This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Selective Synthesis of Cis- and Trans-[(NHC\textsubscript{Me})\textsubscript{2}PtCl\textsubscript{2}] and [NHC\textsubscript{Me}Pt(cod)Cl][NHC\textsubscript{Me}PtCl\textsubscript{3}] using NHC\textsubscript{Me}SiCl\textsubscript{4}

Lesley C. Lewis-Alleyne,a,b Bassem S. Bassil,b Tobias Böttcherc and Gerd-Volker Röschenthalera,b

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

NHC\textsubscript{Me}SiCl\textsubscript{4}, (NHC\textsubscript{Me} = 1,3-dimethylimidazolidin-2-ylidene), was used to synthesise novel NHC\textsubscript{Me}-Pt(II) complexes. An atypical trans-cis isomerisation process has also been achieved for [(NHC\textsubscript{Me})\textsubscript{2}PtCl\textsubscript{2}], while the synthesis of the unique double-complex salt, [(NHC\textsubscript{Me})Pt(cod)Cl][(NHC\textsubscript{Me})PtCl\textsubscript{3}], (cod = 1,5-cyclooctadiene), revealed the first-ever N-heterocyclic carbene analogue of the Cossa’s salt anion.

Metal complexes of N-heterocyclic carbenes (NHCs) have been established in organometallic chemistry and catalysis.1-4 Another burgeoning field for such complexes is in medicine, where NHC complexes are finding valuable applications as antibiotic and anti-cancer agents.5,11 The rational design, and synthesis, of metal-carbene complexes have benefited from several approaches.12, 13 Among these, the use of NHC\textsubscript{Me}SiCl\textsubscript{4} shows huge efficacy for providing a low-cost, high-yielding, synthetic route to NHC-metal complexes when a saturated, non-bulky NHC is desired.14 Our interest in NHC\textsubscript{Me}-Pt(II) complexes seeks primarily to provide promising candidates for testing in anti-cancer studies.

The facile reaction of PtCl\textsubscript{2} with 2 equivalents of NHC\textsubscript{Me}SiCl\textsubscript{4} (Scheme 1) gave exclusively trans-[(NHC\textsubscript{Me})\textsubscript{2}PtCl\textsubscript{2}] (1) (Fig. 1)

\[
\begin{align*}
\text{Scheme 1 Reactions of of NHC\textsubscript{Me}SiCl\textsubscript{4} with PtCl\textsubscript{2} and [Pt(cod)Cl].}
\end{align*}
\]

Table 1 Selected bond lengths and angles

<table>
<thead>
<tr>
<th>Bond Lengths for 1Å</th>
<th>Selected Angles for 1°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt\textsubscript{1}-C\textsubscript{1} 2.027(2)</td>
<td>C\textsubscript{1}-Pt\textsubscript{1}-C\textsubscript{1} 180.0</td>
</tr>
<tr>
<td>Pt\textsubscript{1}-Cl\textsubscript{1} 2.3087(7)</td>
<td>Cl\textsubscript{1}-Pt\textsubscript{1}-Cl\textsubscript{1} 180.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond Lengths for 2Å</th>
<th>Selected Angles for 2°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt\textsubscript{1A}-C\textsubscript{1A} 1.967(3)</td>
<td>C\textsubscript{1A}-Pt\textsubscript{1A}-C\textsubscript{1A} 178.49(8)</td>
</tr>
<tr>
<td>Pt\textsubscript{1A}-C\textsubscript{6A} 1.971(3)</td>
<td>C\textsubscript{6A}-Pt\textsubscript{1A}-C\textsubscript{1A} 177.32(8)</td>
</tr>
<tr>
<td>Pt\textsubscript{1A}-Cl\textsubscript{1A} 2.3770(7)</td>
<td>Cl\textsubscript{1A}-Pt\textsubscript{1A}-Cl\textsubscript{1A} 91.75(2)</td>
</tr>
<tr>
<td>Pt\textsubscript{1A}-Cl\textsubscript{6A} 2.3734(7)</td>
<td>Cl\textsubscript{6A}-Pt\textsubscript{1A}-Cl\textsubscript{6A} 90.51(11)</td>
</tr>
</tbody>
</table>

as a pale yellow crystalline solid. This was in contrast to the product from the corresponding PdCl\textsubscript{2} reaction,14 where the cis complex product was reported. Cis-complexes of platinum, in particular those with minimal steric hindrance,7, 8 are regarded as the preferred configuration for the purpose of testing for anti-tumour properties. Considering that substitution reactions on a square-planar platinum(II) complex may preserve the original
geometry, the reaction of [Pt(cod)Cl₂] with 2 equivalents of NHC₅MeSiCl₄ (Scheme 1) was carried out, and this successfully yielded cis-[NHC₅Me]₂PtCl₂ (2) (Fig. 1) as the sole product. From NMR analysis, complexes 1 and 2 are distinguishable, in particular from¹⁹⁵Pt NMR, which showed a significant upfield shift at -3730.20 ppm for the cis complex, 2, compared to that for the trans-complex, 1, at -3271.09 ppm. Both signals are in agreement with¹⁹⁵Pt NMR reported for other Pt(II)-NHC₅Me.⁷, ¹⁵, ¹⁶

Thermogravimetric Analysis (TGA) with Differential Scanning Calorimetry (DSC) was carried out for the two isomers of [(NHC₅Me)₂PtCl₂] (Figure 2). The initial weight loss at decomposition, for both complexes, corresponds to the loss of the NHC ligands. In the TGA/DSC spectrum for 1 (Figure 2b), an exothermic process occurs before any significant loss of mass, and the final decomposition process at 320 °C. An irreversible trans-cis isomerisation was suspected, and confirmed when the trans complex was heated to 300 °C (i.e. after the exothermic transition without loss of mass) and NMR spectra of the resulting material obtained. The 'H and ¹⁹⁵Pt NMR signals corresponded solely to the cis-complex. In addition, the TGA/DSC spectrum of the material obtained after an initial cycle of heating to 300 °C and cooling to room temperature (Figure 2c) showed the identical spectrum to that for 2 (Figure 2a). This is the first reported thermally induced trans-cis isomerisation for a bis-NHC platinum complex, which is in direct contrast to the cis-trans isomerisation reported for similar bis-NHC-platinum(II) species.¹⁷ Such non-typical trans-cis isomerisations of platinum coordination compounds were first reported for amino⁻⁻ and bis-pentamethylsulfide⁻⁻ platinum(II) derivatives, where it was suggested that increased stability may be related to crystal structure effects. The NHC-platinum complex shows greater thermodynamic stability when the (sufficiently small)¹⁹ NHC is in a trans position to the halide ligand. Such observations can also be made from earlier work on platinum-NHC coordination compounds by Lappert,²⁰⁻²² and even more recent reports.²³, ²⁴ From the crystal structures, the conformation of the NHC ligands is oriented to minimise any steric hindrance.²⁵ Still, under appropriate conditions, 1 shows greater kinetic stability, similar to the complexes also reported by Lappert.²⁰

During initial attempts to synthesise 2, when NHC₅MeSiCl₄ was utilised as the limiting reagent, a second, easily-crystallisable, and visually distinguishable complex product was isolated. The bright yellow crystals were characterised by X-Ray crystallography (Figure 3) and shown to be a double complex salt, [(NHC₅Me)₂Pt(cod)Cl][(NHC₅Me)₂PtCl₂] (3). Subsequently, when the reaction of [Pt(cod)Cl₂] with NHC₅MeSiCl₄ was carried out in a 1:1 ratio in a highly polar solvent (to enhance the formation of an ionic salt), and prolonged heating, 3 was selectively obtained (Scheme 1). The complex salt was further characterised by multi-nuclear and 2D NMR techniques.¹ The ¹⁹⁵Pt NMR spectrum showed two signals; one at an upfield shift of -3542.34 ppm, thought to be the cationic complex component of 3, and the other at -2930.61 ppm, for the anionic complex component. While similar cationic platinum(II) complexes are known,²⁶-²⁸ to the best of our knowledge, [Pt(NHC₅Me)Cl₂]⁻, is the first-reported N-heterocyclic carbene analogue of the Cossa’s salt anion.²⁹ The cis and trans effects of ligands in [PtLCl₂]⁻
analouges can be easily compared, particularly with respect to the chloride ligands, which have significance for anti-tumour agents.

Multi-nuclear platinum complexes offer further interest for potential electrochemical properties. The double-complex salt, 3, poses a unique candidate, since both the cation and anion complexes contain an NHC ligand.

Conclusions

Diverse forms of platinum(II)-NHC complexes have been readily prepared by the use of an inexpensive and efficient carbene transfer reagent, NHCSiCl3. In the literature, anti-tumour activity has been considered for neutral cis- and trans-platinum(II) complexes, as well as for cod-substituted platinum(II) complexes, and even trichloro-platinum(II) complexes. We expect our findings to contribute promising candidates for anti-tumour studies, as well as to improve the rational design of complexes that are supported by a non-bulky NHC. While platinum(II)-NHC complexes are also useful in catalyst design, herein has also been shown the potential for NHC double-complex salts to be considered for materials with electrochemical properties.

Notes and references

Selective Synthesis of *Cis*- and *Trans*-[(NHC^{Me})₂PtCl₂] and [NHC^{Me}Pt(cod)Cl][NHC^{Me}PtCl₃] using NHC^{Me}SiCl₄

Lesley C. Lewis-Alleyne,* Bassem S. Bassil, Tobias Böttcher and Gerd-Volker Röschenthaler*

Table of Contents Entry

NHC^{Me}SiCl₄ was used to selectively synthesise *cis* and *trans*-[NHC^{Me}]₂PtCl₂], as well as [NHC^{Me}Pt(cod)Cl][NHC^{Me}PtCl₃], which revealed the first ever N-heterocyclic carbene analogue of the Cossa’s salt anion.