Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Cite this: DOI: 10.1039/c0xx00000x

ARTICLE TYPE

In-situ spectroscopic study of the local structure of oxyfluoride melts: NMR insight into the speciation in molten LiF-LaF₃-Li₂O systems

Anne-Laure Rollet,*^{*a,b*} Haruaki Matsuura^{*c,b*} and Catherine Bessada^{*b*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

The local structure of molten LaF_3 -LiF-Li₂O has been investigated using High Temperature NMR spectroscopy. The ¹³⁹La and ¹⁹F chemical shifts have been measured as a function of temperature and composition. The NMR spectra show that Li₂O reacts completely with LaF₃ to form LaOF compound at the solid state below the melting temperature of the sample. LaOF is not completely dissolved in the

¹⁰ fluoride melt and solid LaOF is observed on the ¹⁹F spectra for Li₂O concentration above 10mol%. We discuss the local environment of lanthanum ions in molten LaF₃-LiF-Li₂O and compared the results to those with LaF₃-LiF-CaO system. The analysis of the temperature and Li₂O concentration dependences of the ¹³⁹La and ¹⁹F chemical shifts suggests that several kinds of lanthanum oxyfluoride long-lived LaO_xF_y^{3-x-y} units are present in the melt.

15 1. Introduction

The description of the oxyfluoride structure at the liquid state is at its very first step. The oxyfluorides are the evident bridge between the oxides and the fluorides fields. Nevertheless, the researches use to be focused in only one or the other domain

- ²⁰ because their respective experimental requirements are really different and very severe (high temperature, corrosiveness, volatility...). As an example, the cell material for spectroscopic investigation suitable for oxides (other oxide like alumina) are dissolved by molten fluorides and reversely boron nitride used for
- 25 fluorides reacts with molten oxides. These factors have lead to separate these two domains of research and to leave the oxyfluorides not studied relatively.
- The local structure in molten salts is often discussed in terms of coordination numbers, radial distribution functions and ³⁰ possible 'complex' species which lifetime is typically around the picosecond.^{1,2,3} In molten fluorides, such information has been experimentally brought by Raman^{4,5,6}, NMR^{7,8,9,10} and EXAFS^{11,12,13,14} spectroscopies. Molten fluorides are particularly interesting systems because their liquid structure may switch ³⁵ from a simple bath of charged hard spheres to a loose ionic network or a liquid with free 'complexes'.^{1,15} Typically, molten LaF₃-LiF structure spans with the LaF₃ molar fraction (x_{LaF3}) from free LaF_x^{3-x} units (x_{LaF3} <0.1) to loose ionic network (x_{LaF3} >0.2).¹⁶ It turns out that the lifetime of these configurations
- ⁴⁰ is crucial for the physical and chemical properties of the melt.² In molten oxides, Raman,^{17,18,19} and NMR^{20,21} spectroscopies have been also employed but mainly X-Ray^{22,23} and neutron scattering.^{24,25} Similarly to fluorides, oxides exhibit various liquid structures that span from ionic liquids to glasses with covalent
- ⁴⁵ bonds.²⁶ The understanding of both molten fluorides and oxides has taken great benefit from the advances brought by Madden and his co-workers in numerical simulations.^{27,28} They described

successfully both the molten fluorides^{29,30,31} and oxides,^{32,33,34}. They are able to well reproduce experimental EXAFS³⁵ and ⁵⁰ Raman³⁶ data testifying hence of their reliablity. Combined to

⁵⁰ Raman⁻¹ data testifying hence of their reliability. Combined to experiments they gave a new impact to molten salts understanding. Despite all these works on molten salts, no experimental or numerical study has been devoted to the local description of oxyfluoride melts yet. Only few papers have ⁵⁵ studied the effect of small amount of oxide on the structure of molten fluorides.^{37,38,39,9}

In this paper, we investigate the molten LaF₃-LiF-Li₂O system. Lanthanum typifies the large rare earths that are nowadays utilized in most advanced technology. Their polluting production ⁶⁰ procedure and their exportation is even a source of political and econimal tension between countries.⁴⁰ Rare earth recycling thus becomes an important issue. For rather different reasons, rare earth recycling is also crucial in the nuclear engineering field: they are wastes produced by the nuclear reactions. In molten salt ⁶⁵ nuclear reactor (MSR), they have to be removed continously from the liquid fuel because they are poison to the nuclear reaction.⁴¹ In more traditionnal nuclear reactor (with a solid fuel), rare earth extraction has to be performed by considering either their radioactive period for geological storage or their ability to be ⁷⁰ burnt. For all these recycling needs, the molten salts processes appear to be a good candidate.^{42, 43, 44}

In order to describe the local structure of molten LaF₃-LiF-Li₂O sytem, we use high temperature nuclear magnetic resonance spectroscopy (HT NMR). This technique gives insight into the ⁷⁵ first shells around ¹³⁹La, ¹⁹F and into the potential network formation via bridging fluorine and oxygen.

2. Experimental and methods

All reagents used for experiments (LaF₃, LiF and Li₂O, purity 99.99%) were purchased from Alfa Aesar. The appropriate

quantities of binary mixtures were weighed and then put into NMR crucibles in a glove box under dried Argon atmosphere in order to avoid H₂O and O₂ contamination of the samples. The NMR crucibles are made in boron nitride (BN) without oxide 5 binder and are tightly closed by a screwed cap also in BN. The amount of salt in each crucible is ca. 100 mg.

The High Temperature NMR (HT NMR) spectra were recorded using a Bruker Avance WB 400MHz spectrometer, operating at 9.40 T. *In situ* HT NMR spectra were obtained by

- ¹⁰ using the CO₂ laser heating system developed at CEMHTI-CNRS in Orléans, France⁴⁵. In this study, the samples are heated by 2 lasers that irradiate the top and the bottom of the sample in order to reduce the temperature gradient. The temperature cannot be measured *in situ* during the measurement but is calibrated using a
- ¹⁵ series of reference compounds. Some of the salts were checked before and after the HT NMR experiments using X-ray diffraction (Bruker D8 diffractometer).

The HT NMR spectra were acquired using a single pulse sequence, with a recycle delay of 0.5 s, and 8 to 128 $_{20}$ accumulations. The pulses were $\pi/2$ for ¹⁹F and ¹³⁹La HT NMR.

The chemical shifts were referred to CCl₃F for ¹⁹F and LaCl₃ 1M aqueous solution for ¹³⁹La. All NMR spectra have been treated by the dmfit program⁴⁶.

3. Results and discussion

- ²⁵ The effect of increasing amount of Li₂O in molten LaF₃-LiF has been firstly and more extensively studied for the LaF₃-LiF 20-80 mol% composition (noted LaLi₄F₇ in the following for convenience although there is no such define solid compound) in section 3.1 and 3.2. The effect of the amount of Li⁺ ions ³⁰ compared with La³⁺ ions has been also investigated in section 3.3
- with LaF₃-LiF 10-90 mol% and 30-70 mol% compositions.

To help the discussion the chemical shift values of key compositions measured in this work are gathered in Table 1.

Table 1: Chen	nical shifts	of key co	mpounds	(ppm)
---------------	--------------	-----------	---------	-------

	¹⁹ F			¹³⁹ La			
compound	RT solid	HT solid	Liquid	RT solid	Liquid		
LiF	-201	-201	-201	-	-		
LaF ₃	-25.2, 12.4 and 19.7 Weighted average =-8	+10	+52	-129	-60		
LaF ₃ -LiF (x_{LaF3} =0.2)	*	*	-90	*	-51		
LaOF	-35	-10					
* As there is no defined phase of solid compound at this composition so							

⁵ * As there is no defined phase of solid compound at this composition, so the chemical shifts of ¹⁹F and ¹³⁹La are those of pure LaF₃ and LiF.

LiF has a CFC crystal structure that is kept upto the liquid; in the liquid, the average coordination number of both ions is about ⁴⁰ 4.^{47,48} LaF₃ crystallizes at room temperature in P -3 c 1 space group where lanthanum occupies one site surrounded by 9 fluorine and fluorine occupies 3 sites (F1, F2, F3) surrounded by 3 lanthanum and 3 fluorine for F1 and F2 and by 3 lanthanum for F3.^{49,50,51} LaOF crystallizes at room temperature in P 4/n m m

⁴⁵ space group⁵² where lanthanum is surrounded by 4 fluorine and 4 oxygen and both the fluorine and the oxygen are surrounded by 4 lanthanum. LaOF follows a phase transition at 778K,⁵³ its space group is then F m -3 m where lanthanum is still surrounded by 8 anions nevertheless oxygen and fluorine share the same site.⁵⁴

⁵⁰ Hence there is 24 possible configurations around lanthanum. The coordination number of fluorine is equal to the one in LaOF at room temperature but the fluorine-lanthanum distance is longer. The characterization of the samples after the NMR experiments is

displayed in the ESI (Figures S1 and S2). The important point is 55 that whatever the ratio O/La investigated here (from $x_{Li2O} = 0$ to 0.5) the whole Li₂O has reacted with LaF₃ to form LaOF and no La₂O₃ was observed.

3.1. Behaviour during heating and temperature dependence

In this section, we present the evolution of the NMR spectra ⁶⁰ versus temperature from room temperature upto 100-200 K above the melting point. Several procedures of heating have been used: (1) progressive heating from room temperature and (2) heating directly up to the liquidus temperature. The goal is to evidence the melting behaviour and / or the signature of reaction with ⁶⁵ oxide in solid. Indeed, it appeared during the first experiments that the dissolution was not a simple process. Moreover, LaOF can be formed by mecanosynthesis with LaF₃ and Li₂O.^{55,56}

Figures 1a and 1b show the NMR spectra of ¹⁹F and ¹³⁹La from 700K to 1290 K in LaLi₄F₇ + Li₂O ($x_{Li2O} = 0.2$) and in ESI are ⁷⁰ presented the similar figures for LaLi₄F₇ without Li₂O, with Li₂O ($x_{Li2O} = 0.1, 0.3$ and 0.5).

80

Fig.1. ¹⁹F (a) and ¹³⁹La (b) NMR spectra of LaLi₄F₇ + Li₂O ($x_{Li_{2O}} = 0.20$) for increasing temperature. For ¹⁹F spectra, the liquid peak (-120ppm) is cut in order to make it possible to see the secondary peaks, in the inlet the full spectra are plotted.

¹⁹F. Before discussing the results presented in Figure 1a, it is important to recall that the observation characteristic time of NMR spectroscopy does not make it possible to observe the different 'complexes' present in the melt. The nucleus ¹⁰ experiences all the different environments during the measurement and NMR spectrum is made of only one sharp peak. Nevertheless, this peak is the weighted average of all the individual peak positions that should be if the measurement was infinitely fast. On the contrary, the NMR spectrum of a solid ¹⁵ yields to as many peaks as there are different environments for the observed nucleus provided the resolution is sufficient. In the ¹⁹E NDP spectra measurement of a true applies as the sufficient.

- ¹⁹F NMR spectra presented in Figure 1a, two peaks are already visible at 700 K. At this temperature the sample is still at the solid state as determined by complementary DSC experiments. The ²⁰ peak around +10 ppm corresponds to LaF₃ solid as illustrated in
- Figure 2 where the ¹⁹F spectra of pure polycrystalline LaF_3 at 775 K is displayed.

¹⁹F (ppm)

Fig.2. ¹⁹F NMR spectra of pure LaF₃ recorded using a HT static probe at 25 775K.

On the figure 1a, the position of LaF₃ peak is shifted toward positive value by increasing temperature. The peak around -10 ppm is attributed to LaOF solid. Its position is also shifted toward positive value by increasing the temperature. Hence, Li₂O ³⁰ and LaF₃ rapidly react at the solid state to form LaOF. The solid state reaction has been also evidenced in the LaLi₄F₇+CaO system.⁵⁷ At 700K, only one peak is observed for LaF₃. Previous NMR studies on monocrystalline and polycrystalline LaF₃ have shown that the fluorine are in rapid exchange between the 3 ³⁵ crystallographic sites at this temperature.^{58,59} One peak is

This journal is © The Royal Society of Chemistry [year]

observed for LaOF as expected from its crystallographic structure. The fluorines of LiF cannot be observed at 700K contrary to those of LaF3 and LaOF because the mobility of its fluorine ions is much less. LaF3 and LaOF are good ionic 40 conductor with fluorine as conducting species (LaF3 60,61,62,63,64 being however a much better ionic conductor than LaOF ^{65,66}). These peaks are shifted toward positive chemical shift values with temperature (see also ESI). The characteristic peak of LiF (-201ppm) appears around 850K. In the same time, the intensity of ⁴⁵ LaOF peak increases contrary to the one of LaF₃ that decreases. Around 950K a new peak appears around -110ppm along with a very broad peak in the ¹³⁹La spectrum. This ¹⁹F peak is the first sign of the liquid appearance. At 1050K, the sample is liquid and both the LiF and LaF₃ peaks have disappeared. The LaOF peak 50 remains even at the highest temperature investigated here (1300K). As explained in the introduction of this section, the observation of a secondary peak while the salt is molten indicates that either a solid compound remains in the sample or the sample is multiphasic. It means that LaOF is not completely dissolved in 55 the LaF₃-LiF melt. The LaOF peak appears around 10mol% Li₂O. This value is in agreement with the one observed in the LaLi₄F₇+CaO system (around 13mol% CaO). It is also in agreement with the solubility of LaOF determined in LiF-NaF and in LaF₃-LiF melts.^{67,57} Its solubility constant is indeed

in LiF-NaF at 1075K. The peak of the liquid (-147ppm) is shifted toward positive values with increasing temperature and becomes thinner. The full width at half maximum (FWHM) of the ¹⁹F NMR peak is ⁶⁵ correlated to the viscosity and by increasing the temperature the latter decreases. In the same time, the LaOF peak intensity decreases (and is also shifted toward positive values): it means that the amount the dissolved LaOF increases with temperature as expected.

⁶⁰ relatively low and is about 10^{-3} in molten LaLi₄F₇ at 1115K and

⁷⁰ ¹³⁹La. The ¹³⁹La spectra are consistent with the ¹⁹F spectra: a broad peak appears around T= 890K and as for ¹⁹F corresponds to the first sign of the liquid, the melting being complete at 1050K (Figure 1b). However, contrary to ¹⁹F, only one peak is observed. The signature of solid LaOF cannot be observed in the ¹³⁹La spectra due to the NMR characteristic of this nucleus (large quadrupolar constant that makes its solid spectra very broad and unobservable using the HT NMR static probe at 9 Teslas). The ¹³⁹La peak is shifted toward positive chemical shift values with temperature similarly to the ¹⁹F peak.

Rapid heating procedure of samples leads to the same results in the liquid as the slow heating procedure: solid LaOF remains visible upto 1300 K.

At the liquid state, the evolution of the chemical shifts of 19 F and 139 La with temperature is low in the mixture without oxide, as already observed for other molten RF₃-MF (R=rare earth and M=alkaline).⁶⁸ This evolution is stronger when oxide are added in the melt. It is similar from $x_{Li20} = 0.1$ to $x_{Li20} = 0.3$ and becomes much stronger above. It is difficult to deconvolute the effect of temperature on the liquid structure for a given composition (i.e. a given amount of dissolved LaOF) and the variation of dissolved LaOF amount in the melt due to the temperature. Nevertheless, this change in the temperature dependence may be connected to a

change in the LaO_xF_y^{3-x-y} units present in the melt. The NMR peaks of both ¹⁹F and ¹³⁹La appears to be larger around $x_{Li2O} = 0.3$ supporting the idea of a change in the liquid structure (Figure 3). The full width at half maximum (FWHM) gives an insight into ⁵ the viscosity of the melt. The variation observed in Figure 3 may indicate that above $x_{Li2O} = 0.3$, chains of -La-O-La-O- are formed in the melt. This is similar to what has been already evidenced in molten RF₃-AF ^{69,70,2} and ZrF₄-AF ^{71,69} however the lifetime of these configurations seems to be much longer.

Fig.3. FWHM of the¹⁹F (a) and ^{139}La (b) NMR peaks in molten LaLi₄F₇ + Li₂O versus the molar fraction in Li₂O.

3.2 Oxide amount dependence

- ¹⁵ In this section on the oxide amount dependence, we restrict the discussion at the temperature 1100K. The ¹⁹F and ¹³⁹La chemical shifts of the liquid peak are plotted as a function of the Li₂O molar fraction x_{Li2O} in Figure 4. The values for the LaF₃-LiF-CaO system extracted from ref 57 have been also plotted for
- ²⁰ comparison. With increasing oxide amount, the ¹⁹F chemical shift moves toward negative values almost linearly (Figure 4a). This evolution is the same as the one observed when CaO is added to $LaLi_4F_7$; both curves superimposes each other. The displacement toward negative values indicates that the fluorine environment
- $_{25}$ goes toward a "LiF" environment, i.e. that fluorine anions are removed from the first neighbour shell of La and are replaced by oxygen anions. The 139 La chemical shift moves toward positive values (Figure 4b). This evolution is similar to the one observed when CaO is added to LaLi₄F₇; however, contrary to 19 F both

³⁰ curves do not superimpose each other. With Li₂O the evolution of the ¹³⁹La chemical shift is much stronger than with CaO.

Fig.4. ¹⁹F (a) and ¹³⁹La (b) chemical shift in molten LaLi₄ F_7 + Li₂O versus the concentration of Li₂O (black symbol) at 1100K. For comparison the LaLi₄ F_7 + CaO system is also plotted (grey symbol).

This difference may be attributed to the difference of fluoroacidity between Li⁺ and Ca²⁺. Recently, a new electrochemical method to build a fluoroacidity scale has been proposed by the 40 LGC's team in Toulouse - France based on the measurement of the equilibrium between gazeous SiF₄ or BF₃ and dissolved in molten fluorides.^{72,73} They have shown that the CaF₂-LiF is more acidic than LiF, i.e. fluorine anions are less available in CaF2-LiF than in LiF. In addition, it has been shown that Ca2+ cations induce less change in the La^{3+} local environment than $\mathrm{Li}^+\!.$ In molten CaLi₄F₆-LaF₃, La³⁺ environment appears to be almost the same as in pure molten LaF₃ while in LiF-LaF₃⁵⁷ La³⁺ is surrounded by slightly less fluorine anions.¹⁶ Furthermore, Ca²⁺ ions has higher affinity for O²⁻ ions than Li⁺ ions.^{74,75} This fact is ⁵⁰ evidenced here by the LaOF peak in the ¹⁹F spectra that appears at lower oxide content for Li₂O than for CaO. It may therefore be conjectured that the long-lived lanthanum oxyfluoride LaO_xF_y^{3-x-y} units are different in CaO and Li₂O addition cases with an average x greater with Li₂O than with CaO. This 55 hypothesis is consistent with the trend of the ¹³⁹La isotropic chemical shift in solid compounds: it goes from -135 ppm in LaF_3 ^{16,76} and -60 ppm in RbLaF₄⁷⁷ to + 375 ppm in LaAlO₃⁷⁸ +600 ppm in LaGaO₃⁷⁹ and +640 ppm in La₂O₃.⁸⁰ Hence,

replacing fluorine by oxygen around lanthanum induces a important displacement of the ¹³⁹La isotropic chemical shift toward positive values. This hypothesis is also supported by the evaluation of the ¹³⁹La and ¹⁹F chemical shifts. In molten salts ⁵ such as molten fluorides, the lifetime of each structural configuration is much shorter than the characteristic time of NMR measurement. The measured chemical shift $\delta_{measured}$ is thus the weighted average of all the individual values δ_i corresponding to all the different environments experienced by the nucleus ¹⁰ during the time of the experiment:

$$\delta_{measured} = \sum_{i} a_i \delta_i \tag{1}$$

Therefore, if all the $a_i\delta_i$ can be assessed, then $\delta_{measured}$ can be calculated. Using this procedure, the ¹³⁹La and ¹⁹F chemical shifts for the LaLi₄F₇-CaO system could be nicely reproduced using ¹⁵ only one kind LaOFx^{3-x} unit. For the LaLi₄F₇-Li₂O system, such an approach fails and several LaOFx^{3-x} units should be considered (in this case, the constraint on the calculation of the curves of Figure 4 is insufficient to yield to valid result). Hence, the molten LaLi₄F₇-Li₂O system may contain both isolated LaOFx^{3-x} long-²⁰ lived units and bigger units LaOx^{3-x-y} which proportions

change with the concentration of Li_2O . Note that longer lanthanum oxyfluoride chains can even occur.

3.3. Lithium amount dependence

- In this section, we address the influence of the ratio n_{La}/n_{Li} (or n_{La}/n_F). By changing this ratio, one changes the fluoroacidity of the melt. Two other compositions from each side of the LaLi₄F₇ composition have been used: LaF₃-LiF 10-90mol% where $n_{La}/n_{Li}=0.111$ and $n_{La}/n_F=0.083$ and LaF₃-LiF 30-70mol% where $n_{La}/n_{Li}=0.426$ and $n_{La}/n_F=0.188$. In LaF₃-LiF 20-30 80mol%, $n_{La}/n_{Li}=0.25$ and $n_{La}/n_F=0.143$. Nevertheless, this comparison is not straightforward because the temperature could
- comparison is not straightforward because the temperature could not be the same for the three system. Indeed, the liquidus of LaF₃-LiF 10-90mol% and LaF₃-LiF 20-80mol% are approximately the same, ca 1100K, but it is much higher for LaF₃-LiF 30-70mol%, ³⁵ ca 1250K. We therefore have chosen to run each experiment at
- the liquidus temperature of the corresponding LaF₃-LiF mixture without oxide. In the ESI the position of our experiments are placed in several LaF₃-LiF phase diagrams determined by different groups^{81,82,83,84,85} (Figure S10).
- ⁴⁰ The ¹⁹F and ¹³⁹La chemical shifts of the liquid peak are plotted versus the ratio n_0/n_{La} in Figure 5. The variation of ¹⁹F chemical shift is similar for the three ratio n_{La}/n_{Li} investigated here. The ^{19F} δ value for the three systems seems to converge on ca 200ppm at n_0/n_{La} =1. Interestingly, ^{19F} δ =-200 ppm is the value
- ⁴⁵ measured in neat molten LiF. It is important here to stress that the values plotted in Figure 5a correspond to the main peak shown in Figure 1a but the LaOF remains in all the compositions rich in oxide.

Fig.5. ¹⁹F (a) and ¹³⁹La (b) chemical shift in molten LaF₃-LiF + Li₂O versus the ratio n_O/n_{La} for $n_{La}/n_{Li} = 0.111$ (white symbol), $n_{La}/n_{Li} = 0.25$ (grey symbol) and $n_{La}/n_{Li} = 0.426$ (black symbol) at 1100K.

The variation of ¹³⁹La chemical shift ^{139La} δ is also similar for the ⁵⁵ three ratio n_{La}/n_{Li} : rapid increase up to $n_O/n_{La} = 0.1$ then slow increase or plateau. For La/Li = 0.11 a plateau is observed while a slow increase occurs for La/Li = 0.25. The comparison between La/Li = 0.11 and La/Li = 0.25 is easier as the running temperature were the same. From their curves it seems that the richer melt in ⁶⁰ lanthanum, the higher proportion O/La accessible. The more fluoroacidic melt, the higher quantity of LaOF.

Conclusions

The local structure of molten LaF₃-LiF-Li₂O system has been investigated thanks to HT NMR. By increasing the temperature ⁶⁵ from room temperature upto the liquidus temperature, Li₂O reacts at the solid state with LaF₃ to form LaOF; at the liquidus temperature of LaF₃-LiF, LaOF is dissolved in the melt. The amount of dissolved LaOF increases when temperature is increased but the solubility remains low (Ks ~ 10⁻³). The ⁷⁰ variations of ¹⁹F and ¹³⁹La chemical shifts in the melt indicate the formation of LaO_xF_y^{3-x-y} long-lived units with possible chains of -La-O-La-O- kind.

Acknowledgements

Authors express special thanks to Emmanuel Veron for X-ray 75 diffraction, to Sandra Ory for DSC, to Eric Labrude for machining special NMR crucibles and to Aydar Rakhmatullin for valuable discussion (CEMHTI). We are also grateful to the JSPS and CNRS for the financial support of the Joint Project between the Japanese and French partners under the "Japan-France (JSPS-CNRS) Research Cooperative Program". HM wishes to thank the

s colleagues and staffs of le STUDIUM to encourage the continuation of the collaboration research both in France and Japan.

Notes and references

^a PHENIX - CNRS – UPMC, case 51, 4 place Jussieu, 75252 Paris cedex 10 05, France. Tel: 33 1 4427 3049; E-mail: anne-laure.rollet@upmc.fr ^b CEMHTI - CNRS, 1D avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France. E-mail: catherine.bessada@cnrs-orleans.fr

- ^c Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-10, Ookayama, Meguro-ku, Tokyo 152-8550,
 ¹⁵ Japan. Tel: +81 3 5734 3076; E-mail: hmatsuur@nr.titech.ac.jp
 † Electronic Supplementary Information (ESI) available: XRD and NMR
- characterization of solidified samples; HT NMR ¹⁹F and ¹³⁹La spectra of molten LaLi₄F₇ + Li₂O with $x_{Li20} = 0$, 0.1, 0.3, 0.5; position of the HT NMR experiments in the LaF₃-LiF phase diagram. See ²⁰ DOI: 10.1039/b000000x/
 - 1 A.-L. Rollet and M. Salanne, Annu. Rep. Prog. Chem. Sect. C, Phys. Chem., 2011, 107, 88.
 - 2 M. Levesque, V. Sarou-Kanian, M. Salanne, M. Gobet, H. Groult, C. Bessada, P. A. Madden and A.-L. Rollet, *J. Chem. Phys.*, 2013, 138, 184503.
 - 3 S. A. Kirillov, E. A. Pavlatou and G. N. Papatheodorou, J. Chem. *Phys.*, 2002, **116**, 9341.
 - 4 V. Dracopoulos, D. Th. Kastrissios and G. N. Papatheodorou, J. Non-Cryst. Solids, 2005, **351**, 640.
 - 5 F. Auguste, O. Tkatcheva, H. Mediaas, T. Ostvold and B. Gilbert, Inorg. Chem., 2003, 42(20), 6338.
 - 6 V. Dracopoulos, B. Gilbert and G. N. Papatheodorou, J. Chem. Soc. Faraday Trans., 1998, 94(1), 2601.
 - 7 C. Bessada, A.-L. Rollet, A. Rakhmatullin, I. Nuta, P. Florian and D. Massiot, C.R. Chimie, 2006, 9, 374.
 - 8 A.-L. Rollet and C. Bessada, Annu. Rep. Prog. Chem. Sect. C, Phys. Chem., 2013, 78, 149.
 - 9 V. Lacassagne, C. Bessada, P. Florian, S. Bouvet, B. Ollivier, J.-P. Coutures and D. Massiot, *J. Phys. Chem. B*, 2002, **106**, 1862.
 - 10 C. Bessada, A. Rakhmatullin, A.-L. Rollet and D. Zanghi, J. Fluorine Chem., 2009, 130, 45
 - 11 S. Watanabe, A.K. Adya, Y. Okamoto, N. Umesaki, T. Honma, H. Deguchi, M. Horiuchi, T. Yamamoto, S. Noguchi, K. Takase, A. Kajinami, T. Sakamoto, M. Hatcho, N. Kitamura, H. Akatsuka and H. Matsuura, *J. Alloys Compd.*, 2006, **408**, 71.
 - 12 A.-L. Rollet, C. Bessada, Y. Auger, P. Melin, M. Gailhanou and D. Thiaudière, Nucl. Instrum. Methods Phys. Res., Sect. B, 2004, 226, 447.
 - 13 H. Matsuura, S. Watanabe, H. Akatsuka, Y. Okamoto and A.K. Adya, J. Fluorine Chem., 2009, 130, 53.
 - 14 O. Pauvert, D. Zanghi, M. Salanne, C. Simon, A. Rakhmatullin, H. Matsuura, Y. Okamoto, F. Vivet and C. Bessada, J. Phys. Chem., 2010, 114, 6472.
 - 15 M. P. Tosi, D. L. Price and M.-L. Saboungi, Annu. Rev. Phys. Chem., 1993, 44, 173.
 - 16 A.-L. Rollet, S. Godier and C. Bessada, *Phys. Chem. Chem. Phys.*, 2008, **10**, 3222.
 - 17 P. Simon, B. Moulin, E. Buixaderas, N. Raimboux, E. Herault, B. Chazallon, H. Cattey, N. Magneron, J. Oswalt and D. Hocrelle, *J. Raman Spectrosc.*,2003, **34**, 497.
 - 18 A.K. Hassan, L.M. Torell, L. Borjesson and H. Doweider, *Phys. Rev.* B, 1992, 45, 12797.
 - 19 G. N. Papatheodorou and A. G. Kalampounias, J. Phys.: Condens. Matter, 2009, 21, 205101.

- 20 D. Massiot, F. Fayon, V. Montouillout, N. Pellerin, J. Hiet, C. Roiland, P. Florian, J.-P. Coutures, L. Cormier and D. R. Neuville, J. Non-Crystalline Solids., 2008, 354, 249.
 21 J.F. Stabling, J. J. F. Coutures, J. Content of the solid statement of the solid statement
- 21 J.F. Stebbins and I. Farnan, *Science*, **255**, 586 (1992).
- 22 G. N. Greaves, M. C. Wilding, S. Fearn, D. Langstaff, F. Kargl, S. Cox,1 Q. Vu Van, O. Majérus, C. J. Benmore, R. Weber, C. M. Martin and L. Hennet, *Science*, 2008, **322**, 566.
- 23 L. Hennet, I. Pozdnyakova, V. Cristiglio, G. J. Cuello, S. Jahn, S. Krishnan, M.-L. Saboungi and D. L. Price, J. Phys.: Condens. Matter, 2007, 19, 455210.
- 24 C. Landron, L. Hennet, T. E. Jenkins, G. N. Greaves, J. P. Coutures and A. K. Soper, *Phys. Rev. Lett.*, 2001, **86(21)**, 4839.
- 25 L. Hennet, I. Pozdnyakova, V. Cristiglio, S. Krishnan, A. Bytchkov, F. Albergamo, G.J. Cuello, J.-F. Brun, H.E. Fischer, D. Zanghi, S. Brassamin, M.-L. Saboungi and D.L. Price, *J. Non-Crystalline Solids.*, 2007, **353**, 1705.
- 26 G. N. Greaves and S. Sen, *Adv. Phys.*, 2007, **56(1)**, 1.
- 27 M. Wilson and P. A. Madden, J. Phys.: Condens. Matter, 1993, 5, 2687.
- 28 M. Salanne and P. A. Madden, *Mol. Phys.*, 2011, **109(19)**, 2299.
- 29 M. Salanne, C. Simon, P. Turq and P. A. Madden, *J. Phys. Chem. B*, 2007, **111**, 4678.
- 30 V. Sarou-Kanian, A.-L. Rollet, M. Salanne, C. Simon, C. Bessada and P. A. Madden, *Phys. Chem. Chem. Phys.*, 2009, 11, 11501.
- 31 C. Merlet, P. A. Madden and M. Salanne, *Phys. Chem. Chem. Phys.*, 2010, **12**, 14109.
- 32 S. Jahn and P. A. Madden, J. Non-Crystalline Solids, 2007, 353, 3500.
- 33 S. Jahn and P. A. Madden, *Condens. Matter Phys.*, 2008, **11(1)**, 169.
- M. Salanne, B. Rotenberg, S. Jahn, R. Vuilleumier, C. Simon and P. A. Madden, *Theor. Chem. Acc.*, 2012, **131**, 1143. arXiv:1204.1427.
- 35 O. Pauvert, M. Salanne, D. Zanghi, C. Simon, S. Reguer, D. Thiaudière, Y. Okamoto, H. Matsuura and C. Bessada, *J. Phys. Chem.*, 2011, **115**, 9160.
- 36 P. A. Madden, K. O'Sullivan, J. A. Board and P. W. Fowler, J. Chem. Phys., 1991, 94, 918.
- 37 E. Stefanidaki, G. M. Photiadis, C. G. Kontoyannis, A. F. Vik and T. Østvold, J. Chem. Soc., Dalton Trans., 2002, 2302.
- 38 H. Xiao, J. Thonstadt and S. Rosleth, Acta Chem. Scand., 1995, 49, 96.
- 39 M. H. Brooker, R. W. Berg, J. H. von Barner and N. J. Bjerrum, *Inorg. Chem.*, 2000, **39**, 4725.
- 40 J. Nakano, Asia Pac. Bull., 2012, 163.
- 41 J. Uhlir, J. Nucl. Mater., 2007, 360, 6.
- 42 S. Delpech, C. Cabet, C. Slim and G. S. Picard, *Materials Today*, 2010, **13(12)**, 34.
- 43 P. Taxil, L. Massot, C. Nourry, M. Gibilaro, P. Chamelot and L. Cassayre, J. Fluorine Chem., 2009, 130, 94.
- 44 P. Chamelot, L. Massot, C. Hamel, C. Nourry and P. Taxil, *J. Nucl. Mater.*, 2007, **360**, 64.
- 45 V. Lacassagne, C. Bessada, B. Ollivier, D. Massiot and J.-P. Coutures, C. R. Acad. Sci. IIb, 1997, 91.
- 46 D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve, B. Alonso, J. –O. Durand, B. Bujoli, Z. Gan and G. Hoatson, *Magn. Reson. Chem.*, 2002, 40, 70.
- 47 A. Baranyai, I. Ruff and R. L. McGreevy, *J. Phys. C: Solid State Phys.*, 1986, **19**, 453.
- 48 M. C. C. Ribeiro, J. Phys. Chem. B, 2003, 107, 4392.
- 49 M. Mansmann, Z. Kristallogr., 1965, **122**, 375.
- 50 B. Maximov and H. Schulz, *Acta Crystallogr.*, 1985, **41**, 88.
- 51 A. Zalkin and D. H. Templeton, *Acta Crystallogr.*, 1985, **41**, 91.
- 52 W.H. Zachariasen, *Acta Cryst.*, 1951, **4**, 231.
- 53 T. Petzel, V. Marx and B. Hormann, J. Alloys Compd., 1993, 200, 27.
- 54 W. Klemm and H. A. Klein, Z. Anorg. Allg. Chem., 1941, 248, 167.
- 55 J. Lee, Q. Zhang and F. Saito, J. Am. Ceram. Soc., 2001, 84(4), 863.
- 56 J. Lee, Q. Zhang and F. Saito, J. Alloys Compd., 2003, 348, 214.
- 57 A.-L. Rollet, E. Veron and C. Bessada, J. Nucl. Mater., 2012, 429, 40.
- 58 D. Kruk, O. Lips, P. Gumann, A. Privalov and F. Fujara, J. Phys.: Condens. Matter, 2006, 18, 1725.

- 59 A.F. Privalov, I.V. Murin and H.-M. Vieth, *Solid State Ion.*, 1997, 101-103, 393.
- 60 V.V. Sinitsyn, O. Lips, A.F. Privalov, F. Fujara and I.V. Murin, J. Phys. Chem. Solids., 2003, 64, 1201.
- 61 J. Schoonman, G. Overluizen and K. E. D. Wapenaar, Solid State Ionics, 1980, 1, 211.
- 62 A. Roos, A. F. Aalders, J. Schoonman, A. F. M. Arts and H. W. De Wijn, *Solid State Ionics*, 1983, 9-10, 571.
- 63 N. I. Sorokin, M. V. Fominikh, E. A. Krivandina, Z. I. Zmurov and B. P. Sobolev, *Kristalografiya*, 1996, **41**, 310.
- 64 C. Hoff, H.-D. Wiemhöfer, O. Glumov and I. V. Murin, *Solid State Ionics*, 1997, **101-103**, 445.
- 65 J. W. Fergus and H.-P. Chen, J. Electrochem. Soc., 2000, 147(12), 4696.
- 66 K. T. Jacob and V. S. Saji, Int. J. Appl. Ceram. Technol., 2006, 3(4), 312.
- 67 M. Ambrová, J. Juricová, V. Danielik and J. Gabcová, J. Therm. Anal. Calorim., 2008, 91, 569–573.
- 68 A.-L. Rollet, A. Rakhmatullin and C. Bessada, Int. J. thermophys., 2005, 26, 1115.
- 69 A.-L. Rollet, M. Salanne and H. Groult, J. Fluorine Chem., 2012, 134, 44.
- 70 V. Dracopoulos, B. Gilbert, B. Borrensen, G. M. Photiadis, and G. N. Papatheodorou, J. Chem. Soc. Faraday Trans., 1997, 93, 3081.
- 71 V. Dracopoulos, J. Vagelatos and G. N. Papatheodorou, J. Chem. Soc., Dalton Trans., 2001, 1117.
- 72 A.-L. Bieber, L. Massot, M. Gibilaro, L. Cassayre, P. Chamelot and P. Taxil, *Electrochim. Acta*, 2011, 56, 5022.
- 73 M. Kergoat, L. Massot, M. Gibilaro and P. Chamelot, *Electrochim. Acta*, 2014, **120**, 258.
- 74 G. Z. Chen, D. J. Fray and T. W., Nature, 2000, 407, 361.
- 75 M. Gibilaro, J. Pivato, L. Cassayre, L. Massot, P. Chamelot and P. Taxil, *Electrochim. Acta*, 2011, 56, 5410.
- 76 K. J. Ooms, K. W. Feindel, M.J. Willans, R. E. Wasylishen, J. V. Hanna, K. J. Pike and M. E. Smith, *Solid State Nucl. Magn. Reson.*, 2005, 28, 125.
- 77 A.-L. Rollet, M. Allix, E. Veron, M. Deschamps, V. Montouillout, M. R. Suchomel, E. Suard, M. Barre, M. Ocaña, VA. Sadoc, F. Boucher, C. Bessada, D. Massiot and F. Fayon, *Inorg. Chem.*, 2012, 51, 2272.
- 78 R. Dupree, M. H. Lewis and M. E. Smith, J. Am. Chem. Soc., 1989, 111, 5125.
- 79 T.J. Bastow, T. Mathews and J.R. Sellar, *Solid State Ionics*, 2004, 175, 129.
- 80 L. Spencer, E. Coomes, E. Ye, V. Terskikh, A. Ramzy, V. Thangadurai and G. R. Goward, *Can. J. Chem.*, 2011, **89**, 1105.
- 81 P. P. Fedorov, Russ. J. Inorg. Chem, 1999, 44(11), 1703.
- 82 M. Beilmann, O. Beneš, R. J. M. Konings and T. Fanghänel, J. Chem. Thermodyn., 2011, 43, 1515.
- 83 F. Abdoun, M. Gaune-Escard and G. Hatem, J. Phase Equilib., 1997, 18, 6.
- 84 J. P. M. van der Meer, R. J. M. Konings, K. Hack and H. A. J. Oonk, *Chem. Mater.*, 2006, **18**, 510.
- 85 A. I. Agulyanskii and V. A. Bessonova, *Zh. Neorg. Khim.*, 1982, 27
 [4], 1029-1032; *Russ. J. Inorg. Chem.* (Engl. Transl.), 1982, 27
 [4] 579.

Dalton Transactions Accepted Manuscript

In-situ high temperature NMR technique evidences the local structure of lithium lanthanum oxyfluoride melts.