Energy & Environmental Science

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

ARTICLE TYPE

Material descriptors for predicting thermoelectric performance

Jun Yan^{*a*}, Prashun Gorai^{*a,b*}, Brenden Ortiz^{*a*}, Sam Miller^{*c*}, Scott A. Barnett^{*c*}, Thomas Mason^{*c*}, Vladan Stevanović^{*a,b*}, and Eric S. Toberer^{**a,b*}

Received Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

In the context of materials design and high-throughput computational searches for new thermoelectric materials, the need to compute electron and phonon transport properties renders direct assessment of the thermoelectric figure of merit (zT) for large numbers of compounds untenable. Here we develop a semi-empirical approach rooted in first-principles calculations that allows relatively simple computational assessment of the intrinsic bulk material properties which govern zT. These include carrier mobility, effective mass, and lattice thermal conductivity, which combine to form a semi-empirical metric (descriptor) termed β_{SE} . We assess the predictive power of β_{SE} against a range of known thermoelectric materials, as well as demonstrate its use in high-throughput screening for promising candidate materials.

Introduction

The rational design and discovery of new thermoelectric materials is limited by the need to accurately predict both the electron and phonon transport properties entering the thermoelectric figure of merit $(zT)^{1-4}$. While the desired properties inherent to good thermoelectric performance have been known for more than a century⁵, the design problem concerning optimum material structures and chemical compositions remains elusive. To this end, recent efforts have used high-throughput computations, focusing exclusively on the ground-state electronic structure of known materials, to identify potential thermoelectric materials could enable scalable solar-thermal electricity generation and a diverse range of applications involving waste heat capture or cogeneration⁹⁻¹¹.

To improve the large-scale computational screening and identification of materials, a computationallyaddressable metric (descriptor) that quantifies the full potential of materials for thermoelectric performance, including both electron and phonon transport, is required. In this work, we propose and validate a semi-empirical approach that is based on first-principles calculations and offers a relatively simple computational assessment of the intrinsic bulk material properties which govern zT. Our approach offers a bridge between ab-initio calculations and experiments by deriving semi-empirical relations for quantities that are nearly inaccessible to high-throughput computations such as carrier mobilities and lattice thermal conductivity. These material properties combine to form a quantitative semi-empirical descriptor β_{SE} . We demonstrate here the efficacy of β_{SE} in both predicting known thermoelectric materials, including those that are not used in developing the empirical relations for β_{SE} , and in high-throughput screening for new candidate materials.

The basis for the $\beta_{\rm SE}$ descriptor emerges from the thermoelectric figure of merit, zT, which depends on the Seebeck coefficient (α), electrical conductivity (σ) and the electronic and lattice components of the thermal conductivity κ_e and κ_L

$$zT = \frac{\alpha^2 \sigma T}{\kappa_e + \kappa_L}.$$
 (1)

Inspection of Eq. 1 reveals challenges associated with direct assessment of zT as it depends on both the electronic and vibrational properties, including scattering phenomena. Electronic correlations can further complicate the evaluation of electronic transport. As such, the search for new thermoelectric materials has traditionally been led by experiment and guided by a mixture of serendipity, intuition, and simple models.

The complexity of the problem is further compounded

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

 $[^]a$ Colorado School of Mines, Golden, CO, USA; E-mail: eto-berer@mines.edu

^b National Renewable Energy Laboratory, Golden, CO, USA.

^c Northwestern University, Evanston, IL, USA.

Energy & Environmental Science Accepted Manuscrip

by the fact that known good thermoelectric materials span a diverse chemical phase space as shown in Figure 1, which depicts $\sim 40,000$ known stoichiometric and crystalline solids from the Inorganic Crystal Structure Database¹² which possess anions from groups IV to VI. Two simple descriptors have been chosen to highlight this diversity: the extent of covalent character and the average atomic mass. Here, the covalent character is assessed via the standard deviation of the electronegativity of the constituent atoms. Known thermoelectric materials, such as PbTe, Bi_2Te_3 , $Yb_{14}MnSb_{11}$ and $Mg_2Si_{1-x}Sn_x$, identified by colored symbols, are found throughout this space. The better thermoelectric materials (with zT > 1) are generally found in the predominantly covalent heavy region of this plot. Figure 1 also highlights the enormous number of materials that have not been considered experimentally for thermoelectric performance. Many promising compounds remain to be discovered, preferably via efficient methods such as high-throughput computations. Alloys and metastable polymorphs offer further avenues for the discovery of new thermoelectric materials; such compounds have a particularly great need for computationally-driven searches due to their broad phase space.

Approaches to thermoelectric discovery

With such a diverse phase space, the need for highthroughput computationally-driven searches for thermoelectric materials is critical. The first broad attempt to search beyond a single structural class was conducted by Madsen, who considered 570 antimonides⁶. This work analyzed the ground-state electronic structure employing the constant relaxation time approximation (CRTA) for solving the electronic Boltzmann transport equations.¹³ As its name suggests, the CRTA treats the charge carrier relaxation time τ as an energy-independent term. In reality, an energy-dependent τ is expected for electronphonon scattering; nevertheless, the CRTA approach is mathematically attractive as it enables one to obtain a reduced power factor $(\alpha^2 \sigma / \tau)$ as a function of chemical potential simply from the electronic band structure. Within this approach however, the ranking of different materials based on the reduced power factor requires that τ is not only constant for a given material, but also does not vary significantly from one material to the other. Furthermore, calculations of dopant levels, electron or phonon scattering and the phonon band structure were not included in this work due to their high computational cost. This work, however, succeeded in identifying ntype LiZnSb as a promising thermoelectric due to fairly high band degeneracy; our subsequent experimental ef-

Fig. 1 Known compounds are extremely diverse, with a spectrum of electronegativity contrast and average atomic mass; thermoelectric materials (colored circles representing peak zT reported) have been discovered throughout this space. For clarity, only a subset of known thermoelectric compounds are shown.^{20,26–59}

forts agreed with these calculations within the experimentally accessible doping range¹⁴.

An alternative approach to addressing the scattering challenge has been proposed by *Curtarolo* and coworkers, who investigated ~2,500 compounds.⁸ The approach focuses on highly nanostructured materials by assuming that the bulk carrier mean free path is equal to or larger than the average grain size l. Therefore, if these structures are sufficiently fine-grained (~5 nm), grain boundary scattering will dominate charge carrier scattering. Electronic structure calculations can then provide a performance metric given by $\alpha^2 \sigma / l$. This metric can be used to compare predicted performance of different materials and sort promising candidates. Achieving high zT in this approach inherently requires large α , as the electronic mobility has been significantly reduced owing to enhanced grain boundary scattering.

On the other hand, rigorous calculations of electronphonon scattering rates have been recently considered for simple materials (e.g. GaAs, GaP, Si, Si_{1-x}Ge_x) and were found to agree well with experiments^{15–18}. Calculations of the vibrational properties and lattice thermal transport of individual materials have also seen significant advances^{19–25}. However, these calculations, although of desired accuracy, are typically materialdependent and are sufficiently expensive that highthroughput searches are unlikely to adopt such methods in the near future for structurally complex materials.

In an attempt to develop a tractable computational approach taking into account both k_L and the energy-

dependence of charge carrier scattering and that will allow screening of large, complex materials classes, we revisit simple descriptors for thermoelectric performance. Consideration of the Boltzmann transport equations within the relaxation time approximation yields an expression for zT,

$$zT = \frac{u\beta}{v\beta + 1},\tag{2}$$

where u and v are functions that depend strictly on the chemical potential (η) and charge carrier scattering mechanism, and β is a material-dependent parameter that is independent of charge carrier chemical potential^{60,61}. It is clear from inspection of Eq. 2 that large zT requires simultaneously maximizing β and optimizing η . β is defined as:

$$\beta = \left(\frac{k_B}{e}\right)^2 \frac{2e(k_B T)^{3/2} T}{(2\pi)^{3/2} \hbar^3} \frac{\mu_o m_{DOS}^{*3/2}}{\kappa_L} \tag{3}$$

where μ_o is the intrinsic charge carrier mobility and m^*_{DOS} is the density of states effective mass. In SI units, this expression simplifies to:

$$\beta = 5.745 \times 10^{-6} \ \frac{\mu_o \left(m_{DOS}^*/m_e\right)^{3/2}}{\kappa_L} T^{5/2} \qquad (4)$$

Under the assumption that optimal η can be achieved, β is helpful in assessing the maximal zT achievable in a given material. In practice, most thermoelectric materials are optimized when η is close to the band edge, yielding an optimum carrier concentration near 10^{19} - 10^{20} cm⁻³.^{62,63}

Predictive power of β

The efficacy of β in predicting zT can be assessed from prior experimental studies. We focus on compounds in which significant efforts have been undertaken to optimize carrier concentration, thus maximizing u/v and thereby zT for a given β . The magnitude of β is estimated from 300 K measurements, due to the dearth of high temperature mobility measurements in the literature. Further, if β_{300K} can be shown to be useful in predicting zT, such a result should be applicable to experimental screening of material libraries (e.g. spatially graded alloy films).^{76,77}

In Fig. 2, we show a strong correlation between $\beta_{300K}^{1/2}$ at 300 K with the z corresponding to the the peak zT for 31 compounds.* The emphasis on z, rather than zT,

Fig. 2 Room temperature experimental measurements of β show a fairly good correlation with z at peak zT across a diverse range of compounds, despite differences in peak temperature. β_{300K} obtained using Eq. 4 and associated transport measurements from the literature. $^{26-50,54,64-75}$

facilitates comparison of materials with different band gaps and peak temperatures. To achieve zT near unity at room temperature, thereby competing with Bi₂Te₃ for Peltier cooling applications, a z of ~ 0.003 K⁻¹ is required. Achieving a zT of 3 at 1000 K would enable high efficiency solid state heat engines; again a z of ~ 0.003 K^{-1} is required. The similar T dependence of μ and κ_L and minimal T dependence of m^*_{DOS} helps maintain a fairly temperature-independent description of β . The material set considered is heavily weighted towards known thermoelectric materials, due to the requirement of carrier concentration optimization and high temperature property measurements. It is expected that most semiconductors will demonstrate experimental β that is far lower than the β values shown in Figure 2. It is important to note that a separate β can be defined for e^- and h^+ conduction. β values shown in Figure 2 correspond to the known carrier types for each of the compounds.

Semi-empirical description of β : Theory and model development

In the following section, we build the semi-empirical models for the room temperature μ_o and κ_L by combining standard DFT calculations, available experimental values (at 300 K) and classical scattering theory. These models serve to develop the semi-empirical approach to

^{*} From solution to the Boltzmann transport equation within the relaxation time approximation (acoustic phonon-dominated), one finds that zT approximately scales as $\beta^{1/2}$ for a given temperature and an optimized η . Note that the optimum values for u and v depend on the magnitude of β and are adjusted via η .

 β_{300K} , which we denote by β_{SE} .

$$\beta_{\rm SE} \propto \frac{\mu_o \left(m_{DOS}^*/m_e\right)^{3/2}}{\kappa_L} \tag{5}$$

We also demonstrate that $\beta_{\rm SE}$ is equally predictive as β_{300K} , and can be used for *a priori* assessment of the potential of a material for thermoelectric applications, especially when critical parameters such as carrier mobility and thermal conductivity is not known.

Mobility

In the simplest approach to mobility, the charge carrier relaxation time (τ_e) is constant and $\mu_o = e\tau_e/m_b^*$, where m_b^* is the band effective mass. In this approximation, $\beta \propto m_b^{*1/2}$, suggesting that high band mass is desirable. However, a more nuanced view of τ_e finds that this proportionality is misleading.⁷⁸

At room temperature and above, one would expect a combination of acoustic and optical phonons to dominate charge carrier scattering, which is consistent with the $\mu \propto T^{-1.5}$ observed experimentally at high temperature in thermoelectric materials and classic semiconductors.^{26,45,47,79} Four distinct electron-phonon scattering mechanisms are known to be of importance in semiconductors: (i) acoustic deformation potential scattering (*ii*), optical deformation potential scattering (*iii*), polar optical phonon scattering, and (iv) piezoelectric scattering. Depending on the details of the electronic structure as well as of the phonon dispersion some of these mechanisms can contribute to both the intra- and the inter-valley scattering events. Because the piezoelectric scattering contributes at relatively low temperatures ^{79,80} we focus our discussion on the two deformation potentials and the polar optical phonon scattering mechanisms. These are, generally speaking, a consequence of the fact that phonons displace the ions in a crystal, thereby introducing changes in the dispersion of the electronic bands, which are described by the deformation potentials. In noncentrosymmetric crystals, phonons may also perturb the dipole moment between the atoms leading to a nonzero polarization of the material and induced fields. As such, the electron-phonon scattering mechanisms depend critically on the elastic properties of the material. For example, the following relation for the relaxation time associated with the acoustic deformation potential scattering can be shown to hold: $\tau \propto \frac{C_{ll}}{m_{\star}^{*3/2} \Xi^2}$, where C_{ll} is the elastic constant for longitudinal vibrations and Ξ is the deformation potential of the relevant band edge. In addition, all of the discussed relaxation times depend inversely on the electronic DOS, which in the parabolic

10² **SrTiO** 10¹ CuAlØ 10⁰ 10⁰ 10^{2} 10^{3} 10⁴ 10^{1} Experimental μ (cm² V⁻¹ s⁻¹) Fig. 3 The semi-empirical model of mobility is generally predictive within half an order of magnitude (dashed lines)

from experimental values. Experimentally measured mobility values at 300K show a significant spread in the literature for any given material (single crystals are unmarked, polycrystalline ingots are denote with \times). Experimental mobility data (in orange for holes and in blue for electrons)

are found in the Supplementary Information.

band approximation implies $(m_h^*)^{-3/2}$ dependence of τ on the band effective mass.

Motivated by these general features of the electronphonon scattering mechanisms and taking into account the reciprocal additivity of the relaxation times (Matthiessen's Rule), we postulate the model for the carrier mobility as the combination of bulk modulus (B), describing the elastic properties of materials, and m_b^* in the following way:

$$\mu_o = A_o(B)^s (m_b^*)^{-t}, \tag{6}$$

where A_o , s and t are empirical parameters, which, as we show, provide a reasonable approximation for the mobility of band conductors (Eq.6). The bulk modulus and m_h^* in Eq. 6 represent the DFT calculated values with band effective mass derived from the DOS effective mass and the band degeneracy (N_b) using $m_{DOS}^{*3/2} = N_b m_b^{*3/2}$. This expression for m_b^* is, strictly speaking, valid for symmetry-equivalent and isotropic (spherical) hole pockets/electron valleys.⁶¹ However, these assumptions facilitate the calculations as they eliminate the need for fitting the curvature of the individual bands: rather, they simply require a sufficiently fine k-point mesh to (a) obtain the DOS and (b) accurately identify how many band extrema contribute to the band edge (See the methods section for the detailed description of the computational procedure). The band degeneracy algorithm was applied to 412 compounds to assess the effectiveness of determining

 N_b across a broad range of compounds.

To test the validity of our model and to derive empirical values for A_o , s, and t, we performed an extensive literature survey for the measured values for the carrier mobilities for both holes and electrons. The Supplemental Information provides the values employed. The resulting experimental dataset is shown in Fig. 3, this comprises 31 materials from the literature including oxides, standard main-group semiconductors and other thermoelectric materials (full list provided in the supplementary section). The β parameter utilizes the intrinsic (non-degenerate) mobility μ_o ; care was taken to determine μ_o from the literature when possible. This sample set is biased toward predominantly band conductor materials for two main reasons: (i) availability of experimental data and (ii) the hopping carrier transport implies heavy effective masses and potentially correlated electronic electronic behavior that is not well-described by β .

Electronic properties and bulk modulus were calculated for these 31 compounds to test our model. For these calculations, we only considered stoichiometric compounds; as such, only some of the materials from Fig. 2 are included in this "learning set". Figure 3 shows the experimentally measured carrier mobility at room temperature for our "learning set" of compounds against the modeled value using Eq. 6 with s = 1 and t = 2.5. The exponents s and t prove to be consistent with the classic scattering theories as discussed previously. The same prefactor, A_0 , is used for both carrier types (h^+ and e^{-}). The experimental mobility for every material in Fig. 3 is represented with a horizontal line spanning the range of values that can be found in the literature. All the experimental values correspond to room temperature mobilities and special attention is paid to distinguish single crystal data from the mobilities measured in polycrystalline samples. As evident from Fig. 3 a very simple model defined by Eq. 6 is able to reproduce measured mobilities within a half an order of magnitude (dashed lines), which is typical of the deviation found in the experimental data. The band effective mass and the bulk modulus appearing in Eq. 6 are quantities readily accessible to the standard DFT calculations and at a relatively low computational cost, enabling a simple computational assessment of a quantity as complex as charge carrier mobility. By using a single scalar quantity such as bulk modulus to describe the elastic properties of materials, we were able to circumvent relatively complex and computationally costly calculations of the electron-phonon coupling constants. This allows a quantitative and computationallytractable approach to predict carrier mobilities that can be applied efficiently in high-throughput screening.

Lattice thermal conductivity

Fig. 4 Experimentally measured lattice thermal conductivities at 300 K can be predicted from ground-state DFT calculations and associated semi-empirical model. Dashed lines represent half an order of magnitude deviation from experimental values. Experimental κ_L data is found in the Supplementary Information.

We have previously shown⁸¹ that κ_L can be modeled using simple descriptors for the acoustic and optical phonon modes. Specifically, with the known crystal structure data and experimental measurements of the speed of sound and Grüneisen parameter (γ), one can predict thermal conductivity within a factor of two for a broad range of compounds (e.g. *d*-Si to Yb₁₄MnSb₁₁; where the number of atoms in the primitive unit cell ranges from 2 to 104). We adopt a similar approach to derive an expression for κ_L using DFT calculations.

Acoustic phonons are generally the dominant modes within κ_L and can be approximated using a simplified Debye-Callaway model.⁸² Using the high temperature limit for the heat capacity and the assumption that Umk-lapp scattering is the dominant scattering source, we have previously shown⁸¹ the following expression can be obtained,

$$\kappa_{L,ac} = \frac{(6\pi^2)^{2/3}}{4\pi^2} \frac{\bar{M}v_s^3}{TV^{2/3}\gamma^2 n^{1/3}} \tag{7}$$

where \overline{M} is the average atomic mass, V is the average volume per atom, v_s speed of sound, and n is the number of atoms in the primitive cell. The speed of sound depends on the bulk modulus B, shear modulus G and density. In this first iteration, we simply consider B and d and employ the approximation $v_s \simeq \sqrt{\frac{B}{d}}$. Values for

 V, \bar{M} , and n can be obtained from the structural data associated with the compound.

The optical phonon modes cannot be entirely neglected, otherwise κ_L in complex, large *n* materials will asymptote to a null value and lead to an overestimation of β . Treating the optical modes using the minimum thermal conductivity limit, where the mean free path *l* is half a phonon wavelength⁸³, yields a minimum optical contribution at high temperature given by

$$\kappa_{L,op} = \frac{3k_b v_s}{2V^{2/3}} \left(\frac{\pi}{6}\right)^{1/3} \left(1 - \frac{1}{n^{2/3}}\right) \tag{8}$$

and can be considered in sum with $\kappa_{L,ac}$ to obtain κ_L . In the limit of *n* diverging to infinity (i.e. an amorphous material), one recovers a κ_L that is determined by v_s and V.

Together, $\kappa_{L,ac}$ and $\kappa_{L,op}$ provide a general expression for κ_L that can be obtained from ground-state calculations:

$$\kappa_L = A_1 \frac{\bar{M} v_s^3}{V^{2/3} n^{1/3}} + A_2 \frac{v_s}{V^{2/3}} \left(1 - \frac{1}{n^{2/3}} \right) \tag{9}$$

where A_1 and A_2 are fitted parameters. Here, γ has been incorporated into A_1 as a material-independent quantity. In practice, γ varies from approximately 0.5-3 in most materials and will contribute approximately an order of magnitude scatter to the modeled κ_L .

Figure 4 shows the predicted $\kappa_{L,ac} + \kappa_{L,op}$ against experimental measurements of 45 compounds. Experimental values were obtained from the literature and include nearly all compounds from Figure 3. Here, the only fitted parameters are the prefactors A_1 and A_2 (See Supplementary Information). The model is predictive within one order of magnitude across four orders of magnitude of experimental data. For comparison, we previously found Eq. 9 to be predictive within a factor of two if experimental values are used (including the Grüneisen parameter).⁸¹

$\beta_{\rm SE}$ predicts thermoelectric performance

In Figure 5 we demonstrate the predictive capability of $\beta_{\rm SE}$ through comparison with known thermoelectric materials that have experimentally optimized doping levels. Details of the $\beta_{\rm SE}$ calculation can be found in the Methods sections. Figure 5 shows that $\beta_{\rm SE}$ is predictive of the experimental z at the peak zT for optimally doped samples. Here, we have normalized the $\beta_{\rm SE}$ of each carrier type to PbTe for clarity. It is important to note that no predictions for any compounds are dramatically false-negative or false-positive. Furthermore, it can be seen

Fig. 5 $\beta_{\rm SE}$ calculated via DFT is a robust predictor of a material's intrinsic thermoelectric properties, here parameterized by the experimental z obtained at the peak zT. $\beta_{\rm SE}$ normalized to PbTe for comparison.

that the DFT-based β_{SE} is nearly as predictive as the experimental β_{300K} shown in Figure 2. Further, the real power of β_{SE} is that it only requires relatively simple and computationally inexpensive density functional calculations. Such success provides a promising path forward for high throughput screening of known and hypothetical materials for their thermoelectric performance.

Next, we apply $\beta_{\rm SE}$ in exploring the potential of known materials from the ICSD database¹² for good thermoelectric performance. Figure 6 shows the scatter plot of 402 compounds (non-oxides) from the ICSD with 10 or less atoms in the primitive unit cell and a nonzero DFT/GGA band gap[†]. Each material is represented with a circle, the diameter of which is proportional to $\beta_{\rm SE}$. The $\beta_{\rm SE}$ value is assessed against the carrier mobility (y-axis), lattice thermal conductivity (x-axis) and the band degeneracy (color code).

[†]In this study we include 10 oxide materials ranging from poorly conductive transition-metal oxides (CoO, Fe₂O₃, MnO, NiO, and VO₂) to main-group oxides which are known semiconductor materials (Bi₂O₃, Cu₂O, SnO₂, ZnO).

Fig. 6 Estimated β_{SE} for 412 semiconductors, represented via circle diameter for both (a) conduction and (b) valence band transport. Band degeneracy N_b increases across the color spectrum. In (a), PbS, PbSe, and PbTe are found in green below KSnSb. Source data can be found in the Supplementary Information.

Figure 6 finds good agreement between large $\beta_{\rm SE}$ and known thermoelectric compounds; the classic rock salt thermoelectric materials with high zT are wellrepresented (PbS, PbSe, PbTe). As expected, the majority of materials from our set appear to have relatively small $\beta_{\rm SE}$ value. Additionally, compounds which exhibit high $\beta_{\rm SE}$ are concentrated predominantly in the region with $\kappa_L \leq 10$ W m⁻¹ K⁻¹ and $\mu \geq 100$ cm² V⁻¹ S⁻¹ for both carrier types. Interestingly, the band degeneracy value is not strongly deterministic of ultimate $\beta_{\rm SE}$. As is evident from Fig. 6, the fraction of compounds with simultaneously low $\beta_{\rm SE}$ value and relatively high N_b is quite large. Ultimately, $\beta_{\rm SE}$ requires the delicate balance of many inter-dependent material properties.

Another interesting feature of the data shown in Fig. 6 is that $\beta_{\rm SE}$ yields no cases which have both extremely low κ_L (below 1 W/mK) and high μ (above 100 cm²/Vs). This is also true for the coexistence of relatively high κ_L (above 10 W/mK) and low μ (below 1 cm²/Vs). This

highlights the correlation between the electron-phonon and phonon-phonon scattering rates existing within the considered set of materials[‡]. The correlation follows from the classic scattering theory that we used to develop our approach, outlined in the previous sections. For systems with relatively small number of atoms in a unit cell, low κ_L typically arises from relatively low speeds of sound, which is a typical feature of low bulk modulus (i.e. soft) systems. From Eq. 6 it follows that soft systems are prone to having low carrier mobilities. Therefore, the analysis based on the $\beta_{\rm SE}$ descriptor indicates the existence of an optimal range for *B* that appears to be particularly suitable for good thermoelectric performance.

This initial exploration of the ICSD material space suggests several other compounds that may be worth further investigation. For example, $Cu_2CdGeTe_4$ and KSnSb (Figure 6a) are valence precise semiconductors where a combination of low m^* and low B leads to the potential for high thermoelectric performance if they can be rendered *n*-type. Recently, *p*-type $Cu_2CdSnSe_4$ and related alloys have exhibited peak zTs approaching unity; *n*-type β_{SE} of Cu₂CdGeTe₄ is a factor of 10 higher than the corresponding *p*-type $\beta_{\rm SE}$, suggesting *n*-type doping is worth pursuing. The Zintl compound⁸⁴ KSnSb possesses polyanionic layers separated by K⁺ ions; here the isotropic assumption of β_{SE} may coarsely approximate the behavior of a polycrystalline sample. High band degeneracy in $AgAsSe_2$ (Figure 6b) and $AgBiTe_2$ is also found to yield large $\beta_{\rm SE}$ values. These compounds have an ordered rock salt structure and are similar to AgSbTe₂, a component of the thermoelectric alloy TAGS (GeTe- $AgSbTe_2$).

Testing β_{SE} : Case studies

To highlight the key features and challenges with $\beta_{\rm SE}$, we next turn our discussion to the properties of known thermoelectric materials: PbTe and Mg₂Si from our learning set, two SnSe phases (*Pnma* and *CmCm*), and Sr₃GaSb₃. All of these compounds are known to be reasonably good thermoelectric materials^{20,43,85}, with the *Cmcm* phase of SnSe exhibiting particularly high *zT*. Consistent with these experimental observations, we find that all of these materials exhibit large $\beta_{\rm SE}$.

[‡] The restriction to small n in this set of compounds limits the role that complexity can play in decoupling κ_L and μ .

Energy & Environmental Science Accepted Manuscript

Fig. 7 Electronic band structures of (a) PbTe $(Fm\bar{3}m)$, (b) Mg₂Si $(Fm\bar{3}m)$. Energy window of 100 meV from the band edges are indicated by horizontal bars to highlight the band degeneracy.

PbTe: As a case study, PbTe provides an excellent example concerning the temperature dependence of electronic band structure, the role of band gap in these calculations, and the challenge associated with using a semi-empirical approach to assess the phonon scattering rate.

The DFT band structure of rocksalt PbTe is shown in Fig. 7a. Consistent with prior calculations, both band edges have extrema located at the L point, yielding an N_b of 4 from the band degeneracy algorithm.⁸⁶ Prior experimental work suggests that the band edges shift significantly at higher temperatures; this leads to the valence band extrema along $\Gamma - K$ contributing additional highdegeneracy conduction channels when optimally alloyed with Se on the Te site.^{87,88} This improvement can be seen in Fig. 2, where 300 K experimental measurements underestimate the ultimate performance achievable in ptype PbTe at high temperature. Here, those extrema are just below the 100 meV energy window employed herein. To target materials with the potential for extremely large N_b , the energy window may be widened to account for temperature-dependent effects and the potential for the tuning of band energies through alloying. Neither temperature-induced changes in the band structure nor alloying can currently be addressed using high throughput first principles calculations; such developments would dramatically widen the phase space to which the $\beta_{\rm SE}$ approach could be applied.

The magnitude or character of the band gap (E_q) does not enter β_{SE} ; this approach is thus insensitive to errors in E_q . The band gap, however, influences the dopability and the maximum temperature of good thermoelectric performance (limited by minority carrier activation and associated degradation in thermoelectric performance). In PbTe, the calculated E_q of 0.79 eV is overestimated compared to experiments due to the neglect of spin-orbit coupling in the calculation 89 . In the future, one could envision employing more accurate electronic structure methods such as many-body GW in combination with spin-orbit coupling 90 to better estimate a maximum achievable zT; such an approach could consider the minority and majority carrier transport properties $(m_{DOS}^*$ and semi-empirical approximation of μ for each carrier type) and the magnitude of E_g .

It is well known that PbTe has extremely low κ_L (~2.3 W m⁻¹ K⁻¹ at 300 K); the sources for this has been attributed to: (i) the presence of soft, anharmonic bonding and heavy constituents, (ii) local symmetry breaking, and (iii) an unusual phonon dispersion that together lead to enhanced phonon-phonon coupling and Umklapp scattering opportunities.^{33,91-94} The impact of these exotic scattering sources on the semi-empirical model's accuracy can thus be assessed.[§] The resulting modeled κ_L is 6 W m⁻¹ K⁻¹, higher than experiment due to the strong scattering in PbTe[¶]. Nevertheless, the difference is less than a factor of three in κ_L and suggests that the predictive power of $\beta_{\rm SE}$ is not precluded by variations in scattering rates.

Calculated values of $\beta_{\rm SE}$ predict that both *n* and *p*-type PbTe should be a good thermoelectric material, consistent with the existing literature ^{30–33,87}. For both carrier types, the source of this high *zT* arises from small m_b^* , medium N_b and low *B* and the ability to dope PbTe to the optimum compositions required to harness its large β .

 Mg_2Si : As a case study, Mg_2Si highlights a broad challenge within high-throughput searches for thermoelectric materials: the role of dopants on the ultimate performance. Overall, good agreement between the semi-empirical and experimental values for μ_o , κ_L and B is

[§] While PbTe was part of the κ_L learning set, it can be removed without changing the fit in coefficients A_1 and A_2 .

[¶] Good agreement between the calculated and experimental B of PbTe (38.3 and 39 GPa⁹⁵, respectively) suggests the phonon velocities are approximated reasonably well.

Fig. 8 Orthorhombic cells of SnSe with polymorph (a) *Pnma* and (d) *Cmcm.* The band extrema for the two structures are highlighted within the respective Brillouin zones using orange and green circles for valence and conduction band extrema, respectively. For clarity, the symmetry-equivalent extrema are not shown. The associated electronic band structures are shown in the region of the band extrema as well as the associated 100 meV window from the band edge.

found for Mg₂Si. However, Figure 5 shows that optimized Mg₂Si is a better thermoelectric material than predicted by β_{SE} . The source of this discrepancy arises from Bi doping on the Si site and the associated impact on transport properties. The above calculations and associated experimental comparison use the intrinsic semiconducting limit; however, optimized zT occurs at degenerate doping levels, which requires significant Bi doping. The large mass contrast associated with Bi doping lowers κ_L by approximately 25% without becoming a significant source of charge carrier scattering. Additionally, the electronic band structure of Mg_2Si (Fig. 7(b)) has nested conduction bands at X, with the upper band $\sim 250 \,\mathrm{meV}$ above the band edge. Consistent with this band structure, analysis of the measured Seebeck coefficient using the single parabolic band model suggests a small increase in m^*_{DOS} both with increasing temperature and doping level 43. However, the impact of this electronic effect on zT is small compared to the effect of Bi doping on phonon scattering rates. Mg₂Si highlights the challenge of studying heavily-doped semiconductors where dopant effects may be significant and potentially advantageous.⁹⁶

SnSe: The high-temperature CmCm phase of SnSe, which is intrinsically *p*-type doped, has been reported to be a good TE material.²⁰ A high zT of 2.3 - 2.6 is found along the shorter lattice vectors while a much lower zT of 0.8 is found along the longer crystal axis. The Cmcm phase transforms to the Pnma phase below ~750 K, accompanied by a corresponding 50% decrease in the value

of zT. The samples studied in Ref. ²⁰, although *p*-type, were not intentionally doped, yielding extremely resistive samples where η was not optimized. We therefore focus on the individual transport properties rather than $\beta_{\rm SE}$'s agreement with these experimental results.

Lattice thermal conductivities in the range 0.5-1.8 W m⁻¹ K⁻¹ were measured at 300 K; κ_L decreases gradually with increasing temperature. This broad range of values arises from the anisotropic transport inherent in SnSe. From the semi-empirical model developed above, we predict a κ_L of 2.8 W m⁻¹ K⁻¹ at 300K; this overestimation reflects the unusually high anharmonicity (and thus phonon-phonon scattering) found in SnSe compared to the materials utilized in the semi-empirical fit.

The band structure of both SnSe phases are plotted in Fig. 8, in agreement with previous calculations²⁰. The high temperature phase has a band degeneracy of 8 and extremely light, parabolic valence band edge, with m_b^* of $0.08 m_e$. In contrast, the low temperature phase has a more complicated valence band edge, highlighted in Fig. 8c. An anti-crossing between two bands along $\Gamma - Z$ has led to a highly non-parabolic band edge and significantly reduced carrier velocities. This low carrier velocity is captured in the algorithm employed herein; the large DOS near the band edge leads to a m_b^* of 0.4 m_e . The band degeneracy algorithm yielded a overall N_b of 2. In the prior experimental study of SnSe, a massive decrease in carrier mobility is observed upon the phase transition to the low temperature phase in these lightly-doped sam-

This journal is © The Royal Society of Chemistry [year]

Fig. 9 a) Sr_3GaSb_3 is a Zintl compound built out of polyanionic GaSb₃ chains. The valence and conduction band maxima are shown (b) within the Brillouin zone as colored circles and (c) as a function of energy along $\Gamma - Z$ with 100 meV windows from the band edge highlighted by orange and green bars.

ples. Such a result is consistent with the anti-crossing inducing low carrier velocities in the room temperature phase and extremely light holes in the high temperature phase.

In concert, $\beta_{\rm SE}$ for the valence band edges of these two polymorphs is in good qualitative agreement with experiment, albeit neither phase has been optimized for carrier concentration. Consistent with experimental results, the *Cmcm* phase has a *p*-type $\beta_{\rm SE}$ which is twenty times greater than that of the *Pnma* phase (recall $zT \propto \sqrt{\beta}$ at a given temperature). The *n*-type $\beta_{\rm SE}$ of the *Pnma* phase is also quite large; this suggests excellent thermoelectric performance near room temperature potentially could be achieved if SnSe can be *n*-type doped. Both these cases of high $\beta_{\rm SE}$ are driven by very light m_b^* coupled with low κ_L and high band degeneracy in the case of the *Cmcm* phase.

Sr₃**GaSb**₃: While traditional thermoelectric materials have fairly simple structures (e.g. $Si_{1-x}Ge_x$, PbTe, Bi_2Te_3), many of the the recently discovered thermoelectric materials have dozens of atoms in their primitive cells. 26,42,68,72 It is therefore critical to consider the application of this semi-empirical model to complex semiconductors. One recent thermoelectric material is Sr_3GaSb_3 , which has 56 atoms in its primitive cell and a complex polyanionic chain structure. ⁴¹ To date, Sr_3GaSb_3 has a maximum zT of 0.9 at 1000 K when *p*-type doped with

 Zn^{2+} on the Ga³⁺ site. The source of this high zT arises from the low κ_L , moderate μ , and fairly large m^*_{DOS} (1.2 W m⁻¹ K⁻¹, 30 cm² V⁻¹ s⁻¹, 0.9 m_e , respectively). With the 100 meV window utilized here, a valence band degeneracy of 3 is obtained, consistent with prior calculations. The calculated bulk modulus of 34 GPa is reasonably consistent with the experimental value of 39 GPa obtained from speed of sound measurements on polycrystalline disks.⁴¹

The valence band m_{DOS}^* is calculated to be $0.4 m_e$ from DOS parameterization; approximately half the value obtained through analysis of the experimental Seebeck coefficient. Using the semi-empirical approach to μ developed above, a room temperature value of 85 cm² V⁻¹ s⁻¹ is predicted for polycrystalline samples. Deviations from experiment can be attributed to (i) the reduced band mass compared to experiment and (ii) the observation of significant carrier activation in polycrystalline Sr₃GaSb₃ near room temperature. Extrapolating the high temperature, phonon-dominated mobility back to room temperature suggests a value of ~60 cm² V⁻¹ s⁻¹ if a phase-pure sample could be obtained experimentally.

Concerning κ_L , the experimental result of 1.2 W m⁻¹ K⁻¹ is a factor of two smaller than the semi-empirical value. A reduced κ_L may result from secondary contamination, as observed in the μ measurements. Additionally, the mode Grüneisen parameter in such complicated structures may be larger than the average value in the learning dataset. In concert, the semi-empirical model predicts transport properties for Sr₃GaSb₃ that are in good agreement with experimental measurements; such results bode well for initial estimations of the thermo-electric performance of complex materials.

Conclusions

As we expand our search for thermoelectric materials to complex systems with dozens of atoms in the unit cell, we reach the edge of chemical intuition. This is particularly true for properties that emerge from reciprocal space, such as electronic and phonon structure and scattering phenomena. The development of a computationally tractable model of thermoelectric performance that takes into account both the electronic structure properties and the lattice thermal conductivity is thus essential for high-throughput computational screening of materials.

We have herein developed such a model using classical transport theory. To overcome the computationally expensive electron and phonon scattering rates required to predict zT, experimental data have been used to develop a semi-empirical model that only requires groundstate calculations. The efficacy of this model was assessed against known thermoelectric materials and was found to be predictive of z_{peak} within a factor of approximately two. The success of this model suggests the potential for high-throughput down-selection from within collections of materials using this ground-state approach. Such down-selection is critical for focusing computational and experimental resources on the most promising materials.

Acknowledgments

We acknowledge support from the NSF DMR program, Grant No. 1334713 and 1333335. The use of NREL's computing resources is gratefully acknowledged.

Methods

Electronic structure: DFT calculations are performed using the VASP code⁹⁷, in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE)⁹⁸ within the projector augmented wave (PAW) formalism.⁹⁹ For the initial volume, cell shape and atomic relaxations we employed similar numerical approach (pseudopotentials, cutoffs, k-point mesh) as the one described in more detail in Ref. 100. The electrostatic Hubbard U correction is applied in cases where transition elements are present. The rotationally-invariant approach to the DFT+U introduced by Dudarev et al. is adopted.¹⁰¹

Spin degrees of freedom were treated explicitly for structures containing transition metal elements. For each material containing magnetic elements, we performed a limited search for the ground state magnetic configuration on a primitive unit cell initializing magnetic moments in five different ways: the non-spin-polarized, two ferro-magnetic initialization with low and high spin values, two additional calculations with random initialization of the spin orientations again starting from low and high spin values. The lowest energy spin configuration was selected as a representative for computing electronic structure properties of interest.

For the subsequent DOS, band degeneracy, and the effective mass calculation, the plane-wave cutoff is increased from 340 eV to 420 eV. The number of k-points are increased in a way that satisfies the relation $N_{atoms} \times N_{kpts} = 8000$, where N_{atoms} is the number of atoms in simulation cell and N_{kpts} is the number of k-points employed.⁹⁹ In this way sufficiently dense k-point grids are constructed that are compatible between different materials and are equivalent to the $16 \times 16 \times 16$ for diamond Si. Additionally, the bulk modulus is calculated by employing a standard fitting procedure of the Birch-Murnaghan equation of state to a set of total energies computed at different volumes near the minimum volume. 102,103

<u>DOS effective mass</u>: The DOS effective mass is computed by fitting the m^*_{DOS} value in the standard equation for the density of states of the parabolic band

$$DOS(E) = \frac{1}{2\pi^2} \left(\frac{2m_{DOS}^*}{\hbar^2}\right)^{3/2} E^{1/2}$$
(10)

For calculating the band degeneracy (described below), the fit is done such that the parabolic DOS from Eq. 10 reproduces the number of states of the DFT-calculated DOS within a 100 meV energy window from the valence and conduction band edges. The DOS effective masses calculated in this way typically underestimate the masses measured in standard semiconductors with a uniform 0.6 exponent following from our extensive comparison with experimental data for values smaller than one. This correction has been applied throughout this work.

Band degeneracy: It is important to note that the band extrema may not always occur at high-symmetry points or along the high-symmetry lines of the Brillouin zone. Band degeneracy should, therefore, be evaluated over the entire Brillouin zone, as is done here-in. We evaluate N_h by identifying the carrier pockets (Fermi surface pockets) inside the first Brillouin zone, for valence and conduction band separately, assuming the Fermi-Dirac tail leads to conduction from states within 100 meV from the band edge and summing up the number of individual bands inside each pocket. Special attention is paved to resolving the symmetry relations between the equivalent Brilloiuin pockets as well as to the k-points that appear at the zone boundaries. The number of individual bands inside a given pocket we evaluate by counting the local band extrema inside that pocket. In this way we were able to reproduce the band degeneracy for all semiconductors which are included in this study, and which have their band structures and hence their band degeneracy well established (e.g. d-Si, GaP, PbTe and others). Additional validation was achieved by detailed study of the electronic structure of non-traditional compounds from the 412 materials discussed above. With knowledge of N_b and m^*_{DOS} , an approximate and average band effective mass (m_b^*) can be estimated within the approximation that the band extreme are identical, isotropic parabolic bands as: $m_b^* = m_{DOS}^* N_b^{-2/3}.$

This journal is © The Royal Society of Chemistry [year]

nergy & Environmental Science Accepted Manuscript

References

- 1 G. J. Snyder and E. S. Toberer, <u>Nature Mater.</u>, 2008, **7**, 105 114.
- 2 C. J. Vineis, A. Shakouri, A. Majumdar and M. G. Kanatzidis, <u>Adv. Mater.</u>, 2010, **22**, 3970–3980.
- 3 A. J. Minnich, M. S. Dresselhaus, Z. F. Ren and G. Chen, <u>Energy Environ. Sci.</u>, 2009, 2, 466–479.
- 4 S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito and O. Levy, <u>Nature Mater.</u>, 2013, **12**, 191–201.
- 5 E. Altenkirch, Physikalische Zeitschrift, 1909, 10, 560580.
- 6 G. K. H. Madsen, <u>J. Am. Chem. Soc.</u>, 2006, **128**, 12140.
- 7 J. Yang, H. Li, T. Wu, W. Zhang, L. Chen and J. Yang, <u>Adv.</u> Funct. Mater., 2008, **18**, 2880.
- 8 S. Wang, Z. Wang, W. Setyawan, N. Mingo and S. Curtarolo, Phys. Rev. X, 2011, 1, 021012.
- 9 L. Bell, <u>Science</u>, 2008, **321**, 1457–1461.
- 10 D. Kraemer, B. Poudel, H. P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. W. Wang, D. Z. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. F. Ren and G. Chen, <u>Nature Mater.</u>, 2011, **10**, 532–538.
- 11 L. L. Baranowski, G. J. Snyder and E. S. Toberer, <u>Energy</u> <u>Environ. Sci.</u>, 2012, 5, 9055–9067.
- 12 A. Belsky, M. Hellenbrandt, V. L. Karen and P. Luksch, <u>Acta</u> <u>Crystallogr. B</u>, 2002, 58, 364.
- 13 G. K. H. Madsen and D. Singh, <u>J. Comput. Phys. Commun.</u>, 2006, **175**, 67–71.
- 14 E. S. Toberer, A. F. May, C. J. Scanlon and G. J. Snyder, <u>J.</u> <u>Appl. Phys.</u>, 2009, **105**, 063701.
- 15 J. Sjakste, N. Vast and V. Tyuterev, <u>Phys. Rev. Lett.</u>, 2007, 99, 236405.
- 16 F. Murphy-Armando and S. Fahy, <u>Phys. Rev. B</u>, 2008, 78, 035202.
- 17 O. D. Restrepo, K. Varga and S. T. Pantelides, <u>Appl. Phys.</u> <u>Lett.</u>, 2009, **94**, 212103.
- 18 Z. Wang, S. Wang, S. Obukhov, N. Vast, J. Sjakste, V. Tyuterev and N. Mingo, <u>Phys. Rev. B</u>, 2011, 83, 205208.
- 19 Y. Zhang, E. Skoug, J. Cain, V. Ozoliņš, D. Morelli and C. Wolverton, Phys. Rev. B, 2012, 85, 054306.
- 20 L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, <u>Nature</u>, 2014, **508**, 373–377.
- 21 Y. Zhang, V. Ozoliņš, D. Morelli and C. Wolverton, <u>Chem.</u> <u>Mater.</u>, 2014, **26**, 3427–3435.
- 22 D. A. Broido, M. Malorny, G. Birner, N. Mingo and D. A. Stewart, <u>Appl. Phys. Lett.</u>, 2007, **91**, 231922.
- 23 W. Li, L. Lindsay, D. A. Broido, D. A. Stewart and N. Mingo, <u>Phys. Rev. B</u>, 2012, 86, 174307.
- 24 L. Lindsay, D. A. Broido and T. L. Reinecke, <u>Phys. Rev. Lett.</u>, 2012, **109**, 095901.
- 25 J. Carrete, W. Li, N. Mingo, S. Wang and S. Curtarolo, <u>Phys.</u> <u>Rev. X</u>, 2014, 4, 011019.
- 26 A. F. May, E. S. Toberer, A. Saramat and G. J. Snyder, <u>Phys.</u> <u>Rev. B</u>, 2009, **80**, 125205.
- 27 X. Shi, Y. Pei, G. J. Snyder and L. Chen, <u>Energy & Environ.</u> <u>Sci.</u>, 2011, 4, 4086–4095.
- 28 Y. Wang, Y. Sui, J. Cheng, X. Wang, W. Su, X. Liu and H. J. Fan, <u>J. Phys. Chem. C</u>, 2010, **114**, 5174–5181.
- 29 V. K. Zaitsev, M. I. Fedorov, E. A. Gurieva, I. S. Eremin, P. P. Konstantinov, A. Y. Samunin and M. V. Vedernikov, Phys. Rev. B, 2006, 74, 045207.
- 30 Y. Pei, A. LaLonde, S. Iwanaga and G. J. Snyder, Energy

Environ. Sci., 2011, 4, 2085–2089.

- 31 Y. Pei, A. D. LaLonde, H. Wang and G. J. Snyder, <u>Energy</u> <u>Environ. Sci.</u>, 2012, 5, 7963–7969.
- 32 Y. Pei, Z. M. Gibbs, B. Balke, W. G. Zeier and G. J. Snyder, <u>Adv. Energy Mater.</u>, 2014, 1614–6840.
- 33 A. D. LaLonde, Y. Pei and G. J. Snyder, <u>Energy Environ. Sci.</u>, 2011, 4, 2090–2096.
- 34 H. Wang, Y. Pei, A. D. LaLonde and G. J. Snyder, <u>Proc. Nat.</u> <u>Acad. Sci.</u>, 2012, **109**, 9705–9709.
- 35 H. Wang, Y. Pei, A. D. LaLonde and G. J. Snyder, <u>Adv.</u> <u>Mater.</u>, 2011, **23**, 1366–1370.
- 36 D. M. Rowe, <u>CRC Handbook of Thermoelectrics</u>, CRC Press, 1995.
- 37 C. B. Vining, <u>J. Appl. Phys.</u>, 1991, **69**, 331–341.
- 38 S. I. Johnson, A. Zevalkink and G. J. Snyder, <u>J. Mater. Chem.</u> <u>A</u>, 2013, 1, 4244–4249.
- 39 A. Zevalkink, J. Swallow and G. J. Snyder, <u>Dalton Trans.</u>, 2013, **42**, 9713–9719.
- 40 C. Liu, L. Miao, D. Hu, R. Huang, C. A. J. Fisher, S. Tanemura and H. Gu, Phys. Rev. B, 2013, 88, 205201.
- 41 A. Zevalkink, W. G. Zeier, G. Pomrehn, E. Schechtel, W. Tremel and G. J. Snyder, <u>Energy & Environ. Sci.</u>, 2012, 5, 9121–9128.
- 42 T. Caillat, J.-P. Fleurial and A. Borshchevsky, <u>J. Phys. Chem.</u> Solids, 1997, 58, 1119–1125.
- 43 S. K. Bux, M. T. Yeung, E. S. Toberer, G. J. Snyder, R. B. Kaner and J.-P. Fleurial, <u>J. Mater. Chem.</u>, 2011, **21**, 12259– 12266.
- 44 E. S. Toberer, P. Rauwel, S. Gariel, J. Tafto and G. Jeffrey Snyder, J. Mater. Chem., 2010, 20, 9877–9885.
- 45 E. S. Toberer, A. F. May, B. C. Melot, E. Flage-Larsen and G. J. Snyder, Dalton Trans., 2010, **39**, 1046–1054.
- 46 A. F. May, J.-P. Fleurial and G. J. Snyder, <u>Phys. Rev. B</u>, 2008, 78, 125205.
- 47 E. S. Toberer, A. Zevalkink, N. Crisosto and G. J. Snyder, Adv. Funct. Mat., 2010, 20, 4375–4380.
- 48 S. Chen, H. Wang, W. Wan and X. Huang, <u>Adv. Appl. Ceram.</u>, 2013, **112**, 331–336.
- 49 J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He and L.-D. Zhao, <u>Energy Environ. Sci.</u>, 2012, 5, 8543–8547.
- 50 E. Guilmeau, D. Bérardan, C. Simon, A. Maignan, B. Raveau, D. O. Ovono and F. Delorme, <u>J. Appl. Phys.</u>, 2009, **106**, 053715–053715.
- 51 D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher and M. G. Kanatzidis, <u>Science</u>, 2000, **287**, 1024–1027.
- 52 F. Gascoin, S. Ottensmann, D. Stark, S. M. Haïle and G. J. Snyder, Adv. Funct. Mater., 2005, **15**, 1860–1864.
- 53 G. S. Nolas, D. T. Morelli and T. M. Tritt, <u>Ann. Rev. Mater.</u> Sci., 1999, **29**, 89–116.
- 54 H. Xie, H. Wang, Y. Pei, C. Fu, X. Liu, G. J. Snyder, X. Zhao and T. Zhu, Adv. Func. Mater., 2013, 23, 5123–5130.
- 55 K. Fujita, T. Mochida and K. Nakamura, <u>Jpn. J. Appl. Phys.</u>, 2001, **40**, 4644.
- 56 K. Koumoto, I. Terasaki and R. Funahashi, <u>MRS Bulletin</u>, 2006, **31**, 206–210.
- 57 T. Tsubota, M. Ohtaki, K. Eguchi and H. Arai, <u>J. Mater.</u> <u>Chem.</u>, 1997, **7**, 85–90.
- 58 M. Ohtaki, T. Tokunaga, K. Eguchi and H. Arai, Proc. ICT'97. Int. Conf. Thermoelectrics, 1997, pp. 224–227.
- 59 H. Kuriyama, M. Nohara, T. Sasagawa, K. Takubo, T. Mi-

zokawa, K. Kimura and H. Takagi, Proc. ICT'06. 25th Int. Conf. Thermoelectrics, 2006, pp. 97–98.

- 60 H. J. Goldsmid and R. W. Douglas, <u>Brit. J. Appl. Phys.</u>, 1954, 5, 386.
- 61 R. P. Chasmar and R. Stratton, <u>J. Electron. Control</u>, 1959, 7, 52–72.
- 62 H. Goldsmid, <u>Thermoelectric Refrigeration</u>, Temple Press Books LTD, London, 1964.
- 63 G. S. Nolas, J. Sharp and H. J. Goldsmid, <u>Thermoelectrics</u> <u>Basic Principles and New Materials Developments</u>, Springer-Verlag, Berlin, Heidelberg, 2001.
- 64 X. Y. Li, L. D. Chen, J. F. Fan, W. B. Zhang, T. Kawahara and T. Hirai, <u>J. Appl. Phys.</u>, 2005, **98**, 083702.
- 65 Y. Nagamoto, K. Tanaka and T. Koyanagi, <u>Proc. Int. Conf.</u> <u>Thermoelectrics</u>, 1998, **17**, 302–305.
- 66 H. Wang, E. Schechtel, Y. Pei and G. J. Snyder, <u>Adv. Energy</u> <u>Mater.</u>, 2013, **3**, 488–495.
- 67 L.-D. Zhao, J. He, S. Hao, C.-I. Wu, T. P. Hogan, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, <u>J. Amer. Chem. Soc.</u>, 2012, **134**, 16327–16336.
- 68 E. S. Toberer, C. A. Cox, S. R. Brown, T. Ikeda, A. F. May, S. M. Kauzlarich and G. J. Snyder, <u>Adv. Funct. Mater.</u>, 2008, 18, 2795.
- 69 M. Zhou, Z. M. Gibbs, H. Wang, Y. Han, C. Xin, L. Li and G. J. Snyder, <u>Phys. Chem. Chem. Phys.</u>, 2014, 16, 20741– 20748.
- 70 A. Zevalkink, E. S. Toberer, T. Bleith, E. Flage-Larsen and G. J. Snyder, <u>J. Appl. Phys.</u>, 2011, **110**, 013721.
- 71 A. Zevalkink, G. S. Pomrehn, S. Johnson, J. Swallow, Z. M. Gibbs and G. J. Snyder, <u>Chem. Mater.</u>, 2012, **24**, 2091–2098.
- 72 A. Zevalkink, E. S. Toberer, W. Zeier, E. Flage-Larsen and G. J. Snyder, <u>Energy Environ. Science</u>, 2011, 4, 510–518.
- 73 N. Wang, H. Chen, H. He, W. Norimatsu, M. Kusunoki and K. Koumoto, <u>Sci. Rep.</u>, 2013, 3, 3449.
- 74 C. Ruttanapun, A. Wichainchai, W. Prachamon, A. Yangthaisong, A. Charoenphakdee and T. Seetawan, <u>J. Alloys</u> <u>Compd.</u>, 2011, **509**, 4588–4594.
- 75 L. Lukyanova, V. Kutasov and P. Konstantinov, <u>Phys. Sol. St.</u>, 2008, **50**, 2237–2244.
- 76 M. Otani, N. D. Lowhorn, P. K. Schenck, W. Wong-Ng, M. L. Green, K. Itaka and H. Koinuma, <u>Appl. Phys. Lett.</u>, 2007, **91**, 132102.
- 77 R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm and H. Lam, <u>ACS Combi. Sci.</u>, 2011, **13**, 579–633.
- 78 C. Wood, <u>Rep. Prog. Phys.</u>, 1988, **51**, 459–539.
- 79 Y. Y. Peter and M. Cardona, <u>Fundamentals of</u> <u>Semiconductors</u>, Springer-Verlag, Berlin, 3rd edn., 2005.
- 80 M. Lundstrom, <u>Fundamentals of Carrier Transport</u>, Cambridge university Press, Cambridge, 2000.
- 81 E. S. Toberer, A. Zevalkink and G. J. Snyder, <u>J. Mater. Chem.</u>, 2011, **21**, 15843–15852.
- 82 J. Callaway, Phys. Rev., 1959, 113, 1046–1051.
- 83 D. G. Cahill, S. K. Watson and R. O. Pohl, <u>Phys. Rev. B</u>, 1992, 46, 6131–6140.
- 84 E. S. Toberer, A. F. May and G. J. Snyder, <u>Chem. Mater.</u>, 2010, **22**, 624–634.
- 85 A. Zevalkink, W. G. Zeier, G. Pomrehn, E. Schechtel, W. Tremel and G. J. Snyder, <u>Energy Environ. Sci.</u>, 2012, 5, 9121–9128.
- 86 X. Chen, D. Parker and D. J. Singh, <u>Sci. Rep.</u>, 2013, **3**, 3168.
- 87 Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen and G. J. Snyder, <u>Nature</u>, 2011, **473**, 66–69.

- 88 Z. M. Gibbs, H. Kim, H. Wang, R. L. White, F. Drymiotis, M. Kaviany and G. Jeffrey Snyder, <u>Applied Physics Letters</u>, 2013, **103**, 262109.
- 89 L. Xu, Y. Zheng and J.-C. Zheng, <u>Phys. Rev. B</u>, 2010, 82, 195102.
- 90 J. Vidal and X. Zhang and V. Stevanović and J.-W. Luo and A. Zunger, <u>Phys. Rev. B</u>, 2012, 86, 075316.
- 91 O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M.-H. Du, D. J. Singh, A. Podlesnyak, G. Ehlers, M. Lumsden and B. C. Sales, <u>Nature Mater.</u>, 2011, **10**, 614–619.
- 92 K. M. O. Jensen, E. S. Božin, C. D. Malliakas, M. B. Stone, M. D. Lumsden, M. G. Kanatzidis, S. M. Shapiro and S. J. L. Billinge, <u>Phys. Rev. B</u>, 2012, **86**, 085313.
- 93 E. S. Bozin, C. D. Malliakas, P. Souvatzis, T. Proffen, N. A. Spaldin, M. G. Kanatzidis and S. J. L. Billinge, <u>Science</u>, 2010, 330, 1660–1663.
- 94 T. Keiber, F. Bridges and B. C. Sales, <u>Phys. Rev. Lett.</u>, 2013, 111, 095504.
- 95 Non-Tetrahedrally Bonded Elements and Binary Compounds I, ed. O. Madelung, U. Rssler and M. Schulz, Springer Berlin Heidelberg, 1998, vol. 41C, pp. 1–4.
- 96 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, Science, 2008, **321**, 554–557.
- 97 G. Kresse and J. Furthmüller, <u>Comput. Mater. Sci.</u>, 1996, 6, 15.
- 98 J. P. Perdew, K. Burke and M. Ernzerhof, <u>Phys. Rev. Lett.</u>, 1996, **77**, 3865–3868.
- 99 P. E. Blöchl, O. Jepsen and O. K. Andersen, <u>Phys. Rev. B</u>, 1994, **49**, 16223–16233.
- 100 V. Stevanović, S. Lany, X. Zhang and A. Zunger, <u>Phys. Rev.</u> <u>B</u>, 2012, **85**, 115104.
- 101 S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, Phys. Rev. B, 1998, 57, 1505–1509.
- 102 F. Birch, Phys. Rev., 1947, 71, 809–824.
- 103 F. D. Murnaghan, Proc. Nat. Acad. Sci., 1944, 30, 244–247.

Broader impacts

There is currently an up swell of excitement concerning computational driven materials However, this excitement is tempered by the substantial discovery and design. computational expense of many of the most intriguing properties. In thermoelectric materials, modeling electron and phonon transport in structurally complex materials is daunting, particularly within a high-throughput methodology. The ability to have computation provide accurate guidance in the search for new thermoelectric materials would be revolutionary; current efforts are typically within a trial-and-error experimental modality. Initial efforts to assess thermoelectric performance in a high throughput manner have focused on the ground state electronic structure and not attempted to grapple with the significantly more computationally costly aspects of charge carrier scattering or thermal transport. In this report, we develop and demonstrate a high throughput search methodology that addresses both electron and phonon transport, including charge carrier scattering. A semi-empirical quantitative descriptor is developed that combines ground state calculations and available experimental data. Incorporation of experimental data leverages the predictive power of the descriptor and offers a route to avoid complicated calculations. Semi-empirical models offer an attractive paradigm for highthroughput computational screening and may be enabling into material arenas beyond thermoelectrics.

ARTICLETYPE

Coefficients for semi-empirical model

The semi-empirical models for charge carrier mobility and lattice thermal conductivity are based on a evolving set of experimental data and associated calculations. As such, the fitted terms (s, t, A_o, A_1, A_2) are likewise expected to change as the model improves. For the fits employed within this paper, the following terms are used when the material parameters are in SI units:

Variable	Value	Units
s	1	none
t	2.5	none
A_o	1.2×10^{-14}	m s ⁻¹ J ⁻¹ V ⁻¹ $m_o^{-2.5}$
A_1	2.7×10^{-4}	K^{-1}
A_2	1.5×10^{-23}	$\rm J~K^{-1}$

Table 1 Room temperature experimental mobility (μ) data from the literature, divided by carrier type (holes - h and electrons - e) and sample form factor (single crystalline or polycrystalline). Mobilities values are in units of cm² V⁻¹ s⁻¹.

	μ_{b}^{ex}	p	μ_e^e	xp	
Compound	s.c.	poly	s. c.	poly	Ref.
AlN	14	-	300	-	1,2
AlSb	300-400	-	200-400	-	3-6
BP	25 - 400	-	30-40	-	7 - 9
d-C	1,600-2,100	-	1800-2000	-	10-13
Ca ₃ AlSb ₃	-	20-30	-	-	14,15
$Ca_5In_2Sb_6$	-	9-13	-	-	16,17
CdS	10-48	-	210-390	-	18 - 21
CdSe	10-17	-	450-900	700	22 - 26
CdTe	60	-	1000-1100	-	27,28
$CoSb_3$	1850-6000	240-310	70-110	30-70	29 - 34
Cu_2O	50-80	-	-	-	35 - 37
CuAlO ₂	3	-	-	-	38
Ga_2O_3	-	-	130	-	39
GaAs	253-450	-	7000-9750	-	40 - 44
GaP	120-150	-	130 - 250	-	45 - 49
InP	150-190	-	4200-5370	-	50 - 53
Mg_2Ge	100	-	200-300	-	$54,\!55$
Mg_2Si	35-60	5	130-400	20-110	56-62
PbS	590-620	180-270	500-700	400	63 - 67
PbSe	700-1000	550 - 1100	700 - 1045	800-3000	$64,\!65,\!68\!-\!72$
PbTe	700-900	270 - 330	1100 - 1730	1000-2000	$64,\!65,\!73,\!73\!-\!76$
Si	420-450	-	1350 - 1450	-	77 - 82
SiC (3C)	15-40	-	322 - 980	-	83–87
SnO_2	-	-	150-260	-	88
SnTe	200	600-1000	-	-	$64,\!89,\!90$
SrTiO ₃	-	-	5.5	-	91
TiO_2^*	-	-	42	-	92
ZnO	-	-	200	205	$93,\!94$
ZnS	40	-	70-110	-	95 - 97
ZnSe	10-50	-	200-600	-	98 - 104
ZnTe	46	100	340	-	105-107

*anatase

Table 2 Experimental lattice	e thermal	$\operatorname{conductivity}$	(κ_L)	at room	temperature	from the literature.

	κ_L			κ_L	
Compound	[W/mK]	Ref.	Compound	[W/mK]	Ref.
Al_2O_3	35	108	InP	68	109,110
AlN	285	111	Li_2O	11	112
AlSb	56	110, 113	Mg_2Ge	13	114
BaO	40	115	Mg_2Si	8	56,114
BeO	250	116	MgO	30	117
BP	350	110	MnO	10	118
d-C	1000	119	NiO	30	118
Ca_3AlSb_3	1.6	120	PbS	2.9	$63,\!110$
$Ca_5Al_2Sb_6$	1.2	15	PbTe	2.1	73, 76, 110
$Ca_5In_2Sb_6$	1.2	16	Sc_2O_3	17	121
CaO	30	122	Si	130	110,123
CdS	16	110	SiC (3C)	360	124
CdSe	4.4	110,125	SiO_2	8	108
CdTe	7.5	110, 113	SnO_2	40	126
CoSb_3	10	127	SnTe	1.5	125, 128
CoO	14	129	SrO	12	110
Cr_2O_3	13	130	$SrTiO_3$	8.5	131
Cu_2O	5	108,132	VO_2	3	133
$CuAlO_2$	13	134	ZnO	50	110
Fe_2O3	5	135	ZnS	27	110
Ga_2O_3	14	136	ZnSe	33	110,114
GaAs	45 - 55	110, 137	ZnTe	18	110
GaP	110	138			

Table 3 Material properties used to determine β_{SE} obtained from high-throughput DFT calculations and subsequent analysis.
The parameters in the table below form the basis of Figure 6 in the manuscript. The parameters include: chemical formulae,
dentification number from the Inorganic Crystal Structure Database (ICSD), number of atoms in the primitive unit cell (n) ,
nass density (d) in g cm ⁻³ , band gap (E_g) in eV, bulk modulus (B) in GPa, valence and conduction band degeneracies (N_V
and N_C), and valence and conduction band DOS effective masses $(m^*_{DOS,V})$ and $m^*_{DOS,C}$ in the units of m_o . The origin of
non-integer values for band degeneracies is in explicit treatment of the spin degrees of freedom and averaging over the two spin
channels.

Compound	ICSD No.	SG No.	n	d	E_g	В	N_V	N_C	$m^*_{DOS,V}$	$m^*_{DOS,C}$
		100								
AsGa	067773	186	4	5.06	0.20	60.17	2	1	0.717	0.009
AsGa	610541	216	2	5.06	0.19	60.31	3	1	0.929	0.007
AsKLi ₂	078938	59	8	2.23	0.71	19.35	1	1	0.976	0.086
As_2Mn_2Ba	041794	139	5	5.34	0.54	43.68	2	2	2.100	0.406
AsS_2Li	419061	9	8	3.01	1.06	21.98	10	2	1.618	1.218
$AsSe_2Cu$	042884	160	4	5.00	0.45	39.38	4	8	1.393	1.306
AgCl	056542	11	4	5.45	1.84	38.82	8	1	5.669	0.097
AgCl	056545	63	4	5.45	1.84	38.87	8	1	5.693	0.096
AgCl	056538	225	2	5.45	1.84	37.65	8	1	6.286	0.125
Al_2O_3	161062	63	10	4.02	4.25	181.78	1	1	1.647	0.094
Al_2O_3	169722	13	10	3.87	5.87	230.31	3	1	7.765	0.111
Al_2O_3	173014	1	10	2.88	1.86	96.20	3	1	6.435	1.661
Al_2O_3	082504	12	10	3.51	4.45	183.17	3	1	3.681	0.110
Al_2O_3	151589	167	10	3.87	5.87	230.30	3	1	7.808	0.116
AsMnRb	610910	129	6	4.20	0.87	16.48	2	1	2.781	0.049
$AsSe_2Ag$	020087	166	4	6.42	0.07	59.08	12	1	0.535	0.061
As_2Te_3	068110	166	5	5.91	0.36	11.66	2	8	1.462	0.119
As_2Te_3	041040	160	5	5.90	0.37	11.56	2	8	1.459	0.124
As_2Te_3	030981	12	10	5.78	0.44	10.65	2	4	2.240	0.114
$AsLi_3$	610783	194	8	2.46	0.69	34.92	2	2	1.299	0.366
As_2PtRb_2	107529	63	10	5.38	0.87	17.54	5	2	5.615	0.810
AsMnLi	060742	129	6	3.95	1.02	43.40	3	2	1.910	0.655
$AsSe_2Li$	248118	1	8	4.46	0.32	21.69	8	2	1.429	0.418
$AsSe_2Li$	248116	9	8	4.37	0.78	19.47	8	2	2.477	1.786
BrCu	024770	186	4	5.08	1.47	38.31	3	1	2.309	0.073
BrCu	078274	216	2	5.09	1.44	38.65	3	1	2.913	0.083
BrCu	078280	225	2	6.08	1.20	47.19	2	1	5.716	0.059
$\mathrm{Br}_6\mathrm{SnRb}_2$	158956	225	9	3.85	1.31	9.08	11	1	6.185	0.304
BeSbLi	100114	186	6	4.47	0.87	56.23	3	3	0.299	0.851
BN	162876	62	8	3.03	5.65	285.19	3	2	1.474	1.163
BN	162877	8	8	2.27	1.56	173.22	7	1	4.157	1.152
BN	183257	186	4	3.44	5.23	373.07	2	2	0.899	0.168
BN	614864	216	2	3.45	4.47	373.09	3	3	1.149	0.256
BN	162875	136	8	3.30	4.84	348.29	3	2	1.818	0.233
BN	182731	1	2	3.45	4.47	373.18	3	3	1.085	0.194
BN	162882	9	8	2.54	3.38	93.94	6	2	2.999	1.119
BrAg	056547	225	2	6.30	1.47	34.60	2	1	5.798	0.080
BrAg	056550	11	4	6.30	1.46	35.01	4	1	5.130	0.061
BeLiP	042037	129	6	1.99	1.15	62.31	3	1	1.190	0.166
$\mathrm{BeK}_4\mathrm{As}_2$	300111	166	7	2.14	0.90	15.84	20	1	12.415	0.150
BeAsLi	609869	129	6	3.45	0.99	53.62	3	1	0.978	0.209
$\mathrm{Bi}_{2}\mathrm{O}_{3}$	168810	160	10	8.04	2.34	19.28	1	1	11.428	1.831

Compound	ICSD No.	SG No.	n	d	E_g	В	N_V	N_C	$m^*_{DOS,V}$	$m^*_{DOS,C}$
$\mathrm{Bi}_{2}\mathrm{O}_{3}$	027150	224	10	8.64	1.45	14.74	2	1	2.641	0.411
B_6Ba	612527	221	7	4.29	0.05	144.34	6	6	0.669	0.620
BBi	184569	216	2	8.73	0.24	72.37	3	1	0.465	0.011
$\mathrm{Br}_{3}\mathrm{Ti}$	039784	2	8	3.52	1.74	1.76	4	1	5.458	5.775
C_3Al_4	052287	166	7	2.93	1.33	159.06	2	3	3.366	0.423
C_3Al_4	014397	160	7	2.93	1.33	159.11	2	3	3.186	0.327
Ca_3BN_3	095814	123	7	2.77	0.53	80.32	2	1	1.905	0.157
CuBr	024770	186	4	5.08	1.47	38.31	3	1	2.309	0.073
CuBr	078274	216	2	5.09	1.44	38.65	3	1	2.913	0.083
CuBr	078280	225	2	6.08	1.20	47.19	2	1	5.716	0.059
$CrSe_2Na$	042392	166	4	4.48	0.55	44.87	1	1.5	1.519	0.648
CrS_2Ag	604981	160	4	4.88	0.84	67.87	1	1.5	1.486	0.559
Cr_2S_3	016721	148	10	3.64	0.59	63.00	1.5	0.5	0.837	0.787
C_2Ba	056160	139	3	3.79	1.57	39.61	6	2	13.347	0.677
Cr_2MnSe_4	626299	12	$\overline{7}$	5.31	0.29	50.66	3.5	2	0.601	0.323
CoO	043458	186	4	5.10	1.10	127.25	2	1	4.536	0.141
CrS_2Li	150675	150	4	3.14	1.20	59.12	1.5	1.5	3.492	1.747
CrS_2Li	026233	164	4	3.14	1.20	59.12	1.5	1.5	3.496	1.761
Cr_2S_4Mn	626279	12	7	3.69	0.91	62.71	2.5	1.5	0.939	1.869
CrS_2Ba	165626	59	8	4.17	0.55	49.45	1	1	1.002	1.301
C ₂ AuLi	411253	187	4	5.62	1.68	23.43	4	3	3.012	0.238
$CrSi_2$	096026	181	9	4.99	0.65	190.78	2.5	1.5	0.908	1.270
$CrSi_2$	626787	180	9	4.99	0.62	94.34	2.5	1.5	0.756	1.161
Cr_2S_4V	081891	12	7	3.72	0.49	66.12	1.5	2	0.899	1.964
Cr ₂ FeSe ₄	625968	12	7	5.45	0.19	57.83	3.5	1.5	0.619	1.191
C	182761	139	4	3.30	2.58	399.70	2	2	0.365	0.454
Č	066464	227	2	3.49	4.15	432.43	3	6	0.360	0.804
Č	182760	12	8	3.33	3 49	399.94	1	1	0.182	0 243
Č	027422	194	4	3.48	3 36	$433\ 57$	2	2	0.277	0.131
č	028859	227	2	3.49	4.15	432.44	3	6	0.360	0.804
C C	088819	206	8	3 55	2.44	385.62	3	1	0.369	0.100
C C	067787	216	$\frac{0}{2}$	3.49	4 15	432.43	3	6	0.356	0.812
CrS ₂ Cu	174547	146	4	$\frac{0.43}{4.41}$	0.41	402.40 82.40	1	15	1.137	1 1 38
CoBra	052364	164	т 2	4.33	1 01	1.93	1	0.5	1.107	13 135
CroS Fe	625031	104	7	4.00 3.85	0.64	60.00	0.5	1.5	4.200 0.280	2 144
C72541C	183162	12 216	2	0.00 1 95	0.04 0.35	1/1 67	0.0 5	1.5 8	5 331	2.144 2 0/8
CrSo	024702	186	2 1	4.55 5.10	0.00	191.07	1	4	0.418	2.040
CrSo	162800	100	4	0.19 4 46	0.00	40.22 5.00	1 2	- 1	2 105	0.308
CasAcCla	102899	129 991	47	$\frac{4.40}{2.50}$	0.20	0.09 27.89	2	1	5.195 0.866	0.308
$C_{3}ASO_{3}$	076592	221 19	7	2.09 5.09	0.19	56.99	0 15	05	0.800	1.008
Cr_2Se_4v	070525	160	1	0.20 6.46	0.10	50.20 62.62	1.0	0.5	1.037	1.930
$C_{1}S_{2}Au$	000002	100	4	0.40	0.74	02.02 E2.46	1	0.5	0.041	0.991
CaC_2	074005	81 140	3 10	2.20	1.27	03.40 0.60	2	2	3.378	0.505
$CrSi1e_3$	020810	148	10	4.94	0.31	2.02	2	2 1	1.059	0.954
	182305	210	2	0.02	0.00	122.28	3 10	10	1.271	0.019
reUl ₃	063329	148	8	2.47	1.82	2.10	10	12	23.000	21.005
rese	169280	62 167	8	5.88	0.89	05.48	2	2	0.395	1.948
re_2O_3	182842	107	10	5.15	1.78	189.03	9	4	0.039	18.662
Ge_3As_4	163833	111	7	5.11	0.16	47.02	2	2	1.823	0.237
$Ge_2 Ie_5 As_2$	068112	164	9	6.05	0.38	12.03	2	2	3.003	0.305
$GeSe_4BaAg_2$	411405	23	8	5.55	0.27	33.98	3	1	0.310	0.036

Compound	ICSD No.	SG No.	n	d	E_g	В	N_V	N_C	$m^*_{DOS,V}$	$m^*_{DOS,C}$
GeAs ₂ Cd	042098	122	8	5.28	0.08	52.44	2	1	0.763	0.020
GeC	182363	216	$\tilde{2}$	5.77	1.65	170.69	3	3	1.205	0.343
GeCoS ₄ Cu ₂	099293	121	8	4.28	0.54	69.92	2	0.5	0.946	1.121
GeSe ₄ Cu ₂ Cd	619750	121	8	5.46	0.15	53.53	3	1	1.584	0.015
GeSe ₂	090956	82	6	4.32	1.63	13.83	$\tilde{5}$	3	0.808	1.535
GeSe ₂	050761	122	6	4.30	1.64	13.82	5	4	0.708	1.616
GeAlLi	170035	216	3	3.26	0.05	55.95	3	3	0.496	0.289
GeAlLi	152087	216	3	3.26	0.05	55.95	3	3	0.520	0.291
GeTe	655497	160	$\frac{3}{2}$	5.87	0.57	29.69	6	3	0.695	0.415
GeTe	659805	160	2	5.88	0.57	29.69	6	3	0.694	0.422
GeTe	638010	225	2	6.10	0.37	49.03	4	8	0.082	0.526
GeTe	638014	166	2	6.10	0.37	49.03	4	8	0.078	0.520 0.513
GeTe ₄ Cu ₂ Cd	656154	121	8	5.79	0.01	41.98	3	3	0.792	0.018
I ₆ SnRb ₂	022104	225	9	4.20	0.10	8.02	9	1	4.501	0.128
IBr	022120	36	4	3.48	1.38	0.87	7	2	3.290	4.859
IaNi	022108	166	3	4 40	0.73	0.01	3	8	5.492	2.078
IBiSeaCd	171727	12	10	6.58	1 29	22.38	3	$\frac{0}{2}$	0.943	0.319
IIn	055183	63	4	5.00	1.20 1.32	11 10	6	4	0.404	0.220
I.TePd	409062	2	8	5.87	0.68	5 25	7	1	1 137	1 351
Ic Aus Bha	170791	- 12	10	4 98	0.00 0.74	5.50	6	1	4 065	1.001
I _o Mu ₂ no ₂	002831	12	9	4 99	1 75	7.69	4	2	1.009	0.509
I ₂ 511 I ₄ Ti	039820	12	10	3.99	$1.70 \\ 1.37$	1.03	3	4	3.672	9.902
ITeBi	074501	143	3	6.28	1.01 1.24	2.44	2	1	2.645	0.002
ITeBi	079364	156	3	6.20	1.21 1.24	2.11 2.75	2	1	2.010 2.675	0.256
ICu	060719	216	2	5.60	1.21	34 14	3	1	1 941	0.200 0.075
ICu	000719 024772	186	4	5.59	1.01	33.00	3	1	1.541	0.010
ICu	080255	166	т Д	5.36	0.21	26 54	2	1	2.046	0.000
IAa	043435	221	2	6.78	0.21 0.34	20.54	$\frac{2}{2}$	1	$\frac{2.040}{7.645}$	0.030
IAg	161581	221	$\frac{2}{2}$	6.67	1.38	30.86	$\frac{2}{2}$	3	5 791	0.020 0.342
IAg	056557	11	4	6.66	$1.30 \\ 1.37$	30.80	2 4	3	5.081	0.942 0.248
IAg	063655	186	4	5.32	1.07	22 59	3	1	1 967	0.092
IAg	164963	216	2	5.32	1.90	22.00 22.32	3	1	2.274	0.002
IZrN	036119	59	6	4.73	1.50	0.74	1	1	0.720	0.100 0.770
ISAgo	201004	00 221	5	4.10 6.41	0.96	39.06	12	1	1.817	0.048
ISAga	174095	146	5	6.57	0.90	30.67	6	1	7 266	0.039
LPo	203216	2	6	3.39	1 93	1.07	5	3	2.485	2.508
ISbTe	035471	2	6	5.30	0.86	4.03	2	2	2.100 2.662	0.328
ISbTe	031355	2 19	6	5.28	0.86	4.03	$\frac{2}{2}$	1	2.002 2 708	0.320
ISbMnSea	281558	12	10	5.20 5.37	0.00	22.55	3	2	1 192	0.522 0.534
IsBr4RbsPd	412835	139	9	4 29	0.69	11.36	3	1	3704	0.269
K ₂ C ₂ Pt	421492	164	5	4.08	1.31	26.22	2	3	5.701 5.279	0.551
K ₂ C ₂ P v K ₂ TeBr _c	065118	225	g	3.46	1.01	10.02	2	4	5.273 5.671	0.860
$K_2 R_1 P_1$	006063	123	7	3 95	1.98	10.02 10.25	2	1	7 190	1 004
KMnAs	060745	120	6	3 58	1.00 1.07	24.36	$\frac{2}{2}$	1	2 983	0.063
KaSaPt	026258	125 71	5	0.00 4 53	1.50	24.00 32.65	8	1	6.908	2.748
K ₂ As ₂ Ag	032016	166	8	4.31	1.00 1 41	$\frac{52.00}{21.16}$	5	2	$5.000 \\ 5.214$	0.157
KaCoSea	067390	72	10	3.28	1.41 1 97	21.10	16	$\frac{2}{215}$	10 199	14 697
KFeSes	632405	15	8	3.57	1.04	14 18	3	1	1 593	6 197
KaBiAg	001156	20	8	<u>4</u> 40	1.04 0.71	14 01	2	1	4 023	0.054
K _a A _s C ₁₁	0/3036	20 63	8	4.43 2 14	1.00	20.04	2 3	1	9.1025	0.004
m2ASUU	040900	00	0	0.14	1.09	20.04	0	T	2.107	0.099

Journal Name, 2010, [vol], 1-?? | 5

Page	20	of	28
------	----	----	----

Energy & Environmental Science Accepted Manuscript

Compound	ICSD No.	SG No.	n	d	E_g	В	N_V	N_C	$m^*_{DOS,V}$	$m^*_{DOS,C}$
KaSnBra	158955	225	9	3 54	1 91	10 32	9	1	5 845	0 244
KMnBi	601586	120	6	5.04 5.14	1.21 0.58	10.52	2	1	2 608	0.244
KaSeaPt	040430	125 71	5	5 15	1.26	15.45 27.05	0	1	2.000 5.483	2 101
KSeCu	040450 012157	10/	6	0.10 4.04	0.60	21.00	3 4	- - 1	1.285	0.047
Ko Aso Co	071999	$134 \\ 79$	10	4.04 3.13	0.00	10.25	4 1	1 3	1.200	0.047
$K_2 \Lambda s_2 \Theta c$	610762	63	10	0.10 1.88	0.04 0.67	19.00	2	5 2	3 316	0.723
K ₂ M ₂ M ₂ I 0	009679	225	9	2.00	0.61	19.40 19.37	$\frac{2}{12}$	$\frac{2}{125}$	7.010	0.934
KSeA a	052586	120	6	$\frac{2.50}{4.68}$	0.00	25.62	2	12.0	9 793	0.954 0.052
KNbSee	026288	10/	8	4.00 5.06	0.03 0.78	25.02 55.43	1	10	2.125	3 334
Kalsag	001154	20	8	3.54	1.06	10 33	3	10	0.000 3 337	0.106
K ₂ CoS ₂	067387	$\frac{20}{79}$	10	0.04 0.53	2.08	25.36	10	0	6 328	16 323
K ₂ C052 K ₂ Br ₂ Pt	001331	12 225	0	2.00	2.08	$\frac{20.00}{11.35}$	0	3	0.520 5.548	0.846
K ₂ Di ₆ i t K ₂ S ₂ Pd	641206	220 71	5	4.20 3.33	$1.10 \\ 1.37$	21.63	9	5 4	7 304	0.040 2.753
$K_{2}S_{2}Tu$ $KT_{0}Cu$	041290 012158	104	5	0.00 4 39	1.37	$\frac{31.03}{94.37}$	4	4 1	1.304	2.755
K Br Pd	012158	194	7	4.52 3.36	1.60	10.15	4 2	1	5.876	1.210
$K_2 D I_4 I U$ $K_2 T a_2 D t$	040432	12 0 71	5	5.00	0.01	21.24	ວ ົາ	1	1.887	1.215
$\mathbf{K}_2 1 \mathbf{e}_{21} \mathbf{t}$	040432	164	5	0.20 4.10	1.91	21.24 195.69	2	4	1.007	1.020 2.201
$L_{12}L_{1N_2}$	018190	104 199	0	4.19	1.00	120.02	2	ວ 1	0.905	2.301
LiSe ₂ III	056531	166	4	4.29	1.09	30.39	5 11	2	1.422	0.099
MgAgI;	107054	100 916	4	0.20 2.05	0.00 1.97	39.09 46.69	11 9	ა ი	0.929 1.900	0.470
MgASLI MgASLI	107934	$\frac{210}{191}$	3 7	2.90	1.37	40.00 96.02	ა ი	ง 15	1.022	0.340 0.187
$Mn Ie_4 Al_2$ Mo S	0000000	121	(10	4.40	0.90	20.95 20.91	2 6	1.0	1.100	0.107
$M_{2}O_{3}$	102400	11 199	0	4.91	0.93 0.57	59.21	1	ง 1	2.007	2.332
MgGeAs ₂	102300	122	0 6	4.02	0.57	5 92.02 5 92	0	10	0.341 0.447	0.018
M_{σ} S;	150056	194 005	0	0.07	0.97	0.20 54 59	0 2	10	2.447 1.971	2.405
M_{g2} SI M_{g2} SI	100900	220 916	ა ი	1.99	0.22	04.02 21.60	่ง ว	ა 1	1.271	0.474
	100112	210	ა ი	0.00 2.06	0.40	31.00 40.07	ა ი	1	1.100	0.012
Mg_2Ge	103708 650100	220 191	3 7	3.00	0.10	49.97	ა ი	3 0 E	1.104 1.127	0.339
$MnSe_4Ga_2$	642594	121	1	4.00	0.00	00.02 66 71	2 1	0.5	1.137	0.042 0.122
MnSe	045084	220 104		0.27 5 20	0.33	00.71 62.61	1	1.5 6	2.742	0.135
MnSe	162000	194 190	4	0.39	1.40	05.01	2	0	0.000	5.040 1.764
MnSe	102900 642504	129	4	4.04	2.10 1.77	1.02	0	2 1	5.245 2.540	1.704
MnSe	045094	100	4	4.17	1.11	47.00	2 1	15	2.340	0.095
MnO Na Maca	028898	220 104	2	0.10	0.01	140.90	1	1.0	3.790 1.790	0.043
Na2Mg5n	2001202	194	ð 10	2.80	0.04	22.12	4	ა ი	1.728	0.319
$M_1K_2AS_2$ M_2C_1T :	300120	03 005	10	3.33	0.51	20.17	1 0	2	0.400	0.083
$NaSDL1_2$ N:C: D	034244	220 101	4	3.29	0.08	29.10	ა ი	3	1.031	0.230
$N151_3P_4$	039452	121	ð	3.15	0.35	104.08	2	4	0.023	0.979
$Na_2 \cup_2 Pt$ $N: C_2 \neg T_2$	411389	104 916	0 9	4.70	0.08	32.33 97.16	ა ი	ა ი	2.008 4.196	0.191
NISHZI NoS Ec	100002	210 92	ა ი	0.70	0.05	07.10 17.05	ა ნ	0 97	4.120	2.079
NaS_2Fe	037020	23 017	8	2.10	1.52	17.95	0 17	27	4.700	15.004
Na_35e_450	005141	217 62	8	3.88	0.98	18.91	1	1	2.220	0.344
Na ₂ OuP	001153	03	8	2.94	0.97	33.27 10C 95			0.047	0.205
NIU NIO	0/00/0	1 <i>4</i> 166	2	0.59	0.77	180.35	0 C	0.5	5.419 2.414	1.100
NIU NIO	092132	100 1 <i>CC</i>	2	0.59	0.77	180.32	0	0.5	5.414 2.440	1.108
N1U N1O	076640	100	2	6.59 C 50	0.77	186.41	6 C	0.5	3.449	1.092
NIU N.T. C	184626	225	2	0.59	0.77	186.32	0	0.5	3.422	1.104
$Na Ie_2 Cu_3$	000800	100	0	0.12	0.39	35.46	2	1	0.837	0.026
$N_1S_4Ga_2$	634901	164 79	1	3.66	0.89	4.05	2	3.5	5.814	0.497
Na_2S_2Co	067386	72	10	2.68	1.78	32.65	6	15.5	3.461	15.264
$N1CN_2$	249388	194	8	4.06	1.48	104.16	2	2	1.249	5.957

Compound	ICSD No.	SG No.	n	d	E_g	В	N_V	N_C	$m^*_{DOS,V}$	$m^*_{DOS,C}$
NiKaPa	300119	63	10	2.66	1.02	23.72	1	2	5 006	5 289
NaMnP	060728	129	6	$\frac{2.00}{3.03}$	1 11	40.74	2	2	2.789	1.653
NaNhSa	026285	194	8	4.03	0.72	73 49	1	2	0.567	2.062
Na _o AsCu	043937	63	8	3 59	0.94	29.76	1	4	0.556	0.424
Na ₂ AsAg	049007	20	8	4.08	0.83	27.35	1	1	0.530	0.121 0.254
NaAsKa	409224	194	8	2.19	0.00	15.38	4	1	3 803	0.030
NLia	034781	191	4	1.10	0.99	51.43	2	1	2.341	0.000
NLia	156899	194	8	1.25 1.65	1 29	64.78	2	2	2.011 2.739	0.001
NaAsMn	026461	120	6	3.88	1.20	35.62	2	3	2.100	0.337
NhTe ₄ Cu ₂	628495	215	8	5.00	1.00	25.02	7	3	0.994	2.454
NiS	042493	186	4	5 33	0.48	97 38	2	12	1.133	2.404
NiS	042499	100	т Д	5.33	0.40	97.00 97.40	2	12	1.100 1 134	3 283
NaNhSea	042492	104	8	5.36	0.40	60.00	0	$\frac{12}{2}$	0.802	1.715
NiPo	020201	15	6	4.52	0.03 0.62	87.14	2	6	0.002 0.760	0.560
NiPo	027160	15	6	4.52	0.02 0.62	87.14 87.14	2	6	0.700 0.757	0.500
NbSe Cue	073956	215	8	4.00 5.10	1.65	28 58	7	0 २	1 530	2.418
No AsBe	100091	10/	6	3.13	1.00	20.00	1	5 7	1.000 1.051	2.410
OCue	173083	224	6	6.10	1.51 0.72	100.45	ч २	1	3 955	0.440
$O_{2}V$	080471	10	6	4.45	1.17	231 66	8	2	6 325	1 576
$O_2 V$	034421	10	6	4.45	1.17 1 17	231.00 231.64	5	2	6 328	1.570
$O_2 v$ PMnI i	026458	100	6	2.45	1.17 1.02	201.04 40.44	0 3	2	2.018	0.580
PIn	020438 024517	129 216	2	2.91	1.02 0.48	49.44 50/13	3 3	2	1.170	0.009
PIn	180011	186	2 1	4.00	0.40 0.54	50.15	ง ว	1	0.087	0.013
PhTo	153710	100 62	8	$\frac{4.09}{7.01}$	0.34 0.78	35.66	3 4	1	0.301	0.012 0.150
PhTo	648608	02 225	2	7.91	0.10	38 51	4	4	0.112 0.213	0.150
	043003	186	2 1	1.09	1.30	75.07	4 9	4 1	0.213 0.703	0.105
I Ga PCa	041676	216	4 9	4.02	1.50	76.33	2	1 11	1.050	0.095
I Ga PCa	635031	210 166	2 1	4.01	1.00	68 02	0 1	11	0.204	0.490
I Ga PCa. N	106250	201	4 5	4.00 9.61	0.01	62.80	2 1	4	0.294	0.010
PhSo	648514	421 62	8	$\frac{2.01}{7.05}$	0.78	02.09 43.36	3 4	2 1	0.421 0.128	0.439
PhSo	038204	02 225	2	7.95	0.40	45.50	4	4	0.120 0.127	0.100 0.123
P _a K _i B ₀	300110	166	2 7	1.50	1.40	17.62	4 7	4 1	13.060	0.123 0.134
$P_2 T_4 De$	413166	1/8	10	1.00	$1.10 \\ 1.10$	1 85	1	1	2 405	0.134
$P_2 So_2 Cd_2$	620227	140	10	4.54	1.13	2.05	4	1	2.435	0.003
PBa ₂ Cl	020237	140	10	3.80	1.11 1.26	2.00	ч 24	5	14.967	0.050
$PAsB_{a}$	181203	100	4	J.03 / 13	1.20 1.07	146.70	24	0 २	0 423	0.303
$P_{n}7nSi$	648145	100	8	4.15 3.34	1.07 1.35	84 13	2 1	5	0.425	0.307
PMnSo.	054140	148	10	3.04	1.33 1.79	1.72	5	4	0.451	3 081
$PKS \Delta \sigma_{2}$	420033	140	8	3.55	1.72 1.54	20/0	5	4	9.904 0.513	0.002
PaSaBba	416176	71	10	0.00 9.33	1.04	25.45 7.64	1	1	3 320	3.052
PS-Fo	061302	11	10	2.55 2.74	1.00 1.77	1.04	4	1	5.020	2 863
PhS	001332 068712	5	10	$\frac{2.14}{7.40}$	0.43	4.00 52.77	9 4	1	0.118	2.803 0.122
DhS	183250	0 99	4 0	7.40	0.43 0.45	02.11 18 13	4	4	$0.110 \\ 0.127$	0.122 0.121
DhS	648448	20 63	4	7.37	0.40 1 10	40.45	4	4 5	0.127	0.121 0.715
PhS	1839//	10/	ч 1	7.94	0.04	22 /0	1	5 4	0.010	0.110
PhS	183954	1 <i>34</i> 28	4 8	1.20 6 56	0.04 0.47	22.49 22.00	т 2	ч± 1	0.007	0.120
PhS	100204 183955	00 186	0 /	0.00 7 11	0.47	22.09 27.06	5 4	т 2	0.400	0.110
PhS	183943	160	+ 9	1.11 7.37	0.50	48 92	Ή 1	5 4	0.190	0.210
PhS	100240 648451	69	2 Q	1.31 7.27	0.40	40.20 59.79	4± 1	4± 1	0.101	0.130
	040401 199949	04 11	0	1.01	0.44	04.14 16 97	4 9	4± 1	0.112 0.541	0.110
L DQ	100240	11	0	0.05	0.00	10.57	2	T	0.041	0.101

This journal is © The Royal Society of Chemistry [year]

Journal Name, 2010, [vol], 1-?? | 7

Compound	ICSD No.	SG No.	n	d	E_g	В	N_V	N_C	$m^*_{DOS,V}$	$m^*_{DOS,C}$
DhC	601029	225	0	7 97	0.45	59.94	4	4	0.141	0.147
	001052 615154	220 916	2	1.37	0.40	02.84 162.04	4	4 6	0.141	0.147 0.706
PB DD	010104	210 196	2	2.95	1.20 1.07	162.04	ა ი	0	0.203	0.790
PB DI:	010100	180	4	2.95	1.07	102.30 20.77	2	2	0.321	0.170
	042223	194 71	8 10	1.40	0.70	39.11	2 4	2	1.407	0.374
$P_2 \Lambda_2 \mathfrak{S}_6$ D E ₂	033278	/1 E0	10 6	1.90 5 17	1.70	0.00	4	1	2.945	2.471
$\Gamma_2 \Gamma e$ D V	010027	00 15	10	2.17	0.72	100.74 67.51	4	ے 1	0.302 1.752	1.475
$P_4 v$	038313	10 62	010	5.29 2.12	0.19 1.27	07.01	2	1	1.700	0.012
PK_2Ag D C: E ₂	402372	05 1	0	0.10 0.05	1.07	21.23 105.94	ა ი	2 1	3.033 9.409	0.200
Р4514ге Рир	079003	1	9	5.50 6.16	1.25	100.84 101.17	0 6	1	2.492	1.048
RuP_2	1000992	08 01 <i>C</i>	0	0.10	0.45	181.17	0	2	0.140	1.041
RuC	183170	210	2	(.99 0.10	0.99	253.62	11 C	0	4.317	1.354
$RuAs_2$	611294 07000C	58 1	0	8.12	0.47	140.13	0 C	2	0.236	0.697
$RuSi_4P_4$	079006	100	9	3.00	1.52	110.39	0	2	0.843	0.405
RuSi	085209	198	8	8.20	0.36	215.04	2	ა ი	6.318	12.040
RuGe	085211	198	8	10.00	0.26	178.20	2	び 1	6.050 9.491	12.339
$SBiCuCl_2$	413289	63 50	10	5.57	1.03	33.79	1	1	2.421	0.327
SnO_2	050070	58 196	0	6.62 6.62	0.66	107.10	1	1	1.337	0.030
SnO_2	056674	130	6	0.62	0.66	167.10	1	1	1.337	0.029
SSn	043409	216	2	3.63	0.14	35.14	12	3	1.397	0.911
SSn	651015	225	2	5.07	0.21	54.16	12	8	1.102	0.955
SSn	100672	63	4	5.06	0.33	23.18	2	1	0.120	0.141
SSn	651025	62	8	4.94	0.94	22.11	3	2	1.372	0.154
SbS_4Na_3	044707	217	8	2.78	1.91	21.37	17	2	2.763	0.466
$S_1Se_4FeCu_2$	627368	121	8	4.99	0.78	58.93	1	0.5	0.749	0.783
SrCuSb	053339	194	6	5.69	0.01	43.92	2	3	0.117	0.599
S_2 FeRb	633208	15	8	2.99	1.41	14.51	3	1	1.758	7.883
$\mathrm{SrMn}_2\mathrm{P}_2$	049019	164	5	3.89	0.47	56.45	2	3	0.687	1.188
Se_4BaAg_2Sn	170856	23	8	5.61	0.24	27.71	3	1	0.289	0.077
S_3 TeCu ₃ Cl	088685	160	8	4.53	1.12	47.51	3	2	1.143	0.639
SrCuP	053323	194	6	4.80	0.09	62.00	2	3	0.190	1.176
SbS_2BrCd	171723	12	10	4.85	1.53	22.59	4	2	1.879	0.527
S_1Mg_2	150956	225	3	1.99	0.22	54.52	3	3	1.167	0.416
S_4BaAg_2Sn	041898	23	8	4.83	0.63	36.55	3	1	0.498	0.070
$SbKS_2$	060138	15	8	3.02	1.59	13.41	5	3	1.140	1.447
$S_2 KFe$	068383	15	8	2.51	1.36	15.56	3	1	1.875	7.544
SiC	181128	216	2	3.17	1.38	213.33	3	3	1.989	0.184
SiC	028389	216	2	3.17	1.38	213.33	3	3	2.005	0.182
SiC	024261	186	4	3.17	2.37	213.92	2	2	1.487	0.420
SbMnRb	643396	129	6	4.35	1.01	18.17	2	1	2.341	0.083
Se_2Rb_2Pd	648724	71	5	4.74	1.10	24.91	7	4	3.881	2.308
SV	033613	194	4	3.99	1.78	87.40	3	2	5.695	1.020
SV	024564	62	8	4.08	1.88	84.86	6	1	2.165	0.614
S_3BaV	154182	36	10	3.88	1.39	25.74	3	3	4.512	10.209
S_3BaV	063228	63	10	3.87	1.40	25.73	3	3	4.753	10.314
S_3BaV	063230	20	10	3.88	1.39	25.73	6	3	4.703	10.281
S_2 FeCu	080094	122	8	4.10	0.86	70.23	6	5	1.132	5.663
ScSbPd	415944	216	3	6.87	0.09	94.76	3	3	0.434	1.766
Se_2GaCu	247513	122	8	5.35	0.51	57.46	3	1	0.687	0.017
Se_2GaAg	605211	122	8	5.38	0.63	46.55	1	1	0.574	0.020
Sb_2SnCd	044259	122	8	5.45	0.07	36.69	3	1	0.845	0.023

8 | Journal Name, 2010, [vol], 1-??

Compound	ICSD No.	SG No.	n	d	E_g	В	N_V	N_C	$m^*_{DOS,V}$	$m^*_{DOS,C}$
SeCd	415784	186	4	5 33	0.57	44 46	3	1	1 688	0.016
SeCd	620439	216	2	5.34	0.51	44 59	3	1	1.778	0.017
Se4FeGaa	631817	111	7	4 79	0.02	39.13	15	0.5	1 646	0.047
S4CoGaa	052961	82	7	3.62	1.56	42.51	1.5	0.5	1.617	9.122
S4FeCu2Sn	181166	81	8	4.37	0.23	63.20	1.5	1	0.939	0.084
S4FeCu ₂ Sn	627358	121	8	4.37	0.20 0.57	62.75	1.5	15	0.836	0.001 0.052
SnPtTi	105799	216	3	9.92	0.01	133.89	3	3	4.235	2 284
SeaAlAg	604704	122	8	4.78	1.52	48.93	1	1	1 997	0.036
S ₄ BaFea	023081	87	7	3.72	1.02 1.35	22.69	4	1	6.024	1 229
SiAlLi	052630	216	3	1.97	0.11	62.00	3	3	0.362	0.252
S ₄ Pd ₂ Bb ₂	041886	12	9	4 46	1 46	17.13	7	2	4 884	2.495
SaBia A gCla	413938	12 12	8	4.40 5.92	1.40 1.37	35.01	' ?	1	3 134	2.450 0.202
S ₄ Pt ₂ Rb ₂	026267	1 <u>2</u> 69	9	6.29	1.57	16.47	7	2	1.072	2.173
SrAoP	052596	0 <i>3</i> 194	6	5.29	0.35	50.45	2	1	0.165	0.025
ShLia	642341	225	1	3 35	0.55	32 38	1	3	1 971	0.020
SbLi ₂	026870	104	8	2.02	0.10	02.00 28.62	ч Э	ວ ົາ	1.271	0.004
S.BiBb	052735	154	4	5.07	1.45	26.02 37.91	2 1	2 1	1.042	0.135 0.175
S2DIRD S2So. Ag	155115	164	4	5.68	1.55	57.02	4 9	1	0.568	0.170
StB2Ag	020240	104 991	47	9.00 9.18	1.24	150.66	2	5	0.308	2.200
SID ₆ ShS No	020240	221 19	0	2.10	0.05	100.00	3 0	0	0.000 0.140	0.612 0.677
SUS2INA ShC No	049010	12	0	5.50 9.47	0.01	22.02	9	2	2.142	0.077
SDS2Na ShS No	200397	2 15	0	5.47 2.46	0.95	21.10 21.17	1	ა ე	0.200 0.257	1.240 1.947
SDS2INA ShDa Am	071091	104	0 6	5.40 6.97	0.94	21.17	1	ა ი	0.207	1.247
SUDAAg	000981	194	0	0.27	0.08	55.05	2	ა 1	0.110	0.458
SCa	007770	180	4	4.60	1.12	53.07 52.97	ა ი	1	1.895	0.033
SCa	181739	210	2	4.60	1.05	53.27	კ ი	1	1.990	0.034
SUd	108230	225	2	5.77	0.28	(2.05	კ ი	J 11	0.123	0.137
SbAl	024804	216	2	4.08	1.23	49.43	3	11	0.994	0.583
SbAl	052651	216	2	4.08	1.23	49.43	3	11	0.995	0.583
S_2BaCu_2	615832	139	5	5.59	0.73	62.12	1	1	0.828	0.324
$S_2 PdCl_6$	039434	2	9	2.39	1.98	2.07	2	2	7.002	5.108
Si	030101	186	4	2.28	0.45	88.73	2	3	0.386	0.514
Si	182732	1	4	2.28	0.45	88.73	2	3	0.386	0.507
Si	060388	227	2	2.28	0.62	88.76	3	6	0.653	0.640
Si	067788	216	2	2.28	0.62	88.76	3	6	0.652	0.642
Si	181908	139	4	2.16	0.38	80.99	2	5	0.422	1.006
Si	181909	12	8	2.20	0.23	80.38	1	2	0.117	0.268
$SbKS_4Ag_2$	082143	121	8	3.96	0.82	22.03	5	1	0.645	0.102
ScS_2Cu	015298	156	4	3.80	1.50	75.15	4	3	1.964	2.170
$\mathrm{SrP}_{2}\mathrm{Li}_{4}$	416888	166	7	2.35	0.97	42.03	2	3	0.853	0.525
SbKSn	033933	186	6	4.10	0.25	20.45	2	7	0.529	0.062
S_4ZnCu_2Sn	262388	82	8	4.48	0.57	63.93	3	1	1.148	0.036
S_4ZnCu_2Sn	184478	121	8	4.48	0.43	64.72	2	1	1.308	0.035
Se	022251	152	3	4.43	1.03	4.45	11	2	2.067	0.433
$ m SrC_2$	618813	139	3	3.19	1.63	46.25	2	2	5.003	0.474
S_2Rb_2Pt	026259	71	5	5.28	1.59	30.91	5	4	3.893	2.591
$\mathrm{Sr}_3\mathrm{NSb}$	152052	221	5	4.66	0.26	45.86	3	2	0.465	0.337
$\rm Si_2W$	652549	180	9	9.64	0.18	213.76	3	9	0.398	0.888
$\mathrm{Se}_4\mathrm{V}_5$	652166	87	9	5.09	1.08	44.34	1	1.5	1.399	3.723
$S_4 Co Sn Cu_2$	099294	121	8	4.49	0.49	64.72	1.5	1.5	0.887	1.035
SbBaLi	280574	194	6	4.54	0.70	29.75	3	3	0.464	0.663

This journal is © The Royal Society of Chemistry [year]

Journal Name, 2010, [vol], 1-?? | 9

Page	24	of	28
------	----	----	----

Compound	ICSD No.	SG No.	n	d	E_g	В	N_V	N_C	$m^*_{DOS,V}$	$m^*_{DOS,C}$
~~~~								_		
$SZr_2N_2$	096970	164	5	5.25	0.89	150.54	1	2	0.203	0.783
$SZr_2N_2$	096971	194	10	5.26	0.90	153.03	1	4	0.222	0.850
$Se_2FeRb$	040781	15	8	3.90	1.09	12.84	3	1	1.424	5.974
SrPLi	416889	194	6	3.10	1.34	44.13	3	3	0.656	0.819
SrPLi	056443	187	3	3.06	0.80	42.41	3	3	0.868	1.485
$STe_2B_{12}$	026720	148	5	7.14	0.37	7.58	1	1	0.098	0.033
$Sb_2Mn_2Sr$	041790	164	5	4.98	0.52	39.77	2	3	0.592	1.267
$Se_2AlCu$	600586	122	8	4.63	1.41	60.06	1	1	0.865	0.030
SbZnLi	042064	186	6	5.17	0.38	45.84	1	1	0.438	0.066
$S_1Te_4Cu_2Cd$	656151	121	8	5.61	0.56	44.96	3	1	0.948	0.024
$S_4$ GeCu ₂ Fe	627306	121	8	4.17	0.74	68.26	1.5	0.5	0.803	0.734
ScNiSb	040296	216	3	6.42	0.04	99.11	3	3	0.545	1.608
ScNiSb	076695	216	3	6.42	0.04	99.11	3	3	0.544	1.609
SnSe	076032	225	2	5.97	0.19	48.47	12	8	0.767	0.594
SnSe	651925	63	4	5.99	0.31	22.96	4	1	0.151	0.193
SnSe	071338	39	4	5.92	0.13	48.40	12	8	0.566	0.358
SnSe	050557	62	8	5.86	0.61	21.87	2	3	0.395	0.114
$S_4Br_2Bi_3Ag$	413939	12	10	6.03	0.73	15.41	1	1	0.335	0.420
$SbS_2MnBr$	172782	12	10	4.40	1.39	26.29	2	1	1.633	0.571
SeV	162898	129	4	5.34	1.46	70.76	8	1	2.774	0.873
SeV	652164	194	4	5.41	1.85	72.89	2	2	4.828	1.170
SPt	654379	131	4	9.93	0.91	117.96	6	1	2.514	0.713
$Se_2Culn$	154409	122	8	5.50	0.10	50.55	3	1	1.534	0.012
SiCGaN	183047	31	8	4.57	0.57	120.81	3	1	0.692	0.169
SiGaLi	103786	216	3	3.43	0.18	58.95	3	3	0.263	0.503
SeIn	041477	160	4	4.92	0.66	2.14	1	1	0.818	0.037
$\mathrm{Te}_{2}\mathrm{Rb}_{2}\mathrm{Pt}$	649525	71	5	5.72	1.07	20.09	6	4	2.387	1.394
TeSn	652742	225	2	6.25	0.02	39.93	4	4	0.041	0.109
TeSn	053956	216	2	4.38	0.05	24.58	12	3	0.847	1.122
$Te_2AlAg$	028746	122	8	5.12	1.32	39.02	1	1	0.605	0.034
$Te_2LiIn$	658016	122	8	4.60	1.40	23.40	3	1	0.920	0.090
$Te_2BiAg$	043266	166	4	7.90	0.17	43.03	10	5	0.817	0.117
$\mathrm{Te}_{3}\mathrm{Bi}_{2}$	184631	166	5	7.32	0.51	10.96	1	1	0.471	0.066
$Te_2AgIn$	605476	122	8	5.63	0.34	33.64	3	1	0.603	0.016
TeHg	639251	154	6	8.23	0.52	12.12	1	1	0.580	0.237
TeHg	041593	152	6	8.23	0.50	12.10	1	1	0.558	0.235
$Te_4Cu_3V$	629351	215	8	5.82	0.73	24.43	3	3	1.035	2.144
TeCd	620518	186	4	5.50	0.63	34.78	3	1	1.261	0.015
TeCd	043712	216	2	5.50	0.60	35.00	3	1	1.424	0.017
TeCd	067862	152	6	6.18	0.03	36.59	1	1	0.747	0.009
TeBiCl	079362	186	6	5.76	1.37	2.86	2	1	2.078	0.119
$Te_2AlCu$	028735	122	8	5.09	1.36	47.03	3	1	0.736	0.032
$Te_2GaLi$	162673	122	8	4.47	1.60	26.78	1	5	0.516	0.126
$YTe_2Ag$	605920	113	8	6.01	1.13	38.70	1	2	0.254	0.697
$ZnAs_2Si$	023707	122	8	4.54	0.90	66.84	1	1	0.372	0.023
ZnAsLi	074504	216	3	4.59	0.56	53.85	3	1	0.722	0.014
ZnSe	652222	216	2	5.07	1.17	56.44	3	1	1.557	0.021
ZnSe	067778	186	4	5.07	1.21	56.17	3	1	1.342	0.020
ZnSe	162905	129	4	4.49	2.02	1.36	3	2	2.471	0.393
${\rm ZnS_4GeCu_2}$	627794	121	8	4.29	0.80	69.64	2	1	1.197	0.045

Compound	ICSD No.	SG No.	n	d	$E_g$	В	$N_V$	$N_C$	$m^*_{DOS,V}$	$m^*_{DOS,C}$
ZnLiN	016790	216	3	4.78	0.52	112.40	3	1	1.956	0.023
$ZnTe_4SiCu_2$	656150	121	8	5.54	0.40	47.62	2	3	0.745	0.088
ZnO	163383	216	2	5.45	0.63	128.80	3	1	3.457	0.031
ZnO	182359	225	2	6.63	0.73	165.85	2	1	7.264	0.030
ZnO	076641	186	4	5.45	0.73	128.62	3	1	2.801	0.031
ZnTe	104196	216	2	5.43	1.08	43.21	3	1	1.228	0.020
ZnTe	067779	186	4	5.42	1.11	42.90	3	1	1.028	0.019
ZnTe	080076	144	6	5.42	1.07	43.19	3	1	1.077	0.019
ZnTe	184487	152	6	6.01	0.27	47.10	1	1	0.547	0.011
ZrSnPd	105705	216	3	7.50	0.09	89.57	3	8	3.075	1.580

#### References

- 1 V. W. L. Chin, T. L. Tansley and T. Osotchan, J. Appl. Phys., 1994, 75, 7365–7372.
- 2 J. Edwards, K. Kawabe, G. Stevens and R. Tredgold, Solid State Comm., 1965, 3, 99–100.
- 3 R. J. Stirn and W. M. Becker, Phys. Rev., 1966, **148**, 907–919.
- 4 R. J. Stirn and W. M. Becker, Phys. Rev., 1966, **141**, 621–628.
- 5 W. P. Allred, W. L. Mefferd and R. K. Willardson, <u>J. Electrochem. Soc.</u>, 1960, **107**, 117–122.
- 6 F. J. Ried and R. K. Willardson, <u>J. Electron. Control</u>, 1958, **5**, 54–61.
- 7 M. Iwami, T. Tohda and K. Kawabe, <u>Elec. Eng. Japan</u>, 1975, **95**, 19–24.
- 8 N. Kato, W. Kammura, M. Iwami and K. Kawabe, Jpn. J. Appl. Phys., 1977, 16, 1623–1627.
- 9 B. Stone and D. Hill, Phys. Rev. Lett., 1960, 4, 282–284.
- 10 F. Nava, C. Canali, C. Jacoboni, L. Reggiani and S. Kozlov, Solid State Comm., 1980, 33, 475 477.
- 11 A. G. Redfield, Phys. Rev., 1954, **94**, 526–537.
- 12 L. Reggiani, S. Bosi, C. Canali, F. Nava and S. F. Kozlov, Phys. Rev. B, 1981, 23, 3050–3057.
- 13 P. T. Wedepohl, <u>Proc. Phys. Soc. Sec. B</u>, 1957, **70**, 177.
- 14 W. G. Zeier, A. Zevalkink, E. Schechtel, W. Tremel and G. J. Snyder, J. Mater. Chem., 2012, 22, 9826–9830.
- 15 E. S. Toberer, A. Zevalkink, N. Crisosto and G. J. Snyder, Adv. Funct. Mat., 2010, 20, 4375–4380.
- 16 A. Zevalkink, J. Swallow and G. J. Snyder, Dalton Trans., 2013, 42, 9713–9719.
- 17 A. Zevalkink, G. S. Pomrehn, S. Johnson, J. Swallow, Z. M. Gibbs and G. J. Snyder, Chem. Mater., 2012, 24, 2091–2098.
- 18 F. A. Kroger, H. J. Vink and J. Volger, Phillips Res. Rep., 1955, 10, 39.
- 19 M. Islam and J. Woods, Solid State Comm., 1969, 7, 1457 1461.
- 20 J. Mort and W. E. Spear, Phys. Rev. Lett., 1962, 8, 314-315.
- 21 M. Onuki and N. Hase, J. Phys. Soc. Japan, 1965, 20, 171-171.
- 22 D. M. Heinz and E. Banks, J. Chem. Phys., 1956, 24, 391-398.
- 23 M. Itakura and H. Toyoda, Jpn. J. Appl. Phys., 1965, 4, 560.
- 24 W. Gloede, H. Lippmann and S. Mutze, Phys. Stat. Solidi A, 1971, 6, K69–K71.
- 25 Z. R. Baubinas, A. Janukevi?ius and J. V. Sakalas, Solid State Comm., 1974, 15, 1731–1733.
- 26 A. D. Petravichyus, G. B. Yushka and R. V. Baubinas, Sov. Phys. Semicond., 1976, 9, 54.
- 27 R. Triboulet and Y. Marfaing, J. Electrochem. Soc., 1973, 120, 1260–1265.
- 28 V. D. Popovych, I. S. Virt, D. I. Tsutsura, Z. F. Tsybrii, F. F. Sizov, O. A. Parfenjuk and M. I. Ilashchuk, Phys. Stat. Solidi C, 2006, 3, 717–721.
- 29 J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin and B. C. Sales, J. Appl. Phys., 1995, 78, 1013–1018.
- 30 T. Caillat, A. Borshchevsky and J. P. Fleurial, AIP Conference Proceedings, 1994, **316**, 58–61.
- 31 Y. Nagamoto, K. Tanaka and T. Koyanagi, Proc. Int. Conf. Thermoelectrics, 1998, 17, 302–305.
- 32 X. Y. Li, L. D. Chen, J. F. Fan, W. B. Zhang, T. Kawahara and T. Hirai, J. Appl. Phys., 2005, 98, 083702.
- 33 H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara and H. Tashiro, J. Appl. Phys., 1999, 86, 3780-3786.
- 34 E. Arushanov, K. Fess, W. Kaefer, C. Kloc and E. Bucher, Phys. Rev. B, 1997, 56, 1911–1917.
- 35 G. J. Wang and F. L. Weichman, Canada J. Phys., 1982, 60, 1648-1655.
- 36 M. Zouaghi, M. Tapiero, J. Zielinger and R. Burgraf, Solid State Comm., 1970, 8, 1823 1825.
- 37 H. McKinzie and M. O'Keeffe, Phys. Lett. A, 1967, 24, 137 139.
- 38 J. Tate, H. L. Ju, J. C. Moon, A. Zakutayev, A. P. Richard, J. Russell and D. H. McIntyre, Phys. Rev. B, 2009, 80, 165206.
- 39 K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker and R. Fornari, J. Appl. Phys., 2011, 110, 063720.
- 40 P. Blood, Phys. Rev. B, 1972, 6, 2257–2261.
- 41 H. Hicks and D. Manley, <u>Solid State Comm.</u>, 1969, **7**, 1463–1465.
- 42 H. Miki and M. Otsubo, Jpn. J Appl Phys, 1971, 10, 509.

- 43 D. E. Hill, <u>J Appl Phys</u>, 1970, **41**, 1815–1818.
- 44 A. L. Mears and R. A. Stradling, J. Phys. C: Solid State Phys., 1971, 4, L22.
- 45 M. Toyama, M. Naito and A. Kasami, <u>Jpn. J. Appl. Phys.</u>, 1969, **8**, 358.
- 46 R. Taylor, J. Woods and M. Lorenz, <u>J. Appl. Phys.</u>, 1968, **39**, 5404–5411.
- 47 Y. Kao and O. Eknoyan, <u>J. Appl. Phys.</u>, 1983, **54**, 2468–2471.
- 48 Y. Kokubun, S. Washizuka, J. Ushizawa, M. Watanabe and T. Fukuda, <u>Appl. Phys. Lett.</u>, 1982, 41, 841–843.
- 49 H. Casey Jr, F. Ermanis and K. Wolfstirn, <u>J. Appl. Phys.</u>, 1969, **40**, 2945–2958.
- 50 V. V. Galavanov and N. V. Siukaev, Phys. Stat. Solidi B, 1970, 38, 523-530.
- 51 L. D. Zhu, K. T. Chan and J. M. Ballantyne, Appl. Phys. Lett., 1985, 47, 47-48.
- 52 M. Glicksman and K. Weiser, <u>J. Phys. Chem. Solids</u>, 1959, **10**, 337–340.
- 53 M. Benzaquen, B. Belache, C. Blaauw and R. A. Bruce, <u>J. Appl. Phys.</u>, 1990, **68**, 1694–1701.
- 54 P. Li, S. Lee and G. Danielson, Phys. Rev. B, 1972, 6, 442.
- 55 R. D. Redin, R. Morris and G. Danielson, <u>Phys. Rev.</u>, 1958, **109**, 1916.
- 56 S. K. Bux, M. T. Yeung, E. S. Toberer, G. J. Snyder, R. B. Kaner and J.-P. Fleurial, <u>J. Mater. Chem.</u>, 2011, 21, 12259–12266.
- 57 M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai and N. Hamada, J. Appl. Phys., 2008, 104, 013703.
- 58 J.-Y. Jung, K.-H. Park and I.-H. Kim, IOP Conference Series: Materials Science and Engineering, 2011, p. 142006.
- 59 N. Farahi, M. VanZant, J. Zhao, S. T. John, S. Prabhudev, G. A. Botton, J. R. Salvador, F. Borondics, Z. Liu and H. Kleinke, <u>Dalton</u> <u>Trans.</u>, 2014, 14983–14991.
- 60 K. Kambe and H. Udono, <u>J. Elect. Mater.</u>, 2014, **43**, 2212–2217.
- 61 M. Heller and G. Danielson, <u>J. Phys. Chem. Sol.</u>, 1962, **23**, 601–610.
- 62 H. Ihou-Mouko, C. Mercier, J. Tobola, G. Pont and H. Scherrer, <u>J. All. Comp.</u>, 2011, **509**, 6503 6508.
- 63 H. Wang, E. Schechtel, Y. Pei and G. J. Snyder, <u>Adv. Energy Mater.</u>, 2013, **3**, 488–495.
- 64 J. N. Zemel, J. D. Jensen and R. B. Schoolar, Phys. Rev., 1965, 140, A330.
- 65 R. S. Allgaier and W. W. Scanlon, Phys. Rev., 1958, **111**, 1029.
- 66 L.-D. Zhao, J. He, C.-I. Wu, T. P. Hogan, X. Zhou, C. Uher, V. P. Dravid and M. G. Kanatzidis, <u>J. Am. Chem. Soc</u>, 2012, 134, 7902–7912.
- 67 L.-D. Zhao, J. He, S. Hao, C.-I. Wu, T. P. Hogan, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, <u>J. Amer. Chem. Soc.</u>, 2012, 134, 16327–16336.
- 68 H. Wang, Y. Pei, A. D. LaLonde and G. J. Snyder, Proc. Nat. Acad. Sci., 2012, 109, 9705–9709.
- 69 J. Androulakis, Y. Lee, I. Todorov, D.-Y. Chung and M. Kanatzidis, Phys. Rev. B, 2011, 83, 195209.
- 70 H. Wang, Y. Pei, A. D. LaLonde and G. J. Snyder, <u>Adv. Mater.</u>, 2011, 23, 1366–1370.
- 71 S. Wang, G. Zheng, T. Luo, X. She, H. Li and X. Tang, <u>J. Phys.</u> D: Appl. Phys., 2011, 44, 475304.
- 72 U. Schlichting and K. Gobrecht, <u>J. Phys. Chem. Sol.</u>, 1973, **34**, 753–758.
- 73 Y. Pei, A. LaLonde, S. Iwanaga and G. J. Snyder, Energy Environ. Sci., 2011, 4, 2085–2089.
- 74 Y. Pei, A. D. LaLonde, H. Wang and G. J. Snyder, Energy Environ. Sci., 2012, 5, 7963–7969.
- 75 Y. Pei, Z. M. Gibbs, B. Balke, W. G. Zeier and G. J. Snyder, <u>Adv. Energy Mater.</u>, 2014, 1614–6840.
- 76 A. D. LaLonde, Y. Pei and G. J. Snyder, Energy Environ. Sci., 2011, 4, 2090–2096.
- 77 F. J. Morin and J. P. Maita, Phys. Rev., 1954, 96, 28–35.
- 78 C. Jacoboni, C. Canali, G. Ottaviani and A. A. Quaranta, Solid State Electron., 1977, 20, 77–89.
- 79 S. S. Li and W. R. Thurber, <u>Solid State Electron.</u>, 1977, **20**, 609–616.
- 80 P. Norton, T. Braggins and H. Levinstein, Phys. Rev. B, 1973, 8, 5632–5653.
- 81 J. Dorkel and P. Leturcq, Solid State Electron., 1981, 24, 821–825.
- 82 R. A. Logan and A. J. Peters, <u>J. Appl. Phys.</u>, 1960, **31**, 122–124.
- 83 A. Suzuki, A. Uemoto, M. Shigeta, K. Furukawa and S. Nakajima, <u>Appl. Phys. Lett.</u>, 1986, **49**, 450–452.
- 84 S. Nishino, J. A. Powell and H. A. Will, <u>Appl. Phys. Lett.</u>, 1983, **42**, 460–462.
- 85 W. Nelson, F. Halden and A. Rosengreen, <u>J. Appl. Phys.</u>, 1966, **37**, 333–336.
- 86 M. Yamanaka, H. Daimon, E. Sakuma, S. Misawa and S. Yoshida, <u>J. Appl. Phys.</u>, 1987, **61**, 599–603.
- 87 M. Shinohara, M. Yamanaka, H. Daimon, E. Sakuma, H. Okumura, S. Misawa, K. Endo and S. Yoshida, <u>Jpn. J. Appl. Phys.</u>, 1988, 27, L434.
- 88 C. G. Fonstad and R. H. Rediker, <u>J. Appl. Phys.</u>, 1971, **42**, 2911–2918.
- 89 M. Zhou, Z. M. Gibbs, H. Wang, Y. Han, C. Xin, L. Li and G. J. Snyder, Phys. Chem. Chem. Phys., 2014, 16, 20741–20748.
- 90 J. Kafalas, R. Brebrick and A. Strauss, Appl. Phys. Lett., 1964, 4, 93–94.
- 91 R. Moos, W. Menesklou and K. H. Hardtl, Appl. Phys. A Mater., 1995, 61, 389–395.
- 92 L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger and F. Lvy, <u>J. Appl. Phys.</u>, 1994, **75**, 633–635.
- 93 D. Look, D. Reynolds, J. Sizelove, R. Jones, C. Litton, G. Cantwell and W. Harsch, Solid State Comm., 1998, 105, 399 401.
- 94 P. Wagner and R. Helbig, <u>J. Phys. Chem. Solids</u>, 1974, **35**, 327 335.
- 95 S. Fujita, H. Mimoto, H. Takebe and T. Noguchi, J. Cryst. Growth, 1979, 47, 326–334.
- 96 S. Iida, T. Yatabe, H. Kinto and M. Shinohara, <u>J. Cryst. Growth</u>, 1990, **101**, 141 146.
- 97 S. Iida, T. Yatabe and H. Kinto, <u>Jpn. J. Appl. Phys.</u>, 1989, **28**, L535.
- 98 I. Kikuma, M. Matsuo and T. Komuro, <u>Jpn. J. Appl. Phys.</u>, 1992, **31**, L531.

- 99 N. D. Nedeoglo, V. Sirkeli, D. Nedeoglo, R. Laiho and E. Lähderanta, J. Phys.: Cond. Mat., 2006, 18, 8113.
- 100 A. Avdonin, D. Nedeoglo, N. Nedeoglo and V. Sirkeli, Phys. Stat. Sol. B, 2003, 238, 45–53.
- 101 H. Ruda, J. Appl. Phys., 1986, **59**, 1220–1231.
- 102 P. Lemasson, A. Riviere, G. Didier, A. Tromson-Carli and R. Triboulet, J. Cryst. Growth, 1999, 197, 462-465.
- 103 H. H. Farrell, M. C. Tamargo, T. J. Gmitter, A. L. Weaver and D. E. Aspnes, J. Appl. Phys., 1991, 70, 1033-1035.
- 104 A. Ohki, N. Shibata, K. Ando and A. Katsui, J. Cryst. Growth, 1988, 93, 692-696.
- 105 A. G. Fischer, J. N. Carides and J. Dresner, Sol. St. Comm., 1964, 2, 157–159.
- 106 S. Bhunia and D. Bose, J. Cryst. Growth, 1998, 186, 535-542.
- 107 A. A. El-Soud, F. El Akkad, S. Hammad and N. Ali, J. Mater. Sci.: Mater. Electr., 1991, 2, 171–173.
- 108 D. R. Lide, CRC handbook of chemistry and physics, CRC press, 2004.
- 109 S. A. Aliev, A. Y. Nashelskii and S. S. Shalyt, Sov. Phys. Sol. St., 1965, 7, 1287.
- 110 D. T. Morelli and G. A. Slack, in <u>High Thermal Conductivity Materials</u>, ed. S. Shinde and J. Goela, Springer: New York, NY, 2005, ch. High lattice thermal conductivity solids, pp. 37–64.
- 111 G. A. Slack, R. A. Tanzilli, R. O. Pohl and J. W. Vandersande, J. Phys. Chem. Solids., 1987, 48, 641-647.
- 112 T. Takahashi and T. Kikuchi, J. Nucl. Mater., 1980, 91, 93-102.
- 113 L. Garbato and A. Rucci, Chem. Phys. Lett., 1979, 61, 542 544.
- 114 G. A. Slack, Solid State Physics, Academic Press, New York, 1979, vol. 34.
- 115 N. A. Surplice and R. P. Jones, Brit. J. Appl. Phys., 1963, 14, 720.
- 116 G. P. Akishin, S. K. Turnaev, V. Y. Vaispapir, M. A. Gorbunova, Y. N. Makurin, V. S. Kiiko and A. L. Ivanovskii, <u>Refract. Ind.</u> <u>Ceram.</u>, 2009, **50**, 465–468.
- 117 A. J. Slifka, B. J. Filla and J. M. Phelps, J. Res. Natl. Inst. Stan., 1998, 103, 357–363.
- 118 G. A. Slack and R. Newman, Phys. Rev. Lett., 1958, 1, 359-360.
- 119 R. Berman, P. R. W. Hudson and M. Martinez, J. Phys. C: Sol. St. Phys., 1975, 8, L430.
- 120 A. Zevalkink, E. S. Toberer, W. Zeier, E. Flage-Larsen and G. J. Snyder, Energy Environ. Science, 2011, 4, 510–518.
- 121 J. G. Li, T. Ikegami and T. Mori, <u>J. Mater. Res.</u>, 2003, 18, 1816–1822.
- 122 S. Materials, Landolt Börnstein Database, http://www.springermaterials.com/docs/index.html.
- 123 C. J. Glassbrenner and G. A. Slack, Phys. Rev., 1964, 134, A1058-A1069.
- 124 G. Y., L. M. E. and R. S. L., in Properties of Advanced SemiconductorMaterials GaN, AlN, SiC, BN, SiC, SiGe, ed. L. M. E., R. S. L. and S. M. S., John Wiley & Sons, Inc., New York, 2001, pp. 93–148.
- 125 D. P. Spitzer, J. Phys. Chem. Sol., 1970, 31, 19.
- 126 P. Turkes, C. Pluntke and R. Helbig, J. Phys. C: Sol. St., 1980, 13, 4941-4951.
- 127 D. Morelli, T. Caillat, J. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen and C. Uher, Phys. Rev. B, 1995, 51, 9622–9628.
- 128 T. F. Smith, J. A. Birch and J. G. Collins, J. Phys. C: Sol. St. Phys., 1976, 9, 4375.
- 129 M. Massot, A. Oleaga, A. Salazar, D. Prabhakaran, M. Martin, P. Berthet and G. Dhalenne, Phys. Rev. B, 2008, 77, 134438.
- 130 M. Marinelli, F. Mercuri, U. Zammit, R. Pizzoferrato and F. Scudieri, Phys. Rev. B, 1994, 49, 4356-4359.
- 131 N. Tinh and T. Tsuji, in <u>Physics and Engineering of New Materials</u>, ed. D. Cat, A. Pucci and K. Wandelt, Springer Berlin Heidelberg, 2009, vol. 127, pp. 209–217.
- 132 H. Timm and J. Janek, Sol. St. Ion., 2005, 176, 1131–1143.
- 133 J. K. Chen, X. L. Liu, X. Yuan, Y. L. Zhang, Y. F. Gao, Y. F. Zhou, R. H. Liu, L. D. Chen and N. F. Chen, <u>Chinese Sci. Bull.</u>, 2012, 57, 3393–3396.
- 134 S. Yanagiya, N. V. Nong, J. X. Xu and N. Pryds, Materials, 2010, 3, 318–328.
- 135 E. Takegoshi, Y. Hirasawa, S. Imura and T. Shimazaki, Inter. J. Thermophy., 1984, 5, 219–228.
- 136 E. G. Villora, K. Shimamura, T. Ujiie and K. Aoki, Appl. Phys. Lett., 2008, 92, 202118.
- 137 R. O. Carlson, G. A. Slack and S. J. Silverman, J. Appl. Phys., 1965, 36, 505–507.
- 138 V. M. Muzhdaba, A. Y. Nashelskii, P. V. Tamarin and S. S. Shalyt, Sov. Phys. Sol. St., 1968, 10, 2265–2267.

We develop a semi-empirical model for thermoelectric performance and demonstrate its utility for high throughput computational searches.