Dalton Transactions

Accepted Manuscript

4

Dalton Transactions

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Syntheses, crystal structures, MMCT and magnetic properties of four one-dimensional cyanide-bridged complexes comprised of $\mathbf{M}^{\mathrm{II}}-\mathrm{CN}-\mathrm{Fe}^{\mathrm{III}}$ ($\mathrm{M}=\mathrm{Fe}$, $\mathrm{Ru}, \mathbf{O s}$)

Yong Wang, ${ }^{\text {a,b }}$ Xiao Ma, ${ }^{\text {a }}$ Shengmin Hu, ${ }^{\text {a }}$ Yuehong Wen, ${ }^{\text {a }}$ Zhenzhen Xue, ${ }^{\text {a,b }}$ Xiaoquan Zhu, ${ }^{\text {a,b }}$ Xudong ${ }_{5}$ Zhang, ${ }^{\text {a }}$ Tianlu Sheng*, ${ }^{\text {,a }}$ and Xintao ${ }^{\text {Wu }}{ }^{\text {a }}$
Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Four new one-dimensional (1D) zigzag chain cyanide-bridged complexes [cis$\mathrm{M}^{\mathrm{II}}(\mathrm{L})_{2}(\mathrm{CN})_{2} \mathrm{Fe}^{\mathrm{III}}($ salen $\left.)\right]\left(\mathrm{PF}_{6}\right)(\mathrm{M}=\mathrm{Fe}, \mathrm{L}=$ bpy, $\mathbf{3} ; \mathrm{M}=\mathrm{Fe}, \mathrm{L}=$ phen, $\mathbf{4} ; \mathrm{M}=\mathrm{Ru}, \mathrm{L}=$ bpy, $\mathbf{5} ; \mathrm{M}=\mathrm{Os}, \mathrm{L}$ $10=$ bpy, $\mathbf{6})\left(\right.$ bpy $=2,2^{\prime}$-bipyridine, phen $=1,10$-phenanthroline, salen $=\mathrm{N}, \mathrm{N}^{\prime}$ '-
ethylenebis(salicylideneaminato) dianion) have been synthesized and characterized structurally as well as magnetically, especially $\mathbf{3}$ and $\mathbf{4}$ are mixed-valence complexes. Fortunately, the crystals of complexes 3, $\mathbf{4}$ and 6 suitable for single-crystal X-ray diffraction analysis were obtained. Also, the electronic absorption spectra indicate the existence of the MMCT (metal-to-metal charge transfer) bands in complexes 3-6.
${ }_{15}$ Temperature dependent magnetic susceptibilities reveals that the Fe (III)- Fe (III) exchange coupling separated by diamagnetic cyanidometal -NC-M(II)-CN- bridge is weak ferromagnetic for 3-5, but weak anti-ferromagnetic for $\mathbf{6}$. What'more, the specific heat measurements suggest complexes 3-5 exhibit a phase transition at $2.8 \mathrm{~K}, 2.7 \mathrm{~K}$ and 2.6 K , respectively.

Introduction

${ }_{20}$ Mixed-valence (MV) compounds have attracted considerable attention for more than 40 years, this mainly stems from their interesting MMCT^{1} and magnetic properties. ${ }^{2,3}$ A great variety of MV complexes have been prepared, and are playing an important role in areas including multi-electron 25 donor/acceptor systems, ${ }^{4}$ magnetic properties, ${ }^{5}$ photo-induced electron transfer, ${ }^{6}$ and for understanding electronic delocalization between metal centers from a fundamental standpoint. ${ }^{7}, 8$ Especially, one-dimensional (1D) chain MV metal complexes have fascinated physicists and chemists in the context of ${ }_{30}$ molecular electronics owing to their potential application as "molecular wires". ${ }^{9}$ In the MV chemistry, the investigation on cyanide-bridged MV compounds has grown to be a majorresearch effort. Prussian blue, $\mathrm{Fe}^{\mathrm{III}}{ }_{4}\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{CN})_{6}\right]_{3}$, represents the oldest examples ${ }^{10}$ and exhibits MMCT band ${ }^{11}$ at $14100 \mathrm{~cm}^{-1}$ and
${ }_{35}$ weak ferromagnetic coupling ${ }^{12}$. However, 1D cyanide bridged MV complexes are scarcely investigated ${ }^{13}$ because of the difficulty in preparing such complexes and especially in obtaining suitable crystals for molecular structure analysis.
Most recently, we have focused on the investigation of MMCT $40 \mathrm{and} /$ or magnetic properties of cyanide bridged MV compounds. ${ }^{14,}$
${ }^{15}$ In this work, four 1D zigzag chain cyanide-bridged complexes, $\left[c i s-\mathrm{M}^{\mathrm{II}}(\mathrm{L})_{2}(\mathrm{CN})_{2} \mathrm{Fe}^{\mathrm{III}}(\right.$ salen $\left.)\right]\left(\mathrm{PF}_{6}\right)(\mathrm{M}=\mathrm{Fe}, \mathrm{L}=$ bpy, 3; $\mathrm{M}=\mathrm{Fe}$, $\mathrm{L}=$ phen, $\mathbf{4} ; \mathrm{M}=\mathrm{Ru}, \mathrm{L}=$ bpy, $\mathbf{5} ; \mathrm{M}=\mathrm{Os}, \mathrm{L}=$ bpy, $\mathbf{6}$), were synthesized by reaction of diamagnetic precursors $\mathrm{M}^{\mathrm{II}}(\mathrm{L})_{2}(\mathrm{CN})_{2}$ ${ }_{45}$ with $\mathrm{Fe}^{\text {III }}$ (salen) ${ }^{+}$in the presence of $\mathrm{NH}_{4} \mathrm{PF}_{6}$. Herein, the syntheses, crystal structures, IR, MS, elemental analysis,
electronic absorption spectroscopy and magnetic properties of these complexes will be described in detail.

Experimental Methods

Physical measurements

Elemental analyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) were performed at a Vario MICRO elemental analyzer. Mass spectra (MS) were collected on DECAX-30000 LCQ Deca XP Ion Trap mass spectrometer using DMF (N, N-dimethylformamide) as the mobile phase. Infrared (IR) spectra were obtained from KBr pellets with a Perkin-Elmer Spectrum One FT-IR spectrophotometer. Electronic absorption spectra were measured on a PerkinElmer Lambda 900 UV-vis-NIR spectrophotometer in a quartz cell $(1 \mathrm{~cm}) .{ }^{1} \mathrm{H}$ NMR spectra were recorded on a RUKER BIOSPIN AVANCE III 400 MHz spectrometer in appropriate solvents at ambient temperature. Solution was contained in standard 5 mm sample tubes. Chemical shifts are reported in $\delta(\mathrm{ppm})$, relative to internal TMS for ${ }^{1} \mathrm{H}$ NMR spectra. Temperature dependence magnetic susceptibilities were carried out using a Quantum Design Magnetic Property Measurement System (MPMS) SQUID-XL. Specific heat measurements were conducted on a Physical Property Measurement System (PPMS) PPMS-9T. Diamagnetic corrections of complexes 3-6 were estimated from Pascal's $70 \quad$ Tables. The diamagnetic susceptibilities are $-505.1 \times 10^{-6} \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} \mathrm{~K}$ for $3,-551.1 \times 10^{-6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ for $4,-520.1 \times 10^{-6} \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} \mathrm{~K}$ for 5 and $-536.1 \times 10^{-6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ for $\mathbf{6}$, respectively.

Materials and syntheses

All manipulations were performed under argon atmosphere with the use of standard Schlenk techniques unless otherwise depicted. Acetonitrile was dried by distillation over calcium
5 hydride under argon atmosphere. Methanol was dried by distillation over magnesium. DMF was dried by distillation over $\mathrm{MgSO}_{4} . \quad c i s-\mathrm{Fe}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}^{16,} \quad{ }^{17} \quad$ (1), cis$\mathrm{Fe}^{\mathrm{II}}(\text { phen })_{2}(\mathrm{CN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{16, \quad 17}, \quad$ cis- $-\mathrm{Ru}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{18}$, cis- $\mathrm{Os}^{\mathrm{II}}(\mathrm{bpy})_{2} \mathrm{Cl}_{2}{ }^{19}$ and $\left[\mathrm{Fe}^{\text {III }}(\right.$ salen $\left.)\right]\left(\mathrm{NO}_{3}\right)^{20}$ were prepared according to the literature procedures. All other reagents were available commercially and used without further purification.

cis-Os $\left.{ }^{\text {II }}(\mathrm{bpy})\right)_{2}(\mathrm{CN})_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 2$

This complex was prepared according to a modified method based on the previous report. ${ }^{21,22} 20$ equivalents of KCN ($2275 \mathrm{mg}, 35.0 \mathrm{mmol}$) was added to a solution of cis$\mathrm{Os}^{\mathrm{II}}(\mathrm{bpy})_{2} \mathrm{Cl}_{2}(1000 \mathrm{mg}, 1.74 \mathrm{mmol})$ in water (100 ml), and then the mixture was refluxed for additional 8 h , during which time the solution gradually changed from red-brown to black-brown and some brown precipitate appeared. After cooled to room temperature, the brown precipitate was collected by filtration and washed with water, 2-propanol and ethyl ether, respectively. After drying in air, the desired brown product ($696 \mathrm{mg}, 59 \%$) was obtained. Brown crystals of 2 suitable for X-ray diffraction were obtained by evaporation of the methanol solution of $\mathbf{2}$ in air. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, \delta / \mathrm{ppm}\right) 9.68$ (d, $\left.J=5.6,2 \mathrm{H}\right), 8.41$ (dd, $J=24.4,8.4$ $\mathrm{Hz}, 4 \mathrm{H}$), 7.85 (dt, $J=7.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.75 (dt, $J=8.0 \mathrm{~Hz}$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46 (dt, $J=6.1 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 4 \mathrm{H}$), 7.15 (dt, $J=6.6$ $\mathrm{Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{OsC}_{22} \mathrm{H}_{16} \mathrm{~N}_{6} \cdot 7 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 38.82$,
${ }_{30} \mathrm{H}, 4.44 ; \mathrm{N}, 12.35 \%$. Found: C, 38.82 ; H, 4.36; N, 12.27\%. IR (KBr pellet, cm^{-1}): $2057(\mathrm{CN}), 2040(\mathrm{CN})$. UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, $\lambda_{\text {max }} \mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol} \mathrm{~cm}{ }^{-1}\right): 336$ (11870), 372 (11569), 445 (10667), 496 (13074), 650 (3370). MS, m/z: $555.1[\mathbf{2 + H}]^{+}$.
$\left[\right.$ cis-Fe ${ }^{\text {II }}(\text { bpy })_{2}(\mathbf{C N})_{2} \mathrm{Fe}^{\mathrm{III}}($ salen $\left.)\right]\left(\mathrm{PF}_{6}\right) \cdot$ DMF $\cdot \mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{O}$, ${ }_{35}$ 3.DMF- $\mathbf{H}_{\mathbf{2}} \mathbf{O} \cdot \mathrm{CH}_{3} \mathbf{C N}$

A solution of $c i s-\mathrm{Fe}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 0.211 \mathrm{mmol})$ in methanol (25 ml) was mixed with 1.1 equiv of $\left[\mathrm{Fe}^{\text {III }}(\right.$ salen $\left.)\right]\left(\mathrm{NO}_{3}\right) \quad(89.0 \mathrm{mg}, \quad 0.232 \mathrm{mmol})$ at room temperature. The reaction mixture was heated to $60^{\circ} \mathrm{C}$ and stirred under argon atmosphere for 6 h , resulting in a purple solution. Solid $\mathrm{NH}_{4} \mathrm{PF}_{6}$ ($37.8 \mathrm{mg}, 0.232 \mathrm{mmol}$) was then added to the above reaction solution. A red-purple precipitate appeared immediately and was collected ($144 \mathrm{mg}, 67 \%$). Deep purple crystals of $\mathbf{3}$ suitable for X-ray diffraction were 45 obtained by a mixed solution of DMF (5 ml), $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{ml})$ and diethyl-ether (30 ml). Anal. Calcd $\mathrm{Fe}_{2} \mathrm{C}_{38} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{PF}_{6}$.DMF. $\mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.33, \mathrm{H}, 4.02$; N, 12.88%. Found: C, 50.27 ; H, 4.00 ; N, 12.39%. IR (KBr pellet, cm^{-1}): $2085(\mathrm{CN}), 2067(\mathrm{CN})$. UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, $\lambda_{\text {max }}$, $\mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3}\right.$ $\left.\mathrm{mol} \mathrm{cm}{ }^{-1}\right): 356$ (12900), 528 (6570), 609 (3434). MS, m/z: $742.0\left[\mathbf{2}-\mathrm{PF}_{6}\right]^{+}$.

$\left[c i s-\mathrm{Fe}^{\mathrm{II}}(\text { phen })_{2}(\mathrm{CN})_{2} \mathrm{Fe}^{\text {III }}(\right.$ salen $\left.)\right]\left(\mathrm{PF}_{6}\right) \cdot 2 \mathrm{DMF} \cdot \mathrm{H}_{2} \mathrm{O}$, 4.2DMF- $\mathrm{H}_{2} \mathrm{O}$

Compound 4 was prepared by using the same procedure as for
${ }_{55}$ compound 3, except for the addition of cis$\mathrm{Fe}^{\mathrm{II}}(\text { phen })_{2}(\mathrm{CN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(106 \mathrm{mg}, 0.211 \mathrm{mmol})$ instead of cis-
$\mathrm{Fe}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. Yield red-purple solids (132 mg , 57\%). Anal. Calcd for $\mathrm{Fe}_{2} \mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{PF}_{6}$: C, 53.93; H, 3.23; N, 11.98%. Found: C, $53.54 ; \mathrm{H}, 3.69$; N, 12.53%. IR (KBr pellet, cm^{-1}): 2102(CN), $2087(\mathrm{CN})$. UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, $\lambda_{\text {max }}$, $\mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol} \mathrm{~cm}^{-1}\right): 372$ (14952), 512 (6825), 595 (3584). MS, m/z: 790.9[4-PF 6$]^{+}$.
$\left[\right.$ cis-Ru ${ }^{\text {II }}(\mathrm{bpy})_{2}(\mathbf{C N})_{2} \mathrm{Fe}^{\text {III }}$ (salen) $]\left(\mathrm{PF}_{6}\right), 5$
Compound 5 was prepared by using the same procedure as for compound 3, except for the addition of cis$\mathrm{Ru}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(106 \mathrm{mg}, 0.211 \mathrm{mmol})$ instead of cis$\mathrm{Fe}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. Yield brown solids ($122 \mathrm{mg}, 62 \%$). Anal. Calcd for $\mathrm{RuFeC}_{38} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{PF}_{6}$: C, 48.94; H, 3.24; N , 12.02\%. Found: C, 48.25; H, 3.44; N, 11.91\%. IR (KBr pellet, $\left.\mathrm{cm}^{-1}\right)$: $2084(\mathrm{CN}), 2053(\mathrm{CN})$. UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, $\lambda_{\text {max }}$, $\mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol} \mathrm{~cm}{ }^{-1}\right)$: 328(16210), 461(10244), 495(8856). MS, m/z: 788.1[5-PF $\left.{ }_{6}\right]^{+}$.
$\left[\right.$ cis-Os ${ }^{\text {II }}(\text { bpy })_{2}(\mathbf{C N})_{2} \mathrm{Fe}^{\text {III }}$ (salen) $]\left(\mathrm{PF}_{6}\right), 6$
Compound $\mathbf{6}$ was prepared by using the same procedure as for compound 3, except for the addition of cis$\mathrm{Os}^{\text {II }}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}(144 \mathrm{mg}, 0.211 \mathrm{mmol})$ instead of cis$\mathrm{Fe}^{\mathrm{II}}(\text { bpy })_{2}(\mathrm{CN})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. Yield brown-black solids $(121 \mathrm{mg}$, 56\%). Anal. Calcd for $\mathrm{OsFeC}_{38} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{PF}_{6}$: C, 44.67; H, 2.96; N, 10.97\%. Found: C, 44.39 ; H, 3.10; N, 11.02\%. IR (KBr pellet, cm^{-1}): $2068(\mathrm{CN}), 2028(\mathrm{CN})$. UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, $\lambda_{\text {max }}, \mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol} \mathrm{~cm}{ }^{-1}\right): 333(17170)$, 472(11205), 514(10545), 617(3613), 712(1977). MS, m/z: 878.1[6-PF $\left.{ }_{6}\right]^{+}$.

X-Ray structure determination

The single crystal data for complexes 3, 4 and $\mathbf{6}$ were collected on Saturn724+ CCD diffractometer equipped with graphitemonochromatic Mo $K_{\alpha}(\lambda=0.71073 \AA)$ radiation by using an ω-scan model technique at 123 K . In order to compare the change of related bond lengths, the single crystal data for complexes $\mathbf{1}$ and $\mathbf{2}$ were collected under the same condition. SHELXS-97 ${ }^{23}$ and refined by full-matrix least-squares techniques on F^{2} with SHELXL-97. Anisotropic thermal parameters were used for the non-hydrogen atoms, and isotropic thermal parameters were used for the hydrogen
95 atoms. Hydrogen atoms were calculated geometrically and refined using a riding model to the attached atoms. Crystallographic data and structural refinement details for complexes 1-4 and 6 are summarized in Table 1, and selected bond distances and bond angles are provided in Table 2.
100 CCDC-1015599 (1), CCDC-1015600 (2), CCDC-1015601 (3), CCDC-1015602 (4), CCDC-1015603 (6) contain the supplementary crystallographic data, related bond lengths and angles for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Results and Discussion

Synthesis

Complex 2 was prepared according to the literature procedure in a straightforward way by refluxing of cis- $\mathrm{Os}^{\mathrm{II}}(\mathrm{bpy})_{2} \mathrm{Cl}_{2}$ and extremely excess KCN (20 equiv.) in water for 8 h .

Evaporating of the $\mathrm{CH}_{3} \mathrm{OH}$ solution of 2 led to brown crystals, which were characterized by IR, electronic absorption spectra, elemental analysis, ${ }^{1}$ HNMR, MS and single-crystal X-ray diffraction analysis. The crystals suitable
5 for single-crystal X-ray diffraction analysis of cis$\mathrm{Fe}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2}$ (1) were obtained in the same way as complex 2.
Reaction of cis-M ${ }^{\mathrm{II}}(\mathrm{L})_{2}(\mathrm{CN})_{2}(\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os} ; \mathrm{L}=\mathrm{bpy}$, phen $)$ with equivalent molar of $\left[\mathrm{Fe}^{\text {III }}(\right.$ salen $\left.)\right]\left(\mathrm{NO}_{3}\right)$, respectively, in the presence of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ afforded a series of 1D zigzag chain complexes $\left[\right.$ cis- $\mathrm{M}^{\mathrm{II}}(\mathrm{L})_{2}(\mathrm{CN})_{2} \mathrm{Fe}^{\mathrm{III}}($ salen $\left.)\right]\left(\mathrm{PF}_{6}\right)(\mathrm{M}=\mathrm{Fe}, \mathrm{L}=$ bpy, 3; $\mathrm{M}=\mathrm{Fe}, \mathrm{L}=$ phen, $\mathbf{4} ; \mathrm{M}=\mathrm{Ru}, \mathrm{L}=$ bpy, $\mathbf{5} ; \mathrm{M}=\mathrm{Os}, \mathrm{L}=$ bpy, 6). Fortunately, red-purple to blown-black crystals of complexes 3, 4 and 6 suitable for single-crystal X-ray diffraction analysis were obtained. All complexes 3-6 were characterized by IR, MS, elemental analysis and electronic absorption spectroscopy. The M^{+}ion peak in the mass spectra and the matching elemental analysis confirmed compounds 36.

20 Description of the crystal structures of 1-6

Both complexes $\mathbf{1}$ and $\mathbf{2}$ are simple zero dimensional mononuclear molecular square and crystallizes in monoclinic space group $P 2_{1} / n, C 2 / c$, respectively (Figure 1). $\mathbf{1}$ contains two uncoordinated water solvent molecules, complex 2
25 contains seven uncoordinated water solvent molecules. As shown in Figure 1, both compounds $\mathbf{1}$ and $\mathbf{2}$ adopt a distorted [$\left.\mathrm{MC}_{2} \mathrm{~N}_{4}\right]$ octahedral coordination, in which four coordination sites around the metal centers are occupied by four nitrogen atoms from two bpy ligands and the other two sites are occupied by two carbon atoms from the cyanide bridges in an cis-position.
Complexes 3, 4, 6 are all 1D zigzag chain compounds. Compounds $\mathbf{3}$ and $\mathbf{4}$ crystallize in monoclinic space group $P 2_{1} / n$, and compound 6 crystallizes in monoclinic space 35 group $\mathrm{C} 2 /$ c. Complex 3 contains one DMF, one $\mathrm{CH}_{3} \mathrm{CN}$ and one $\mathrm{H}_{2} \mathrm{O}$ solvent molecules, and complex 4 contains two DMF and one $\mathrm{H}_{2} \mathrm{O}$ solvent molecules, while complex 6 contains no solvent molecule. Complexes 3, $\mathbf{4}$ and $\mathbf{6}$ possess 1D chain cationic structures composed of repeated [-NC-$\mathrm{M}^{\mathrm{II}}(\mathrm{L})_{2}(\mu-\mathrm{CN}) \mathrm{Fe}^{\mathrm{III}}$ (salen)-] unit with one positive charge balanced by one $\mathrm{PF}_{6}{ }^{-}$anion. Because the crystal structures of complexes $\mathbf{3 , 4}$ and $\mathbf{6}$ are similar, here only the structure of complexes $\mathbf{3}$ is described in detail. As shown in Figure 2, the repeat unit of complex 3 consists of $\mathrm{Fe}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2}$ and
$45 \quad\left[\mathrm{Fe}^{\text {III }} \text { (salen) }\right]^{+}$fragments. Every two $\left[\mathrm{Fe}^{\mathrm{III}} \text { (salen) }\right]^{+}$fragments are bridged by $\mathrm{Fe}^{\mathrm{II}}(\text { bpy })_{2}(\mathrm{CN})_{2}$ in an cis- conformation, and every two $\mathrm{M}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2}$ fragments are bridged by $\left[\mathrm{Fe}^{\mathrm{III}} \text { (salen) }\right]^{+}$in a trans-conformation, resulting in a $1 \mathrm{D}[-$ $\left.\mathrm{NC}-\mathrm{M}^{\mathrm{II}}-\mathrm{CN}-\mathrm{Fe}^{\mathrm{III}}-\right]_{\mathrm{n}}$ chain. Unlike the bond angles of $\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N}$
${ }_{50} \quad\left(177.4(5)^{\circ}\right.$ and $\left.177.1(5)^{\circ}\right)$ are nearly linear, the bond angles of $\mathrm{Fe}-\mathrm{N} \equiv \mathrm{C}(\mathrm{CN}) \quad\left(159.6(5)^{\circ}\right.$ and $\left.168.6(4)^{\circ}\right)$ are deviated significantly from linearity. The selected bond distances and bond angels are listed in Table 2. The bond distances of M^{II} $\mathrm{C}(\mathrm{CN})$ in $3(1.867(6)-1.889(6) \AA)$ are shorter than that of $\mathbf{6}$
$55 \quad(1.967(9)-1.977(7) \AA)$. The bond distances of $\mathrm{M}^{\mathrm{II}}-\mathrm{N}(\mathrm{bpy})$ increase from 1.965 (5)-1.996(5) \AA in 3 and 1.970(3)-2.002(3) \AA in 4 to $2.064(8)-2.123(7) ~ \AA$ in 6. Also, the $\mathrm{M}^{\text {II } \ldots \mathrm{Fe}^{\text {III }}}$ distance in $\mathbf{3}$ (av. $5.079 \AA$) and $\mathbf{4}$ (av. $5.139 \AA$) are shorter that
in 6 (av. $5.207 \AA$). These behaviors can be contributed to the
Similar to other salen-based complexes, ${ }^{25}$ the packing of bimetallic chains is often dominated by aromatic π - π stacking interactions. For compounds 3-6 the chains are running along the b direction, and the chains form layers parallel to the $b c$ plane. (Figures S1-S3 in Supporting Information). Moreover, the shortest distances between two neighboring chains are $4.03 \AA(\mathbf{3}), 3.86 \AA(4)$ and $3.97 \AA(6)$, which were longer than the common stacking distance of about 3.4 to $3.6 \AA^{26}$, suggesting the interactions between the adjacent chains can ${ }_{70}$ be neglected in complexes 3-6. The intrachain shortest $\mathrm{Fe}^{\text {III }}$...Fe ${ }^{\text {III }}$ separated by $-\mathrm{NC}-\mathrm{M}^{\mathrm{II}}-\mathrm{CN}-$ are 6.830 (3), 6.897 (4) and $6.680 \AA(6)$.The nearest $\mathrm{Fe}^{\mathrm{III} \ldots} \ldots \mathrm{Fe}^{\mathrm{II}}$ distances between the adjacent chains are 11.5 (3), 12.2 (4) and $11.7 \AA$ (6), indicating the interchain interaction between the $\mathrm{Fe}^{\mathrm{III}}$ ions can be ignored.

IR spectroscopy

The cyanide stretching frequencies data for 3-6 and related precursors are listed in Table 3. For cyanide-bridged complexes the v_{CN} stretching vibrations are very former two factors in dominant, that is both kinematical coupling occurring when a second metal is attached to the CN unit and the fact that the cyanide N donated electron density from an anti-bonding molecular orbital to the Fe (III) centre, thereby increasing the CN force constant.
${ }_{95}$ From the v_{CN} stretching vibrations of the corresponding Fe, Ru and Os complexes it can be found that the following two trends are obvious: the separation between the two v_{CN} increases and both the two v_{CN} bands move to low frequencies in the series of $\mathrm{Fe}<\mathrm{Ru}<\mathrm{Os}$. This is due to the increase of the $\mathrm{d}(\mathrm{M})-\pi^{*}(\mathrm{CN})$ back-bonding interaction in the order of $\mathrm{Fe}<\mathrm{Ru}<\mathrm{Os}^{28,}{ }^{29}$ These results are consistent with the detail study of mononuclear complexes reported by A. A. Schilt ${ }^{28}$.

Electronic absorption spectroscopy and MMCT

105 The electronic absorption spectra of complexes 3-6 and their precursors were measured in the $\mathrm{CH}_{3} \mathrm{CN}$ solution at room temperature and shown in Figures 4-7 and S4-S7, and the data for the related complexes are listed in Table 3. The electronic absorption spectra of the related precursors cis${\underset{30}{ } \mathrm{Fe}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}^{16,21,22,30}, \text { cis- } \mathrm{Fe}^{\mathrm{II}}\left(\underset{22}{ }(\mathrm{phen})_{2}(\mathrm{CN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O},{ }^{166} \text {, }\right.}_{\text {, }}$ ${ }^{\text {cis }}$ cis- $\mathrm{Ru}{ }^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \quad{ }^{21},{ }^{22}$ and cis$\mathrm{Os}^{\text {II }}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}^{21,22}$ have been investigated by other chemists. The bands near 581 nm in cis$\mathrm{Fe}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 580 \mathrm{~nm}$ in $c i s-\mathrm{Fe}^{\mathrm{II}}(\text { phen })_{2}(\mathrm{CN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, 483 nm in cis $-\mathrm{Ru}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 496 nm in cis$\mathrm{Os}^{\mathrm{II}}(\text { bpy })_{2}(\mathrm{CN})_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ were assigned to $\mathrm{t}_{2}\left(\mathrm{M}^{\mathrm{II}}\right) \rightarrow \pi^{*}(\mathrm{~L})$

MLCT (metal-to-ligand charge transfer) band. ${ }^{22}$ And the band in 650 nm of $\mathrm{Os}^{\mathrm{II}}(\text { bpy })_{2}(\mathrm{CN})_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ should be attributed to the ${ }^{3} \mathrm{MLCT}^{31}$ due to the low symmetry splitting of the metal level and the stronger spin-orbit coupling in $\mathrm{Os}^{\mathrm{II}}$ than in $\mathrm{Ru}^{\mathrm{II}}$ and $\mathrm{Fe}^{\text {II }}{ }^{32,}{ }^{33}$
After forming the cyanide bridged $\mathrm{Fe}^{\mathrm{II}}-\mathrm{CN}-\mathrm{Fe}^{\mathrm{III}}$ complex, the maximum absorption band moves from 581 nm of $\mathrm{Fe}^{\mathrm{II}}(\text { bpy })_{2}(\mathrm{CN})_{2}$ to 528 nm of complex 3. This shift of the MLCT may be due to the stabilization of the $\mathrm{d}(\mathrm{Fe})$ orbitals by the presence of an electron acceptor ($\mathrm{Fe}(\mathrm{III})$) upon forming $\mathrm{Fe}^{\text {III }}-\mathrm{CN}-\mathrm{Fe}^{\text {III }}$. Such blue shifted behavior was also observed in complexes 4-6, also this has been studied intensively by others. ${ }^{34}$ The ${ }^{3}$ MLCT band is also blue-shifted from 650 nm in $\mathrm{Os}^{\mathrm{II}}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ to 617 nm in 6. The maximum
15 absorption wavelength of MLCT for complexes 3-6 increases in the order: $\mathrm{Ru}(461$ and 495 nm in 5) < Os (472 and 514 nm in 6) $<\mathrm{Fe}(528 \mathrm{~nm}$ in 3). The similar phenomenon has also been reported and investigated. ${ }^{22,35}$ This could be explained by metal-ligand interactions and spin-orbit coupling. ${ }^{33}$
${ }_{20}$ Besides, it can be found a new band in the electronic absorption spectra of $3(609 \mathrm{~nm}), 4(595 \mathrm{~nm})$, and $6(712 \mathrm{~nm})$, which could be assigned to $\mathrm{M}^{\mathrm{II}}(\mathrm{M}=\mathrm{Fe}$ or Os$)$ to $\mathrm{Fe}^{\mathrm{III}}$ electron transfer (MMCT). From the absorption band shape of $500-$ 750 nm of $\mathbf{5}$ and its precursors, it can be speculated that there hould exit a MMCT band in $\mathbf{5}$ but may be overlapped by the MCLT band at 500 nm region. Similar to the Prussian blue, $\mathrm{Fe}^{\mathrm{III}}{ }_{4}\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{CN})_{6}\right]_{3}$, the MMCT of 3-6 should results from the $\mathrm{t}_{2 \mathrm{~g}}$ orbital of low-spin $\mathrm{M}^{\text {II }}$ ion to $\mathrm{t}_{2 \mathrm{~g}}$ orbital of high-spin $\mathrm{Fe}^{\text {III }}$ ion through the bridging cyanide ligand. ${ }^{11}$ The MMCT bands in complexes 3, 4 and $\mathbf{6}$ are analogous to those electron transfer from the low-spin $\mathrm{Fe}^{\text {II }}$ ion to the high-spin $\mathrm{Fe}^{\text {III }}$ of other systems ${ }^{3,11}$ For $\mathbf{3}$ and 4, the MMCT occurs in the same metal atoms and the intensity of MMCT band is strongest.
Based on the above MMCT band shape ${ }^{7}$ and the related $\mathrm{Fe}^{\mathrm{II}}-\mathrm{N}$ bond distances, the mixed valence complexes $\mathbf{3}$ and $\mathbf{4}$ are assigned to partial delocalization and should belong to the Class II mixed valence complexes, according to the classification of Robin and Day. ${ }^{36}$

Magnetic properties

${ }_{40}$ The variable-temperature magnetic susceptibilities of solid samples of $\mathbf{3}$ and $\mathbf{4}$ were collected under an external magnetic field of 1000 Oe using a SQUID magnetometer range 2-300 K in Figures 8-9. The $\chi_{\mathrm{M}} T$ values at 300 K are $4.83 \mathrm{~cm}^{3} \mathrm{~K}$ mol^{-1} for $\mathbf{3}$ and $4.81 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ for $\mathbf{4}$, which are slightly
45 higher than the expected theoretical values of $4.375 \mathrm{~cm}^{3} \mathrm{~K}$ mol^{-1} for one uncoupled high-spin (HS) $\mathrm{Fe}(\mathrm{III})^{37}\left(S_{\text {Fe(III) }}=\right.$ $5 / 2$) and one diamagnetic low-spin (LS) $\mathrm{Fe}(\mathrm{II})$ ions $\left(S_{\mathrm{Fe}(\mathrm{II})}=\right.$ 0) assuming $g=2.0$ due to a significant orbital contribution from Fe(III) ions. ${ }^{38}$ As the temperature is lowed, the $\chi_{\mathrm{M}} T$
so values keep nearly a constant value until about 22 K for $\mathbf{3}$ and about 32 K for 4 , and then start to decrease smoothly, reaching a minimum value of $4.75 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ for 3 and 4.43 $\mathrm{cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ for $\mathbf{4}$ at about 9 K . Below 9 K , the $\chi_{\mathrm{M}} T$ values rapidly increased with further decreasing temperature to 6.86 $\mathrm{cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ for $\mathbf{3}$ and $4.99 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ for 4 at 2 K , probably suggesting a phase transition. ${ }^{39}$ The magnetic data of both 3 and 4 between 10 K to 300 K obey the Curie-Weiss law, $\chi_{\mathrm{M}}=$ $C /(T-\theta)$, affording $\theta=0.75 \mathrm{~K}, C=4.76 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ for $\mathbf{3}$ and
$\theta=0.19 \mathrm{~K}, C=4.81 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ for 4 . The positive θ values, together with the shape of the curves of $\chi_{\mathrm{M}}-T$ and $\chi_{\mathrm{M}} T-T$, indicate the presence of weak ferromagnetic coupling between the Fe (III) ions through the diamagnetic cyanidometal - $\mathrm{NC}-\mathrm{Fe}$ (II)- CN - bridge in $\mathbf{3}$ and is stronger than that in 4. This suggests phen is a stronger π-acceptor ${ }_{65}$ compared to bpy.

On the basis of the molecular structure, the magnetic susceptibility for complex $\mathbf{3}$ is fitted by the following equation with Hamiltonian: $\mathbf{H}=-2 J \Sigma \mathbf{S}_{1} \cdot \mathbf{S}_{2}$. To evaluate the strength of $\mathrm{Fe}($ III $)-\mathrm{Fe}($ III $)$ magnetic coupling (J) separated by
70 the diamagnetic cyanidometal $-\mathrm{NC}-\mathrm{M}(\mathrm{II})-\mathrm{CN}-$ bridge, $\chi_{\mathrm{M}}=$ $N g^{2} \beta^{2} /(k T) \times\left(A+B x^{2}\right) /\left(1+C x+D x^{3}\right),{ }^{40}$ with $x=|J| / k T$, where all the symbols have their usual meaning. For the HS Fe (III) ion ($S=5 / 2$), the value of A, B, C, D are $2.9167,208.04$, 15.543, 2707.2, respectively. ${ }^{40}$ The best fit values obtained by the above equation are $J=0.029 \mathrm{~cm}^{-1}, g=2.09$ and $R=$ $\left(\Sigma\left(\chi_{\text {calcd }} T-\chi_{\text {obsd }} T\right)^{2}\right) / \Sigma\left(\chi_{\text {obsd }} T\right)^{2}=8.7 \times 10^{-3}$ for complex 3. As the fitting for $\mathbf{4}$ is not well, the result of $\mathbf{4}$ has not been showed here.
In order to further characterize the low-temperature magnetic behaviors of 3 and 4, the specific heat of powder pellet samples 3 and 4 were measured with a zero-field by a relaxation method in the temperature range of $2-50 \mathrm{~K}$. The plots of $C p^{-1} v s . T$ are given in Figure 10. The curves of $C p^{-1}$ T show a peak at 2.8 K for $\mathbf{3}$ and 2.7 K for $\mathbf{4}$, respectively, which corresponds to a phase transition at low temperature of 3 and 4. This phase transition could also explain the sudden decreasing of $\chi_{\mathrm{M}} T$ value of complex $\mathbf{3}$ and $\mathbf{4}$ at low temperature.
The variable-temperature magnetic susceptibilities of solid
${ }_{90} \quad$ samples 5 and $\mathbf{6}$ were collected under an external magnetic field of 1000 Oe using a SQUID magnetometer range 2-300 K in Figures 11-12. The $\chi_{\mathrm{M}} T$ values at 300 K are $4.66 \mathrm{~cm}^{3} \mathrm{~K}$ mol^{-1} for 5 and $4.35 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ for $\mathbf{6}$, which are close to the spin-only coupled values of $4.375 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ for one mol^{-1} for 6 at $2-\mathrm{K}$. The magntic behavior of the decrease of $\chi_{\mathrm{M}} T$ values with decreasing temperature indicate an extra temperature-independent paramagnetic (TIP) contribution of $\mathbf{5}$ and $\mathbf{6}$ owing to the spin-orbit coupling of paramagnetic HS Fe(III). ${ }^{41}$ Also the specific heat of powder pellet sample 5 was measured with a zero-field by a relaxation method in the temperature range of $2-50 \mathrm{~K}$. The plots of $C p^{-1} v s . T$ are given in Figure 13. The curves of $C p^{-1}$ T show a peak at 2.6 K for $\mathbf{5}$, which corresponds to a phase transition at low temperature of $\mathbf{5}$.
${ }_{110}$ To evaluate the Curie-Weiss constants of complexes 5 and $\mathbf{6}$, a TIP $(N \alpha)$ should be added to the Curie-Weiss law. By using the equation, $\chi_{\mathrm{M}}=C /(T-\theta)+N \alpha$, the related parameters were obtained as follows: $C=4.25 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}, \theta=0.37 \mathrm{~K}, N \alpha=$ $1.59 \times 10^{-3} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ for 5 and $C=4.02 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}, \theta=-$
$1150.088 \mathrm{~K}, N \alpha=1.60 \times 10^{-3} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ for 6. The Weiss constants, together with the magnetic behaviors, indicate a
weak ferromagnetic coupling for complex $\mathbf{5}$, and a weak antiferromagnetic coupling for complex $\mathbf{6}$. An acceptable model for the temperature dependent magnetic susceptibilities of $\mathbf{5}$ and $\mathbf{6}$ are similar to that of $\mathbf{3}$, but a TIP should be added to the 5 above equation for complex 5 and 6, $\chi_{\mathrm{M}}=$ $N g^{2} \beta^{2} /(k T) \times\left(A+B x^{2}\right) /\left(1+C x+D x^{3}\right)+N \alpha$. The best-fit parameters obtained are $J=0.020 \mathrm{~cm}^{-1}, g=1.98, R=3.5 \times 10^{-}$ ${ }^{4}$ and $N \alpha=1.18 \times 10^{-3} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ for complex 5 and $J=-0.009$ $\mathrm{cm}^{-1}, g=1.93, R=2.1 \times 10^{-4}$ and $N \alpha=9.0 \times 10^{-4} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ for $10 \quad$ complex 6.

It has been reported that the magnetic properties of M1-L-M2 depends on the angle of M1-L-M2. ${ }^{42}$ For the magnetic superexchange between paramagnetic Fe (III) ions mediated by the $\mathrm{Fe}^{\text {III }}-\mathrm{N} \equiv \mathrm{C}-\mathrm{M}^{\mathrm{II}}-\mathrm{C} \equiv \mathrm{N}-\mathrm{Fe}^{\mathrm{III}}$ pathway involving the diamagnetic LS-M(II) centers, the magnetic coupling between paramagnetic Fe (III) ions are related to the shape of the $\mathrm{Fe}^{\text {III }}-\mathrm{N} \equiv \mathrm{C}-\mathrm{M}^{\mathrm{II}}-\mathrm{C} \equiv \mathrm{N}-\mathrm{Fe}^{\text {III }}$ bridge. ${ }^{15}$ For complexes 3, 4 and 6, the magnetic properties of $\mathrm{Fe} 1-\mathrm{N} 1 \equiv \mathrm{C} 1-\mathrm{M} 1-\mathrm{C} 2 \equiv \mathrm{~N} 2-\mathrm{Fe} 2$ depend on the angle of $\mathrm{C} 1-\mathrm{M} 1-\mathrm{C} 2, \mathrm{Fe} 1-\mathrm{N} 1 \equiv \mathrm{C} 1, \mathrm{~N} 1 \equiv \mathrm{C} 1-\mathrm{M} 1$,
$20 \quad \mathrm{M} 1-\mathrm{C} 2 \equiv \mathrm{~N} 2$ and $\mathrm{C} 2 \equiv \mathrm{~N} 2-\mathrm{Fe} 2$. It was found that the angles of $\mathrm{C} 1-\mathrm{M} 1-\mathrm{C} 2, \mathrm{~N} 1 \equiv \mathrm{C} 1-\mathrm{M} 1$ and $\mathrm{M} 1-\mathrm{C} 2 \equiv \mathrm{~N} 2$ are very close in complexes 3, 4 and $\mathbf{6}$, and the angles of $\mathrm{Fe} 1-\mathrm{N} 1 \equiv \mathrm{C} 1$ and $\mathrm{C} 2 \equiv \mathrm{~N} 2-\mathrm{Fe} 2$ decrease in the order of $\mathbf{3}>\mathbf{4}>\mathbf{6}$. The bending of $\mathrm{Fe} 1-\mathrm{N} 1 \equiv \mathrm{C} 1$ and $\mathrm{C} 2 \equiv \mathrm{~N} 2-\mathrm{Fe} 2$ should result in the different magnetic behavior of complex 6 .

Conclusions

In summary, a series of new 1D zigzag chain cyanide-bridged complexes 3-6 were synthesized by reaction of diamagnetic cyanide precursors cis $-\mathrm{M}^{\mathrm{II}}(\mathrm{L})_{2}(\mathrm{CN})_{2}$ with $\left[\mathrm{Fe}^{\mathrm{III}}(\text { salen })\right]^{+}$in the ${ }_{30}$ presence of $\mathrm{NH}_{4} \mathrm{PF}_{6}$. What's more, complexes 3 and 4 are mixedvalence complexes. Complexes 3-6 were confirmed by MS, IR, elemental analysis, electronic absorption spectra and magnetic measurements. The electronic absorption spectra exhibits the presence of the $\mathrm{M}^{\mathrm{II}} \rightarrow \mathrm{Fe}^{\text {III }}$ MMCT band in complexes 3-6. The magnetic data indicate 3-5 are weak ferromagnetic coupling, and 6 is anti-ferromagnetic coupling. The specific heat measurements suggest a phase transition occurring at $2.8 \mathrm{~K}, 2.7 \mathrm{~K}$ and 2.6 K for 3-5.

Acknowledgments

${ }_{40}$ We thank 973 Program (2012CB821702 and 2014CB845603), the National Science Foundation of China (21073192, 21173223 and 21233009) for financial support.
Table 1. Details of the crystallographic Data collection, Structural Determination, and refinement for complexes 1- 6.
${ }^{45}$

	$\mathbf{1} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
Chemical formula	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FeN}_{6} \mathrm{O}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{7}$ Os
Formula weight	452.26	666.61
Colour and Habit	Purple prism	Brown prism
Crystal Size (mm)	$0.487 \times 0.322 \times$ 0.214	0.268×0.147 $\times 0.135$

T (K)	123	123	
Crystal system	monoclinic	monoclinic	
Space group	$P 2{ }_{1} / n$	C2/c	
$a(\AA)$	9.257(8)	26.832(3)	
b (\AA)	16.127(13)	$14.7225(10)$	
$c(\AA)$	13.836(11)	14.7702(12)	
α (deg)	90.00	90.00	
β (deg)	94.234(16)	112.366(5)	
γ (deg)	90.00	90.00	
$V\left(\AA^{3}\right)$	2060(3)	5395.9(8)	
Z	4	8	
$\rho_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.458	1.641	
$\lambda\left(\mathrm{Mo} K_{\alpha}, \AA\right.$)	0.71073	0.71073	
$\begin{gathered} \mu\left(\mathrm{Mo} \mathrm{~K}_{\alpha},\right. \\ \left.\mathrm{mm}^{-1}\right) \\ \hline \end{gathered}$	0.764	4.775	
Completeness	99.1\%	95.1\%	
$F(000)$	928	2576	
h, k, l, range	$\begin{aligned} & -11 \leq h \leq 12, \\ & -20 \leq k \leq 20, \\ & -17 \leq l \leq 17 \end{aligned}$	$\begin{gathered} -34 \leq h \leq 34, \\ -19 \leq k \leq 19, \\ -18 \leq l \leq 19 \\ \hline \end{gathered}$	
θ range(deg)	2.53-27.54	2.72-27.48	
Reflections measured	4698	5880	
$R_{\text {int }}$	0.0827	0.0543	
Params/restrai nts/Data(obs.)	270/0/2925	325/18/5617	
GOF	0.917	1.058	
$\begin{gathered} R_{1}, \omega R_{2}[I> \\ 2 \sigma(I)] \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.0650, \\ 0.1639 \end{gathered}$	$\begin{gathered} \hline 0.0552, \\ 0.1642 \end{gathered}$	
$\begin{gathered} R_{1}, \omega R_{2} \text { (all } \\ \text { data) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.0863, \\ 0.1779 \end{gathered}$	$\begin{gathered} \hline 0.0569, \\ 0.1664 \end{gathered}$	
	$\begin{gathered} \text { 3.DMF• } \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{C} \\ \mathrm{H}_{3} \mathrm{CN} \end{gathered}$	4.2DMF. $\mathrm{H}_{2} \mathrm{O}$	6
Chemical formula	$\begin{gathered} \mathrm{C}_{43} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{Fe}_{2} \\ \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{P} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}_{48} \mathrm{H}_{44} \mathrm{~F}_{6} \mathrm{O}_{5} \mathrm{~F} \\ \mathrm{e}_{2} \mathrm{~N}_{10} \mathrm{P} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}_{38} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{Fe} \\ \mathrm{O}_{2} \mathrm{~N}_{8} \mathrm{OsP} \\ \hline \end{gathered}$
Formula weight	1017.52	1097.60	1021.72
Colour and Habit	Purple prism	Purple prism	Brown prism
$\begin{gathered} \text { Crystal Size } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} 0.178 \times 0.144 \times \\ 0.094 \end{gathered}$	$\begin{gathered} 0.300 \times 0.250 \\ \times 0.200 \end{gathered}$	$\begin{gathered} 0.452 \times 0.32 \\ 9 \times 0.177 \end{gathered}$
T (K)	123	123	123
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P 2_{1} / n$	$P 2_{1} / n$	C2/c
$a(\AA)$	16.088(8)	16.747(7)	27.291(11)
b (\AA)	13.258(6)	13.494(5)	12.386(5)
$c(\AA)$	21.990(11)	22.504(10)	24.808(10)
$\alpha(\mathrm{deg})$	90.00	90.00	90.00
β (deg)	108.196(9)	105.667(7)	105.893(6)
γ (deg)	90.00	90.00	90.00
$V\left(\AA^{3}\right)$	4456(4)	4897(4)	8065(5)
Z	4	4	8

$\rho_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.517	1.489	1.683
λ (Mo K α, \AA)	0.71073	0.71073	0.71073
$\begin{gathered} \mu(\mathrm{Mo} \mathrm{~K} \alpha, \\ \left.\mathrm{mm}^{-1}\right) \\ \hline \end{gathered}$	0.767	0.706	3.619
Completeness	99.7\%	99.7\%	99.6\%
$F(000)$	2084	2252	4008
h, k, l, range	$\begin{aligned} & -19 \leq h \leq 19, \\ & -15 \leq k \leq 15, \\ & -26 \leq l \leq 26 \end{aligned}$	$\begin{aligned} & -21 \leq h \leq 21, \\ & -17 \leq k \leq 13, \\ & -29 \leq l \leq 29 \end{aligned}$	$\begin{aligned} & -35 \leq h \leq 35, \\ & -15 \leq k \leq 16, \\ & -32 \leq l \leq 32 \\ & \hline \end{aligned}$
θ range (deg)	2.03-25.00	3.20-27.50	2.10-27.42
Reflections measured	7825	11222	9159
$R_{\text {int }}$	0.0759	0.0558	0.0782
Params/restrai nts/Data(obs.)	595/54/4989	704/40/7108	$\begin{gathered} 593 / 129 / 73 \\ 98 \\ \hline \end{gathered}$
GOF	1.017	1.033	1.070
$\begin{gathered} R_{1}, \omega R_{2}[I> \\ 2 \sigma(I)] \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.0787, \\ & 0.2127 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.0644, \\ & 0.1300 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.0633, \\ & 0.1674 \\ & \hline \end{aligned}$
$\begin{gathered} R_{1}, \omega R_{2} \text { (all } \\ \text { data) } \end{gathered}$	$\begin{gathered} 0.1117, \\ 0.2429 \\ \hline \end{gathered}$	$\begin{gathered} 0.1109, \\ 0.1570 \end{gathered}$	$\begin{gathered} 0.0770, \\ 0.1805 \\ \hline \end{gathered}$

$R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right| . \omega R_{2}=\left[\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$.

Table 2. Selected Bond Distances (\AA) and Bond Angles (${ }^{\circ}$) for Complexes 1-6.

	1	2	
$\mathrm{M}^{\mathrm{II}}-\mathrm{C} 1_{\text {cyano }}$	1.901(4)	2.006 (7)	
M^{11} - $\mathrm{C} 2_{\text {cyano }}$	1.912(4)	1.987(8)	
$\mathrm{C} 1 \equiv \mathrm{~N} 1$	1.174(5)	1.143(10)	
$\mathrm{C} 2 \equiv \mathrm{~N} 2$	1.161(5)	1.163(11)	
$\mathrm{M}^{\mathrm{II}}-\mathrm{N} 3_{\text {pyridine }}$	2.000(3)	2.112(5)	
M^{II} - $\mathrm{N} 4_{\text {pyridine }}$	1.959(3)	2.069(5)	
M^{II} - $\mathrm{N} 5_{\text {pryridine }}$	1.957(3)	2.064(5)	
M^{II} - $\mathrm{N}_{\text {pryridine }}$	1.992(3)	2.089(6)	
C_{1} cyano $-\mathrm{M}^{\mathrm{II}}$ - C_{2} cyano	88.57(16)	90.8(3)	
N1 $=\mathrm{C} 1-\mathrm{M}^{\text {II }}$	178.8(3)	173.8(8)	
N2 $=\mathrm{C} 2-\mathrm{M}^{\text {II }}$	178.7(3)	175.0(5)	
	3	4	6
M^{II} - $\mathrm{C} 1_{\text {cyano }}$	1.867(6)	1.890(4)	1.978(7)
M^{II} - $\mathrm{C} 2_{\text {cyano }}$	1.889(6)	1.886(4)	1.968(9)
$\mathrm{C} 1 \equiv \mathrm{~N} 1$	1.163(7)	1.157(5)	1.170(10)
$\mathrm{C} 2 \equiv \mathrm{~N} 2$	1.162(7)	1.152(5)	1.157(10)
M^{II} - $\mathrm{N} 3_{\text {pyridine }}$	$1.996(5)$	2.002(3)	2.123(7)
$\mathrm{M}^{\mathrm{II}}-\mathrm{N} 4_{\text {pryidine }}$	$1.965(5)$	1.970(3)	2.064(8)
M^{II} - $\mathrm{N} 5_{\text {pryridine }}$	$1.985(5)$	1.972(3)	$2.065(7)$
$\mathrm{M}^{\mathrm{II}}-\mathrm{N} 6_{\text {pridine }}$	$1.978(5)$	1.996(3)	2.114(7)
$\mathrm{Fe}^{\text {III }}-\mathrm{N} 1_{\text {cyano }}$	2.109(5)	2.183(3)	2.248(7)
$\mathrm{Fe}^{\text {IIII }}$ - $\mathrm{N} 2_{\text {cyano }}$	$2.086(6)$	$2.152(4)$	2.242(8)
$\mathrm{Fe}^{\text {III }}-\mathrm{N} 7_{\text {salen }}$	2.144(5)	2.060(4)	1.989(7)
$\mathrm{Fe}^{\text {III }}$ - $\mathrm{N}_{\text {salen }}$	$2.113(6)$	2.063(3)	1.990(6)
$\mathrm{Fe}^{\text {III }}-\mathrm{O} 1_{\text {salen }}$	1.924(5)	1.896(3)	1.876(6)
$\mathrm{Fe}^{\text {III }}-\mathrm{O} 2_{\text {salen }}$	1.911(4)	1.893(3)	1.899(5)
C_{1} cyano $-\mathrm{M}^{\text {II }}-\mathrm{C} 2_{\text {cyano }}$	87.7(2)	87.03(16)	87.7(3)
N1 $=\mathrm{C} 1-\mathrm{M}^{\text {II }}$	177.4(5)	176.1(3)	177.6(6)
$\mathrm{N} 2 \equiv \mathrm{C} 2-\mathrm{M}^{\text {II }}$	177.1(5)	176.5(4)	176.4(9)
$\mathrm{C} 1 \equiv \mathrm{~N} 1-\mathrm{Fe}^{\text {III }}$	159.6(5)	159.2(3)	145.1(6)
$\mathrm{C} 2 \equiv \mathrm{~N} 2-\mathrm{Fe}^{\text {III }}$	168.6(4)	167.2(3)	160.1(7)

$\mathrm{N} 2^{\text {cyano }}{ }^{2}-\mathrm{Fe}^{\text {III }}-\mathrm{N} 1_{\text {cyano }}$	$173.94(19)$	$173.52(13)$	$172.4(3)$
$\mathrm{M}^{\mathrm{II} \ldots \mathrm{Fel}^{\mathrm{III}}}$	5.048	5.127	5.133
$\mathrm{M}^{\mathrm{II}} \ldots \mathrm{Fe}^{\mathrm{III}}$	5.111	5.151	5.281
$\mathrm{Fe}^{\mathrm{III}} \ldots \mathrm{Fe}^{\mathrm{III}}$	6.830	6.897	6.680

Table 3. Cyanide stretching frequencies and electronic absorption spectra for complexes1-5 and the related precursors.

Compound	$v_{\mathrm{CN}}\left(\mathrm{cm}^{-1}\right)$	$\lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$					
$\mathbf{1}$	$2069,2079^{43}$	$382(6252), 581(6204)$					
cis-Fe(phen $)_{2}(\mathrm{CN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$2067,2079^{44}$	$322(2761), 363(1284)$,					
$490(17105), 580(1026)$			$	$	cis-Ru(bpy) $)_{2}(\mathrm{CN})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$2062,2078^{45}$	$346(9428), 483(10385)^{45}$
:---	:---	:---					
$\mathbf{2}$	2040,2057	$336(11870), 372(11569)$, $445(10667), 496(13074)$, $650(3370)$					
Fe(salen)($\left.\mathrm{NO}_{3}\right)$	-	$377(11892)$					
$\mathbf{3}$	2067,2085	$356(12900), 528(6570)$, $609(3434)$					
$\mathbf{4}$	2087,2102	$372(14952), 512(6825)$, $595(3584)$					
$\mathbf{5}$	2053,2084	$328(16210), 461(10244)$, $495(8856)$					
$\mathbf{6}$	2028,2068	$333(17170), 472(11205)$, $514(10545), 617(3613)$, $712(1977)$					

Figure 1 Crystal structure of mononuclear precursors cis$\mathrm{M}(\mathrm{bpy})_{2}(\mathrm{CN})_{2}(\mathrm{M}=\mathrm{Fe}$, Os$)$. Hydrogen atoms and solvent molecular have been omitted for clarity.

Figure 2 (2a) Crystal structure of complexes [cis$\mathrm{M}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \mathrm{Fe}($ salen $\left.)\right]\left(\mathrm{PF}_{6}\right)(\mathrm{M}=\mathrm{Fe}, \mathbf{3} ; \mathrm{M}=\mathrm{Os}, \mathbf{6})$, (2b) Side perspective drawing of 1D chain of complexes [cis$\mathrm{M}(\mathrm{bpy})_{2}(\mathrm{CN})_{2} \mathrm{Fe}($ salen $\left.)\right]\left(\mathrm{PF}_{6}\right)$. Hydrogen atoms, $\mathrm{PF}_{6}{ }^{-}$anion and solvent molecular have been omitted for clarity.

Figure 3 (3a) Crystal structure of [cis$\mathrm{Fe}(\text { phen })_{2}(\mathrm{CN})_{2} \mathrm{Fe}($ salen $\left.)\right]\left(\mathrm{PF}_{6}\right)$. (3b) Side perspective drawing of 1D zigzag chain of $\left[c i s-\mathrm{Fe}(\text { phen })_{2}(\mathrm{CN})_{2} \mathrm{Fe}(\right.$ salen $\left.)\right] \quad\left(\mathrm{PF}_{6}\right)$. ${ }_{15}$ Hydrogen atoms, the PF_{6}^{-}anion and solvent molecule have been omitted for clarity.

Figure 4 Electronic absorption spectra of complex 3 and related ${ }_{20}$ precursors in $\mathrm{CH}_{3} \mathrm{CN}$ solution at room temperature.

Figure 5 Electronic absorption spectra of complex 4 and related precursors in $\mathrm{CH}_{3} \mathrm{CN}$ solution at room temperature.

Figure 6 Electronic absorption spectra of complex 5 and related precursors in $\mathrm{CH}_{3} \mathrm{CN}$ solution at room temperature.

Figure 7 Electronic absorption spectra of complex 6 and related precursors in $\mathrm{CH}_{3} \mathrm{CN}$ solution at room temperature.

Figure 8 Magnetic behavior of complex 3 as measured in an 10 applied field of 1000 Oe using a SQUID magnetometer. Fitting (black line) on χ_{M} vs T (star) and fitting (red line) on $\chi_{\mathrm{M}} T$ vs T (circle) of complex $\mathbf{3}$ in the powder state.

Figure 9 Magnetic behavior of complex 4 as measured in an applied field of 1000 Oe using a SQUID magnetometer. Fitting (black line) on χ_{M} vs T (star) and $\chi_{\mathrm{M}} T$ vs T (circle) of complex 4 in the powder state.

Figure 10 Temperature dependence of specific heat of complexes 3 (black circle) and 4 (red triangle).

Figure 11 Magnetic behavior of complex 5 as measured in an applied field of 1000 Oe using a SQUID magnetometer. Fitting (black line) on $\chi_{\mathrm{M}} v s T$ (star) and fitting (red line) on $\chi_{\mathrm{M}} T$ vs T (circle) of complex 5 in the powder state.

Figure 12 Magnetic behavior of complex 6 as measured in an applied field of 1000 Oe using a SQUID magnetometer. Fitting (black line) on $\chi_{\mathrm{M}} v s T$ (star) and fitting (red line) on $\chi_{\mathrm{M}} T$ vs T 5 (circle) of complex 6 in the powder state.

Figure 13 Temperature dependence of specific heat of complex 5.

${ }_{10}$ Notes and references

${ }^{a}$ State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China. E-mail: tsheng@fjirsm.ac.cn.
${ }^{b}$ School of Chemistry and Chemical Engineering, University of Chinese 15 Academy of Sciences, Beijing, 100049, China.
\dagger Electronic Supplementary Information (ESI) available: [X-ray crystallographic data in CIF format for complexes 1-6]. See DOI: 10.1039/b000000x/
\ddagger Footnotes should appear here. These might include comments relevant 20 to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.

1. G. E. Pieslinger, P. Alborés, L. D. Slep and L. M. Baraldo, Angew. Chem. Int. Ed., 2014, 53, 1293; H. Oshio, H. Onodera and T. Ito, 25 Chem.-Eur. J., 2003, 9, 3946; B. W. Pfennig, J. L. Cohen, I. Sosnowski, N. M. Novotny and D. M. Ho, Inorg. Chem., 1999, 38, 606; L. Dubicki, J. Ferguson, E. R. Krausz, P. A. Lay, M. Maeder, R. H. Magnuson and H. Taube, J. Am. Chem. Soc., 1985, 107, 2167.
2. S. Margadonna, K. Prassides and A. N. Fitch, Angew. Chem. Int. Ed.,
$302004, ~ 43, ~ 6316 ;$ P. Franz, C. Ambrus, A. Hauser, D. Chernyshov, M Hostettler, J. Hauser, L. Keller, K. Kramer, H. Stoeckli-Evans, P. Pattison, H. B. Burgi and S. Decurtins, J. Am. Chem. Soc., 2004, 126, 16472; E. J. Schelter, F. Karadas, C. Avendano, A. V. Prosvirin, W. Wernsdorfer and K. R. Dunbar, J. Am. Chem. Soc., 2007, 129, 8139.
35 3. G. Rogez, A. Marvilliers, E. Riviere, J. P. Audiere, F. Lloret, F. Varret, A. Goujon, N. Mendenez, J. J. Girerd and T. Mallah, Angew. Chem.

Int. Ed., 2000, 39, 2885.
4. D. M. D'Alessandro and F. R. Keene, Chem. Rev., 2006, 106, 2270; P. V. Bernhardt, F. Bozoglian, B. P. Macpherson and M. Martinez,

40 Coord. Chem. Rev., 2005, 249, 1902; J. F. Endicott, P. G. McNamara, T. Buranda and A. V. Macatangay, Coord. Chem. Rev., 2000, 208, 61; C. Creutz and H. Taube, J. Am. Chem. Soc., 1973, 95, 1086; R. H. Magnuson, P. A. Lay and H. Taube, J. Am. Chem. Soc., 1983, 105, 2507.

45 5. X. Y. Wang, C. Avendano and K. R. Dunbar, Chem. Soc. Rev., 2011, 40, 3213; J. Černák, M. Orendáč, I. Potočňák, J. Chomič, A. Orendáčová, J. Skoršepa and A. Feher, Coord. Chem. Rev., 2002, 224, 51; M. Mikuriya, D. Yoshioka and M. Handa, Coord. Chem. Rev., 2006, 250, 2194; W. Oliver, Coord. Chem. Rev., 2005, 249, 2550.
50 6. O. Sato, A. Cui, R. Matsuda, J. Tao and S. Hayami, Acc. Chem. Res., 2007, 40, 361; M. D. Ward, Chem. Soc. Rev., 1997, 26, 365; S. i. Ohkoshi, H. Tokoro and K. Hashimoto, Coord. Chem. Rev., 2005, 249, 1830.
7. N. S. Hush, Prog. Inorg. Chem., 1967, 391; N. S. Hush, Coord. Chem. 5 Rev., 1985, 64, 135.
8. K. D. Demadis, C. M. Hartshorn and T. J. Meyer, Chem. Rev., 2001, 101, 2655; B. S. Brunschwig, C. Creutz and N. Sutin, Chem. Soc. Rev., 2002, 31, 168.
9. I. W. Chen, M. Fu, W. Tseng, J. Yu, S. Wu, C. Ku, C. Chen and S.

60 Peng, Angew. Chem. Int. Ed., 2006, 45, 5814; M. Mitsumi, K. Kitamura, A. Morinaga, Y. Ozawa, M. Kobayashi, K. Toriumi, Y. Iso, H. Kitagawa and T. Mitani, Angew. Chem. Int. Ed., 2002, 41, 2767; H. Kitagawa, N. Onodera, T. Sonoyama, M. Yamamoto, T. Fukawa, T. Mitani, M. Seto and Y. Maeda, J. Am. Chem. Soc., 1999, 121, 10068;
65 M. Mitsumi, T. Murase, H. Kishida, T. Yoshinari, Y. Ozawa, K. Toriumi, T. Sonoyama, H. Kitagawa and T. Mitani, J. Am. Chem. Soc., 2001, 123, 11179; M. Mitsumi, H. Ueda, K. Furukawa, Y. Ozawa, K. Toriumi and M. Kurmoo, J. Am. Chem. Soc., 2008, 130, 14102.
10. J. Brown, Phil. Trans., 1724, 33, 17; J. Woodward, Phil. Trans., 1724, 70 33, 15.
11. M. B. Robin, Inorg. Chem., 1962, 1, 337.
12. A. Ito, M. Suenaga and K. Ono, J. Chem. Phys., 1968, 48, 3597.
13. W. Liu, E. N. Nfor, Y. Z. Li, J. L. Zuo and X. Z. You, Inorg. Chem. Comтип., 2006, 9, 923; R. Herchel, Z. Trávníček and R. Zbořil, Inorg. Chem., 2011, 50, 12390.
14. X. Ma, S. M. Hu, C. H. Tan, Y. H. Wen, Q. L. Zhu, C. J. Shen, T. L. Sheng and X. T. Wu, Dalton Trans., 2012, 41, 12163; X. Ma, C. S. Lin, S. M. Hu, C. H. Tan, Y. H. Wen, T. L. Sheng and X. T. Wu, Chem.-Eur. J., 2014, 20, 7025.
80 15. X. Ma, S. M. Hu, C. H. Tan, Y. F. Zhang, X. D. Zhang, T. L. Sheng and X. T. Wu, Inorg. Chem., 2013, 52, 11343.
16. A. A. Schilt, J. Am. Chem. Soc., 1960, 82, 3000.
17. A. A. Schilt, P. A. Russo and A. Wold, Inorg. Synth., 1970, 247.
18. J. N. Demas, T. F. Turner and G. A. Crosby, Inorg. Chem., 1969, 8, 674.
19. E. M. Kober, J. V. Caspar, B. P. Sullivan and T. J. Meyer, Inorg. Chem., 1988, 27, 4587.
20. F. Lloret, M. Julve, M. Mollar, I. Castro, J. Latorre, J. Faus, X. Solans and I. Morgenstern-Badarau, J. Chem. Soc., Dalton Trans., 1989, 729.
90 21. A. A. Schilte, J. Am. Chem. Soc., 1963, 85, 904.
22. G. Bryant, J. Fergusson and H. Powell, Aust. J. Chem., 1971, 24, 257.
23. G. M. Sheldrick, SHELXL-97, (1997) University of Göttingen, Germany
24. S. Z. Zhan, Q. J. Meng, X. Z. You, G. W. Wang and P. J. Zheng, 95 Polyhedron, 1996, 15, 2655.
25. F. Pan, Z. M. Wang and S. Gao, Inorg. Chem., 2007, 46, 10221.
26. C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112, 5525; M. L. Główka, D. Martynowski and K. Kozłowska, J. Mol. Struct., 1999, 474, 81.
100 27. C. A. Bignozzi, R. Argazzi, J. R. Schoonover, K. C. Gordon, R. B. Dyer and F. Scandola, Inorg. Chem., 1992, 31, 5260; B. J. Coe, T. J. Meyer and P. S. White, Inorg. Chem., 1995, 34, 3600.
28. A. A. Schilt, Inorg. Chem., 1964, 3, 1323.
29. C. A. Bignozzi, R. Argazzi, G. F. Strouse and J. R. Schoonover, Inorg.

105 Chim. Acta, 1998, 275-276, 380.
30. A. A. Schilt, J. Am. Chem. Soc., 1960, 82, 5779
31. G. B. Shaw, C. L. Brown and J. M. Papanikolas, J. Phys. Chem. A,

2002, 106, 1483; P. Byabartta, S. Pal, T. K. Misra, C. Sinha, F. L. Liao, K. Panneerselvam and T. H. Lu, J. Coord. Chem., 2002, 55, 479
32. M. Srnec, J. Chalupský, M. Fojta, L. Zendlová, L. k. Havran, M. Hocek, M. r. Kývala and L. r. Rulíšek, J. Am. Chem. Soc, 2008, 130, 5 10947; L. Rulíšek, J. Phys. Chem. C, 2013, 117, 16871.
33. E. M. J. Johansson, M. Odelius, S. Plogmaker, M. Gorgoi, S. Svensson, H. Siegbahn and H. Rensmo, J. Phys. Chem. C, 2010, 114, 10314.
34. N. K. Hamer and L. E. Orgel, Nature, 1961, 190, 439.

10 35. E. M. Kober and T. J. Meyer, Inorg. Chem., 1982, 21, 3967.
36. M. B. Robin and P. Day, Adv. Inorg. Chem., 1968, 10, 247.
37. I. Šalitroš, R. Boča, R. Herchel, J. Moncol, I. Nemec, M. Ruben and F. Renz, Inorg. Chem., 2012, 51, 12755.
38. Z. Gu, Y. Xu, L. Kang, Y. Li, J. Zuo and X. You, Inorg. Chem., 2009, 48, 5073; A. M. Kutasi, D. R. Turner, P. Jensen, B. Moubaraki, S. R. Batten and K. S. Murray, Inorg. Chem., 2011, 50, 6673; K. J. Cho, D. W. Ryu, K. S. Lim, W. R. Lee, J. W. Lee, E. K. Koh and C. S. Hong, Dalton Trans., 2013, 42, 5796; L. C. Kang, X. Chen, H. S. Wang, Y. Z. Li, Y. Song, J. L. Zuo and X. Z. You, Inorg. Chem., 2010, 49, 9275; 20 R. Lescouëzec, F. Lloret, M. Julve, J. Vaissermann, M. Verdaguer, R. Llusar and S. Uriel, Inorg. Chem., 2001, 40, 2065.
39. W. W. Ni, Z. H. Ni, A. L. Cui, X. Liang and H. Z. Kou, Inorg. Chem., 2007, 46, 22.
40. W. Hiller, J. Straehle, A. Datz, M. Hanack, W. E. Hatfield, L. W. Ter 25 Haar and P. Guetlich, J. Am. Chem. Soc., 1984, 106, 329.
41. D. Visinescu, L. M. Toma, O. Fabelo, C. Ruiz-Pérez, F. Lloret and M. Julve, Inorg. Chem., 2013, 52, 1525; L. M. Toma, J. Pasan, C. RuizPerez, F. Lloret and M. Julve, Dalton Trans., 2012, 41, 13716; E. Colacio, M. Ghazi, H. Stoeckli-Evans, F. Lloret, J. M. Moreno and C. Perez, Inorg. Chem., 2001, 40, 4876.
42. P. Seth, A. Figuerola, J. Jover, E. Ruiz and A. Ghosh, Inorg. Chem., 2014, 53, 9296; X. P. Shen, H. B. Zhou, J. H. Yan, Y. F. Li and H. Zhou, Inorg. Chem., 2014, 53, 116.
43. V. Comte and H. Vahrenkamp, J. Organomet. Chem., 2001, 627, 153.

35 44. D. F. Shriver and J. Posner, J. Am. Chem. Soc., 1966, 88, 1672.
45. C. A. Bignozzi, S. Roffia, C. Chiorboli, J. Davila, M. T. Indelli and F. Scandola, Inorg. Chem., 1989, 28, 4350.

Table of Content:

Syntheses, crystal structures, MMCT and magnetic properties of four one-dimensional cyanide-bridged complexes comprised of $\mathrm{M}^{\mathrm{II}}-\mathrm{CN}-\mathrm{Fe}^{\mathrm{III}}(\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os})$

Yong Wang, ${ }^{\text {a,b }}$ Xiao Ma, ${ }^{\text {a }}$ Shengmin Hu, ${ }^{\text {a }}$ Zhenzhen Xue, ${ }^{\text {a,b }}$ Yuehong Wen, ${ }^{\text {a }}$ Xiaoquan Zhu, ${ }^{\text {a,b }}$ Xudong
Zhang, ${ }^{a}$ Tianlu Sheng ${ }^{*, a}$ and Xintao Wu ${ }^{\text {a }}$
${ }^{a}$ State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
${ }^{b}$ School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

E-mail address: tsheng@fjirsm.ac.cn. Tel.: +086 (0)591 83792294.

Four 1D cyanide-bridged complexes $\left[\right.$ cis- $\mathrm{M}^{\mathrm{II}}(\mathrm{L})_{2}(\mathrm{CN})_{2} \mathrm{Fe}^{\text {III }}($ salen $\left.)\right]\left(\mathrm{PF}_{6}\right)$ (3-6) have been synthesized, of which $\mathbf{3}$ and $\mathbf{4}$ are the Class II mixed-valence complexes.

