This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Synthesis and electronic structure of the first cyaphide-alkynyl complexes†

Nicola Trathen,a Matthew C. Leech,a Ian R. Crossley,a Victoria K. Greenacrea and S. Mark Roea

The novel complexes trans-[Ru(dppe)2(C=C=CR)(C≡P)] (R = CO2Me, C6H4OMe), the first to incorporate cyaphide as part of a conjugated system, are obtained in facile manner. The electronic structure of these compounds is probed by X-ray, DFT and UV/Vis studies.

The identities of 5+ and 6+ follow convincingly from multinuclear NMR spectroscopic data. Thus, the 31P{1H} NMR spectra exhibit quintet and doublet resonances (5+: δp 108.6; 6+: δp 113.1) in 1:4 ratio, with mutual couplings of ca 30 Hz. A singlet resonance corresponding to the SiMe3 group is apparent in the 1H NMR spectra, in each case integrating consistently with the dppe backbone, and exhibiting correlation (HMBC) with a characteristic doublet in the 13C{1H} NMR spectra (δc ~ 190) attributed to the phosphaalkynic centre, and thus confirming the P=CSiMe3 moiety.

Retention of the alkynyl functionality is similarly confirmed, as is the presence of triflate (δt ~ 78.9), while bulk purity was established by microanalysis. The spectroscopic data resemble those reported particularly those involving metal-centred conjugation. To this end, Grützmacher’s methodology presented an intriguing opportunity. Herein, we report the synthesis and isolation of the first compounds to incorporate the cyaphide ligand as part of an extended π-system; we also outline preliminary investigations into the electronic structure of these molecules.

The ruthenium alkynyl complexes [Ru(dppe)2(C≡CR)][OTf] (R = CO2Me 3, p-C6H4OMe 4) were converted in situ to the respective triflate salts by reaction with AgOTf, subsequent treatment with Me2SiC≡P affording [Ru(dppe)(η1-P=CSiMe3)(C≡CR)]+ (R = CO2Me 5+, p-C6H4OMe 6+) in good yields (Scheme 1).

Scheme 1. Reagents and conditions: (i) AgOTf, CH2Cl2; (ii) P=CSiMe3, CH2Cl2/C6H6; (iii) KO′Bu, thf.

The identities of 5+ and 6+ follow convincingly from multinuclear NMR spectroscopic data. Thus, the 31P{1H} NMR spectra exhibit quintet and doublet resonances (5+: δp 108.6; 6+: δp 113.1) in 1:4 ratio, with mutual couplings of ca 30 Hz. A singlet resonance corresponding to the SiMe3 group is apparent in the 1H NMR spectra, in each case integrating consistently with the dppe backbone, and exhibiting correlation (HMBC) with a characteristic doublet in the 13C{1H} NMR spectra (δc ~ 190) attributed to the phosphaalkynic centre, and thus confirming the P=CSiMe3 moiety.

Retention of the alkynyl functionality is similarly confirmed, as is the presence of triflate (δt ~ 78.9), while bulk purity was established by microanalysis. The spectroscopic data resemble those reported particularly those involving metal-centred conjugation. To this end, Grützmacher’s methodology presented an intriguing opportunity. Herein, we report the synthesis and isolation of the first compounds to incorporate the cyaphide ligand as part of an extended π-system; we also outline preliminary investigations into the electronic structure of these molecules.

The ruthenium alkynyl complexes [Ru(dppe)2(C≡CR)][OTf] (R = CO2Me 3, p-C6H4OMe 4) were converted in situ to the respective triflate salts by reaction with AgOTf, subsequent treatment with Me2SiC≡P affording [Ru(dppe)(η1-P=CSiMe3)(C≡CR)]+ (R = CO2Me 5+, p-C6H4OMe 6+) in good yields (Scheme 1).
for $^2\Sigma^+$, differences in chemical shift being attributable to a more electron withdrawing nature for the metal fragment of $^5\Sigma^+$ and $^6\Sigma^+$, and thus differing polarization of the alkynic P and C centres.

The molecular connectivity was further supported by isolation of X-ray quality crystals of SiOP^+, obtained by slow cooling of a saturated CDC$_3$ solution of the salt (Figure 1).4 The cation exhibits the anticipated geometry, with the trans-disposed alkyny and phosphaalkyne adopting near perfect linearity (\angleC-Ru-P 177.0(3), \angleRu-P-C 178.0(10), \angleRu-P=O 175.7(4)7); this contrasts the situation observed in $^2\Sigma^+$ and Jones' $^[\text{Ru(dppe)}_2(\eta^1-P\text{=CMMe})]$$^1^5$ both of which exhibit appreciably bent geometries for the phosphaalkyne unit (\angleRu-P=O 165.5(2)° and 153.7(2)° respectively), attributed to steric encumbrance. The internal geometry of $^5\Sigma^+$ is largely unremarkable; the C=P linkage (1.528(11) Å) is comparable to those of $^2\Sigma^+$ (1.530(3) Å) and Russell's trans-$^[\text{Mo(dppe)}_2(\eta^1-P\text{=CSiMe}_3)]$ (1.540(2) Å)11 which are consistent with prior examples.$^3,^5,^16$ A somewhat short C=C distance is noted, (1.153(15) Å; cf. 1.16 – 2.25 Å from a CDC$_3$ search1), but is mirrored in the parent alkynyl 3 (1.136(10) Å), and presumably results from disorder within this unit. Figure 1. Molecular structure of $^5\Sigma^+$ in crystals of SiOTf^+, DCM solvate. Hydrogen atoms are omitted and phenyl rings reduced for clarity; 50 % thermal ellipsoids. Selected Bond distances (Å) and angles (deg): Ru(1)-(C91) 2.082(11), (C96)-(P5) 1.528(11), (C96)-(Si1) 1.858(12), (C91)-(C92) 1.153(15), (C92)-(C93) 1.250(4), (P5)-(C96)-(Si1) 178.3(6), (C95)-(P5)-(Ru(1)) 175.7(4), (P5)-(Ru(1)-(C91) 177.0(3), (C96)-(C92)-(C93) 171.9(12).

Treatment of $^5\Sigma^+$ or $^6\Sigma^+$ with a single equivalent of KO'Bu in t HF solution effects desilylative rearrangement to afford the cyaphide complexes 7 and 8 respectively, isolated in excess of 60 % yield. Notably, this reaction proceeds to completion within 1 h under ambient conditions; this contrasts the case of 1, for which extended reaction times (14 h.) were required. Moreover, while Grützmacher observed a kinetically-favoured “intermediate” (believed to be $[^{\text{Ru(dppe)}_2}(\text{SiPh}_3)\equiv \text{P(OPh)}])$ (A), formed by reversible attack of ‘OPh at phosphorus), no comparable species are apparent in the formation of 7 or 8. Indeed, even in situ NMR studies at ~78 °C failed to reveal any intermediates, or significantly slow the reaction. Since A was not considered to lie on the pathway leading to cyaphide,$^1^0$ we reason that the faster reactions can be attributed to its absence, which is presumably the result of diminished electrophilicity at phosphorus in $^5\Sigma^+$ / $^6\Sigma^+$, combined with enhanced facility of direct nucleophilic attack at the smaller SiMe$_3$ (cf. SiPh$_3$).

Formation of the cyaphide complexes is convincingly established from spectroscopic data, supported in the case of 8 by an X-ray diffraction study (Figure 2).$^1^8$ Spectroscopically, a significant shift to higher-frequency is noted for both alkynic and dppe phosphorus centres (7: δ_p 161.5, 52.7; 8: δ_p 159.5, 50.8) when compared to $^5\Sigma^+$ and $^6\Sigma^+$, with concomitant reduction in the mutual spin-spin coupling constant (to ~ 4 Hz), consistent with increased separation of the interacting nuclei (i.e. J_{pp} vs J_{pp}). A significant shift is also noted for the phosphaalkynic carbon centre (ΔC – 865), similar to that observed by Grützmacher. The 1H and 31C (1H) spectra confirm loss of the SiMe$_3$ group and retention of the respective alkynyl ligands, which is further supported by infrared data (7: ν_{CC} 1660 cm$^{-1}$ ν_{CC} 2040 cm$^{-1}$; 8: ν_{CC} 2032 cm$^{-1}$); the C=P stretching mode is also observed in both infrared and Raman spectra (7: 1255 cm$^{-1}$; 8: 1261 cm$^{-1}$) and is in good agreement with that reported for 1 (1239 cm$^{-1}$) and those calculated for 7 and 8 (~1240 cm$^{-1}$; see ESI).

In the solid state, 8 exhibits slight distortion from linearity (\angle Ru-C=C 174.4(3)°; \angle Ru-C=P 172.3(2)°), as previously noted for other trans-bisalkynyls.$^1^9$ A shorter C=P (1.544(4) Å) and very slightly longer Ru–C≡P (2.065(4) Å) bond are noted as compared with 1 (1.573(2) and 2.057(2) Å respectively), presumably reflecting diminished d$_{\text{p}}$–π*$^{\text{C=P}}$ retrodonation within 8, due to the competing trans-alkynyl. It is, however, noteworthy that DFT studies8 indicate greater linearity within the conjugated system of 8, together with a longer C-P linkage (1.58 Å), a situation that is mirrored for 7; this would perhaps imply incidence of packing effects in the solid state.

The frontier orbitals of 7 and 8 (Figure 3) are similar to those typically seen in alkynyl and bis(alkynyl) complexes.$^2^0$ Thus, the HOMO and HOMO-1 in each case derive from the out-of-phase mixing of the Ru (d$_{\text{xy}}$, d$_{\text{xz,yz}}$), C=C (π) and C=P (π) orbitals, with an appreciable contribution from the cyaphide moiety. This is most pronounced for 7 (50 % π*$_{\text{C=C}}$, 35 % Ru) in which the electron-withdrawing methylpropionate ligand contributes only ca 10 % to either orbital. In contrast, the more donating C=CC$_2$H$_5$OMe ligand contributes significantly to the HOMO of 8 (24 % π*$_{\text{C=C}}$, 17 % π$_{\text{Cyaphide}}$ cf. 30 % Ru, 24 % π*$_{\text{Cyaphide}}$), leading to reduced involvement of the cyaphide, which in turn dominates the orthogonally-lying HOMO-1 (43 % π*$_{\text{Cyaphide}}$, 35 % Ru, 14 % π$_{\text{Cyaphide}}$), lying 0.2 eV lower in energy (cf. 0.01 eV for 7). The LUMO of each molecule is appreciably separated from the HOMO (ΔE 3.45 eV 7, 3.7 eV 8) and centred on the dppe ligands (ca 75 %) and Ru d$_{\text{xy,yz}}$ orbital (25 %), with appreciable Ru–P antibonding character. Higher energy orbitals (up to LUMO+10) are almost exclusively ligand (dppe) based, while the C=P π* orbitals do not contribute appreciably until LUMO+18/19; the C=C (and for 8 Ar) π* orbitals feature from LUMO+11.

Figure 2. Molecular structure of 8. Hydrogen atoms omitted and phenyl rings reduced for clarity; 50 % thermal ellipsoids. Selected bond distances (Å) and angles (deg.): Ru(1)-(C91) 2.082(11), (C96)-(P5) 1.528(11), (C96)-(Si1) 1.858(12), (C91)-(C92) 1.153(15), (C92)-(C93) 1.250(4), (P5)-(C96)-(Si1) 178.3(6), (C95)-(P5)-(Ru(1)) 175.7(4), (P5)-(Ru(1)-(C91) 177.0(3), (C96)-(C92)-(C93) 171.9(12), (C92)-(C93) 171.9(12).

Figure 3. Frontier orbital energy levels for 7 (blue) and 8 (red).
It is noteworthy that the lone-pair of the cyaphide moiety is appreciably stabilised with respect to the π-system, lying ca. 1.6 eV below the HOMO (HOMO-6 in 7, HOMO-7 in 8). In each case, NBO calculations reveal the lone-pair to be held in an orbital of ca. 75 % s and 25 % p character, with polarisation of the C=P moiety in the sense P°−C°. In this regard, the cyaphide closely resembles classical phosphaalkynes.

Both 7 and 8 were further studied by a combination of UV/Vis spectroscopy and TD-DFT (calculating the first 100 excited states; see ESI for details). Both exhibit strong absorptions around 250 nm (40000 cm−1) arising from Ligand→Ligand charge transfer (LLCT) between the π-CP/CC and dppe π* orbitals. For 7, a further feature around 275 nm (36363 cm−1) is again dominated by LLCT transitions but also involves some Intraligand transitions (ILCT) of LLCT. In contrast, while a dominance of LLCT is also apparent for 8, a strong feature around 298 nm (33333 cm−1) is again dominated by LLCT. In contrast, while a dominance of LLCT is also apparent for 8, a strong feature around 298 nm (33550 cm−1) involves significant contributions from ILCT, centred on π→π* transitions of the alkylnyl (HOMO→LUMO+11) and C=P (HOMO→LUMO+18/19) ligands; a smaller contribution from metal→ligand charge transfer (MLCT) is evident between ruthenium and the dppe π* orbitals (HOMO→LUMO+5, 9, 10).

In conclusion, we have described the first organometallic complexes to incorporate the terminal cyaphide ligand as part of an extended π-system; this also represents only the second unequivocal report of a terminal metal-cyaphide complex. Structural and theoretical studies reveal a modestly screen cyaphide moiety with a stabilised, but nonetheless accessible, lone-pair akin to classical phosphaalkynes. The cyaphide contributes significantly to the HOMO and HOMO-1, with an influence that is clearly moderated by the trans-alkynyl ligand. The molecules absorb strongly in the UV region, their electronic spectra being dominated by LLCT transitions to the dppe ligands, though ILCT π→π* transitions within the C≡P moiety also contribute, most significantly so in 8 for which further ILCT occurs within the C≡CC₄H₅OMe ligand. These molecules are the first of a novel class of conjugated, organometallic hetero-ynyl complexes that we continue to explore and develop.

This work was supported by the Royal Society, Leverhulme Trust (F/00 230/AL; studentship to NT) and University of Sussex (studentship to VKG). IRC gratefully acknowledges the award of a Royal Society University Research Fellowship. We thank Dr A. K. Brison (Manchester) for collection of Raman scattering data.

Notes and references

13 CCDC 962350: see ESI for full details and ellipsoid plots.
14 CCDC 962351: see ESI for full details.
18 CCDC 990881: crystals grown by vapour diffusion of hexane into thf solution; see ESI for full details.
Synopsis – for table of contents use only

The novel complexes trans-[Ru(dppe)₂(C≡CR)(C≡P)] (R = CO₂Me, C₆H₄OMe), the first to incorporate cyaphide as part of a conjugated system, are obtained in facile manner. The electronic structure of these compounds is probed by X-ray, DFT and UV/Vis studies.