This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Scandium carbide/cyanide alloyed cluster inside fullerene cage: synthesis and structural studies of Sc$_3$(μ$_3$-C$_2$)(μ$_3$-CN)$_8$(I$_h$–C$_{80}$)

Taishan Wang, a J. Wu, b Yongqiang Feng, a

Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X

First published on the web Xth XXXXXXXXX 200X

DOI: 10.1039/b000000x

A new Sc$_2$(C$_2$)(CN)@I$_h$–C$_{80}$ metallofullerene containing a scandium carbide/cyanide alloyed cluster was prepared and investigated. Sc$_2$(C$_2$)(CN)@I$_h$–C$_{80}$ was synthesized by arc-discharging method and isolated by HPLC. Its experimental 13C NMR spectrum with two signals clearly confirms an icosahedral C$_{80}$ cage, and theoretically calculated 13C NMR peaks agree well with experimental results. Further theoretical calculations disclosed that the endohedral μ_2–C$_2$ and μ_3–CN moieties are respectively situated on each side of triangular shape of Sc$_2$ unit to form a scandium carbide/cyanide alloyed cluster. Kohn-Sham molecular orbitals reveals its electronic structure of (Sc$_3$)$_2$(C$_2$)$_3$(CN)@C$_{80}$, in which two anions, μ_2–C$_2$ and μ_3–(CN), construct and stabilize this special molecule together. The FTIR and Raman spectra of Sc$_2$(C$_2$)(CN)@I$_h$–C$_{80}$ were analyzed by comparison of experimental and calculated results to further confirm its structure and to uncover cluster-based vibrational modes.

Introduction

Metallofullerenes have attracted broad interests due to their nesting structures and unique properties. The endohedral metal species include Ca, Sc, Ti, Y, La, Gd, Ho, Er, and many other lanthanide elements, which exhibit lots of chemical/physical/biomedical properties, such as paramagnetism, organic semiconductors, cancer drugs, etc. In the course of development for metallofullerenes, the introduction of non-metal moieties, i.e., N, C$_2$, O, S, CN, to endohedral clusters dramatically enhance the yield of metallofullerenes and enormously expand their structures. The extensive endohedrals contain metal nitride (M(N)), metal carbide (M,C$_2$, M$_2$C$_2$, M$_3$C$_2$), metal oxide (M$_2$O, M$_3$O$_2$, M$_5$O$_2$), metal sulfide (M(S), and metal cyanide (M(CN), MCN). Among these endohedral clusters, the non-metal moieties of N, O, S, all have fixed valence states, i.e., N$^+$, O$^{2-}$, and S$^{2-}$. However, the C$_2$ and CN moieties both have variable valence. For example, C$_2$ moieties exhibits divalent C$_2$ in Sc$_2$C$_2@$C$_{84}$, trivalent C$_2$ in Sc$_3$C$_2@$I$_h$–C$_{80}$, and even hexavalent C$_2$ in Sc$_4$C$_2@$I$_h$–C$_{80}$–16–18. Whereas the CN moiety are determined to show trivalent (CN)$^{3-}$ in Sc$_2$CN@I$_h$–C$_{80}$–19, monovalent (CN$^{-}$) in YCN@C$_{82}$–22. Such varied valence states bring about many novel clusterfullerenes entrapping multicomponent, various chemical bonds, and complex structures. Herein, we report the synthesis, isolation, and characterization of Sc$_2$(C$_2$)(CN)@I$_h$–C$_{80}$ that has a scandium carbide/cyanide alloyed cluster by means of 13C NMR spectroscopy, DFT calculations, and IR/Raman spectroscopy. Further theoretical analyses disclosed its valence state of (Sc$_3$)$_2$(C$_2$)$_3$(CN)@I$_h$–C$_{80}$, the carbide moiety (C$_2$)$_3$ and cyanide moiety (CN$^{-}$) together construct this unprecedented metallofullerene.

Results and discussion

The target molecule was synthesized by the Kratschmer-Huffman arc-discharging method and isolated by high performance liquid chromatography (HPLC). Briefly, the graphite tubular was first filled with Sc alloy and then evaporated in the arc-discharging generator under the atmosphere of He/N$_2$. The soot was Soxhlet-extracted with toluene and mixtures of fullerenes and metallofullerenes were collected. Two columns, known as Buckyprep and Buckyprep-M, were employed to isolate and purify the sample (see ESI).

Fig. 1 a) HPLC profile of purified Sc$_2$(C$_2$)(CN)@I$_h$–C$_{80}$ (Φ20×250 mm Buckyprep-M column; flow rate 12 ml/min; toluene as eluent). b) MALDI-TOF mass spectrum of the purified Sc$_2$(C$_2$)(CN)@I$_h$–C$_{80}$. The insets show the experimental (left) and calculated (right) isotope distributions of Sc$_3$C$_{84}$N. c) 13C NMR spectrum (CS$_2$, 150 MHz) of Sc$_2$(C$_2$)(CN)@I$_h$–C$_{80}$. D$_2$O inside of a capillary was used as an internal lock.
It should be noted that the retention time of \(\text{Sc}_2\text{C}_8\text{N} \) is three minutes later that that of reported \(\text{Sc}_2\text{CN}+\text{I}_2-C_{80} \) in Buckyprep column, see Fig. 5. The purity of the sample was confirmed by both HPLC analysis and the matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrum, see Fig. 1a and 1b. The mass spectrum exhibits a strong molecular ion peak at \(m/z \) 1145, accounting for the composition of \(\text{Sc}_2\text{C}_8\text{N} \).

The purified \(\text{Sc}_2\text{C}_8\text{N} \) was first characterized by \(^{13} \text{C} \) NMR spectroscopy. Fig. 1c presents the experimental \(^{13} \text{C} \) NMR spectrum of \(\text{Sc}_2\text{C}_8\text{N} \) in \(\text{C}_2 \) at 293 K. Two signals at 140.1 and 147.5 ppm in a 1:3 intensity ratio can be clearly observed. This \(^{13} \text{C} \) NMR spectrum is a characteristic pattern of an \(\text{I}_2-C_{80} \) cage, which has two types of carbon atoms, i.e., the triphenylenic sites (hexagon-hexagon-hexagon junctions, 20 carbons) and corannulenic sites (hexagon-pentagon-hexagon junctions, 60 carbons). Thus, this molecule can be denoted as \(\text{Sc}_2\text{C}_8\text{N}+\text{I}_2-C_{80} \), an \(\text{I}_2-C_{80} \) cage encasing seven-numbered \(\text{Sc}_2\text{C}_8\text{N} \) cluster. In addition, this \(^{13} \text{C} \) NMR pattern also suggests a constant rotation of endohedral \(\text{Sc}_2\text{C}_8\text{N} \) cluster inside fullerene cage at room temperature, which is also found in \(\text{Sc}_2\text{CN}_2 \) at 293 K. Two signals at 140.1 and 147.5 ppm under room temperature (see ESI). This result not only discloses a constant rotation of inner cluster, but also reveals a high symmetry for \(\text{Sc}_2\text{C}_8\text{N} \) cluster that has three equivalent Sc nuclei.

![Fig. 2](image_url)

Fig. 2 a) Optimized structure of \(\text{Sc}_2(\text{C}_2)(\text{CN})+\text{I}_2-C_{80} \). The shortest distances of Sc-cage are denoted. b) The geometry of \(\text{Sc}(\text{C}_2)(\text{CN}) \) cluster in \(\text{Sc}_2(\text{C}_2)(\text{CN})+\text{I}_2-C_{80} \). The bond lengths of Sc-C and Sc-N are labeled. c) DFT-calculated isodensity surface plots for the HOMO, LUMO, HOMO - 1, LUMO + 1 of \(\text{Sc}_2(\text{C}_2)(\text{CN})+\text{I}_2-C_{80} \). Green balls represent the Sc atoms, yellow balls the carbon atoms and blue balls the nitride atoms of the inner carbide moiety, the carbon atoms of the \(\text{I}_2-C_{80} \) cage are represented by gray balls.

The structure of \(\text{Sc}_2\text{C}_8\text{N}+\text{I}_2-C_{80} \) was further investigated by means of density functional theoretical calculations. All of the calculations were performed using the Dmol\(^3\) code with the generalized gradient approximation (GGA) functional of Perdew, Burke, and Ernzerhof (PBE).\(^{27,29}\) Double numerical plus polarization (DNP) basis sets without frozen core were employed for all atoms. Among various possible isomers of \(\text{Sc}_2\text{C}_8\text{N}+\text{I}_2-C_{80} \) we have considered (see ESI), one isomer with the lowest relative energy and reasonable HOMO-LUMO gap (0.95 eV) has been assigned as the ground-state structure, see Fig. 2a. In optimized structure, the C\(_2\) and CN moieties are respectively located on both sides of \(\text{Sc}_2\) triangle and coordinated to three Sc atoms. Therefore, the formula of \(\text{Sc}_2(\mu_3-\text{C}_2)(\mu_2-\text{CN})+\text{I}_2-C_{80} \) can well describe this unique molecule instead. As far as we know, it is the first time to demonstrate a scandium carbide/cyanide alloyed endohedral cluster.

The calculated C–C and C–N bond lengths of endohedral C\(_2\) and CN moieties are 1.26 and 1.19 Å, respectively. The nearest Sc–C\(_6\)-cage distances for three Sc are 2.19, 2.20, and 2.21 Å, indicating covalent bonds between Sc and \(C_{80} \) cage and their relatively weak interactions. This is the reason for the constant rotation of endohedral \(\text{Sc}_2\text{C}_8\text{N} \) cluster inside \(C_{80} \) cage to make it homogenous. Moreover, the Sc–C\(_{80}\) distance is 2.27 Å, little longer than those of Sc–N\(_{cyanide}\) (2.21 and 2.23 Å), as shown in Fig. 2b. Interestingly, these bond lengths of Sc–CN are longer than those of \(\text{Sc}_2\text{CN}_2+\text{I}_2-C_{80} \), in which the Sc–C\(_{80}\) and Sc–N\(_{cyanide}\) distances are 2.08 and 2.10 Å, respectively.\(^{25}\) In addition, the Sc–C\(_{carbide}\) distances are 2.20 and 2.35 Å, which are much longer than Sc–C\(_{carbide}\) distances in \(\text{Sc}_2\text{CN}+\text{I}_2-C_{80} \) (the nearest Sc–C\(_{carbide}\) is 1.96 Å).\(^{26}\) It can be seen that the bond lengths of Sc–C\(_2\) and Sc–CN are relatively longer and are similar to those of Sc–C\(_{cage}\). These results reveal that, like the flexibility between Sc and \(C_{80} \) cage, the Sc atoms and C\(_2\)/CN moieties may also have weak interactions.

The electronic structure of \(\text{Sc}_2(\text{C}_2)(\text{CN})+\text{I}_2-C_{80} \) was also calculated. Detailed analysis of its Kohn-Sham molecular orbitals reveals that it has a valence state of (Sc\(_2\))\(^+\)(C\(_2\))\(^2\)(CN)\(^-\)(C\(_{80}\))\(^0\). The C\(_2\))\(^2\) divalent anion is well known as an important moiety to construct metal carbide clusterfullerenes \(M_2\text{C}_2@C_{2n} \) such as \(\text{Sc}_2\text{C}_2@C_{20} \), \(\text{Sc}_4\text{C}_2@C_{62} \), \(\text{Sc}_4\text{C}_2@C_{80} \), \(\text{Gd}_2\text{C}_2@C_{80} \), etc.\(^{16,31,33}\) The \(\text{CN}^- \) monocation is found in metal cyanide clusterfullerene \(\text{YCN}+@C_{82} \). However, in \(\text{Sc}_2(\text{C}_2)(\text{CN})+\text{I}_2-C_{80} \), both of the carbide and cyanide units are exiting to build up a complex molecule for the first time. As shown in Fig. 2c, for \(\text{Sc}_2(\text{C}_2)(\text{CN})+\text{I}_2-C_{80} \), the two highest occupied molecular orbitals (HOMO and HOMO–1) are mainly localized on the carbon cage. Its HOMO is a hybrid of the 3d orbitals of Sc\(_{3+}\) and orbitals of \(C_{80} \)\(^6\) cage, which predicates the existence of the covalent bonds between the Sc\(_{3+}\) cations and \(C_{80} \)\(^6\) cage. The lowest unoccupied molecular orbitals (LUMO) are attributed to the covalent dative bondings between the 3d atomic orbitals of Sc\(_{3+}\) cations and \(\pi^* \) orbitals of C\(_2\)/CN moieties.

The \(^{13} \text{C} \) NMR chemical shielding tensors of \(\text{Sc}_2(\text{C}_2)(\text{CN})+\text{I}_2-C_{80} \) were computed with the hybrid density functional theory at B3LYP level using gauge-independent atomic orbital (GIAO) method.\(^{34,37}\) Considering the intramolecular dynamics, \(\text{Sc}_2(\text{C}_2)(\text{CN})+\text{I}_2-C_{80} \) would show two \(^{13} \text{C} \) NMR signals arising from \(\text{I}_2-C_{80} \) cage at room temperature. The calculated NMR peaks locate at 138.7 and 148.5 ppm, which agree well with experimental results, i.e. 140.1 and 147.5 ppm. The \(^{13} \text{C} \) NMR chemical shifts of the inner C\(_3\) and CN units were calculated to appear at 223.2 and 174.7 ppm, which were not detected because of the spin-rotation interaction and low signal-to-noise ratio. Table 1 lists the experimental and calculated \(^{13} \text{C} \) NMR chemical shifts of several clusterfullerenes with \(\text{I}_2-C_{80} \) cage. It can be seen that the \(^{13} \text{C} \) NMR signals of \(\text{Sc}_2(\text{CN})@\text{I}_2-C_{80} \) shift to low field compared to those of \(\text{Sc}_2\text{C}_2@\text{I}_2-C_{80} \) and \(\text{Sc}_2\text{CN}+\text{I}_2-C_{80} \).
This particularity may be caused by the special Sc$_3$(C$_2$)(CN) endohedral cluster.

Table 1. Experimental and calculated 13C NMR chemical shifts of several clusterfullerenes with I_x-C_{80} cage.

<table>
<thead>
<tr>
<th>Clusterfullerene</th>
<th>Experimental (ppm)</th>
<th>Calculated (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc$_3$(C2)(CN)@I_x-$C{80}$</td>
<td>140.1/147.5</td>
<td>138.7/148.5</td>
</tr>
<tr>
<td>Sc$_3$C2@I_x-$C{80}$</td>
<td>137.8/144.7</td>
<td>137.7/143.7</td>
</tr>
<tr>
<td>Sc3CN@I_x-$C{80}$</td>
<td>137.7/144.9</td>
<td>137.3/144.1</td>
</tr>
</tbody>
</table>

Fig. 3 Experimental and calculated FTIR (a) and Raman (b) spectra of Sc$_3$(C$_2$)(CN)@I_x-C_{80}. Raman laser wavelength: 633 nm.

Experimental and calculated FTIR spectra of Sc$_3$(C$_2$)(CN)@I_x-C_{80} are shown in Figure 3a. The tangential cage modes ranging from 1200 cm$^{-1}$ to 1500 cm$^{-1}$ for Sc$_3$(C$_2$)(CN)@I_x-C_{80} exhibit a high resemblance to those of clusterfullerenes with I_x-C_{80}, such as Sc$_3$N@I_x-C_{80}, Sc$_3$C$_2$@I_x-C_{80}, Sc$_3$C$_2$@I_x-C_{80}, and Sc$_3$CN@I_x-C_{80} (see ESI). However, different from the strong vibrations of asymmetric $\nu_(Sc-N)$ at 594 cm$^{-1}$ in Sc$_3$N@I_x-C_{80}, Sc$_3$(C$_2$)(CN)@I_x-C_{80} does not present $\nu_(Sc-N)$ or $\nu_(Sc-C)$ modes due to low symmetry of its complex cluster. Instead of that, a number of vibrations based on Sc$_3$(C$_2$)(CN) cluster emerge at ca. 449 and 467 cm$^{-1}$ in experiment. DFT-calculations reveal that these signals ranging from 400 to 500 cm$^{-1}$ can be assigned as C$_2$ and CN displacements, mostly at 451 and 464 cm$^{-1}$ in theory, see Figure 4a.

Fig. 4 Selected vibrational modes of calculated FTIR (a) and Raman (b) signals with cluster contribution in Sc$_3$(C$_2$)(CN)@I_x-C_{80}. The numbers below are computed vibrational frequencies.

The Raman spectrum of Sc$_3$(C$_2$)(CN)@I_x-C_{80} are shown in Figure 3b. Their C_{3v} cage modes between 1000 cm$^{-1}$ to 1600 cm$^{-1}$ show resemblance with those of Sc$_3$N@I_x-C_{80}, Sc$_3$C$_2$@I_x-C_{80}, Sc$_3$C$_2$@I_x-C_{80}, and Sc$_3$CN@I_x-C_{80} (see ESI). In the low-frequency range (100 to 300 cm$^{-1}$), the experimental and calculated spectra show high similarity of peaks corresponding to the vibrations form endohedral Sc$_3$(C$_2$)(CN) cluster. Theoretical results disclose that these modes are mainly attributed to the frustrated translations of the cluster (calculated at 202, 207, 222 cm$^{-1}$), and displacements of C$_2$ and CN moieties (calculated at 228, 233, 237, 277 cm$^{-1}$), see Figure 4b. The cage breathing modes mixed with cluster vibrations are found ranging from 350 to 500 cm$^{-1}$.

The redox properties of Sc$_3$(C$_2$)(CN)@I_x-C_{80} were investigated by cyclic voltammetry (CV) (see ESI). For Sc$_3$(C$_2$)(CN)@I_x-C_{80}, the first oxidation potential E^ox was observed at 0.51 V; while two reduction potentials, E^red_1 and E^red_2, appear at −0.91 and −1.37 V, respectively. Differently, the Sc$_3$NC@I_x-C_{80} has its E^ox, E^red_1 and E^red_2 at 0.6 eV, −1.05 and −1.68 V, respectively.

Conclusions

In summary, a new metallofullerene Sc$_3$(C$_2$)(CN)@I_x-C_{80}, engaging a scandium carbide/cyanide alloyed cluster was synthesized and investigated. The experimental 13C NMR spectrum with two signals clearly confirms its icosahedral C_{80} cage. The calculated NMR peaks agree well with experimental results. Further theoretical calculations disclosed that the $\mu_(C_2)$ and $\mu_(CN)$ moieties are respectively situated on both sides of triangular shape of Sc$_2$ unit to form a scandium carbide/cyanide alloyed endohedral cluster. The electronic structure of $(\text{Sc}^{3+})_3$((C$_2$)(CN))@(I_x-C_{80})$^{1-}$ was also concluded, in which two anions of $\mu_(C_2)$ and $\mu_(CN)$ play an important role in constructing this special molecule. The FTIR and Raman spectra of Sc$_3$(C$_2$)(CN)@I_x-C_{80} were also analyzed by comparison of experimental and calculated results to further confirm its structure and also to disclose cluster-based vibrational modes. Due to lack of sample, the attempt to culture its single crystal is not successful. However, these present studies on Sc$_3$(C$_2$)(CN)@I_x-C_{80} can provide essential inspirations to scientists so as to expand the view of metallofullerene structures and properties.

Acknowledgements

We thank the National Natural Science Foundation (NNSF, 21203205). We also thank Prof. Chunru Wang for his valuable suggestions.

Notes and references

Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. Tel: 86-10-82624902; E-mail: wangtai@iccas.ac.cn
Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; E-mail: wuyj@ihep.ac.cn

Electronic supplementary information (ESI) available: HPLC data, concerned possible isomers of Sc$_3$C$_3$N@(C$_3$N)$_4$, selected points along the potential energy surface for the rotation of the Sc$_3$C$_3$N cluster, cartesian coordinate for ground-state structure of Sc$_3$(C$_3$N)(CN)@(C$_3$N)$_4$. See DOI:10.1039/b000000x/

A new metallofullerene $\text{Sc}_3(\mu_2-C_2)(\mu_3-CN)@Ih-\text{C}_{80}$ encaging a scandium carbide/cyanide alloyed cluster was investigated.