). An approximation that is 

frequently adopted is PPPM, due to its superior scaling, O(NlogN), over the Ewald 

summation. SPME13, PPPM14 and multi-level summation15 have been implemented 

on the GPU, yet the requirement for fast Fourier transforms (FFTs) intrinsic to 

Ewald methods reduces the parallelism14 and leads to poor scaling on GPUs. Pair-5 

wise algorithms derived from cut-off techniques show superior scaling O(N) and 

greater effectiveness on GPUs.  

 Cut-off techniques can reproduce experimental quantities, for instance, the 

Madelung constant. Wolf et al.16 reported that the electrostatic (Coulombic) 

potential for condensed systems was effectively short-ranged, and the energies are in 10 

agreement with Ewald methods when the cut-off sphere reached neutrality. This was 

observed whilst calculating the Madelung constant for rocksalt (NaCl), where the 

relationship between truncation distance and electrostatic energy was investigated. 

When the cut-off sphere was truncated at a distance to achieve charge neutrality, the 

electrostatic energy was significantly closer to the Madelung energy. The repeating 15 

lattice structure of NaCl is well-suited for treatment with the Wolf method, but the 

supercritical phase of polar solutes can be more difficult to model as the atomic 

partial charges within the cut-off sphere are dynamic. The resulting shifted Coulomb 

potential achieves charge neutrality by projecting each atom charge, qj, from qi onto 

the edge of the solvation sphere. Therefore, every jth atom in the solvation sphere of 20 

atom i has a charge of equal but opposite sign set at the cut-off (Rc). This results in 

an artificially neutral solvation sphere for every ith atom, which effectively makes 

the system charge neutral. 
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where qi and qj are point charges, rij is the intermolecular distance between atoms i 

and j, α is the damping coefficient in Å-1 and Rc is the cut-off distance. To obtain 25 

accurate electrostatic contributions, a damping function is applied. The electrostatic 

energy decay oscillates around a rate of 1/Rc. Introducing the damping function 

quickly flattens the oscillations as the cut-off increases, effectively determining how 

fast the complementary error function falls from unity at rij = 0, to zero at the cut-

off16. The damping function adopted is the complementary error function, as it has a 30 

close connection to the Ewald sum17. The coefficient of the error function, α, 

denotes the rate at which convergence is achieved. A large α value will converge the 

energy rapidly using a short cut-off, but the errors can be larger. A smaller α leads to 

less contamination of the potential, but the sum will fluctuate more rapidly. 

Assigning a value of 0 to α, results in the truncated shifted-force (SF) potential. This 35 

SF calculation is faster than the Wolf method, but the selection of α can enhance the 

accuracy of electrostatic forces and energies by optimizing agreement to Ewald 

methods18.  

 Simple cut-off based methods are unreliable for computing the forces, as the 

potential truncates abruptly at the cut-off, which causes forces to be undefined if the 40 

molecule lies at the cut-off boundary. The reliance upon Ewald methods instead of 

efficient cut-off methods has been discussed by Fennel and Gezelter17, who 

compared the accuracy of damped shifted-force (DSF) and shifted potential cut-off 
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methods for water, argon in water, and NaCl. Benchmarking and validation of the 

DSF potential was applied to polyelectrolyte brushes on GPUs; speedups were 

achieved of a factor between 1.1 and 3.9, depending on the system and size of the 

cut-off with respect to PPPM19. Group based cut-offs, where the cut-off is 

dynamically allocated to ensure entire molecules are within the solvation shell, were 5 

investigated17, but the energies deviated significantly from those obtained using 

PME. 

 In this work we assess the applicability of the Wolf method to model electrostatic 

interactions for various systems in the supercritical region of carbon dioxide.  

Supercritical carbon dioxide (scCO2) is an attractive ‘green solvent’ used in many 10 

industrial processes, such as caffeine extraction20, polymer solvation21 and 

synthesis22,23, enzyme catalysis24,25 and stabilization26,27 and transition metal 

catalysis28,29. Although carbon dioxide does not possess a dipole, it has a significant 

quadrupole30 (13.4 x 10-40 Cm2), which means that electrostatic interactions are an 

important component of interactions involving scCO2. Su and Maroncelli31 observed 15 

that neglecting electrostatic interactions, i.e., considering only Lennard-Jones 

interactions, led to a systematic 14% error in the solvation free energies of polymer -

scCO2 systems. This observation is attributed to quadrupole-dipole and quadrupole-

quadrupole interactions31, which are inherently modelled in all point charge models. 

A nonpolar fluid should be well suited for treatment using the Wolf method, as 20 

quadrupolar interactions decay more rapidly than dipolar ones. This bodes well for 

the efficient electrostatic treatment of systems solvated by carbon dioxide by 

utilizing the Wolf method on GPU architectures. We also investigate the 

computational cost of the DSF method, with respect to the Wolf method. 

 Fluorous polymers are well known to dissolve in scCO2
32,33, which has been 25 

partially explained by 19F-NMR experiments, which suggested a number of specific 

interactions between carbon dioxide and the fluorous solute that increase the 

solubility34. Many biomolecular systems are stable in the presence of scCO2, but this 

is dependent on the species, the water content, and experimental conditions 24. 

Protein stability can be observed when scCO2 solvates the hydrophobic residues, and 30 

water solvates the polar/hydrophilic residues26. Water possesses a strong dipole 

moment, which will make it less amenable to treatment with the Wolf method. We 

aim to follow this work with an investigation for protein systems solvated by water 

and carbon dioxide. 

     To assess the applicability of the Wolf method to systems containing carbon 35 

dioxide, important physical quantities, such as PVT relationships and diffusion 

coefficients, can be calculated and compared with the values calculated using PPPM. 

The applicability of the Wolf method to study methane plus carbon dioxide gas 

hydrates has been reported, and the results show good agreement between lattice 

sum and reaction field methods35. Analysis of the convergence behaviour of the 40 

Wolf method by Angoshtari and Yavari36 shows the method to be robust, but 

convergence can be problematic if poor choices are made for the cut-off or α values. 

In our study, we investigate the effect of increasing the polarity of the fluid by 

incorporating difluoromethane molecules, which possess a strong dipole. For low 

polarity systems the Wolf method should be well suited, but as the polarity increases 45 

the effect of long-range dipole interactions will become important and we assess the 

point where Ewald techniques will become necessary. 

 

 

Page 3 of 14 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t
Fa

ra
da

y
D

is
cu

ss
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t



CREATED USING THE RSC REPORT TEMPLATE (VER. 3.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS 

 

4  |  Faraday Discuss., [year], [vol], 00–00 

This journal is © The Royal Society of Chemistry [year] 

2. Method 

LAMMPS is a multi-purpose MD code37, which is widely used in the fields of 

atomistic, coarse-grained and mesoscopic simulations. The code can process massive 

numbers of particles per simulation, which it achieves using an optimized spatial 

decomposition technique. The GPU optimized version, written in CUDA C, can run 5 

over multiple GPUs, either in conjunction with the CPU or entirely on the GPU.  We 

have implemented the Wolf method into LAMMPS-CUDA the GPU-exclusive 

version of LAMMPS and LAMMPS-GPU the CPU/GPU implementation, as a new 

potential incorporating Lennard-Jones and electrostatic interactions. LAMMPS-

CUDA was written exclusively for use with CUDA, but LAMMPS-GPU can be 10 

compiled and run on AMD GPUs and other applicable accelerators using OpenCL. 

The new pair style is implemented as a double potential function in LAMMPS as 

lj/charmm/coul/wolf for CPU, lj/charm/coul/wolf/cuda for LAMMPS-CUDA and 

lj/charm/coul/wolf/gpu for LAMMPS-GPU. The LAMMPS-CUDA version is solely 

GPU based, with the exception of file I/O and pre/post simulation setup. The GPU 15 

version of LAMMPS utilizes the GPU for the force and/or neighbour list generation, 

whilst all other operations and I/O are performed on the CPU. The GPU version 

allows for n CPUs to be used per GPU, whilst the LAMMPS-CUDA version only 

allows for one CPU per GPU. An important difference between packages is that the 

GPU version on LAMMPS uses the CPU to calculate FFTs for PPPM, whilst the 20 

LAMMPS-CUDA version performs the calculation on the GPU. We have also 

implemented the DSF implementations, lj/charm/coul/dsf/cuda and 

lj/charm/coul/dsf/gpu, for benchmarking purposes. We used the CHARMM 38 

Lennard-Jones potential in the AB form with a switching function in conjunction 

with the Wolf method. A cut-off of 2.5σ was used for the Lennard-Jones potential, 25 

and tapered to zero at 2.65σ, where σ was calculated from A1/12 in table 1. We used 

the rigid EPM2 atomistic force field39 to represent carbon dioxide and parameters 

derived by Palmer and Anchell40 to represent Lennard-Jones and charge interactions 

for methane and difluoromethane.  

 30 

Table 1 EPM2 force field parameters for carbon dioxide39 and Palmer and Anchell parameters for 

methane and difluoromethane40. (A1/12) and (B1/6) have units ((kcal mol)1/12 Å) and ((kcal mol)1/6 Å) 

respectively. 

Atom site A1/12 B1/6 q (|e|) 

C (CO2) 2.448 2.173 -0.3256 

O (CO2) 2.922 2.815 +0.6512 

C (CH4) 3.200 3.200 -0.4160 

H (CH4) 1.910 1.390 +0.1040 

C (CH2F2) 2.900 3.590 +0.0500 

H (CH2F2) 1.712 0.000 +0.1550 

F (CH2F2) 2.650 2.237 -0.1800 

 

 We utilized the LAMMPS software to simulate scCO2 at several densities, 35 

comparing the results obtained by using PPPM or the Wolf method. We selected a 

tolerance setting of 0.0001 for the calculations involving PPPM that enables the root 
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mean square error to be within a factor of 10,000 of the reference force, which is 

calculated analytically for short-range interactions41 and in k-space42. The optimum 

value of α was investigated for binary mixtures of carbon dioxide and methane or 

difluoromethane. The criterion for selecting α is the level of agreement between the 

Coulombic energies computed by PPPM and Wolf. To consider the effects of 5 

neglecting only the periodic long-range Coulombic effects, we treat the cut-off as 

being half the length of the simulation box. We also investigate the level of 

approximation that arises from use of a quarter box cut-off in conjunction with the 

Wolf method. 

 10 

2.1 Benchmarking GPU electrostatics  

Two boxes of 10,000 and 50,000 carbon dioxide molecules were constructed with a 

molar density of 0.01 mol/cm3 and minimized for 1000 iterations using the 

conjugate gradient method, to an energy tolerance of 1 x 10 -6 kcal/mol. Both systems 

were heated from 0 K to 308.2 K using the Nosè-Hoover thermostat43 with a 15 

damping time of 500 fs for 2 ns, followed by 5 ns of equilibration at 308.2 K. We 

evaluated the performance of the Wolf method on two GPU architectures, Tesla 

(Tesla C1060) and Kepler (Tesla K10). The K10, released in 2012, is designed for 

high throughput calculations performed in single precision. The number of giga 

floating-point operations per second (GFLOPs) is 4577 in single precision, 20 

compared to 933 for the C1060. This improvement was achieved in part by 

increasing the number of cores in the streaming multiprocessor from 8 (Tesla), 32 

(Fermi) to 192 (Kepler). Memory bandwidth on the GPU to global memory is 103 

GB/s for the C1060, but 320 GB/s for Kepler K10. We include an eight core Intel 

Xeon (E5-2609) CPU for benchmarking purposes that has an approximate 77 25 

GFLOPs with 34 GB/s bandwidth to RAM. Calculations were performed using 

single-precision on two separate nodes, both comprise an eight core Xeon CPU and 

either a Kepler K10 or two Tesla C1060. Multiple GPU tests were only carried out 

using the C1060, which yielded an almost two-fold increase in performance, which 

corresponds well to the linear dependency. We use the FFTW 3.3.1 library in single-30 

precision for all calculations k-space calculations of PPPM. We considered two 

modes for calculations using LAMMPS-GPU, one where all force and neighbour 

calculations are performed on the GPU, and the other where the force and neighbour 

calculations are dynamically assigned between CPU and GPU. We used the CUDA 

5.0 toolkit (GPU driver v. 304.54), which has produced a noticeable improvement in 35 

performance over CUDA 4.0. A new feature, CUDA dynamic parallelism, allows 

kernels running on the GPU to spawn more grids and to continue to generate work 

depending on the calculation44. This feature has not been incorporated in our study. 

 

2.2 Pure carbon dioxide  40 

The 10,000 carbon dioxide molecule system was used to generate densities (box 

lengths) of 0.001 (255.1 Å), 0.002 (202.5 Å), 0.004 (160.72 Å), 0.005 (149.2 Å), 

0.01 (118.42 Å) and 0.02 (94.0 Å) mol/cm3, all within the supercritical region at 

308.2 K. Each box was minimized for 1000 iterations using the conjugate gradient 

method, with an energy tolerance of 1 x 10 -6 kcal/mol. The system was heated in the 45 

NVT ensemble using the Nosè-Hoover thermostat43 with cubic periodic boundary 

conditions from 0 K to 308.2 K for 1 ns using a 1 fs time step. This was followed by 
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1 ns of equilibration. Integration was performed using the time-reversible velocity 

Verlet algorithm45. The procedure was repeated nine times to generate different 

equilibrated configurations for the purposes of error analysis, and the resulting 

standard deviation is noted in the error bars. The mean square displacement (MSD) 

of the centre of mass of carbon dioxide was obtained by calculating the gradient of 5 

the linear portion of the relationship between MSD and lag time over 10 ns 

production dynamics in the NVT ensemble. The pressures were obtained every 50 fs, 

and averaged over 10 ns to calculate the PVT relationship. 

 

2.3 Carbon dioxide and solute 10 

To study the effects of polar and non-polar solutes, we consider different quantities 

of methane and difluoromethane molecules. Five boxes of 10,000 carbon dioxide 

molecules were constructed with mole fractions χ(solute) = 0.0001, 0.001, 0.01, 0.09 

and 0.5, where the solute was either methane or difluoromethane. These systems 

correspond to box lengths (Å) of 95.01, 95.99, 97.49, 99.27 and 125.31 for CH 4/CO2 15 

and 81.64, 81.78, 81.83, 84.44 and 105.16 for CH2F2/CO2.  Each system was 

minimized and heated to 308.2 K using the same procedure above. The pressure was 

equilibrated to 80 atmospheres (corresponding to a molar density of ~0.02 mol/cm 3), 

using the Berendsen barostat46 with a 1 ps damping time for 20 ns with a 1 fs time 

step. The procedure was repeated nine times to generate different equilibrated 20 

configurations for the purposes of error analysis, and the resulting standard 

deviation is noted in the error bars. The MSDs of carbon dioxide and solutes were 

obtained from the linear portion of the relationship over a production run of 10 ns. 

We compare the errors in Coulombic energy with respect to α for χ(solute)  = 0.09 with 

PPPM and Wolf, which we performed by decomposing the energy into group 25 

contributions. We investigate the relationship between system polarity and diffusion 

coefficients, and the total Coulombic energy. 

One method of quantifying the transport properties of a system is the MSD, and thus 

the diffusion coefficient using the Einstein relationship. 

     
      

 

  
〈[  ( )    ( )]

 〉 

where D is the macroscopic diffusion coefficient,   ( ) is the position of the centre 30 

of mass at time t,   ( ) is the initial position of the centre of mass, tlag is the lag 

time, and  〈[  ( )    ( )]
 〉 is the ensemble averaged MSD. The diffusion coefficient 

is calculated from the slope of the MSD against lag time47, which is a measure of the 

atomic displacements through time. 

 The pressure of a system can be calculated using the virial  equation (below), and 35 

the PVT relationship has an influence on the diffusion coefficients48. The long-range 

part of PPPM has a different contribution to the pressure49. 

        
 

 
〈∑     

 

   

〉 

where P is the pressure of the system, V is the volume, N is the number of particles, 

x is the dimensionality, kB is the Boltzmann constant and the term in the brackets is 

the total intermolecular force multiplied by the interaction distances.  40 
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Fig. 1 Computational throughput as a function of number of neighbours for a,c) 10,000 CO2 15 

molecules b,d) 50,000 CO2 molecules. Figures a) and b) were calculated using the LAMMPS-

CUDA package, and c) and d) were calculated using the LAMMPS-GPU package. In figures a) and 

b), three electrostatic treatments were considered, Wolf (filled shapes), PPPM (unfilled shapes) and 

DSF (green circles) for different architectures. (Triangles = Tesla C1060, squares = Kepler K10, 

diamonds = eight core Intel Xeon). In figures c) and d) the force/neighbour implementation is shown 20 

where the GPU is used exclusively (diamonds) and dynamically assigned between CPU/GPU 

(squares). PPPM is shown in black, the Wolf method is shown in blue, and the DSF force/neigh 

exclusively GPU is shown in green. 

3. Results 

3.1 Benchmarking 25 

To compare the efficiency of the Wolf method, we measured the computational 

throughput of the electrostatic routines using the 10,000 and 50,000 molecule 

systems. The timings of the implementations are calculated with respect to the 

number of neighbours in the cut-off sphere. Figures 1a) and 1b) compare the 

throughput for different architectures, and shows the acceleration gained when 30 

substituting PPPM for Wolf using LAMMPS-CUDA. The computational throughput 

is almost twice as high with the Wolf treatment than with PPPM. The Wolf method 

is slower than PPPM on the CPU, which is unexpected, but the CPU is well suited to 

handle FFTs that feature in PPPM. This is due to faster memory accesses between 

cache and compute cores, and the less parallel nature of the algorithm. The DSF 35 

method is marginally slower than PPPM in LAMMPS-CUDA, but is marginally 

faster than the Wolf method for the LAMMPS-GPU implementation. The difference 

between pair styles using LAMMPS-GPU is much less pronounced than LAMMPS-

CUDA, where the acceleration gained by using the Wolf or DSF method is 

approximately 1.5 times faster. The difference between dynamic partitioning and 40 

exclusive GPU computation is small for the cut-off the methods, and the dynamic 

mode is marginally quicker. For PPPM the opposite is observed, which could be due 

to the CPU already being used for the k-space calculations. The Kepler K10 GPU  
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Fig. 2 Percentage error in Coulombic energy between PPPM and Wolf with respect to α for 

CH4/CO2 and CH2F2/CO2 binary mixtures for χ(solute) = 0.1 at 308.2 K, 80 atmospheres. The results 

are decomposed into a) (CH2F2) CO2-CO2 pair errors b) (CH2F2) CH2F2-CH2F2 pair errors, c) 

(CH2F2) CO2-CH2F2 pair errors, d) (CH4) CO2-CO2 pair errors, e) (CH4) CH4-CH4 pair errors and f) 5 

(CH4) CO2-CH4 pair errors. The black squares and error bars indicate the average error and 

uncertainty for a half box cut-off, whilst the empty squares show the average error for a quarter box 

cut-off. 

shows the greatest acceleration, which bodes well for future GPU releases. 

 10 

3.2 Optimum alpha and cut-off parameters 

We consider first the accuracy of the electrostatic energy and its convergence as a 

function of α and cut-off distance. We then turn to the properties computed from the 

simulation, considering structural, dynamic and thermodynamic aspects. The 

simulations have all been executed in the supercritical region of carbon dioxide, and 15 

therefore each molecule has a large number of neighbours in the solvation sphere. 

We compare the effects of selecting α values between zero and 0.3 in intervals of 

0.025. We decompose the energy interactions into pairwise group contributions to 

the total Coulombic energy for CH4 in carbon dioxide, and CH2F2 in carbon dioxide. 

The relationship between α and the accuracy of the Wolf summation method is 20 

shown in figure 2. 

 We observe for half box cut-offs the best agreement for Wolf is at low values of 

α, where for both the polar and non-polar systems the optimum value for α is 0.075. 

For non-polar systems increasing α beyond 0.2 results in an ~2-3% error (with 

respect to the PPPM Coulombic energy), whilst for the polar system the average 25 

error is ~20%. The non-polar CH4/CO2 system resulted in the lowest average errors 

of 0.05% for CO2-CO2 interactions, 0.39% for CO2-CH4 and 0.34% for CH4-CH4. 

We observe a similar trend for the polar system of CO2/CH2F2 with increased 

average errors of 0.44% for CO2-CO2, 0.47% for CO2-CH2F2 and 0.67% for CH2F2-

CH2F2. At α = 0.075 the greatest variance in the non-polar system is σ2 = 0.2 for  30 
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Fig. 3 a) Diffusion coefficients for pure carbon dioxide obtained for PPPM (empty red squares) 

and Wolf (filled blue squares), compared with experimental (black line) at 308.2 K. b) PVT 

relationship of pure carbon dioxide simulated using PPPM (empty red squares) or the Wolf method 

(filled blue squares) compared with experimental (black line) at 308.2 K. 5 

CH4-CH4, and for the polar system the maximum variance is σ2 = 2.94 for CH2F2-

CH2F2.  

 A quarter box cut-off gives greater errors in the Coulombic energies, but follows 

the same trends as the half box cut-off. For the non-polar system the optimum value  

for α is 0.05, which is seen for all pair interactions of methane and carbon dioxide.  10 

The average error increases to 0.5% for CO2-CO2 and to ~0.75% for energies 

involving interactions with methane. The errors vary more when used with the polar 

system over a wide range of α, but at α = 0.075 the error for all interactions is below 

2%. The error increases sharply for the polar system with varying α. For interactions 

between CH2F2-CH2F2 the variance is higher than for methane, which can be 15 

attributed to the high polarity of both substituents. 

 

3.2 Pure carbon dioxide 

Diffusion coefficients of scCO2 calculated from MD simulations using the Ewald 

sum50 have been previously compared with experimental results51. Our simulations 20 

show that the Wolf method gives diffusion coefficients comparable to that of PPPM 

(figure 3b). Calculations were concurrently run on the CPU using the Wolf method, 

and the energies were within three decimal places. Simulations were also performed 

at 323.2 K, which show good agreement between PPPM and the Wolf method†. Low 

density boxes using the Wolf method show the best agreement, but all the densities 25 

investigated are within the bounds of error of PPPM. Pressures obtained over a 

range of densities coincide well with an equation of state52, for both the Wolf and 

PPPM implementations (figure 3a). Both electrostatic methods capture the PVT 

relationship properties at high and low densities, for both temperatures studied.  

 30 

3.3 Binary mixture of carbon dioxide with difluoromethane or methane 

The Coulombic energy for the polar systems is compared for different mole fractions 

of difluoromethane using the Wolf method and PPPM. As the system becomes more 

polar, the error of the Wolf method with respect to the PPPM value becomes greater. 

Figure 4 shows the total PPPM Coulombic energy, and results for α = 0.2 and α = 35 

0.075. For the system containing 100 difluoromethane molecules, the error is within  
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Fig. 4 Total Coulombic energy for methane and difluoromethane in carbon dioxide at 308.2 K, 

80 atmospheres. The dashed red line indicates the total PPPM energy, whilst the green squares 

indicate α = 0.2 and the blue squares indicate α = 0.075. 

0.2% and 1.8% for α = 0.075 and α = 0.2 respectively. As the composition tends 5 

towards a 1:1 ratio, the errors increase, which indicates, as anticipated, that the Wolf 

approach is not suitable when the system becomes highly polar. The errors for α = 

0.075 are reasonable (0.9%) but for α = 0.2 the errors are 3%. We observe better 

agreement for methane. For the 1:1 binary mixture, the error in α = 0.2 is 1.8% and 

α = 0.075 is 0.15%. The total Coulombic energy for difluoromethane is more 10 

negative than for methane, which can be explained by NPT dynamics resulting in a 

lower volume box and therefore closer contacts. 

       Experimental results from O’Hern and Martin51 indicate pure carbon dioxide 

has a diffusion coefficient of 5 (x 108 m2 s-1) at 308.2 K, 80 atmospheres. The non-

polar binary mixture of CH4/CO2 has a diffusion coefficient of ~5 (x 108 m2 s-1) for 15 

the inclusion of one methane molecule in 10,000 molecules of carbon dioxide 

(figure 5). As the number of methane molecules increases, the overall diffusion 

coefficients remain relatively constant. Diffusion coefficients for CH4 and carbon 

dioxide are similar, with an average increase of ~0.6 (x 108 m2 s-1) between carbon 

dioxide and CH4. As χ(solute) increases, the accuracy of the solute diffusion 20 

coefficients increase, due to better averaging from more solute molecules. With the 

exception of χ(solute) = 0.0001 where averaging is poor, the agreement between Wolf 

and PPPM is good. We observe a reduction in diffusion coefficients for 

difluoromethane as the polarity increases. The values decay from 4.5 (× 108 m2 s-1), 

to 1.3 (× 108 m2 s-1), which can be attributed to favourable interactions between 25 

solute and solvent. Agreement between Wolf and PPPM is good, although there is an 

observable increase in the error in the diffusion coefficients for  difluoromethane  
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Fig. 5 Diffusion coefficients for a) CH4 in CO2/CH4 b) CO2 in CO2/CH4 c) CH2F2 in CO2/CH2F2 

and d) CO2 in CO2/CH2F2 at 308.2 K, 80 atmospheres. Filled blue squares and error bars indicate 

diffusion coefficients obtained using PPPM, and empty red squares and error bars indicate diffusion 5 

coefficients obtained using the Wolf summation method.  

when the fraction of solute reaches 10%. This indicates the difluoromethane 

interacts strongly with carbon dioxide, thus limiting diffusion. 

 To characterise the interactions between difluoromethane and carbon dioxide, we 

calculate the radial distribution (RDF) between the centre of mass for CH4/CO2 and 10 

CH2F2/CO2 (figure 6) and the associated residence times and coordination numbers 

are shown in table 2.  

 

Table 2 Residence times and coordination for the centre of mass of carbon dioxide in CH4 and 

CH2F2 for χ (solute) = 0.1 at 308.2 K, 80 atmospheres. 15 

Methane 

Shell Distance limit 

(Å) 

Residence 

time – Wolf 
(ps) 

Residence 

time – PPPM 
(ps) 

Coordination 

number - Wolf 

Coordination 

number - PPPM 

1st 0.00 - 5.95 1.2 1.2 8.6 8.6 

1st + 2nd 0.00 - 9.60 2.6 2.5 37.2 37.1 
2nd 5.95 – 9.60 1.3 1.3 28.6 28.5 

Difluoromethane 

Shell Distance limit 

(Å) 

Residence 

time – Wolf 
(ps) 

Residence 

time – PPPM 
(ps) 

Coordination 

number - Wolf 

Coordination 

number - PPPM 

1st 0.00 – 5.65 4.6 4.6 12.1 12.1 

1st + 2nd 0.00 – 9.24 10.5 10.3 55.6 55.6 
2nd 5.65 – 9.24 5.9 5.7 45.5 45.5 
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Fig. 6 Radial distribution function between the centre of mass of carbon dioxide and CH4 (solid 

line), and CH2F2 (dashed line) for χ (solute) = 0.1 at 308.2 K, 80 atmospheres. 

 

 The RDF shows a larger density of carbon dioxide molecules in the 5 

difluoromethane mixture in the first and second solvation shell compared to 

methane. The same trend was noticed in the RDF by Do et al.53, where the first 

solvation shell has a higher density for difluoromethane than for methane. The 

number of carbon dioxide molecules present in the first and second solvation shells 

is ~30% higher for difluoromethane, and carbon dioxide resides about four times 10 

longer compared to methane. This indicates that carbon dioxide has a higher affinity 

for difluoromethane.  

4. Conclusions and Discussion 

 

The Wolf method shows good agreement with PPPM when modelling the 15 

electrostatic interactions of scCO2 on GPUs for non-polar systems, whilst being 

approximately twice as fast. The choice of α is important, and may need to be 

investigated on a case by case basis to enable satisfactory agreement. For modelling 

carbon dioxide in the supercritical region it is advisable to use a half-box cut-off and 

a low value for α. In this investigation, all values of α less than 0.15 produced errors 20 

less than 2% for non-polar interactions, whilst polar interactions require α to be less 

than 0.1. Upon increasing the polarity of the system, the potential begins to degrade. 

Errors of the Wolf method with respect to PPPM are approximately 0.2% when 

considering a 100:1 mixture of carbon dioxide and difluoromethane with α = 0.075. 

We observe a strong affinity of carbon dioxide to difluoromethane compared to 25 

methane, which can be seen by a decline in diffusion coefficients with increasing 

mole fraction of solute. Carbon dioxide resides about four times longer in the 

solvation sphere of difluoromethane compared to methane.  
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  We can conclude that the significance of using the Wolf method on GPUs allows 

simulations to reach timescales twice as long as those run with PPPM, without 

significant loss in accuracy for a carefully chosen value of α for non-polar and 

mildly polar systems.  We aim to follow up the investigation with further analysis of 

solvent-solute interactions and the study of fluorinated polymers, which have high 5 

solubilities in scCO2. We will be investigating the free energy changes of fluorinated 

polymers, with an aim of further understanding the high affinity of fluorous 

polymers for carbon dioxide. Many free energy methods require long timescales in 

order to reach convergence; utilizing the Wolf method for this purpose will help 

achieve this goal. 10 
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