Environmental Science Processes & Impacts

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

rsc.li/process-impacts

1	Nitrogen	aspects	of hydrol	ogical	processes	with a	a case	study	in L	ikeng	landfill,	Guangzhou,	China
---	----------	---------	-----------	--------	-----------	--------	--------	-------	------	-------	-----------	------------	-------

- 3 Jianyao Chen¹, Aiping Zhu¹, Changyuan Tang², Luoying Lin¹, Yizhang Zhang³
- 4
- ¹School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
- 6 Email: <u>chenjyao@mail.sysu.edu.cn</u> or <u>chenjianyao@hotmail.com</u>
- 7 ²Department of Environmental Science & Landscape Architecture, Faculty of Horticulture, Chiba
- 8 University, Matsudo-city, 271-8510, Japan

9 ³State Key Laboratory of Environmental Criteria and Risk Assessment, and Laboratory of

- 10 Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental
- 11 Science, Beijing 100012, China
- 12
- 13 Abstract
- 14

15 Nitrogen aspects and hydrological processes need to be integrated in order to understand sources 16 and relevant mechanisms. Landfills are the dominant disposal approach to deal with solid waste in 17 urban areas in China. Landfills require adequate land and pose a potential threat to aquifer 18 contamination, particularly in the humid zone, such as Guangzhou. The unlined Likeng landfill in 19 Guangzhou was investigated in three campaigns during the period of 2001-2007: water was sampled and analyzed for major ions, heavy metals, and stable isotopes of ¹⁸O and ²H in water, 20 and ¹⁸O and ¹⁵N in nitrate. Contamination sources, water components, and groundwater flow were 21 22 examined with multiple evidence, revealing a mixture of various sources from landfill effluent,

	5		
	1	F.	1
	(
	1		1
	j		
	i	Ē	
	Ì		
	l	1	D .
	1	1	4
	l	2	1
	1	2	
	1	h.	
	ļ		b
	ì		5
1	1		5
	į	i	ĥ
	1	Ч	Y
	ļ	t	5
	ļ	2	
		C	5
		Ĩ	1
	ĺ		
	1	h	h
	ļ	y	Ŗ
1	ļ	h	1
	l	t	5
	1		
	į	ř	ĩ
	Ì		2
	i	Ē	
	Ì	F	
	i		
1			
_		1	
C			
1		1	-
	,	į.	
			P
	į	ñ	ń
	1	4	Y
	l	1	h
	1		
			P
	į	ñ	ń
		Ч	P
	(5
	(
	(
-			
-			

23	septic tank leakage, fertilizer, and manure following complex processes of recharge, mixing, and
24	denitrification. The effluent from the landfill was rich in Na^+ , Ca^{2+} , K^+ , HCO_3^- , and Cl^- ions. The
25	same process of high $\mathrm{NH_4^+}$ in effluent resulting in episodic increases in $\mathrm{NO_3^-}$ due to $\mathrm{NH_4^+}$
26	oxidation was found in Likeng landfill compared to the landfills in Denmark and the United States.
27	Twenty-five percent of the precipitation was lost to evaporation before recharging the aquifer,
28	indicating a possible maximum recharge rate of 75% and the potential for a large amount of water
29	penetration to the landfill if not well constructed. Apparent groundwater flow velocity of 3.7×10^{-7}
30	m/s (11.67 m/a) was found for the front of the effluent under the landfill by considering the
31	vertical and horizontal flow involved. These findings can provide background to delineate the
32	plume from Likeng landfill and to conceptualize the natural attenuation processes of other toxic
33	compounds, which are imperative for a remediation strategy.

35 Keywords: Landfill; groundwater; nitrate; stable isotopes; hydrological processes; Guangzhou

36 Introduction

37 Nitrogen has increased globally in the environment mainly due to human activities in the past 38 century. Scanlon et al. (2007) attributed degraded water quality, including nutrient balance, to the 39 conversion from natural to agricultural ecosystems, which is associated with decreased 40 evapotranspiration and increased recharge and streamflow. The spatial pattern of nitrate in 41 groundwater in the North China Plain is related to fertilizer overuse, wastewater irrigation, and the 42 regional groundwater flow system (Chen et al., 2005; 2006). High nitrogen content in all water 43 bodies (e.g., rivers, groundwater, and lakes) is associated with ecosystem eutrophication 44 (Smolders et al., 2010; Lunau et al., 2013) and health concerns (e.g., methemoglobinemia) (Sadeq

65

66

45	et al., 2008), particularly due to high nitrate in drinking waters. As nitrate is relatively mobile
46	within aquifer systems, it may contribute to high nutrients in coastal areas via submarine
47	groundwater discharge and thus result in a change in N/P ratios (Slomp and Van Cappellen, 2004).
48	Nitrogen transformation and cycle are closely related to water movement in the unsaturated
49	and saturated zones, and nitrogen aspects of hydrological processes need to be integrated
50	systematically. Actually, the rate of denitrification, dissimilatory nitrate reduction to ammonium,
51	and other relevant N processes are complicated, involving changes in electron donors and
52	acceptors, organic carbon, dissolved oxygen, and other processes (Korom, 1992), which are
53	inherently related to water movement and cycles via land use changes and possibly climate
54	change.
55	N source identification and relevant processes are two key aspects of N cycle research. N
56	sources are typically classified as either point or areal (i.e., nonpoint) sources. Fertilizers in
57	agricultural lands and runoff and drainage from urban areas are two major areal sources of N,
58	while sewage from factories, treatment plants, and landfill sites are major point sources (Othman
59	et al., 2012; Carey et al., 2013; Pierobon et al., 2013). The preferential flow that percolates
60	through waste deposits affects leachate production, aerobic and anaerobic biological processes,
60 61	through waste deposits affects leachate production, aerobic and anaerobic biological processes, and then N transformation (Bengtsson et al., 1994). While the N source itself does not depend on
60 61 62	through waste deposits affects leachate production, aerobic and anaerobic biological processes, and then N transformation (Bengtsson et al., 1994). While the N source itself does not depend on water movement, the water cycle does affect its accumulation, distribution, and transformation via

can thus be used to estimate the groundwater flow velocity (Chen et al., 2006). Isotopes of ¹⁵N and

¹⁸O (in nitrate and water, respectively) are widely used to identify N sources and transformation

mechanisms (Kendall and McDonnell, 1998), which include both N and water cycles (e.g.,

Nvironmental Science: Processes

67	denitrification and mixing). Actually, a multiple tracer approach with other indicators is necessary,
68	such as Cl/Br ratio to assess the impact of septic tanks (Katz et al., 2011); multiple isotopes (H, O,
69	N, S, and Sr) to elucidate pollution sources and relevant causes (Hosono et al., 2011);
70	chlorofluorocarbons (CFCs) and fecal indicator bacteria, such as E. coli, to assess the impact of
71	landfills (Carlson et al., 2011); and the ratio of $NO_3^{-}/acesulfame$ to differentiate agricultural from
72	domestic wastewater sources (Robertson et al., 2013). Several models have been developed to
73	simulate the changes in both N components and hydrological processes (Howard et al., 1996; Brun
74	et al., 2002), though many mechanisms remain unknown.
75	Landfills are commonly used to dispose of solid waste in both developed and developing

76 countries. Municipal landfills were found to be a significant threat to groundwater quality (Sanjay 77 et al., 2010; Bjerg et al., 2011). The volume and chemical characteristics of leachate produced by 78 landfills are controlled by water balance, vegetation, landfill age, and landfill cover conditions 79 (Bhavna et al., 2013). Four regimes were proposed to elucidate varied processes and reactions of leachate plumes (Cozzarelli et al., 2011). Minor leachate production of 30-40 mm/a was estimated 80 81 from young landfills in Sweden, with percolation through the waste deposits occurring as a 82 preferential flow (Bengtsson et al., 1994). A simple dilution model revealed that physical mixing 83 was the most important attenuation process in the pollution plume within the landfill (Brun et al., 84 2002). Ionic balance was calculated for leachate from a landfill in West Malaysia with a high error of more than 13%, indicating the complexity in chemical composition (Rahim et al., 2010). 85

Solid waste has increased exponentially in China due to rapid urbanization in the past 30
years, and annual domestic waste was estimated to be around 1.5×10⁸ tons in 2003 (Hai et al.,
2009; Fig. 1), around 90% of which was disposed in landfills (Huang et al., 2006; Wang et al.,

1	
	$\mathbf{O}_{\mathbf{i}}$
į,	
	C)
	CD.
	$\mathbf{O}_{\mathbf{I}}$
	D
	C)
	~
	C)
	-
	U)
	ТŤ,
1	
	\mathbf{O}
	\mathbf{O}
	D
	CD.
	\mathbf{O}
	D
	\mathbf{O}
	-
Ì	
	CD
	~
	U
	0
1	
	C)
_	
	V
	μ.
	U
	-
	la construction de la constructi

89	2009). Although the total number of landfills has been reported recently in yearly statistical books,
90	these numbers only represent large landfills and the actual number is not known. There were 935
91	landfills in 2008, reported in a business press release
92	(//www.21cbh.com/HTML/2009-7-3/HTML_0M0OX5W0728Y.html). Unfortunately, more than
93	half of these landfills were not constructed and maintained in accordance with national standards
94	regulating waste disposal in landfills (Wang et al., 2009). Much research has been done to
95	investigate the leachate from landfills and potential threats to groundwater use, and public health
96	in China, such as heavy metals (Wang et al., 2009), phthalate esters (Zheng et al., 2007; Liu et al.,
97	2010), and microbes (Tian et al., 2005). Although high content of ammonium and relevant
98	processes were present in leachate plumes (Bjerg et al., 2011; Cozzarelli et al., 2011), little
99	research has reported the pollution of nitrate in aquifers due to high nitrogen content from leachate
100	of the landfills.
101	
102	Fig. 1 Change in the amount of domestic waste in China (1979-2011) and Guangzhou
103	(2001-2011). Data sources: Annual statistical data for urban construction in China in 2011
104	(www.bjinfobank.com).
105	
106	This study intended to investigate the chemical characteristics of leachate from Likeng
107	landfill and changes during the period of 2001-2007. The impacts of the landfill, particularly

aspects and hydrological processes. Various nitrate sources and relevant processes were identifiedwith multiple lines of evidence from stable isotopes and chemical patterns. As Likeng landfill is

nitrate produced from the leachate on the local aquifer, were examined by integrating nitrogen

located in the upstream section of Liuxi River, which is used for water supply to Guangzhou,
identification of pollutant sources from leachate can help to protect water resources and
ecosystems in the downstream section.
Background for the study area

Likeng landfill site was originally a small reservoir with an area of about 2.52×10^5 m² 116 117 enclosed by mountains except one outlet to the west. Located 25 km north of the city center, it was 118 converted to a landfill in 1990, the third in Guangzhou. The storage capacity was enlarged from an original volume of 2.87×10^6 m³ to that of 5.5×10^6 m³ with a top at 135 m above sea level and a 119 120 depth of 80 m. The landfill was lined with a clay layer to prevent percolation of leachate at the 121 bottom, and a pond was built in the lower reach to collect and treat leachate from the landfill. It 122 was operated during the period of 1992–2004, during which time it collected total domestic waste 123 of around 9.0×10^6 tons, primarily from four districts of Guangzhou: Baiyun, Fangcun, Yuexiu, and 124 Liwan. Part of the waste was burned in an annex facility next to Likeng landfill. The amount of 125 annual domestic waste from the 10 districts of Guangzhou during the period of 2001-2011 is 126 given in Fig. 1. The amount of annual domestic waste in Guangzhou before 2001 is not given due 127 to an administrative boundary change in 2000, when Guangzhou increased from 8 districts to 10 128 districts.

The hydrogeological conditions are relatively complex with bedrock of granite in the south part of the landfill, and a mixture of carbonate and sandstone interfingering with shale in the north part. The landfill is at risk of deep percolation and contamination to the underlying aquifers due to probable fractures in the granite and high porosity in the carbonate and sandstone.

133	Annual average rainfall was calculated to be 1741.9 mm in Guangzhou during the period of
134	1951-2008. Average monthly distribution is given in Fig. 2, with rainfall in the wet season from
135	April-September accounting for approximate 80% of annual rainfall. As the pan evaporation
136	measured by E601 was 1100 mm in the Pearl River delta (Zeng et al., 2010), close to actual
137	evapotranspiration in this humid region, runoff from the landfill site was calculated to be 1.62×10^5
138	m ³ , which has to be collected and drained to avoid percolation to the landfill and thus reduce the
139	leachate.
140	
141	Fig. 2 Monthly average rainfall in Guangzhou during the period of 1951–2008.
142	
143	Material and methods
144	Three field campaigns were implemented on March 5, 2001; March 15, 2005; and March
144 145	Three field campaigns were implemented on March 5, 2001; March 15, 2005; and March 24–25, 2007 with 17, 15, and 17 water samples collected from domestic wells/leachate,
144 145 146	Three field campaigns were implemented on March 5, 2001; March 15, 2005; and March 24–25, 2007 with 17, 15, and 17 water samples collected from domestic wells/leachate, respectively (Fig. 3, Table 4). These wells ranged from 1.5–50 m in depth. The screen was usually
144 145 146 147	Three field campaigns were implemented on March 5, 2001; March 15, 2005; and March 24–25, 2007 with 17, 15, and 17 water samples collected from domestic wells/leachate, respectively (Fig. 3, Table 4). These wells ranged from 1.5–50 m in depth. The screen was usually installed for the bottom layers as informed by the local residents, while specific screen depths
144 145 146 147 148	Three field campaigns were implemented on March 5, 2001; March 15, 2005; and March 24–25, 2007 with 17, 15, and 17 water samples collected from domestic wells/leachate, respectively (Fig. 3, Table 4). These wells ranged from 1.5–50 m in depth. The screen was usually installed for the bottom layers as informed by the local residents, while specific screen depths were unknown. The wells were purged at least 5 minutes before sampling. After filtration with a
144 145 146 147 148 149	Three field campaigns were implemented on March 5, 2001; March 15, 2005; and March 24–25, 2007 with 17, 15, and 17 water samples collected from domestic wells/leachate, respectively (Fig. 3, Table 4). These wells ranged from 1.5–50 m in depth. The screen was usually installed for the bottom layers as informed by the local residents, while specific screen depths were unknown. The wells were purged at least 5 minutes before sampling. After filtration with a 0.45 µm membrane filter, samples were collected in pre-cleaned plastic bottles, brought back to
144 145 146 147 148 149 150	Three field campaigns were implemented on March 5, 2001; March 15, 2005; and March 24–25, 2007 with 17, 15, and 17 water samples collected from domestic wells/leachate, respectively (Fig. 3, Table 4). These wells ranged from 1.5–50 m in depth. The screen was usually installed for the bottom layers as informed by the local residents, while specific screen depths were unknown. The wells were purged at least 5 minutes before sampling. After filtration with a 0.45 µm membrane filter, samples were collected in pre-cleaned plastic bottles, brought back to the laboratory, and stored at the temperature below 4°C until analysis for major ions and hydrogen
144 145 146 147 148 149 150 151	Three field campaigns were implemented on March 5, 2001; March 15, 2005; and March 24–25, 2007 with 17, 15, and 17 water samples collected from domestic wells/leachate, respectively (Fig. 3, Table 4). These wells ranged from 1.5–50 m in depth. The screen was usually installed for the bottom layers as informed by the local residents, while specific screen depths were unknown. The wells were purged at least 5 minutes before sampling. After filtration with a 0.45 µm membrane filter, samples were collected in pre-cleaned plastic bottles, brought back to the laboratory, and stored at the temperature below 4°C until analysis for major ions and hydrogen and oxygen stable isotopes. Electrical conductivity (EC), dissolved oxygen (DO),
144 145 146 147 148 149 150 151 152	Three field campaigns were implemented on March 5, 2001; March 15, 2005; and March 24–25, 2007 with 17, 15, and 17 water samples collected from domestic wells/leachate, respectively (Fig. 3, Table 4). These wells ranged from 1.5–50 m in depth. The screen was usually installed for the bottom layers as informed by the local residents, while specific screen depths were unknown. The wells were purged at least 5 minutes before sampling. After filtration with a 0.45 μ m membrane filter, samples were collected in pre-cleaned plastic bottles, brought back to the laboratory, and stored at the temperature below 4°C until analysis for major ions and hydrogen and oxygen stable isotopes. Electrical conductivity (EC), dissolved oxygen (DO), oxidation–reduction potential, temperature, and pH were measured in situ. Major ions of Cl ⁻ ,
144 145 146 147 148 149 150 151 152 153	Three field campaigns were implemented on March 5, 2001; March 15, 2005; and March 24–25, 2007 with 17, 15, and 17 water samples collected from domestic wells/leachate, respectively (Fig. 3, Table 4). These wells ranged from 1.5–50 m in depth. The screen was usually installed for the bottom layers as informed by the local residents, while specific screen depths were unknown. The wells were purged at least 5 minutes before sampling. After filtration with a 0.45 μ m membrane filter, samples were collected in pre-cleaned plastic bottles, brought back to the laboratory, and stored at the temperature below 4°C until analysis for major ions and hydrogen and oxygen stable isotopes. Electrical conductivity (EC), dissolved oxygen (DO), oxidation–reduction potential, temperature, and pH were measured in situ. Major ions of Cl ⁻ , SO ₄ ²⁻ , NO ₃ ⁻ , K ⁺ , Na ⁺ , Ca ²⁺ , Mg ²⁺ , and NH ₄ ⁺ were measured by ion chromatography (Shimazu

155	² H or D) were undertaken by mass spectrometry (Finnigan MAT Delta S). All analyses were done
156	at Chiba University, Japan. Heavy metals were analyzed for the samples collected in 2005 by
157	various methods, including graphite furnace atomic absorption spectrometry for Pb and Cd,
158	atomic fluorescence spectrophotometry for Hg and As, flame atomic absorption spectrometry for
159	Fe and Mn, and indirect flame atomic absorption spectrometry for Al. The Cr^{+6} was measured by
160	the spectrophotometric method. Detection limitations for relevant heavy metals are given in Table
161	1.
160	The nitrates in the filtered water complex were concentrated in situ on the opion evolution

102	The inflates in the intered water samples were concentrated in situ on the amon exchange
163	column (DOWEX 1 9 8, 200–400 mesh, chloride form), and then converted to solid AgNO ₃ in the
164	laboratory according to the method introduced by Silva et al. (2000). The AgNO ₃ was then
165	analyzed for $\delta^{15}N$ using a DELTA plus XL mass spectrometer connected with a CE EA1112
166	C/N/S analyzer in the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences.
167	Analysis of ¹⁸ O was done using a MAT 253 mass spectrometer connected with a high-temperature
168	conversion elemental analyzer. Dissolved organic matter and oxygen-bearing ions other than NO ₃ ⁻
169	were carefully removed during the preparation of $AgNO_3$ for ¹⁸ O analysis. The ¹⁸ O, ² H, and ¹⁵ N
170	for water samples were expressed as per mill difference of the isotopic ratios of a sample (sp) and
171	a standard, referred to as standard mean ocean water for ¹⁸ O and D, and as AIR for ¹⁵ N.

173Fig. 3 Schematic location and map of sampling sites at Likeng landfill site. Potentiometric surface

- 174 with contour interval of 3 m was given for the data measured in 2007, indicating a general
- 175

groundwater flow to the north in this area.

176 Results and Discussions

177 Chemical characteristics of landfill effluent

178	The amount and characteristics of landfill effluent are related to climatic and hydrological
179	conditions (Cozzarelli et al., 2011; Bhavna et al., 2013). It is thus reasonably anticipated that high
180	leachate could be produced from the humid area, such as in Guangzhou, China. Municipal solid
181	waste in Guangzhou has three features: 1) high organic matter composition that easily decomposes;
182	2) high water content of more than 50%; and 3) mixture of various sources, such as domestic,
183	industrial, commercial, and medical waste. The effluent, i.e. direct discharge from the landfill, was
184	collected in March 2005 from a small ditch indicated as "+" in Fig. 3, and major ions and basic
185	effluent data are given in Table 2. Low DO indicated the reduction condition in the landfill, while
186	low temperature compared to well 2 (21.5°C, depth of 10 m, next to the effluent treatment site)
187	indicated a low energy level during the production of effluent, probably due to high water content.
188	According to the data in Table 2, the effluent could be classified as Na-K-HCO ₃ type with a high
189	content of ammonium, which was converted from organic-N waste via ammonification. Potassium
190	in the effluent was 687.3 mg/L in Likeng landfill by Luo et al. (2009) during a campaign within
191	the period from August 2006 to August 2007, while the chloride was 2025 mg/L, similar to the
192	value given in Table 2. Similar chloride content of 2047 mg/L was found in a landfill in Malaysia
193	(Rahim et al., 2010). High content of potassium with a median value of 414 mg/L was reported in
194	Norman Landfill (Cozzarelli et al., 2011). As annual precipitation in Guangzhou is twice that in
195	Norman Landfill (around 960 mm/a), half the potassium concentration would have been expected
196	due to the dilution effect. In contrast, potassium content four times as high was found in Likeng
197	landfill. It could be concluded here that high potassium content is typical in landfill leachate,
198	particularly in the humid area. Relatively high contents of Na^+ , Ca^{2+} , HCO_3^- , and Cl^- were found

199	in the effluent from Risby landfill in Denmark (Milosevic et al., 2012), and could be classified as
200	Na–Ca–HCO ₃ –Cl type, although absolute concentrations were much lower than those in Likeng.
201	High temperature can accelerate the ammonification process within the landfill, and it is
202	reasonable to have higher NH_4^+ in the effluent in the summer than that in the winter. NH_4^+ –N was
203	525 mg/L in July, almost twice as that in January (272 mg/L) (Table 3; Yang et al., 2010) in one
204	landfill in northern Jiangsu Province of China. Actually, ammonification and production of $\mathrm{NH_4^+}$
205	in landfills are complex processes, associated with precipitation, temperature, composition of
206	waste, age of operation, and other factors; it is hard to find a simple correlation between the
207	amount of $\mathrm{NH_4}^+$ and any one independent parameter. Main chemical characteristics of effluents
208	reported in China are summarized in Table 3, and relevant characteristics in Denmark and the
209	United States are given as well for the comparison. Ammonification is the dominant process
210	during the production of effluent with no or low contents of NO_3^- and NO_2^- detected, which may
211	then increase later to a relatively high level due to nitrification, as shown in Likeng (Table 3).
212	Same process of high NH_4^+ resulting in episodic increases in NO_3^- due to NH_4^+ oxidation was
213	documented by Cozzarelli et al. (2011). Highly variable NH_4^+ -N was also found in several
214	landfills in Ontario, Canada, ranging from 7.6-1820 mg/L (Howard et al., 1996). High levels of
215	chloride and ammonium in Likeng were consistent with the ranges given by Mikac et al. (1998).
216	Heavy metals were measured in 2005 in the effluent and groundwater at well 1, which is located
217	next to the drainage channel of treated effluent.
218	

219 Temporal change of groundwater quality from 2001–2007

Seven wells were sampled during three campaigns in March 2001, 2005, and 2007, enabling

Environmental Science: Processes & Impacts

221	comparison of the change in groundwater quality within 6 years. Concentrations of all major ions
222	except Mg^{2+} showed an obvious increase (Fig. 4), indicating the possible impacts of the effluent
223	from the landfill. The average concentration of NO_3^- in 2007 was approximately twice that in
224	2001; in particular it increased from 3.9 mg/L in 2001 to 53.3 mg/L in 2007 at well 1 (Table 4).
225	Nitrate pollution to a depth of 50 m poses a serious threat of the landfill to the deep aquifer in the
226	study area. Ranges of nitrate concentration in 2001, 2005 and 2007 were 3.9-288.8, 3.4-226.1 and
227	0.47-322 mg/L respectively, with relevant standard deviations of 111.8, 101.3, and 143.3,
228	showing a highest level in 2007. Although much higher contents of nitrate were detected in the
229	other wells in the vegetable field (e.g., wells 8 and 9), they remained relatively stable within 6
230	years. The reasons for low nitrate at well 10 in 2001 (but high level in 2007) remain unknown.
231	
232	Fig. 4 Average concentrations (mg/L) of major ions in seven wells during the three campaigns.
233	
234	All water samples, including the effluent, during the three campaigns were plotted in the
235	piper diagram (Fig. 5). The dot close to the effluent was a water sample from the drainage channel,
236	and showed similar chemical facies as that of the effluent; high concentrations of $\mathrm{NH_4}^+$ and K^+
237	were detected at 127.6 mg/L and 100.9 mg/L respectively while no nitrate was detected
	were detected at 127.0 mg/2 and 100.9 mg/2, respectively, while no made was detected,
238	indicating a dominant ammonification process. Nitrification took place in the interaction of
238 239	indicating a dominant ammonification process. Nitrification took place in the interaction of surface water in the drainage channel and the adjacent aquifer, and high nitrate content was
238 239 240	indicating a dominant ammonification process. Nitrification took place in the interaction of surface water in the drainage channel and the adjacent aquifer, and high nitrate content was produced, as was the case at well 1.

was detected compared to water samples collected in 2005 and 2007. Most water samples in 2007

ł	
	0
	S
	Ē
_	\mathbf{O}
1	
1	0
	Ä
	2
1	5
	Q
	U
	0
1	
1	
	10
1	0
	Ä
	N
	0
1	
6	X
	()
	ä
	0)
	()
	U
	0
	ŏ
ŀ	
	()
	ŏ
	ž
	U
ľ	
Q	
5	_
	σ
	5
	Ž
	0
ľ	
-	
l	1

243	were classified as SO_4 -Cl type, which accounted for 50–60% of the total anions (Fig. 5). The
244	evolution of chemical facies from HCO_3^- type to SO_4 -Cl type during the period of 2001–2007
245	was shown by the arrow in Fig. 5. Vegetable production is the main land use except in the
246	mountain area, residential area, and landfill, as shown in Fig. 3, and three wells of 8, 9, and 10 are
247	located in the vegetable field. As chemical features of water samples in the vegetable fields with
248	high fertilizer inputs and high production remained relatively stable, the shift of the chemical
249	types revealed the impacts of the landfill and its effluent on surface water and groundwater. The
250	local groundwater flow indicated in Fig.3 and relevant mass transport could also affect this shift,
251	in addition to possible various N sources from different areas as mentioned.
252	
253	Fig. 5 Piper diagram for all water samples collected during the three campaigns. Evolution of
254	chemical facies is indicated by the arrow.
255	
256	Identification of contamination sources
257	
258	Fig. 6 Use of dual isotopes to identify various sources of nitrate.
259	
260	As chloride is relatively conservative compared to nitrogen transport processes of both
261	convection and dispersion, the ratio of nitrate to chloride was used as an indicator to differentiate
262	sources and possibly inherent processes (Chen et al., 2006). Two groups of nitrate sources can be
263	identified by the relationships of dual isotopes and the ratio. Based on the two boxes in Fig. 6, the
264	field survey, and communication with local farmers, the group with higher $\delta^{15}N$ and $\delta^{18}O$ values

Environmental Science: Processes & Impacts

265	of nitrate was associated with the source from the landfill, while that with lower values was
266	located in the vegetable field and probably associated with the mixture of fertilizer and manure.
267	Volatilization usually results in highly enriched $\delta^{15}N-NH_4^+$ in the leachate, while the nitrification
268	may produce depleted nitrate due to fractionation as reported by North et al. (2004), such as 23.31
269	\pm 3.76‰ for δ^{15} N–NH ₄ ⁺ and -4.54 \pm 2.05‰ for δ^{15} N–NO ₃ ⁻ . If ammonium was fully transferred to
270	nitrate via nitrification when the effluent penetrated the aquifer, highly enriched $\delta^{15}N-NO_3^-$ would
271	then be generated. Relatively high nitrate concentrations of 14.3 mg/L and 39.2 mg/L were
272	detected in 2005 and 2007, respectively, at monitoring well 2 next to the landfill and effluent
273	treatment site (physical-chemical-biological treatment level), but low ammonium concentrations
274	of 0.9 mg/L and 0 mg/L were detected, respectively, indicating a fully converted nitrification
275	process.
276	Sources of three groundwater samples (wells 8, 9, and 10) from the shallow aquifer in the
276 277	Sources of three groundwater samples (wells 8, 9, and 10) from the shallow aquifer in the vegetable field were identified easily with $\delta^{15}N-NO_3^-$ ranging from 10–15‰, $\delta^{18}O-NO_3^-$ at
276 277 278	Sources of three groundwater samples (wells 8, 9, and 10) from the shallow aquifer in the vegetable field were identified easily with $\delta^{15}N-NO_3^-$ ranging from 10–15‰, $\delta^{18}O-NO_3^-$ at around 6‰, and the ratio of NO_3^-/Cl^- close to 1.0. The other three wells (12, 15, and 17) had
276 277 278 279	Sources of three groundwater samples (wells 8, 9, and 10) from the shallow aquifer in the vegetable field were identified easily with $\delta^{15}N-NO_3^-$ ranging from 10–15‰, $\delta^{18}O-NO_3^-$ at around 6‰, and the ratio of NO_3^-/CI^- close to 1.0. The other three wells (12, 15, and 17) had ratios of more than 1.0 (high content of nitrate), and were located in the residential area, where the
276 277 278 279 280	Sources of three groundwater samples (wells 8, 9, and 10) from the shallow aquifer in the vegetable field were identified easily with δ^{15} N–NO ₃ ⁻ ranging from 10–15‰, δ^{18} O–NO ₃ ⁻ at around 6‰, and the ratio of NO ₃ ⁻ /Cl ⁻ close to 1.0. The other three wells (12, 15, and 17) had ratios of more than 1.0 (high content of nitrate), and were located in the residential area, where the leakage of septic tanks was usually noticeable (Lu et al., 2008). Well 1, affected by the treated
276 277 278 279 280 281	Sources of three groundwater samples (wells 8, 9, and 10) from the shallow aquifer in the vegetable field were identified easily with $\delta^{15}N-NO_3^-$ ranging from 10–15‰, $\delta^{18}O-NO_3^-$ at around 6‰, and the ratio of NO_3^-/Cl^- close to 1.0. The other three wells (12, 15, and 17) had ratios of more than 1.0 (high content of nitrate), and were located in the residential area, where the leakage of septic tanks was usually noticeable (Lu et al., 2008). Well 1, affected by the treated leachate, showed the highest $\delta^{15}N-NO_3^-$ of approximately 30‰. The leachate from the landfill
276 277 278 279 280 281 281	Sources of three groundwater samples (wells 8, 9, and 10) from the shallow aquifer in the vegetable field were identified easily with δ^{15} N–NO ₃ ⁻ ranging from 10–15‰, δ^{18} O–NO ₃ ⁻ at around 6‰, and the ratio of NO ₃ ⁻ /Cl ⁻ close to 1.0. The other three wells (12, 15, and 17) had ratios of more than 1.0 (high content of nitrate), and were located in the residential area, where the leakage of septic tanks was usually noticeable (Lu et al., 2008). Well 1, affected by the treated leachate, showed the highest δ^{15} N–NO ₃ ⁻ of approximately 30‰. The leachate from the landfill was treated through a series of regular physical, chemical, and biological processes to reduce
276 277 278 279 280 281 282 282 283	Sources of three groundwater samples (wells 8, 9, and 10) from the shallow aquifer in the vegetable field were identified easily with δ^{15} N–NO ₃ ⁻ ranging from 10–15‰, δ^{18} O–NO ₃ ⁻ at around 6‰, and the ratio of NO ₃ ⁻ /Cl ⁻ close to 1.0. The other three wells (12, 15, and 17) had ratios of more than 1.0 (high content of nitrate), and were located in the residential area, where the leakage of septic tanks was usually noticeable (Lu et al., 2008). Well 1, affected by the treated leachate, showed the highest δ^{15} N–NO ₃ ⁻ of approximately 30‰. The leachate from the landfill was treated through a series of regular physical, chemical, and biological processes to reduce chemical oxygen demand (COD) and ammonium components before discharging to the channel,
276 277 278 279 280 281 282 283 283	Sources of three groundwater samples (wells 8, 9, and 10) from the shallow aquifer in the vegetable field were identified easily with δ^{15} N–NO ₃ ⁻ ranging from 10–15‰, δ^{18} O–NO ₃ ⁻ at around 6‰, and the ratio of NO ₃ ⁻ /Cl ⁻ close to 1.0. The other three wells (12, 15, and 17) had ratios of more than 1.0 (high content of nitrate), and were located in the residential area, where the leakage of septic tanks was usually noticeable (Lu et al., 2008). Well 1, affected by the treated leachate, showed the highest δ^{15} N–NO ₃ ⁻ of approximately 30‰. The leachate from the landfill was treated through a series of regular physical, chemical, and biological processes to reduce chemical oxygen demand (COD) and ammonium components before discharging to the channel, which thusly produced enriched δ^{15} N–NO ₃ ⁻ as volatilization and denitrification were involved in

Fig. 7 Relationship between δ^{18} O and δ D in water and local meteoric water line.

289

Stable isotopes of ¹⁸O and D were measured in 2005 and 2007, revealing different 290 291 intersection angles with the local meteoric water line (LMWL) (Fig. 7) and the general trend of 292 the observed points. A large angle or small slope in 2005 reflected a strong impact of evaporation 293 on water before recharging to the aquifer. High pan (E601) evaporation rates were gauged during 294 the period of 2003–2005, while they were relatively low in 2006 (Fig. 8). It is interesting to note 295 that low pan evaporation rate was also found in 2006 in Norman landfill (Mendoza-Sanchez et al., 296 2013). As isotopic signals of groundwater reflected the accumulated features of recharged water 297 prior to sampling in March 2007, low evaporation in 2006 weakened the fractionation and thus 298 reduced the isotopic values. Water temperature ranged from 20–25°C during the field campaign, 299 thus the equilibrium fractionation factor, $10^{3} \ln \alpha^{18} O_{I-v}$ (close to enrichment factor, $\epsilon^{18} O_{I-v}$), for such 300 water temperature range was found be to 9.7 (20°C) and 9.3 (25°C) (Clark and Fritz, 1997). The 301 dynamic fractionation can be calculated using average humidity (h) of around 70% according to 302 the Gonfiantini (1986) relationship given as:

303
$$\triangle \varepsilon^{18} O_{bl-v} = 14.2^{*}(1-h) = 14.2^{*}0.3 = 4.26\%$$

304 Total enrichment was calculated as:

305
$$\epsilon^{18}O_{total} = \epsilon^{18}O_{v-l} + \triangle \epsilon^{18}O_{v-bl} = -5.44 \ (20^{\circ}C) \text{ or } -5.04 \ (25^{\circ}C)$$

Fig. 7 shows a total enrichment of approximately 1.5‰, which was used to calculate the ratio remainder *f* according to the formula given in Clark and Fritz (1997), yielding an evaporation rate (1-f) of 24% (20°C) and 26% (25°C) of total precipitation.

309	
310	Fig. 8 Monthly pan evaporation during the period of 2001–2008 in Guangzhou.
311	
312	The runoff coefficient in the humid climate zone can be as high as 0.5-0.6, indicating that
313	40-50% of the precipitation was lost to evapotranspiration. A rough estimation of about 25%
314	water loss to evaporation before aquifer recharge was reasonable in such a humid area, with the
315	gap probably due to transpiration, depression storage, interception, or other unknown factors.
316	Nevertheless, a maximum recharge rate to the saturated zone was estimated to be 75% in Likeng
317	landfill site, though the actual rate would be much less. In comparison, average recharge at
318	Norman landfill site over a 10-year period was found to be 36% of rainfall (Mendoza-Sanchez et
319	al., 2013), ranging from 16-64% of rainfall (Scholl et al., 2005). As rainfall in Guangzhou is twice
320	as high as that at Norman landfill (a climate of between humid subtropical and semi-arid with
321	annual average precipitation of 880 mm), a recharge rate higher than 36% of rainfall would be
322	expected.
323	
324	N processes: mixing and denitrification from the relationship of δ^{15} N–NO ₃ ⁻ and residual NO ₃ ⁻
325	
326	Fig. 9 Relationship between $\delta^{15}N-NO_3^-$ and residual NO_3^- in Likeng landfill. Solid dots
327	indicate three sampling sites in the vegetable field with the same N source.
328	
329	A negative linear relationship was obtained between $\delta^{15}N$ and ln(NO_3) for denitrification
330	following the classical equation of Rayleigh fractionation, while a reverse relationship, $\delta^{15}N$ =

331	$A*1/ln(NO_3) + B$ (A and B are two constant parameters relevant to the concentration and isotopic
332	value of various end members), was derived for the mixing or dilution process (Mariotti et al.,
333	1988). Several sources of nitrate were identified in the previous section, but none of them
334	followed the relationship of mixing or denitrification given by Mariotti et al. (1988), as indicated
335	by a positive relationship for the same source in Fig. 9. Two probable causes for such deviation
336	were: 1) mixing of several sources may not follow the simple scenario of two end members; and 2)
337	the simultaneous occurrence of mixing and denitrification, and nitrification and volatilization
338	complicate these two processes. Thus, multiple tracers are necessary to identify sources and
339	relevant processes.

341 Integration of N sources and groundwater movement with multiple tracers

342 Well 3 is located in an isolated house and far from the vegetable field with a low nitrate 343 concentration. As it is located in the lower part of a natural slope land of forest, potential 344 anthropogenic N sources were eliminated from the field survey and ground truth, and nitrate was assumed to come from natural soil background levels, with $\delta^{15}N$ of 12.5% before the landfill was 345 346 built. As δ^{15} N was found in the range of 10–22‰ for the source of manure/urine and 2–9‰ for 347 natural soil organic-N (Heaton, 1986; Clark and Fritz, 1997), the background value here with a lowest δ^{15} N for the cluster in upper left in Fig. 10 indicated that the natural soil organic-N had 348 349 small impacts from the leakage of septic tanks. Nitrate in precipitation, usually having a high δ^{18} O–NO₃ (Chen et al., 2009), could contribute as well to the high δ^{18} O–NO₃ at well 3 (Fig.11). 350 351 Although well 2 and 3 are not connected hydrogeologically, they do naturally have a common or 352 similar recharge source (Fig. 3) in terms of the groundwater flow system. A lowest value in

Environmental Science: Processes & Impacts

353	δ^{18} O-H ₂ O at well 3 in Fig. 12 indicated a recharge source from an upper land or mountain area of
354	higher altitude. The monitoring well 2 is located around 200 m from the landfill and next to the
355	effluent treatment site. As the effluent pond and relevant treatment facilities were well built with
356	concrete and no leakage was reported, nitrate content at well 2 was supposed to come from the
357	front of the effluent that seeped from the landfill. Based on a simple mixture scenario 1:1
358	(background and front of the effluent, source X in Fig. 10), $\delta^{15}N$ and Cl^- of source X were
359	calculated as 24.5‰ and 96.6 mg/L, respectively. The other mixture scenarios would affect the
360	location of source X in Figs.10-13, but would not affect the general trend of linear mixture,
361	Chloride content of source X was much less than that of the effluent at Likeng, due mainly to the
362	decline process associated with convection and diffusion. A high value of $\delta^{15}N$ is viable if highly
363	enriched ammonium is fully nitrified to nitrate in the aquifer as discussed previously.

364

Fig. 10 Relationships of δ¹⁵N (left) and NO₃⁻ (right) with Cl⁻, and their implication in identifying
N sources (dashed line to identify source X).

367

The relationship between δ^{15} N and chloride clearly revealed three source groups: one at wells 8, 9, and 10 (filled circle) with a high linear coefficient (R² = 0.978), one source group at well 1 (unfilled circle), in addition to a cluster including wells 2 and 3 (unfilled circle) (Fig. 10). A simple relationship between Cl and nitrate could be used as well to differentiate the sources at wells 1 and 4 (filled triangle) from the others (unfilled triangle), which fell on the linear line (R² = 0.959) (Fig. 10) and could be classified into two clusters with a threshold of chloride content at 100 mg/L.

Fig. 11 Relationship between $\delta^{18}O-NO_3^-$ and Cl^- . The cluster of wells 8, 9, and 10 can be clearly

377 identified.

378

Similar results were achieved using the relationship between $\delta^{18}O-NO_3^-$ and CI^- , as indicated in Fig. 11. The $\delta^{18}O-NO_3^-$ of source X was estimated at 4.8‰ following the same approach to calculate $\delta^{15}N$. As chloride is relatively conservative, its concentration at the front of the effluent can be calculated using the following equation (Ogata, 1970):

383
$$C = \frac{C_0}{2} \left[erfc(\frac{L - v_x t}{2\sqrt{D_L t}}) + \exp(\frac{v_x L}{D_L})erfc(\frac{L + v_x t}{2\sqrt{D_L t}}) \right]$$

where *C* is the concentration of chloride at some distance, *L*, from the continuous source of the landfill with an initial Cl⁻ concentration of the effluent, C_0 , at time *t*; *erfc* is the complementary error function, D_L is the longitudinal coefficient of the hydrodynamic dispersion, and V_x is the average linear groundwater velocity.

388	Groundwater flowed at a horizontal rate of 1.8–62.5 m/a and a vertical rate of 2–2.5 m/a in a
389	wastewater irrigation area (Chen et al., 2006); the horizontal rate was estimated to be 126 m/a in a
390	small catchment in Zhuhai using CFC data (Zhao, 2008). A conservative value of $V_x = 3.7 \times 10^{-7}$
391	m/s was chosen by considering both horizontal and vertical flows from Likeng landfill. D_L =
392	$2.5{\times}10^{-7}~m^2/s$ was used by assuming a longitudinal dispersivity of a_L = 0.676 m and ignoring
393	molecular diffusion. This dispersivity was within the range of 0.3–4.5 m by Bjerg et al. (2011).
394	Given $L = 200$ m, $t = 15$ years, $D_L = 2.5 \times 10^{-7}$ m ² /s, and $C_0 = 2333.7$ mg/L, then $C = 121.8$
395	mg/L was obtained, which was very close to the result of 1:1 scenario (96.6 mg/L, source X).

Nitrate dynamics from multiple tracers

Fig. 12 Use of the relationship between $\delta^{18}O-NO_3^-$ and $\delta^{18}O-H_2O$ to identify N sources and relevant processes.

401

Well 9, with water depth of 1.5 m, acted as a pond that caught rain water for use in irrigation of vegetables; the component of nitrate here should follow the rule of 2:1 for the relative contribution of ambient O from surrounding water and atmospheric O₂ given as:

405
$$\delta^{18}O_{nitrate} = 2/3*(\delta^{18}O_{water} + \varepsilon_{water}) + 1/3*(\delta^{18}O_{O2} + \varepsilon_{O2}) \text{ (Mayer et al., 2001)}$$

As $\delta^{18}O_{nitrate}$ and $\delta^{18}O_{water}$ were measured as 5.821‰ and -4.86‰, respectively, at well 9, the 406 second term of the right component in the above equation, $1/3*(\delta^{18}O_{02} + \epsilon_{02})$, was estimated to be 407 9.061‰ if isotopic fractionations of ε_{water} and ε_{O2} were ignored. Actually, $\delta^{18}O_{O2}$ was measured to 408 be 23.5‰ (Mayer et al., 2001); 1/3*23.5 = 7.83‰ was close to the estimation here. A straight line 409 410 passing well 9 and following the rule of 2:1 is given in Fig. 12. The dots at wells 8 and 10 with a 411 similar source to well 9 fell approximately within this line, while the dots from other sources were located above the line with higher $\delta^{18}O$ -NO₃⁻ and did not keep the rule of 2:1, probably due to 412 413 respiratory isotope fractionation, evaporative effects (Kendall and McDonnell, 1998; Burns and 414 Kendall, 2002), or other effects during nitrification and denitrification of effluent seepage and 415 treatment at Likeng landfill site.

The front of the effluent, source X, could be easily identified by extending the connection line of wells 3 and 2 to the same distance between them as in the scenario when 1:1 was assumed. The $\delta^{18}O_{water}$ for source X was then estimated to be -2.31‰.

419	With the rule of 2:1 and local monthly (amount-weighted average) range of precipitation
420	$\delta^{18}O$ of –9.14 to 0.34‰ from nearby International Atomic Energy Agency (IAEA) station of
421	Guangzhou (IAEA, 2003; Chen et al., 2009), the range of $\delta^{18}O-NO_3^-$ of 1.7–7.9‰ can be
422	estimated for the reduced N sources of NO_3^- as indicated by two horizontal dashed lines in Fig. 13.
423	Three wells in the vegetable field, one well (17) in the residential area, and sources X were found
424	within the estimated range, while the other dots were higher than the upper range of 7.9‰, likely
425	showing different sources or processes. Three boxes are given in Fig. 13, indicating various nitrate
426	sources from fertilizer, soil organic-N, and manure/sewage. All samples collected in the study area
427	were located within the box from the manure and sewage source.
428	Three wells of 8, 9 and 10 are located in the vegetable field within a distance of less than 200
429	m (Fig. 3), and the same source of N was identified from isotopic features previously. A good
430	positive linear relationship existed for wells 8, 9, and 10, probably indicating denitrification. The
431	simultaneous occurrence of denitrification and mixing of varied sources, e.g., chemical fertilizer,
432	manure and organic N, could account for the low correlation factor of 0.134 in the regression
433	equation, lower than the expected value of 0.5 between $\delta^{18}O$ and $\delta^{15}N$ for the dominant
434	denitrification process (Chen et al., 2009). The mixing process of background levels (well 3) with
435	the front of the effluent and likely leakage from skeptic tanks could explain the other points except
436	well 1. The complex treatment process for the effluent may result in exceptional isotopic values at
437	well 1 as given in Fig. 13.
438	

Fig. 13 Relationship between δ^{18} O and δ^{15} N of NO₃⁻ and its application in N source identification by using three boxes for various nitrate sources adopted from Silva et al. (2002).

	<u> </u>	
	1	
	\cup	
	10	
	U,	
	_	
	U	
2		
	1	
	<u> </u>	
1	-	
	1	
	Y	
	()	
	$\mathbf{\mathbf{\nabla}}$	
	()	
	U	
÷	ĩ	
1		
	O	
	-	
	ā	
	-	
	\bigcirc	
	_	
1		
ſ	X	
	Ď	
	Ű	
	0 0 0	
	S S S S S S S	
	SSG	
	esse	
	Cesse	
	Cesse	
	OCESSE	
	OCESSE!	
	rocesse	
	rocesse	
	Processe	
	L rocesse	
	: Processes	
	Di Processes	
	e: Processes	
	Ce: Processes	
	Ce: Processes	
	ICE: Processes	
	nce: Processes	
	ance: Processes	
	ence: Processes	
	lence: Processes	
	cience: Processes	
	clence: Processes	
	Science: Processes	
	Science: Processes	
	Science: Processes	
	I Science: Processes	
	al Science: Processes	
	al Science: Processes	
	tal Science: Processes	
	ital Science: Processes	
	ntal Science: Processes	
	ental Science: Processes	
	ental Science: Processes	
	nental Science: Processes	
	mental Science: Processes	
	mental Science: Processes	
	imental Science: Processes	
	nmental Science: Processes	
	nmental Science: Processes	
	onmental Science: Processes	
	CONMENTAL SCIENCE: Processes	
	ronmental Science: Processes	
	Ironmental Science: Processes	
	vironmental Science: Processes	
	IVITONMENTAL SCIENCE: Processes	

ш

441

442 Conclusions

443		Various sources of nitrogen and their association with hydrological processes complicate the
444	nit	rogen aspects of hydrological processes, which have to be considered in order to deal with
445	gro	bundwater contamination of either areal or point sources. The case study at Likeng landfill
446	pre	esented three obvious nitrogen sources: fertilizer/manure in the vegetable field, septic tank
447	lea	kage in the residential area, and effluent from the landfill. Water cycle process, water
448	mc	ovement, mixing, and denitrification were deemed the main processes affecting the spatial and
449	ten	nporal distribution of nitrogen levels in the study area. Major conclusions from this case study
450	we	re given as:
451	1)	Effluent rich in Na ⁺ , Ca ²⁺ , K ⁺ , HCO ₃ ⁻ , and Cl ⁻ with relatively low temperature was produced
452		under warm and wet climatic conditions, which may promote the nitrification of ammonium
453		to nitrate in the aquifer. Nitrate concentration in the groundwater approximately doubled
454		during the period of 2001–2007, indicative of the impact of the landfill on the local aquifer.
455	2)	Moderate evaporation of around 25% of the precipitation was estimated before recharge to the
456		aquifer. As actual evaporation accounts for roughly 50% of the precipitation in Guangzhou,
457		the other 25% of precipitation is probably lost to transpiration in the dry season, such as in
458		March.
459	3)	Multiple tracers were used to differentiate the various sources of nitrogen and depict the
460		effluent movement underground. The conservative ion of chloride and the ratio of NO_3^{-}/Cl^{-}
461		could serve as good indices to simply identify the different nitrate sources. For example, Cl
462		of more than 100 mg/L is usually associated with the source from fertilizer and manure

463 application.

464	4) The relationships between nitrate concentration and $\delta^{15}N/\delta^{18}O$ did not follow the normal rules
465	for denitrification and mixing, likely indicating a mixture of multiple (more than two) end
466	members and the simultaneous occurrence of several processes.
467	These findings can provide strong bases to delineate the plume from Likeng landfill and to
468	conceptualize natural attenuation processes of other toxic compounds, such as xenobiotic organic
469	compounds or heavy metals in landfill leachate. Secondly, some findings may be used as in situ
470	indicators to support further research on conceptual and/or numerical models of this landfill, and
471	monitored natural attenuation, which was regarded a possible remediation strategy in landfills
472	(Bjerg et al., 2011).
473	Acknowledgments
473 474	Acknowledgments This research was supported financially by the following projects: the National Natural Sciences
473 474 475	Acknowledgments This research was supported financially by the following projects: the National Natural Sciences Foundation of China (no. 41371055), the Innovation and Application Research Fund of the Water
473 474 475 476	Acknowledgments This research was supported financially by the following projects: the National Natural Sciences Foundation of China (no. 41371055), the Innovation and Application Research Fund of the Water Sciences Department of Guangdong Province (2009–2011, 2014-2016), and the Fundamental
473 474 475 476 477	Acknowledgments This research was supported financially by the following projects: the National Natural Sciences Foundation of China (no. 41371055), the Innovation and Application Research Fund of the Water Sciences Department of Guangdong Province (2009–2011, 2014-2016), and the Fundamental Research Funds for the Central Universities (131gjc08, Sun Yatsen University). The authors thank
473 474 475 476 477 478	Acknowledgments This research was supported financially by the following projects: the National Natural Sciences Foundation of China (no. 41371055), the Innovation and Application Research Fund of the Water Sciences Department of Guangdong Province (2009–2011, 2014-2016), and the Fundamental Research Funds for the Central Universities (13lgjc08, Sun Yatsen University). The authors thank Dr Fajin Chen for his help in analyzing ¹⁵ N and ¹⁸ O–NO ₃ ⁻ , and Kate Bentsen (Chinese Research
473 474 475 476 477 478 479	Acknowledgments This research was supported financially by the following projects: the National Natural Sciences Foundation of China (no. 41371055), the Innovation and Application Research Fund of the Water Sciences Department of Guangdong Province (2009–2011, 2014-2016), and the Fundamental Research Funds for the Central Universities (131gjc08, Sun Yatsen University). The authors thank Dr Fajin Chen for his help in analyzing ¹⁵ N and ¹⁸ O–NO ₃ ⁻ , and Kate Bentsen (Chinese Research Academy of Environmental Science) for editing the manuscript for grammar. The authors also
473 474 475 476 477 478 479 480	Acknowledgments This research was supported financially by the following projects: the National Natural Sciences Foundation of China (no. 41371055), the Innovation and Application Research Fund of the Water Sciences Department of Guangdong Province (2009–2011, 2014-2016), and the Fundamental Research Funds for the Central Universities (131gjc08, Sun Yatsen University). The authors thank Dr Fajin Chen for his help in analyzing ¹⁵ N and ¹⁸ O–NO ₃ ⁻ , and Kate Bentsen (Chinese Research Academy of Environmental Science) for editing the manuscript for grammar. The authors also thank two anonymous reviewers for helpful comments.

482 References

483 1. Arora B, Mohanty BP, McGuire JT, Cozzarelli IM, 2013.Temporal dynamics of
484 biogeochemical processes at the Norman Landfill site. Water Resour. Res., 49: 6909–6926

	0
	0
	ň
	Π
÷.	
	\geq
1	
	Ο
	ă)
	Ö
	Q
	U
	0
	-
	2
	7
	2
	σ
	0
	X
	U
	U
	()
	~
	Q
	U
	0
	()
	5
	U
ł	
	U
	'
1	
	σ
	2
	Φ
	ž
	2
1	VIL
1	nvird

485	2.	Bengtsson L, Bendz D, Hogland W, Rosqvist H, Åkesson M, 1994. Water balance for
486		landfills of different age. Journal of Hydrology 158: 203-217
487	3.	Bjerg PL, Tuxen N, Reitzel LA, Albrechtsen H-J, Kjeldsen P, 2011. Natural attenuation
488		processes in landfill leachate plumes at three Danish sites. Ground Water 49: 688–705.
489	4.	Brun A, Engesgaard P, Christensen TH, Rosbjerg D, 2002. Modelling of transport and
490		biogeochemical processes in pollution plumes: Vejen landfill, Denmark. Journal of
491		Hydrology: 256: 228–247
492	5.	Burns DA, Kendall C, 2002. Analysis of $\delta^{15}N$ and $\delta^{18}O$ to differentiate NO_3^- sources in
493		runoff at two watersheds in the Catskill Mountains of New York. Water Resources Research
494		38: 9.1–9.11
495	6.	Carey RO, Hochmuth GJ, Martinez CJ, Boyer TH, Dukes MD, Toor GS, Cisar JL, 2013.
496		Evaluating nutrient impacts in urban watersheds: Challenges and research opportunities.
497		Environmental Pollution 173: 138-149
498	7.	Carlson MA, Lohse KA, McIntosh JC, McLain JET, 2011. Impacts of urbanization on
499		groundwater quality and recharge in a semi-arid alluvial basin. Journal of Hydrology 409:
500		196–211
501	8.	Chen FJ, Jia GD, Chen JY, 2009. Nitrate sources and watershed denitrification inferred from
502		nitrate dual isotopes in the Beijiang River, south China. Biogeochemistry 94: 163-174
503	9.	Chen JY, Tang CY, Sakura S, Yu JJ, Fukushima, Y, 2005. Nitrate pollution from agriculture in
504		different hydrogeological zones of the regional groundwater flow system in the North China
505		Plain. Hydrogeology Journal 13: 481–492
506	10.	Chen JY, Tang CY, Yu JJ, 2006. Use of ¹⁸ O, ² H and ¹⁵ N to identify nitrate contamination of

507		groundwater in a wastewater irrigated field near the city of Shijiazhuang, China. Journal of
508		Hydrology 326: 367–378
509	11.	Clark ID, Fritz P, 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca
510		Raton pp. 148–154 and 172–186
511	12.	Cozzarelli IM, Böhlke JK, Masoner J, Breit GN, Lorah MM, Tuttle MLW, Jaeschke JB , 2011.
512		Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma. Ground Water
513		49(5): 663–687
514	13.	Gonfiantini R, 1986. Environmental isotopes in lakes studies. In: Fritz P, Fontes JC (eds),
515		Handbook of Environmental Isotope Geochemistry, vol 2, The Terrestrial Environment, B.
516		Elsevier, Amsterdam, The Netherlands, 113–168
517	14.	Hai L, Liang B, Sui SM, 2009. Research on the laws of landfill leachate pollution in the
518		aquifer-Fuxin city landfill as an example. Geology of Chemical Minerals 31: 105-109
519		(Chinese)
520	15.	Heaton, THE, 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:
521		a review. Chemical Geology 59: 87–102
522	16.	Hosono T, Wang CH, Umezawa Y, Nakano T, Onodera S, Nagata T, Yoshimizu C, Tayasu I,
523		Taniguchi M, 2011. Multiple isotope (H, O, N, S and Sr) approach elucidates complex
524		pollution causes in the shallow groundwaters of the Taipei urban area. Journal of Hydrology

- **525 397**: **23-**36
- 526 17. Howard KWF, Eyles N, Livingstone S, 1996. Municipal landfilling practice and its impact on
- 527 groundwater resources in and around urban Toronto, Canada. Hydrogeology Journal 4: 64–79
- 528 18. Huang Q, Wang Q, Dong L, Xi B, Zhou B, 2006. The current situation of solid waste
- 529 management in China. Journal of Material Cycles and Waste Management 8: 63–69

530	19.	International Atomic Energy Agency (IAEA), 2003. GNIP-Global Network of Isotopes in
531		Precipitation. http://nds121.iaea.org/wiser/index.php
532	20.	Katz BG, Eberts SM, Kauffman LJ, 2011. Using Cl/Br ratios and other indicators to assess
533		potential impacts on groundwater quality from septic systems: a review and examples from
534		principal aquifers in the United States. Journal of Hydrology 397: 151-166
535	21.	Kendall C, McDonnell JJ (eds), 1998. Isotope Tracers in Catchment Hydrology, Elsevier
536		Science Publishers, 839pp
537	22.	Kjeldsen P, Christophersen M, 2001. Composition of leachate from old landfills in Denmark.
538		Waste Manage Res 19: 249–256
539	23.	Korom SF, 1992. Natural denitrification in the saturated zone: a review. Water Resources
540		Research 28: 1657–1668
541	24.	Lin L, Chan GYS, Jiang BL, Lan CY, 2007. Use of ammoniacal nitrogen tolerant microalgae
542		in landfill leachate treatment. Waste Management 27: 1376-1382
543	25.	Liu H, Liang Y, Zhang D, Wang C, Liang HC, Cai HS, 2010. Impact of MSW landfill on the
544		environmental contamination of phthalate esters. Waste Management 30: 1569-1576
545	26.	Lunau M, Voss M, Erickson M, Dziallas C, Casciotti K, Ducklow H, 2013. Excess nitrate
546		loads to coastal waters reduces nitrate removal efficiency: mechanism and implications for
547		coastal eutrophication. Environmental Microbiology 15(5):1492-1504
548	27.	Lu YT, Tang CY, Chen JY, Sakura Y, 2008. Impact of septic tank systems on local
549		groundwater quality and water supply in the Pearl River Delta, China: case study.
550		Hydrological Processes 22: 443–450
551	28.	Luo DG, Zhang HG, Liu QH, Su GC, Chen DY, 2009. Research on water environmental
		25

- 552 pollution effects of municipal solid waste landfill: a case study of Likeng landfill, Guangzhou. 553 Acta Scientiarum Naturalium Universitatis Pekinensis 45: 868–874 (Chinese) 29. Mariotti A, Landreau A, Simon B, 1988. ¹⁵N isotope biogeochemistry and natural 554 555 denitrification process in groundwater: application to the chalk aquifer of northern France. 556 Geochimica et Cosmochimica Acta 52: 1869-1978 557 30. Mayer B, Bollwerk SM, Mansfeldt T, Hütter B, Veizer J, 2001. The oxygen isotope 558 composition of nitrate generated by nitrification in acid forest floors. Geochimica et 559 Cosmochimica Acta 65: 2743–2756. doi:10.1016/S0016-7037(01)00612-3 560 31. Mikac N, Cosovic B, Ahel M, Andreis S, Toncic Z, 1998. Assessment of groundwater 561 contamination in the vicinity of municipal solid waste landfill (Zagreb, Croatia). Water 562 Science and Technology 37: 37-44 563 32. Milosevic N, Thomsen NI, Juhler RK, Albrechtsen HJ, Bjerg PL, 2012. Identification of 564 discharge zones and quantification of contaminant mass discharges into a local stream from a 565 landfill in a heterogeneous geologic setting. Journal of Hydrology 446-447: 13-23 566 33. North JC, Frew RD, Peake BM, 2004. The use of carbon and nitrogen isotope ratios to 567 identify landfill leachate contamination: Green Island Landfill, Dunedin, New Zealand. 568 Environment International 30: 631-637 569 34. Ogata A, 1970 Theory of dispersion in a granular medium, U.S. Geological Survey 570 Professional Paper 411-I, U.S. Government Printing Office, Washington, DC 571 35. Othman F, Eldin MEA, Mohamed I, 2012, Trend analysis of a tropical urban river water
- quality in Malaysia. Journal of Environmental Monitoring 14(12):3164-3173
- 573 36. Pierobon E, Castaldelli G, Mantovani S, Vincenzi F, Fano EA, 2013. Nitrogen Removal in

Environmental Science: Processes & Impacts

574		Vegetated and Unvegetated Drainage Ditches Impacted by Diffuse and nitrogen point
575		sources of pollution. Clean-Soil Air Water 41(1):24-31
576	37.	Rahim BEA, Yusoff I, Samsudin AR, Yaacob WZW, Rafek AGM, 2010. Deterioration of
577		groundwater quality in the vicinity of an active open-tipping site in West Malaysia.
578		Hydrogeology Journal 18: 997–1006
579	38.	Robertson WD, Van Stempvoort DR, Solomon DK, Homewood J, Brown SJ, Spoelstra J,
580		Schiff SL, 2013. Persistence of artificial sweeteners in a 15-year-old septic system plume.
581		Journal of Hydrology 477: 43–54
582	39.	Sadeq M, Moe CL, Attarassi B, Cherkaoui I, ElAouad R, Idrissi L, 2008. Drinking water nitrate
583		and prevalence of methemoglobinemia among infants and children aged 1-7 years in
584		Moroccan areas. International Journal of Hygiene and Environmental Health
585		211(5-6):546-554
586	40.	Sanjay SK, Ajay KK, Suyash K, Pawar NJ, 2010. Evaluating pollution potential of leachate
587		from landfill site, from the Pune metropolitan city and its impact on shallow basaltic aquifers.
588		Environ Monit Assess 162:327–346
589	41.	Scanlon BR, Jolly I, Sophocleous M, Zhang L, 2007. Global impacts of conversions from
590		natural to agricultural ecosystems on water resources: quantity versus quality. Water
591		Resources Research 43 doi:10.1029/2006WR005486
592	42.	Scholl, M.A., Christenson, S.C., Cozzarelli, I.M., Ferree, D., Jaeschke, J., 2005. Recharge
593		Processes in an Alluvial Aquifer Riparian Zone, Norman Landfill, Norman, Oklahoma,

- 594998–2000, Scientific Investigations Report 2004-5238, U.S. Geological Survey, 60pp
- 595 43. Silva SR, Ging PB, Lee RW, Ebbert JC, Tesoriero AJ, Inkpen EL, 2002. Forensic

- applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments.
- 597 Environmental Forensics 3: 125–130
- 598 44. Silva SR, Kendall C, Wilkison DH, Ziegler AC, Chang CCY, Avanzino RJ, 2000. A new
- 599 method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen
- 600 isotope ratios. Journal of Hydrology 228: 22–36
- 45. Slomp CP, Van Cappellen P, 2004. Nutrient inputs to the coastal ocean through submarine
- groundwater discharge: controls and potential impact. Journal of Hydrology 295: 64–86
- 46. Smolder AJP, Lucassen ECHET, Bobbink R, Roelofs JGM, Lamers LPM, 2010. How nitrate
- 604 leaching from agricultural lands provokes phosphate eutrophication in groundwater fed
 605 wetlands: the sulphur bridge. Biogeochemistry 98(1-3):1-7
- 606 47. Tian YJ, Yang H, Wu XJ, Li DT, 2005. Molecular analysis of microbial community in a
- 607 groundwater sample polluted by landfill leachate and seawater. Journal of Zhejiang
 608 University Sci B 6: 165–170
- 5
- 48. Wang GQ, Qin L, Li GX, Chen LJ, 2009. Landfill site selection using spatial information
- 610 technologies and AHP: A case study in Beijing, China. Journal of Environmental
 611 Management 90: 2414–2421
- 49. Yang WL, Liu L, Zhu RJ, 2010. Study on nitrogen contamination and its main form in
 groundwater around the refuse landfills of a city in north Jiangsu Province. Earth and
 Environment 38: 157–160 (Chinese)
- 50. Yang K, Zhou XN, Yan WA, Hang DR, Steinmann P, 2008. Landfills in Jiangsu Province,
- 616 China, and potential threats for public health: leachate appraisal and spatial analysis using
- 617 geographic information system and remote sensing. Waste Management 28: 2750–2757

÷	
ľ	
	\mathbf{O}
	0
	U)
1	Ο
	Ā
	Y.
1	
	0
	1
	X
	U
	Ò
	1
1	
	U
	X
	\mathbf{O}
	ð
	Š
	S S
	Se or l
	Ses & II
	sses & I
	SSSes & II
	esses & II
	cesses & II
	Cesses & II
	OCESSES & II
	rocesses & II
	rocesses & II
	Processes & II
	Processes & II
	: Processes & II
	e: Processes & II
	ce: Processes & II
	ICE: Processes & II
	nce: Processes & II
	ence: Processes & II
	Ience: Processes & II
	cience: Processes & II
	Clence: Processes & II
	Science: Processes & II
	Science: Processes & II
	Il Science: Processes & Il
	al Science: Processes & II
	tal Science: Processes & II
	ntal Science: Processes & II
	intal Science: Processes & II
	ental Science: Processes & II
	nental Science: Processes & II
	mental Science: Processes & II
	Imental Science: Processes & II
	nmental Science: Processes & II
	onmental Science: Processes & II
	onmental Science: Processes & II
	ronmental Science: Processes & II
	'Ironmental Science: Processes & II
	VIronmental Science: Processes & II
	NVIRONMENTAL SCIENCE: Processes & II

Ш.

618	51.	Zeng SQ, Chen JY, Fu CS, 2010. Application of environmental isotope in base flow
619		calculation for small coastal basin in Zhuhai. Journal of China Hydrology 30: 20-24
620		(Chinese)
621	52.	Zhao XF, 2008. Impacts of urbanization on groundwater environment: a case study in Zhuhai.
622		PhD thesis, Sun Yatsen University.
623	53.	Zheng Z, He PJ, Shao LM, Lee DJ, 2007. Phthalic acid esters in dissolved fractions of
624		landfill leachates, Water Research 41: 4696-4702
625	54.	Zhu L, Wang WL, Sun LM, 2005. Impact analysis of landfill in Jinan on the groundwater
626		environment. Journal of Shandong University of Architecture and Engineering 20: 46-50
627		(Chinese)
628		
629		
630		
631		
632		
633		
634		

635

Fig. 1 Change in the amount of domestic waste in China (1979–2011) and Guangzhou
(2001–2011). Data sources: Annual statistical data for urban construction in China in 2011
(www.bjinfobank.com).

639

640

Fig. 2 Monthly average rainfall in Guangzhou during the period of 1951–2008.

Fig. 3 Schematic location and map of sampling sites at Likeng landfill site. Potentiometric surface
with contour interval of 3 m was given for the data measured in 2007, indicating a general
groundwater flow to the north in this area.

647

Fig. 4 Average concentrations (mg/L) of major ions in seven wells during the three campaigns.

Fig. 5 Piper diagram for all water samples collected during the three campaigns. Evolution of

Fig. 6 Use of dual isotopes to identify various sources of nitrate..

Fig. 7 Relationship between δ^{18} O and δ D in water and local meteoric water line.

657 658

Fig. 8 Monthly pan evaporation during the period of 2001–2008 in Guangzhou.

660 Fig. 9 Relationship between δ^{15} N–NO₃⁻ and residual NO₃⁻ in Likeng landfill. Solid dots

661 indicate three sampling sites in the vegetable field with the same N source.

659

662

Fig. 10 Relationships of δ^{15} N (left) and NO₃⁻ (right) with Cl⁻, and their implication in identifying

Page 34 CT 9

⁶⁶⁴ N sources (dashed line to identify source X).

Environmental Science: Processes & Impacts

Fig. 11 Relationship between $\delta^{18}O-NO_3^-$ and Cl⁻. The cluster of wells 8, 9, and 10 can be clearly

669

665

667

identified.

Fig. 12 Use of the relationship between $\delta^{18}O-NO_3^-$ and $\delta^{18}O-H_2O$ to identify N sources and

670 relevant processes.

Environmental Science: Processes & Impacts

by using three boxes for various nitrate sources adopted from Silva et al. (2002).

Table 1 Heavy metals in the effluent and groundwater at well 1 in Likeng landfill in 2005

				-			-	
Items	Pb (µg/L)	Cd (µg/L)	Hg (μ g/L)	As (µg/L)	Fe (mg/L)	Mn (mg/L)	Al (mg/L)	Cr ⁺⁶ (mg/L)
Effluent	60.65	4.9	6.6	63	15.15	3.3	ND	0.06
Well 1	ND	ND	ND	1.85	0.15	0.19	0.21	0.012
Detection	0.01	0.001	0.06	0.06	0.03	0.01	0.1	0.004
limit								

Table 2 Basic information and major ions in the effluent from Likeng landfill in 2005

Basic data measured in situ				Major ions (mg/L)									
Т	pН	EC	ORP	DO	NO_3^-	Cl⁻	HCO ₃ ⁻	$\mathrm{SO_4}^{2^-}$	Na ⁺	$NH_4^+ - N$	\mathbf{K}^+	Mg^{2+}	Ca ²⁺
(°C)		(ms/m)	(mv)	(mg/L)									
13	8.56	3290	25	1.45	0	2333.7	22576.3	144.5	1879.7	1103	2025.5	1.7	39.5

	O_
1.0	_
	\mathbf{O}
	C)
	U
	()
	()
	\mathbf{O}
	0
	$\boldsymbol{\Omega}$
_	
	O
	\mathbf{O}
1.1	
	S
	S
	B
	SGS
	Ses
	SSeS
	SSGS
	esses
	Cesses
	Cesses
	Cesses
	ocesses
	rocesses
	rocesses
	LOCESSES
	Processes
	Processes
	: Processes
	e: Processes
	C: Processes
	ce: Processes
	ICe: Processes
	nce: Processes
	ince: Processes
	ence: Processes
	lence: Processes
	sience: Processes
	cience: Processes
	science: Processes
	Science: Processes
	Science: Processes
	I Science: Processes
	al Science: Processes
	al Science: Processes
	tal Science: Processes
	Ital Science: Processes
	ntal Science: Processes
	ental Science: Processes
	ental Science: Processes
	nental Science: Processes
	mental Science: Processes
	mental Science: Processes
	Imental Science: Processes
	nmental Science: Processes
	onmental Science: Processes
	onmental Science: Processes
	ronmental Science: Processes
	Ironmental Science: Processes
	/ironmental Science: Processes
	vironmental Science: Processes

السال

1 able 5 Summary of characteristics for the enfuence reported in China, Deminark, and the Office
--

C	o	C
n	n	n
~	-	-

States Landfill $NH_4^+ - N$ NO₃-N COD pН mg/L Five landfills in southern Jiangsu Province 4-860 226-4426 6.7-8.4 (Yang et al., 2008) 600-860 2800-5380 Shanghai (Zheng et al., 2007) 7.6 Hangzhou (Zheng et al., 2007) 1390-1760 4690-8100 6.9-8.1 Six landfills in Beijing (Li et al., 2008) 1100-2930 1690-8640 6.83-7.91 Likeng in Guangzhou (Lin et al., 2007: first 68.4 1046 1280 7.6 line; Luo et al., 2009: second line)* 72.2 950 759.6 7.23 Jinan (Zhu et al., 2005) 1012-1381 3775-6110 Landfill in northern Jiangsu Province (Yang 26.3-70.3 272-525 9357-17864 7.44-8.46 et al., 2010) Norman landfill in USA (Cozzarelli et al., < 0.05-2.7 209-650 6.6-7.0 2011) 106 old landfills in Denmark (Kjeldsen and 110 320 7.0 Christophersen, 2001)

*Effluent was collected from a pond, which was used to store wastewater afterphysical-chemical-biological treatment.

689

 NO_3^-

53.3

0.47

12.1

7.75

322

176

311

 HCO_3^-

52.4

42.4

39.5

46.6

52.5

39.0

67.2

Page	38	of	39
------	----	----	----

g the	period	d of 200	01–200	7 (ions	s in mg	/L)			
		r	n						
NO_2^-	Ca ²⁺	Mg ²⁺	Na ⁺	K^+	SiO_2				
2.08	44.2	22.7	1.50	47.0	4.0				
2.08	44.2	22.7	158	47.8	4.0				
ND	27.2	1.2	4.8	2.8	NO	_			
ND	11.4	2.3	20.05	2.2	5.7				
ND	11.7	2.3	19.4	2.3	5.2	_			
ND	111	35.2	158	38.4	4.2	_			
ND	73.8	25.1	83.4	9.7	5.5	_			
ND	112	27.9	168	13.4	4.9				
			20	05					
Т	ORP	Cl	NO ₃ ⁻	НСО	Ca ²⁺	Mg ²⁺	Na ⁺	K^+	$\mathrm{NH_4}^+$
(°C)	(mv)			3					
22.4	230	31.4	16.9	23.2	10.7	4.1	20.0	6.3	1.3
21.8	83	244.3	6.0	98.8	62.5	25.9	73.0	5.9	2.7
20.7	NO	13.3	3.4	18.9	4.9	1.8	11.7	1.3	0.4
20.6	281	17.7	8.2	31.7	12.2	1.9	16.5	1.9	0.4
19	255	251.0	226.1	11.0	96.5	28.9	151.6	37.1	4.8
17	291	241.0	187.0	12.2	124.7	34.7	148.5	13.7	3.8
17	270	209.3	1737	23.8	107.3	33.0	89.7	10.5	27

Table 4 Information and change	of chemical contents of sever	wells collected in three car	mpaigns during the	period of 2001–2007	(ions in mg/L)
Tueste : Internation una enange					(10110 111 1118/2)

ORP

(mv)

-19

-166

187

136

203

162

174

 Cl^{-}

318

36.6

22.8

21.6

341

198

314

Well no	2001															20	05											
	pН	EC	Т	ORP	Cl	NO ₃ ⁻	HCO ₃	Ca ²⁺	Mg ²⁺	Na ⁺	K^+	SiO ₂	pН	EC	Т	ORP	Cl	NO ₃ ⁻	HCO	Ca ²⁺	Mg^{2+}	Na ⁺	\mathbf{K}^+	NH4				
		(ms/	(°C)	(mv)			-							(ms/	(°C)	(mv)			3									
		m)												m)														
1	6.03	9.08	24.8	85	9.4	3.9	23.2	6.7	1.7	5.8	2.8	10.5	5.9	28.2	22.4	230	31.4	16.9	23.2	10.7	4.1	20.0	6.3	1.				
3	4.97	50.3	23.3	76	150.0	11.3	7.9	29.4	10.4	41.4	4.1	6.3	5.89	119.1	21.8	83	244.3	6.0	98.8	62.5	25.9	73.0	5.9	2.7				
5	6.17	21.1	21.6	254	25.1	7.4	29.3	13.8	1.8	12.8	2.4	4.3	5.56	11.95	20.7	NO	13.3	3.4	18.9	4.9	1.8	11.7	1.3	0.4				
6	6.09	9.64	24.2	51	9.5	6.2	37.2	8.9	1.8	7.2	1.4	9.6	5.88	17.75	20.6	281	17.7	8.2	31.7	12.2	1.9	16.5	1.9	0.4				
8	6.01	116.6	19.8	-95	193.7	288.8	37.2	97.4	24.8	72.1	12.6	5.0	5.28	170.3	19	255	251.0	226.1	11.0	96.5	28.9	151.6	37.1	4.8				
9	5.91	61.3	21.3	-102	94.8	160.3	41.5	54.4	16.2	31.0	6.9	5.3	5.05	208	17	291	241.0	187.0	12.2	124.7	34.7	148.5	13.7	3.8				
10	5.63	9.35	21.1	-114	9.6	14.3	15.9	6.4	1.5	6.0	3.0	7.9	5.51	133.5	17	270	209.3	173.7	23.8	107.3	33.0	89.7	10.5	2.				

ND: not detected (<0.1 mg/L); NO: data not available

Well

depth

50

31.25

7.4

21.58

6.45

1.48

4.25

(m

)

Water

depth

(m)

5.12

6.97

5.2

5.13

2.52

1.47

1.2

pН

6.63

8.29

6.83

7.1

5.8

6.22

5.31

EC

(ms/

m)

164.5

26.3

18.35

20.8

195

114.7

178.7

Т

(°C)

23.4

23.1

22.5

22.5

18.8

20.9

19.9

Latitude

23°16'20.6"

23°16'06.2"

23°16'25.4"

23°16'25.4"

23°16'18.6"

23°16'22.8"

23°16'15.7"

Well no

1

3

5

6

8

9

10

Longitude

113°20'15.9″

113°20'46.7"

113°20'27.4"

113°20'27.4"

113°20'07.7"

113°19'56.3"

113°19'59.6″

Environmental Impact Statement

Landfill and its relevant groundwater pollution is becoming a hotspot in China due to the rapid urbanization in the past 30 years. Nitrate pollution in groundwater associated with Likeng landfill of Guangzhou was investigated in three campaigns during a period of six years. Nitrogen sources, transformation and pertinent hydrological processes were integrated by using multiple evidences, e.g., stable isotopes of 180, D and 15N.