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 Environmental impact statement  

Around the world, a large number of people are exposed to high levels of noise pollution, having an 

adverse effect on human health and well-being. Accurately assessing the noise exposure in urban 

environments requires a large-scale and dense measurement network to capture the spatial and 

temporal variations. In this context, low-cost microphones are often used to reduce costs. Compared to 

type-approved sound level meters, these microphones have higher failure rates and produce lower 

quality data. Therefore, a strong measurement quality control is of great importance. In this work a multi-

criteria measurement quality assessment model is presented for validating noise measurements. It was 

shown that the proposed approach successfully detects microphone breakdowns and anomalies typically 

observed in long-term, extensive measurements. 
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Multi-criteria anomaly detection in urban noise sensor networks

Samuel Dauwe∗a, Damiano Oldonib, Bernard De Baetsc, Timothy Van Renterghemb,

Dick Botteldoorenb, and Bart Dhoedta

The growing concern of citizens about the quality of their living environment and the emergence of low-cost microphones and

data acquisition systems triggered the deployment of numerous noise monitoring networks spread over large geographical areas.

Due to the local character of noise pollution in an urban environment, a dense measurement network is needed in order to

accurately assess the spatial and temporal variations. The use of consumer grade microphones in this context appears to be very

cost-efficient compared to the use of measurement microphones. However, the lower reliability of these sensing units requires

a strong quality control of the measured data. To automatically validate sensor (microphone) data, prior to their use in further

processing, a multi-criteria measurement quality assessment model for detecting anomalies such as microphone breakdowns,

drifts and critical outliers was developed. Each of the criteria results in a quality score between 0 and 1. An ordered weighted

average (OWA) operator combines these individual scores into a global quality score. The model is validated on datasets acquired

from a real-world, extensive noise monitoring network consisting of more than 50 microphones. Over a period of more than a

year, the proposed approach successfully detected several microphone faults and anomalies.

1 Introduction

Over the years, the influence of environmental stressors such

as noise on people’s health has been the subject of growing

concern1–4. In order to identify the sources of environmental

disturbances and to inform decision makers, long-term accu-

rate monitoring is needed. Most often, type-approved sound

level meters are used for acquiring high-quality observations.

However, due to the high cost of these units, deploying an ex-

tensive measurement network becomes very expensive.

Nowadays, low-cost embedded computer systems and mi-

crophones are widely available and enable the deployment

of large-scale noise monitoring networks, gathering obser-

vations over long time periods at a reasonable price. For

instance, Van Renterghem et al. 5 demonstrated the use of

consumer-grade microphones, resulting in only small level

differences compared to high-quality microphones. However,

the potentially lower reliability of these cheap sensors poses

some real challenges to the maintenance and error detection.

Another interesting evolution is that low-cost sensing units

also open up new opportunities for participatory measure-

ment initiatives. Concerned citizens can play an active role

in the data collection phase, gathering data with high spatio-

temporal resolution that can be used in discussions with local

policy makers. However, non-expert users unfamiliar with the

appropriate measurement conditions can introduce errors in

the gathered sensor data. A second problem is that participants
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interested in a specific outcome of the study could potentially

tamper with the measurement conditions.

In view of these problems, strong quality control of mea-

surement data is necessary. However, detection of sensor fail-

ures and anomalous data is a difficult task that has been ad-

dressed in many studies; for a detailed overview we refer to6.

In the literature, short duration events that significantly de-

viate from the normal sensor readings are regarded as out-

liers7. Detection methods for such abnormal measurements

often use rule-based approaches or statistical techniques. For

instance, Sharma et al. 8 demonstrated the use of heuristic

rules for detecting and identifying faults that have been ob-

served in several real-world sensor network deployments.

A frequently used method for detecting sensor failures is

the comparison with measurements from redundant sensors.

Bychkovskiy et al. 9 uses a dense sensor deployment in which

multiple sensors are installed to measure the same physical

variable, assuming that neighbouring sensors should have sim-

ilar readings. However, due to the highly local nature of noise

exposure in urban environments, such an approach could only

be applicable in an extremely dense network of sensors or

when two identical sensor are embedded in one sensor box.

Such extreme physical redundancy involves extra hardware

cost which makes this approach not widely feasible.

Another approach to decide about the occurrence of faults

is using a fault detection and isolation (FDI) model10. This

approach is based on comparing available measurement vec-

tors of the monitored system (y) with their corresponding pre-

dicted vectors (ŷ) obtained using a system model. Nonethe-

less, the problem with this approach is that a detailed descrip-

tion of a system that takes into account the effects of faults

requires multiple models. Furthermore, the system behavior

under normal operation could be estimated at different tempo-

ral scales. At the second and sub-second scale, noise levels are
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quite predictable since they relate to the same event (e.g. a car

pass-by, a conversation). At the 15-minute average time scale

one often, but not always, detects diurnal patterns that reoc-

cur every day over and over again and thus also at this time

scale predictability is high. However, microphone properties

usually degrade over a long period of time, leading to inaccu-

rate measurements. Predicting the magnitude of microphone

drift over a long time period is typically a challenge because

the degradation highly depends on the actual usage and the

conditions the microphone is exposed to.

Different machine-learning techniques have been used for

anomaly detection in sensor networks: Bayesian networks11,

rule-based systems, nearest-neighbour-based techniques12,13

to name just a few. For a general and detailed overview, we

refer to Chandola et al. 6 and Zhang et al. 14 .

Finally, insert voltage calibration and Charge-Injection Cal-

ibration (CIC)15,16 are specific techniques for monitoring op-

eration conditions of microphones that have been developed

for high-end unmanned systems. These methods are based

on the principle of injecting a constant charge into the mi-

crophone capacitance and preamplifier input circuit. For a

given calibration signal input, a change in the preamplifier out-

put indicates a malfunctioning of the microphone. However,

the costs of such control systems are high and therefore only

suited for high-end measurement chains. Moreover, our goal

is the detection of anomalies in a broader sense, breakdowns

or malfunctioning of acoustic measurement setups are just a

subset of all possible anomalies that could occur.

In this paper we present a multi-criteria model for sensor

data validation and anomaly detection through the evaluation

of the measurement quality. The paper is structured as fol-

lows. Section 2 gives an overview of the proposed quality

assessment model for anomaly detection and each of the crite-

ria the model is composed of. Section 3 illustrates the impact

of microphone accuracy on quality. Section 4 discusses an

evaluation of the quality assessment model based on acoustic

sensor datasets from a real-world measurement network. In

Section 5, a discussion on the proposed approach finally con-

cludes the paper.

2 Anomaly detection

2.1 Anomalies: a practical definition

According to the Oxford dictionary, an anomaly is defined as

something that deviates from what is standard, normal, or ex-

pected. This general definition needs to be contextualized and

applied to the specific field of interest. In noise sensor net-

works, four categories of anomalies can be identified.

• Abrupt fault or failure: indicates a serious breakdown

of a system component or function that leads to a sig-

nificantly deviating behaviour of the whole measurement

chain. Examples include an unplugged microphone, or a

broken microphone due to direct contact of the electron-

ics with water.

• Incipient fault: represents a small and often slowly devel-

oping continuous fault of which the effects on the system

are in the beginning almost unnoticeable. Sensor drift is

a typical example of an incipient (soft) fault.

• Intermittent fault: temporary wrong measurements, for

example due to transient harsh environmental conditions

(e.g. extremely high or low temperature, heavy rain, etc.)

in which the sensor is operating.

• Unexpected and rare sound event: contrary to faults,

this source of anomaly is not related to sensor malfunc-

tioning. It can happen that atypical sound events occur

in the proximity of the microphone, thus altering long

term noise exposure evaluation indicators such as Lday ,

Levening , Lnight or Lden. Whether this event is in-

cluded in the final environmental assessment depends on

the context and is an operator decision. Malicious alter-

ation of the acoustic environment around the unattended

sensors to voluntarily modify the noise measurement is

another example of this type of anomaly.

2.2 Multi-criteria quality assessment

In view of detecting anomalies in the four categories as de-

scribed in Section 2.1, we propose a multi-criteria approach

consisting of four quality models. Each criteria results in

a quality score between 0 and 1 and is aggregated into a

global score, by means of an ordered weighted average op-

erator (OWA). The concepts behind each quality model are

briefly presented in Fig. 1 and will be further discussed in the

remainder of this section.

Each quality model has several parameters that have to

be selected carefully. In order to determine the parameters

for each quality model, measurement microphones (IEC type

WS2F microphones according to IEC 61094-417) were placed

close to a few of the consumer grade microphones. We as-

sume that the measurement microphone is stable, correctly

calibrated and fit-for-purpose. Comparison of the measure-

ments from both types of microphones enables the tuning of

the parameters related to sensor faults more easily. Character-

istics of the used microphones can be found in Table 1.

In view of the computational load on the system, assessing

quality on very short time intervals (i.e. 1s) is not appropriate.

As a compromise we aim at obtaining a quality assessment

every minute.
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1-minute standard 

deviation as in 

previous days 

1-minute standard 

deviation as in 

previous days 

LAeq as diurnal pattern LAeq as diurnal pattern 
Sensor reading is usual 

at this time of the day 

Sensor reading is usual 

at this time of the day 

Level fluctuates as 

usual 

Level fluctuates as 

usual 

OWA OWA QA 

Sensor reading in 

operation range 

Sensor reading in 

operation range 

Compare reading to lab 

calibration 

Compare reading to lab 

calibration 

QS 

QH 

Compare sound feature 

vector with reference 

vectors of trained SOM 

Compare sound feature 

vector with reference 

vectors of trained SOM 

Sound has been 

observed before 

Sound has been 

observed before 

QD 

QI 

Fig. 1 Overview of the multi-criteria measurement quality assess-

ment concepts. The dark grey boxes represent the concepts behind

each quality model, the light grey boxes the implementation of such

concepts and the arrows directing to the circle their related quality

scores, whereas the OWA (ordered weighted average) operator in the

circle combines them into a global quality score (QA).

2.3 Intrinsic quality (QI )

A noise monitoring network can contain a large variety of mi-

crophone types, each having unique characteristics in terms

of frequency range, noise floor, operational temperature and

humidity range. Measurement microphones are expected to

produce measurements that are more reliable than low-cost

consumer-grade microphones.

In order to take into account the quality of the microphone

characteristics, each test microphone has been placed in an

anechoic room alongside a measurement microphone for de-

termining the difference in frequency response. The measure-

ment setup was as follows: the reference microphone with

preamplifier was placed in the anechoic room connected to the

National Instruments PXIe-chassis with NI-4498 DAQ card

and control interface, placed outside the anechoic room. The

test microphone was connected to the PC Engines Alix single-

board computer18 inside the anechoic room. Twelve different

pink noise levels were emitted by a loudspeaker and for each

1/3 octave band i, the offset (∆Li = Li,ref.mic.−Li,testmic.)

between the reference microphone and the test microphone

was measured. An illustration of the results obtained from

such a measurement process for one test microphone is de-

picted in Fig. 2. Especially for lower noise levels there is large

offset, this is due to the difference in noise floor. More details

about the tested microphone can be found in Table 1.

For defining the intrinsic quality value QI , the expected off-

set ∆Li for the i-th 1/3 octave band A-weighted sound pres-

sure level Li of the measurement is determined. This is done

by linearly interpolating between the two closest noise levels

that were measured in the anechoic room.
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Fig. 2 Illustration of the relative difference between the reference mi-

crophone and one of the test microphones. The dashed curves show

the difference LP,ref.mic.−LP,test.mic. increased by the level of the

reference microphone LP,ref.mic.. The peak between 1000 Hz and

2000 Hz is due to the scattering of the measurement device, causing

local minima and maxima near the microphone for all levels. Note

that the different levels of the reference microphone are flattened out.

The QI score is expressed as a non-dimensional value in

the range [0,1] with 1 meaning a response exactly the same

as the response of a reference microphone. The formula for

calculating the intrinsic quality score QI is:

QI(t) = e
−∆(t)2

σ (1)

where σ represents the acceptable deviation and ∆(t) is given

as follows:

∆(t) = 10 · log10




∑

i

10
Li(t)−∆Li(t)+∆Lcal

10

∑

i

10
Li(t)

10


 (2)

Since all microphones are calibrated at 1000Hz, 94dB at the

time they are deployed, the offset at this frequency and level,

∆Lcal, is used as reference.

2.4 Heuristic quality (QH )

The heuristic quality is based on the idea that short-term noise

level fluctuations should be comparable at the same time of

the corresponding day of the week. A drastic change in signal

variability over a specific period can be considered an efficient

heuristic for quality degradation or deliberate manipulation of

the observed level.
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Table 2 Overview of the different type of locations in our measurement network. All measurement points are location in Belgium.

Type of location Description

Railway Backyard of the first dwelling 27 meters near the railway.

Noisy façade Street side of a building in the city center of Ghent.

Quiet façade Internal, quiet side of a building in the city center of Ghent.

Park Windowsill of the first floor of the castle in the Bouckenborgh park in Merksem, Antwerp.

Wind turbine Measurement location 10 meters near the base of a wind turbine in Leuze.

Table 3 Percentages of the heuristic quality (QH ) higher than a given threshold for good data (QH > 0.5). The quality score is calculated

for different integration periods of the energetic averages. Percentages were determined based on a dataset of one day obtained from different

typical locations

QH > 0.5 (%)

Integration period (s) Railway Quiet façade Noisy façade Park Wind turbine

60 74.94 89.5 90.06 79.56 71.3

300 73.26 89.2 89.79 78.61 70.89

900 71.12 88.45 89.52 78.01 70.26

1800 70.96 85.12 88.96 77.23 69.89

3600 70.12 82.23 87.88 76.12 68.47

riod for the diurnal pattern results in a strong and significant

relationship with the instantaneous sound pressure levels for

all locations. However, standard deviation on the diurnal pat-

tern is high when using a short integration period. Therefore,

we have chosen a 15-minute temporal integration period for

the diurnal pattern to account for a strong correlation and low

standard deviation, thus stable pattern.

The formula for calculating the diurnal pattern quality score

QD is given as follows:

QD(t) = e

−(Xi(t)−µ(t))2

κ·σ2
D(t) (4)

where Xi(t) represents the current 1-minute A-weighted

equivalent sound pressure level LAeq,1min value, µ(t) repre-

sents the 1-minute aggregated diurnal-pattern value. Param-

eter κ corresponds to a pre-determined constant. Based on

our experience with the five test sites as described in Table 2

we chosen the value of parameter κ = 2 to optimise the cor-

rectly identified faults and decrease the erroneous detections.

σD(t) denotes the standard deviation of the energetic averages

LAeq,15min, calculated over all days of the week or weekend

during the last four weeks at the same time of the day. The lat-

ter quantity indicates how stable the diurnal pattern is at this

measurement location.

2.6 SOM quality (QS)

This quality model is based on the idea that sounds that were

never encountered before could indicate a potential sensor

malfunction or an alteration of the typical acoustic environ-

ment around the microphone. This model can be seen as part

of a wider computational model aiming to model the human

auditory perception. More details can be found in Oldoni

et al. 20 .

The first stage aims to extract acoustical features inspired

by human peripheral auditory processing. The model starts

from the 1/3-octave band spectrum of the sound pressure level

with a temporal resolution of 1/8 s. Energetic masking is sim-

ulated by a cochleagram, by means of the Zwicker loudness

model21,22. To simulate the human auditory system, the ab-

solute intensity and the spectro-temporal variations form the

basis of the calculated acoustical features. Based on existing

models for auditory saliency23,24, a high-dimensional feature

vector is calculated at each timestep by means of a centre-

surround mechanism mimicking the receptive fields in the au-

ditory cortex.

The quality score is determined in two major steps. In a

first, offline phase, a neural network called Self-Organizing

Map (SOM) is trained based on the temporal correlation of the

occurrence of sound features. More details about the learning

algorithm can be found in Oldoni et al. 20 . In a second, online

phase, a sound feature vector aiming to describe the incoming

sound is extracted from the 1/3-octave band spectra at each

timestep. This is followed by calculating the distance between

this sound feature vector and all reference vectors of SOM

units. The minimum distance is then found and its related

SOM unit is typically called the Best-Matching Unit (BMU).

If the distance to the BMU is very high (higher than a fixed

threshold), then the incoming sound can be defined as an out-

lier, not typical of the given acoustic environment. On the

other hand, if the distance to the BMU is low, it means that

the incoming sound is quite typical for that particular loca-

tion. Outlier sound can be caused by microphone malfunction

1–11 | 5
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Table 4 Overview of the correlation between the instantaneous one minute aggregated sound pressure levels (LAeq,1min) and the diurnal

pattern for the same time of the day. Evaluation was done for different temporal integration periods, using a dataset of one month. The ∗

symbol indicates the significance of the correlation coefficient. The table also contains the standard deviation on the diurnal pattern, showing a

drop when the diurnal pattern integration period increases

Correlation coefficient Standard deviation (dBA)

Diurnal pattern Quiet Noisy Quiet Noisy

integration period (s) façade façade Park Railway Wind turbine façade façade Park Railway Wind turbine

60 0.501∗∗ 0.616∗∗ 0.158∗∗ 0.166∗∗ 0.187∗∗ 6.799 7.838 5.482 11.756 5.014

300 0.514∗∗ 0.481∗∗ 0.154∗ 0.157∗ 0.225∗ 7.099 5.417 5.480 7.320 3.241

900 0.541∗∗ 0.499∗∗ 0.165 0.108 0.213∗ 3.473 4.114 5.460 3.311 2.582

1800 0.565∗ 0.517∗ 0.174 0.109 0.286∗ 3.389 3.742 5.461 2.476 2.251

3600 0.483∗ 0.515∗ 0.176 0.098 0.336∗ 3.217 3.698 5.451 1.599 2.047
∗∗correlation coefficient is very significant
∗correlation coefficient is significant

or can indicate tampering with the device. Therefore a low

quality score is assigned.

The average distance to the BMU, dBMU , over a minute

period is transformed into a quality score QS via the following

function:

QS(t) = e
−dBMU (t)

thmid (5)

where thmid denotes the distance to the BMU for which the

quality score equals to 0.5.

2.7 Aggregated quality (QA)

In order to get a final “quality of the measurement”, i.e. a sin-

gle scalar QA, the partial quality evaluations from each quality

model have to be merged by means of an aggregation oper-

ator or aggregator. The ordered weighted averaging (OWA)

operator25 is a very flexible and tunable aggregator which per-

forms a kind of aggregation. Many notable operators such as

the minimum, maximum, arithmetic average and median are

members of this class. In a more formal way, the OWA opera-

tors form a parameterized class of averaging-type aggregation

operators. Details are given in the remainder of this section.

2.7.1 Inputs The input of the aggregator is the vector

Q(t) containing the 1-minute based quality scores of the mod-

els used for quality calculation (see Sections 2.3-2.6) and the

previous output of the same OWA, QA(t− 1):

Q(t) = (QI(t), QH(t), QD(t), QS(t), QA(t− 1)) (6)

The OWA aggregator is adaptable, i.e. it can work with a vari-

able number of quality models. This is a very important fea-

ture especially in case one or more quality models are tem-

porarily not working or new models are added.

2.7.2 Implementation details The weights of the OWA

operator are calculated as follows:

wj = F

(
j

n

)
− F

(
j − 1

n

)
, (7)

where F (r) = Fα(r) = rα and j is the index of the ordered

vector X(t) = (Q1(t), Q2(t), . . . , Qn(t)), from the largest

value to the smallest one. Vector X(t) will be equal to Q(t)
if and only if QI(t) ≥ QH(t) ≥ · · · ≥ QA(t − 1). The

parameter α is called the quantifier of the OWA operator and

it is a positive real number which defines the orness of the av-

erage. In particular, it results in the typical arithmetical mean

if α = 1. The weights should not be calculated each time,

but only in case the dimension of the quality vector changes,

i.e. if a model has been added or for some reason has ceased

to work. Finally the aggregated quality can be calculated as a

weighted average:

QA(t) =

n∑

j=1

wj ·Xj(t) (8)

The adjective ordered comes from the fact that the quality

scores Qj(t) are ordered. QA(t) is a number between 0 and 1,

where a low QA(t) score means low quality of the correspond-

ing sensor measurement, whereas scores near to one indicate

good and trustful sensor readings.

3 Influence of microphone type on measure-

ment quality

3.1 Quality versus level difference

In order to demonstrate the impact of sensor type on the mea-

surement quality, a measurement microphone was placed near

a lower quality microphone in a quiet urban area for compari-

son. Both devices have unique characteristics in terms of sen-

sitivity and noise floor. Fig. 4 illustrates the measured noise

level difference (∆L) between the two microphones. The dif-

ferences are especially noticeable in the case of low noise lev-

els, for instance during the night, when LAeq,test.mic. is con-

stantly greater than LAeq,ref.mic..
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