This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Lithium, sodium and potassium picolyl complexes: syntheses, structures and bonding

Alan R. Kennedy,a Robert E. Mulvey,a Robert I. Urquhart a and Stuart D. Robertson a*

stuart.d.robertson@strath.ac.uk

a WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow (UK), G1 1XL

Abstract

Synthetically important for introducing a picolyl scaffold into a molecular construction, alkali metallated picoline (methylpyridine) complexes are also interesting in their own right for the diversity of their ligand-metal bonding possibilities. Here the syntheses of seven new such complexes are reported: namely three 4-picoline derivatives 4-picLi•Me6TREN, 1, 4-picNa•Me6TREN, 2, and [4-picK•2(4-picH)]∞, 3; and four 2-picoline derivatives, 2-picLi•Me6TREN, 4, 2-picLi•PMDETA, 4', 2-picNa•Me6TREN, 5, and [2-picK•PMDETA]2, 6' [where pic = NC5H4(CH2); Me6TREN = tris(N,N-dimethyl-2-aminoethyl)amine, (Me2NCH2CH2)3N; PMDETA = N,N,N',N,N''-pentamethyldiethylenetriamine, (Me2NCH2CH2)2NMe]. X-ray crystallographic studies establish that the lighter alkali metal complexes 1, 2, 4' and 5 adopt monomeric structures in contrast to the polymeric and dimeric arrangements adopted by potassium complexes 3 and 6' respectively. All complexes have also been characterized by solution NMR spectroscopy (1H, 13C, and where relevant 7Li). This study represents the first example of sodium and potassium picolyl complexes to be isolated and characterized. DOSY (Diffusion-Ordered Spectroscopy) experiments performed on 4 and 4' suggest both compounds retain their monomeric constitutions in C6D6 solution. Discussion focuses on the influence of the metal and neutral donor molecule on the structures and the nature of the ligand-metal (enamido versus aza-allylic) interactions.
Introduction

The heterocyclic pyridine ring (NC₅H₅) is a central feature of a large number of pharmaceutical,¹ agrochemical² and natural product molecules.³ There are of course a plethora of different methodologies available to the synthetic chemist for the introduction of a pyridine ring into the construction of such a molecule, the particular methodology of choice depending on factors such as the desired substitution on the ring or the ring position which is to be functionalized. One access point which drew our interest as group 1 metallation chemists was the lithiation and subsequent electrophilic quenching of methylpyridine (picoline).⁴ For example Watson and co-workers recently used this approach starting with lithiated (via nBuLi) 2-picoline as a first step towards preparing a series of 4H-quinolizin-4-ones.⁵ Also, Davis and co-workers laterally metallated 3-cyano-4-picoline with an alkali-metal secondary amide as a key step in their total synthesis of (-)-normalindine.⁶ Intriguingly, the negative charge can be delocalized into the ring from the carbanion and then relocalized onto the ring nitrogen through resonance (the principal resonance forms of the methyl-deprotonated anions of 2- and 4-picoline are displayed in figure 1).

![Resonance stabilization of negative charge in 2-picoly (top) and 4-picoly (bottom) anions.](image)

Figure 1 Resonance stabilization of negative charge in 2-picoly (top) and 4-picoly (bottom) anions.
There have thus far been a variety of studies on the alkali-metal derivatives of Cα-substituted 2-picolines, focusing primarily on mono- or di-silylated derivatives. These complexes can be either monomeric or dimeric, with both aza-allyl and enamido bonding of the anionic picolyl ligand to the metal (figure 2).

Figure 2 Summary of crystallographically characterized lithium derivatives of α-silylated 2-picolines (sol = solvent).

Stalke and coworkers have recently studied the bonding of 2-picolyllithium via X-ray crystallographic determinations and charge density studies, revealing (diethyl ether/2-picoline solvated) dimeric motifs having both a Li-N and Li-C (aza-allylic) interaction present (figure 3).

Figure 3 Representation of 2-picolyllithium molecular structures as revealed by Stalke and co-workers. Sol = OEt₂, 2-picH.
Meanwhile, Dhau and Singh have reported the α-lithiation of 2-picoline and 2,3-lutidine (2,3-dimethylpyridine) using nBuLi as metalating reagent. In this study they noted that prior complexation of the heterocycle with Lewis acidic BF$_3$ effects a greater than 2-fold increase in the yield of electrophilically quenched product. This lithiation pattern was in contrast to a previous study of 2-picoline-1-oxide which was lithiated under similar conditions at either the 6 (ring) position or dilithiated at the 6 and α (lateral) positions in approximately equal amounts. In all cases no metalated intermediates were isolated and identified.

Recently we have been successful in preparing benzyl alkali-metal monomers solvated by tris(N,N-dimethyl-2-aminoethyl)amine (Me_6TREN), which has proved to be an effective bonding probe since the hemispheric solvation of the tripodatal tetraamine precludes any secondary oligomerizing interactions. On the basis of this precedent we postulated that a similar approach with this ligand would produce monomeric picolyl complexes, stripping out these oligomerizing interactions to give an informative uninterrupted view of the primary metal-ligand bonding interactions. A particularly attractive feature of Me_6TREN in this regard is its exceptional coordinative flexibility, with examples of η^1, η^2, η^3 and η^4 modes of coordination all reported. We have consequently attempted to prepare Me_6TREN stabilized monomers of 2- and 4-picolyl-lithium, -sodium and -potassium and present our findings herein.

Results and discussion

4-picolyl complexes

We commenced by studying the 4-picolyl M series (where M = Li, Na, or K) in the presence of our potentially tetradentate Lewis donor. Specifically the lithium salt was prepared *in situ* (from 4-picoline and nBuLi) while the heavier congeners were generated via a Lochmann-Schlosser superbase (nBuLi/MOtBu) approach, filtered, washed with hexane to remove LiOtBu and dried (equation 1).

\[
\begin{align*}
\text{NC}_5\text{H}_4\text{CH}_2\text{Li} & \xrightarrow{\text{nBuLi}} \text{NC}_5\text{H}_4\text{CH}_2\text{Li} \\
\text{NC}_5\text{H}_4\text{CH}_3 & \xrightarrow{\text{nBuLi}} \text{NC}_5\text{H}_4\text{CH}_3 \\
\text{NC}_5\text{H}_4\text{CH}_2\text{Li} & \xrightarrow{\text{hexane, RT}} \text{NC}_5\text{H}_4\text{CH}_2\text{Li}
\end{align*}
\]

\[
\begin{align*}
\text{NC}_5\text{H}_4\text{CH}_3 & \xrightarrow{\text{hexane, RT}} \text{NC}_5\text{H}_4\text{CH}_3 (M = \text{Na, K})
\end{align*}
\]
There was no evidence of nucleophilic addition using this method.15 This study initially presented more problems than our recent benzyl alkali-metal studies which were carried out with the protonated anion as the bulk solvent (that is toluene and mesitylene). Our preference in this case was not to use bulk 4-picoline as the solvent as it may compete with Me\textsubscript{6}TREN as a solvating ligand for the Lewis acidic alkali-metal. Toluene was also avoided in case this arene was laterally metallated 16 by our desired products, generating alkali-metal benzyl complexes. We found that in neat diethyl ether or hexane, the 4-picM salts were insoluble in the presence (or absence) of one molar equivalent of Me\textsubscript{6}TREN so THF was added dropwise until a homogeneous solution resulted. In the case of lithium and sodium, crystalline material of complexes 4-picLi•Me\textsubscript{6}TREN (1) and 4-picNa•Me\textsubscript{6}TREN (2) was deposited in moderate yield (29 and 28%, respectively) at -30°C. Molecular structural determinations by X-ray diffraction studies proved that these complexes were indeed mononuclear. Complex 1 is displayed in figure 4, while complex 2 being isostructural is not shown for brevity.

\textbf{Figure 4} Molecular structure of 4-picLi•Me\textsubscript{6}TREN (1). Ellipsoids are displayed at 50% probability and all hydrogen atoms (other than those which were freely refined on the deprotonated carbon atom) and non-interacting solvent of crystallization (THF) are omitted for clarity. Selected bond lengths (Å) and
angles (°): Li1-N1, 2.238(4); Li1-N2, 2.172(4); Li1-N3, 2.223(4); Li1-N4, 2.719(4); Li1-N5, 2.063(4); N1-Li1-N2, 82.1(1); N1-Li1-N3, 81.8(1); N1-Li1-N4, 72.3(1); N1-Li1-N5, 169.1(2); N2-Li1-N3, 113.5(2); N2-Li1-N4, 112.6(2); N2-Li1-N5, 99.3(1); N3-Li1-N4, 122.5(2); N3-Li1-N5, 107.2(2); N4-Li1-N5, 97.3(1).

What is instantly clear from the molecular structure of 1 is that the picolyl anion is behaving as a secondary amide rather than a carbamion with the lithium only contacting the anionic fragment via its nitrogen atom and not through any of its carbon atoms.\(^{17}\) Given Stalke’s previous dimeric complexes this is in itself not surprising although it is gratifying that we have prepared another sensitive monomer solvated and stabilized with Me\(_6\)TREN through which we can accurately probe the primary bonding. The Li-N\(_{\text{anion}}\) distance [2.063(4)Å] is noticeably longer than that in other monomeric lithium secondary amides, such as (Me\(_3\)Si)\(_2\)NLi•TMEDA and (Me\(_3\)Si)\(_2\)NLi•TMEDA which have Li-N lengths of 1.893(3)Å and 1.988(6)Å respectively. In 1 the lithium cation lies 0.527(4)Å out of the plane of the six-membered C\(_5\)N pyridyl ring [C15-N5-Li1 = 164.6(1)°] and is coordinated by all four nitrogen atoms of Me\(_6\)TREN giving an overall distorted trigonal bipyramidal geometry with N1 and N5 in the axial positions [N\(_{\text{ax}}\)-Li-N\(_{\text{ax}}\) = 169.1(2)°; N\(_{\text{ax}}\)-Li-N\(_{\text{eq}}\) = 72.3(1)-107.2(2)°; N\(_{\text{eq}}\)-Li-N\(_{\text{eq}}\) = 112.6(2)-122.5(2)°]. Most interesting of the Li-N\(_{\text{donor}}\) distances in 1 is that one of them is considerably elongated by almost 0.5 Å compared to the other three [Li-N4, 2.719(4)Å]. This weaker bond may be indicative of fluxional \(\eta^2/\eta^4\) coordination in solution. We note here that another Me\(_6\)TREN solvated monomeric secondary amide, (Me\(_3\)Si)\(_2\)NLi•Me\(_6\)TREN, is only coordinated through three of its four Lewis basic heteroatoms in the solid state though the larger bulk of (Me\(_3\)Si)\(_2\)NLi compared to picolylLi is a major contributing factor. The three shorter Li-N\(_{\text{donor}}\) distances (mean value, 2.211Å) in 1 are consistent with those seen in Li-Me\(_6\)TREN interactions of other complexes.\(^{11a,11b}\)

Despite several attempts, a high quality structure of 2 could not be obtained, though the current low quality structure confirms that the connectivity mirrors that of its lighter lithium congener 1. Moving to the potassium congener, despite several attempts we were unable to obtain a pure solid product. In an endeavour to rectify this, the parent picoline 4-picH was itself used to solubilize the hexane
suspension of 4-picK and Me₆TREN as opposed to THF in the case of 1 and 2 (approx. 20 molar equivalents were required). The resulting crystalline product was revealed to be a 4-picH solvated polymeric structure \([4\text{-picK}\cdot 2(4\text{-picH})]_\infty\) (3) which does not contain Me₆TREN as displayed in figure 5. As can be discerned from figure 5 there are clearly three distinct types of picoline entities present in this structure (labeled A-C). Two of the rings (B and C) bridge between two potassium atoms while the third (A) is a terminal ligand, giving potassium an overall coordination number of five and a distorted square pyramidal coordination sphere, with N2’ in the axial position and N1, N2, N3 and N3’ in the equatorial positions (\(\text{N}_{\text{eq}}\)-K-\(\text{N}_{\text{eq}}\) range = 76.49 – 117.14°; \(\text{N}_{\text{eq}}\)-K-\(\text{N}_{\text{ax}}\) range 75.09 – 95.32°). However, the presence of a long range π interaction between potassium and the C=C double bond of a picoly ligand [K1-C26” = 3.371(2)Å] from an adjacent unit of the polymeric chain serves as a sixth coordination site to give a distorted octahedral geometry (figure 5, bottom) as well as confirming that this picoly unit is the deprotonated one (vide infra). Of course the distortion from octahedral geometry can be easily explained by a number of steric and electronic factors, including the mixture of π and σ bonding, the sterics of the ligands, the fact that some ligands are bridging and others terminal, and the constraints imposed by the presence of four-membered \(\text{K}_2\text{N}_2\) cycles.
Figure 5 A section of the polymeric chain structure of [4-picK•2(4-picH)]∞ (3) (top) that propagates parallel to the crystallographic a direction and detail of the coordination geometry of the potassium atom within it (bottom). Ellipsoids are displayed at 50% probability and all hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): K1-N1, 3.082(1); K1-N2, 3.044(1); K1-N3, 2.950(1); K1-N2′, 3.009(1); K1,N3′, 2.755(1); K1···C26”, 3.371(2); N1-K1-N2, 86.72(4); N1-K1-N3, 166.25(4); N1-K1-N2′, 84.05(4); N1-K1-N3′, 76.49(4); N1-K1-C26”, 91.90(4); N2-K1-N3, 79.88(4); N2-K1-N2′, 75.09(3); N2-K1-N3′, 154.16(4); N2-K1-C26”, 119.60(4); N3-K1-N2′, 95.32(4); N3-K1-N3′, 117.14(4); N3-K1-C26”, 92.10(4); N2′-K1-N3′, 83.64(4); N2′-K1-C26”, 164.61(4); N3′-K1-C26”, 80.97(5); K1-N2′-K1′, 84.08(3), K1-N3′-K1′, 90.47(4), where ′ = x + ½, -y + 1/2, z and ″ = x – ½, -y + ½, z.

To determine which of the three distinct picoline molecules present in the structure is the anionic ligand needed to balance the charge of the potassium cation we compared the bond lengths of these rings with those of the picolyl anion in 1 (table 1). This showed that the bond lengths of ring C are consistent with the loss of aromaticity (elongated N-Cα and Cβ-Cγ bonds and shortened Cα-Cβ and Cγ-Clateral bonds suggesting alternating single and double bonds throughout the ligand). The picolyl anion would appear to be displaying both σ and π bonding character to the two potassium atoms (K-N-Cγ angles are 175.61(6) and 89.37(5)° respectively). The designation of ring C as the anionic (deprotonated) ligand was further supported crystallographically by locating and refining two hydrogen atoms on the lateral carbon atom; these lie in the plane of the aromatic ring confirming the sp² hybridization of this carbon atom and thus conversion to an anion. The π character of the Cγ-Clateral bond is further confirmed by its participation in an interaction with π-phlic potassium (vide supra).
Table 1 Selected bond parameters for 4-picolyl rings of complexes 1 and 3

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>N-Cα</td>
<td>1.351(3)</td>
<td>1.333(2)</td>
</tr>
<tr>
<td></td>
<td>1.359(3)</td>
<td>1.337(2)</td>
</tr>
<tr>
<td>Cα-Cβ</td>
<td>1.364(3)</td>
<td>1.385(2)</td>
</tr>
<tr>
<td></td>
<td>1.362(3)</td>
<td>1.383(2)</td>
</tr>
<tr>
<td>Cβ-Cγ</td>
<td>1.444(3)</td>
<td>1.381(2)</td>
</tr>
<tr>
<td></td>
<td>1.442(3)</td>
<td>1.390(2)</td>
</tr>
<tr>
<td>Cγ-C lateral</td>
<td>1.365(3)</td>
<td>1.502(2)</td>
</tr>
</tbody>
</table>

Despite various attempts utilising varying solvents, adding excess Me₆TREN to a solution of 3, or utilizing other polydentate donor molecules we have thus far been unable to prepare a monomeric potassium complex of the 4-picolyl anion. A solution state study of complexes 1-3 proved to be challenging. Unlike our monomeric benzyl complexes, these picolyl complexes were insoluble in standard NMR solvents such as d₆-benzene or d₁₂-cyclohexane. We thus changed to more polar d₈-THF which in the case of 1 and 3 furnished us with orange/red coloured solutions. Complex 2 was only sparingly soluble even in this solvent but it was sufficient to assign the majority of the resonances. These complexes all showed upfield shifts of the aromatic proton resonances compared to those of 4-picH with concomitant downfield shifts of the resonances corresponding to the lateral CH₂ arm. Unlike the benzyl series, the resonances for 1-3 were all located in a very similar region, suggesting that there was a similar bonding pattern occurring across the series, consistent with the molecular structures which displayed σ bonding of the metal to the nitrogen atom in each case. It must be noted here that the donor ligands (Me₆TREN in 1, 2; 4-picH in 3) gave
resonances corresponding to these molecules in the free uncoordinated state, and thus it is likely that in solution we are probably witnessing a series of complexes of general formula 4-picM•xTHF (M = Li, Na, K; x unknown) in these bulk THF solutions. That said these spectra unequivocally confirm the empirical makeup and purity of the bulk crystalline material. 13C NMR spectra are in all cases as expected while the 7Li spectrum of complex 1 displays a lone sharp singlet.

2-picolyl complexes
The same protocol discussed above (equation 1) was repeated using isomeric 2-picoline as the substrate to prepare the unsolvated alkali-metal salts. A molar equivalent of Me$_6$TREN was introduced followed by THF until a homogenous solution was obtained. Crystallization of the final products was found to be easier and higher yielding from diethyl ether solutions rather than hexane solutions. For M = Li (2-picLi•Me$_6$TREN, 4), a crop of red crystals resulted which were not of sufficient quality for X-ray diffraction studies. Being unable to obtain a molecular structure of 4, we decided to try a different bulky polydentate Lewis donor in the hope that recrystallization would this time yield X-ray quality crystals. This was duly achieved using the moderately less bulky polyamine PMDETA ($N,N',N^\prime,N^\prime\prime$-pentamethyldiethylenetriamine). The molecular structure of the resulting complex, 2-picLi•PMDETA (4'), is shown in figure 6.
Figure 6 Molecular structure of one of the crystallographically independent molecules of 2-picLi•PMDETA (4'). Ellipsoids are displayed at 50% probability and all hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Li1-N2, 2.139(7); Li1-N3, 2.147(7); Li1-N4, 2.139(7); Li1-N5, 2.002(4); N2-Li1-N3, 85.0(2); N2-Li1-N4, 116.8(3); N2-Li1-N5, 129.9(3); N3-Li1-N4, 86.8(3); N3-Li1-N5, 120.9(3); N4-Li1-N5, 107.5(3).

In this instance the tridentate donor has sufficient bulk and coordination sites to stabilize a 4-coordinate lithium monomer. This metal is considerably distorted from a tetrahedral geometry due to the two chelate rings which impose N-Li-N bond angles of 85.0(2) and 86.8(3)°. Li-N_{donor} distances [2.139(7)-2.147(7)Å] are marginally shorter than the corresponding bonds in complex 1 reflecting the reduction in coordination number of Li in 4'. This narrow Li-N_{donor} range is in contrast to a series of PMDETA solvated monomeric secondary amides studied by Andrews et al. 7c,18 and in Henderson and Williard's (Me_3Si)_2NLi•PMDETA 19 whose reports commented that the bond to the central nitrogen atom is typically elongated compared to that to the two terminal nitrogen atoms (in the range 3.1-6.7% longer than the average of the two ‘terminal’ N-Li bonds). This disparity is
unlikely to be purely steric in nature as Snaith showed the bulky PMDETA-LiNPh(1-naphthyl) has a much narrower range of Li-N\textsubscript{PMDETA} bond lengths [2.18(1)-2.22(1)Å].20 Most importantly, the 2-picoly anion in 4’ is behaving as an enamido (η1) ligand, binding to the metal only through its nitrogen atom. To reach this conclusion, we compared metal-anion and picolyl C-C and C-N bond distances with those of Stalke’s aza-allyl 2-picLi•2-picH species.8 This shows that in our complex, the single bond/double bond character of the N-C unit is more pronounced while crucially, our C-Li bond distances are considerably longer at 2.980(7) and 2.796(7)Å for C\textsubscript{\textit{\it{L}}}\textsubscript{\textit{\it{\alpha}}} and C\textsubscript{\textit{\it{\alpha}}} Li versus 2.328(1) and 2.284(1)Å in Stalke’s complex.8 The N-C\textsubscript{\textit{\it{\alpha}}}-C\textsubscript{\textit{\it{\alpha}}} angle is similar in the enamido [119.6(3)\textordmasculine] and aza-allyl complexes [119.77\textordmasculine] although this is perhaps to be expected since the central C\textsubscript{\textit{\it{\alpha}}} is formally three coordinate and planar in either case. The metal in 4’ lies much further out of the plane of the C\textsubscript{5}N ring [1.126(6)Å] than in complex 1 [0.526(4)Å] reflecting the closer proximity of the picolinyl ring substituent to the Li-PMDETA moiety. This phenomenon in metal-ligand interaction between our complex (enamido) and Stalke’s (aza-allyl) may be explained by both steric and electronic contributions. The former is simply that the steric bulk of the PMDETA molecule in complex 4’ prevents the delocalized bonding picture described by Stalke. The electronic contribution is through the presence of harder Lewis bases in PMDETA which the hard Lewis acid lithium centre prefers whereas in the diethyl ether solvate the C=C double bond can compete with the ether for coordination. With three hard nitrogen centres of PMDETA in close proximity a η1 bonding motif to the anion is sufficient to provide a (distorted) tetrahedral environment at the metal.

Table 2 Selected bond distances for 2-picoly rings of complexes 4’, [2-picLi•2-picH]\textsubscript{2} and 6’.

<table>
<thead>
<tr>
<th></th>
<th>4’</th>
<th>[2-picLi•2-picH]\textsubscript{2}</th>
<th>6’</th>
</tr>
</thead>
<tbody>
<tr>
<td>β’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The reaction to prepare the Me₆TREN solvated sodium derivative of 2-picoline, 2-picNa•Me₆TREN (5) was carried out in an identical manner to that which prepared 2, furnishing red crystals isolated in a 54 % yield. Determination of the molecular structure by X-ray diffraction studies showed the complex to be the desired monomer (figure 7), with what appears to be η¹ coordination of the picolyl ligand (through N5) to the metal. However, the molecular structure was not of sufficient quality to unequivocally confirm this due to disorder in the picolyl anion. Consequently we had to rely on solution NMR spectroscopic data to determine the bonding mode (vide infra).
Figure 7 Molecular structure of 2-picNa•Me₆TREN (5). Ellipsoids are displayed at 50% probability and all hydrogen atoms and minor disordered component of 2-picoly anion are omitted for clarity.

Finally in this series we attempted to prepare the Me₆TREN solvated potassium congener 6. Unfortunately we were unable to obtain a tangible pure product. We did, however, obtain a crystalline product [2-picK•PMDETA]₂ (6') upon changing the donor ligand to PMDETA. Its molecular structure (figure 8) revealed a centrosymmetric dimeric constitution with a central strictly planar K₂N₂ ring and a molecule of PMDETA tridentately capping each potassium atom.
Figure 8 Molecular structure of [2-picK•PMDETA]$_2$ (6'). Ellipsoids are displayed at 50% probability and all hydrogen atoms (except those of the metalated CH$_2$ group) and minor disordered component at one end of PMDETA molecule are omitted for clarity. Symmetry operation to generate equivalent atoms labeled ':

1-x, -y, 1-z. Selected bond lengths (Å) and angles (°):
- K1-N2, 2.915(2)
- K1-N3, 2.857(2)
- K1-N4, 2.899(2)
- K1-N5, 2.786(1)
- K1-N5', 2.815(1)
- N2-K1-N3, 63.31(4)
- N2-K1-N4, 113.02(5)
- N2-K1-N5, 101.80(4)
- N2-K1-N5', 132.00(5)
- N3-K1-N4, 127.30(5)
- N3-K1-N5', 94.04(5)
- N5-K1-N5', 90.36(5)
- K1-N5-K1', 89.64(5)

The bond lengths in the picolyl anion of 6' suggest that there is perhaps a degree of η^3 aza-allylic type bonding to potassium. Specifically the N-C$_\alpha$ bond [1.395(3)Å] is similar to that of Stalke's η^3 aza-allyl lithium complex (*vide supra*) while the C$_\alpha$-C$_{lateral}$ bond [1.371(3)Å] is intermediate between the values witnessed for Stalke's complex [1.382(1)Å] and our own η^1 enamide complex 4' [1.356(6)Å]. The absolute values for the K-N or K-C bonds are not particularly
indicative given that this structure represents the first crystallographically characterized complex of 2-picoly potassium. However, the ratio of such bond lengths perhaps reveal the true nature of these interactions. In complex 4' (enamide) the M-C$_\text{lateral}$/M-N ratio is 1.48 while that of [2-picLi•2-picH]$_2$ (aza-allyl) is 1.15. The corresponding values for 6' are 1.19 (K1) and 1.16 (K1') suggesting aza-allylic character. However, this disparity could of course be an unavoidable artefact of dimerization, since the former complex is a monomer and the 'aza-allylic' complexes are dimers.

The solution chemistry of new complexes 4, 4', 5 and 6' were then probed in C$_6$D$_6$ solution by 1H NMR spectroscopy. Results are summarized in table 3. Corresponding data for Et$_2$O and 2-picoline solvated derivatives of 4 are included for comparison purposes. What is readily noticeable in the data for the lithium complexes is that the Me$_6$TREN (4), PMDETA (4') and 2-picoline solvates all display similar resonances while the resonances of the etherate complex are considerably more shielded. We surmised that this was perhaps an aggregation effect, with the 2-picoline solvate deaggregating to a monomer in solution and thus giving a similar spectrum to those of monomeric 4 and 4'. However, DOSY NMR experiments 4 suggest that these complexes maintain their solid state structural integrity in solution giving experimentally determined approximate molecular weights of 317, 267 and 387 g mol$^{-1}$ respectively [c.f. theoretical values of 329, 272 and 384 for 4 (monomer), 4' (monomer) and 2-picLi•2-picH (dimer)] representing errors of only 3.65, 1.84 and 0.78 % respectively (see Figure 9, Graph 1 and Table 4 for results of study for complex 4; other results are available in supporting information) and intimating that the NMR anomalies are not a consequence of solution aggregation. 13C NMR data were also compared (table 3) in an attempt to determine if the lithium picoly interaction (that is η^1 versus η^3) in solution was responsible. Konishi and Takahashi have previously suggested that the C4 resonance (that is the carbon transannular to the substituted C$_\alpha$) is most indicative of localization of the negative charge on nitrogen (η^1),22 however these data (table 3) would actually suggest that complexes 4 (95.3 ppm), 4' (95.2 ppm) and [2-picLi•Et$_2$O]$_2$ (95.8 ppm) have similar charge localization and that complex [2-picLi•2-picH]$_2$ (100.2 ppm) has
greater charge delocalization through the N-C-CH₂ subunit. The disparity of the
¹H NMR resonances of [2-picLi•Et₂O]₂ when compared to 4, 4’ and [2-picLi•2-picH]₂ may therefore simply be a consequence of the identity of the Lewis donating heteroatom (oxygen versus nitrogen).

Figure 9 ¹H DOSY NMR spectrum of complex 4 in C₆D₆ solution at 300 K in the presence of inert standards 1,2,3,4-tetraphenylnaphthalene (TPhN), 1-phenynaphthalene (PhN) and tetramethylsilane (TMS).

Graph 1 Plot of logD versus logFW from ¹H DOSY NMR data of the mixture of 4 and inert standards TPhN, PhN and TMS in C₆D₆ solution at 300K

Table 4 D-FW analysis from the ¹H DOSY NMR data of the mixture of 4 and standards TPhN, PhN and TMS in C₆D₆ solution at 300K
<table>
<thead>
<tr>
<th>Compound</th>
<th>$D_{Av} \times 10^{-10}$ m2s$^{-1}$</th>
<th>$\log D_{Av}$</th>
<th>FW (gmol$^{-1}$)</th>
<th>\log FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPhN</td>
<td>6.20</td>
<td>-9.207795</td>
<td>432.55a</td>
<td>2.636036</td>
</tr>
<tr>
<td>PhN</td>
<td>10.92</td>
<td>-8.961645</td>
<td>204.27a</td>
<td>2.310204</td>
</tr>
<tr>
<td>TMS</td>
<td>18.55</td>
<td>-8.731656</td>
<td>88.22a</td>
<td>1.945567</td>
</tr>
<tr>
<td>4</td>
<td>7.81</td>
<td>-9.107571</td>
<td>317.36b</td>
<td>2.501556</td>
</tr>
</tbody>
</table>

a Theoretical FW b FW calculated from $\log D = -0.6884 \cdot \log$FW - 7.3855 ($r^2 = 0.9973$)]

Complexes 4 and 4’ each gave a single sharp resonance in their 7Li NMR spectrum at 0.78/0.79 ppm respectively. These values lie downfield from Konishi and co-workers values for 2-picLi although such values (-0.05 – -0.62 ppm) were recorded in highly polar, oxygen containing solvents.22b 7Li-1H HOESY experiments confirmed that the upfield shifted =CH$_2$ resonance in 4 and 4’ (at 2.83/2.79 ppm respectively) represents the hydrogen atom cis to the ring nitrogen while the downfield resonance (at 3.46/3.44 ppm respectively) represents the trans hydrogen atom since only the former 1H resonance exhibited a 7Li cross-peak in each case.

NMR data for complex 6 (which may have a degree of aza-allylic bonding, vide supra) are similar to those of complexes 4, 4’ and 5 and given the disparity between the NMR data of Stalke’s two aza-allyl complexes (table 4) it would be unwise to unequivocally assign such data to an enamido or aza-allyl structure in solution. Taking the NMR data of the newly prepared complexes together, it is clear that they all display similar 1H NMR spectra, with each type of resonance appearing in a fairly narrow range indicative of a common (or at the very least similar) bonding motif.
Table 3 Selected 1H (400 MHz) and 13C (100 MHz) NMR data recorded in C$_6$D$_6$ solution.

<table>
<thead>
<tr>
<th></th>
<th>Li</th>
<th>Na</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>6.37</td>
<td>6.31</td>
<td>6.37</td>
</tr>
<tr>
<td>H3</td>
<td>6.59</td>
<td>6.52</td>
<td>6.69</td>
</tr>
<tr>
<td>H4</td>
<td>5.42</td>
<td>4.67</td>
<td>5.49</td>
</tr>
<tr>
<td>H5</td>
<td>7.16</td>
<td>6.76</td>
<td>7.40</td>
</tr>
<tr>
<td>H6</td>
<td>3.46/2.83</td>
<td>2.55/2.41</td>
<td>3.28/2.96</td>
</tr>
<tr>
<td>C4</td>
<td>95.3</td>
<td>100.2</td>
<td>95.5</td>
</tr>
</tbody>
</table>

The table includes the chemical shifts for selected protons (H2, H3, H4, H5, H6) and carbons (C4) for complexes Li•Me$_6$TREN•PMDETA•Et$_2$O•2-picH•Me$_6$TREN•PMDETA, Na•Me$_6$TREN•PMDETA, and K•Me$_6$TREN•PMDETA, recorded in C$_6$D$_6$ solution.
Conclusions

We have prepared a series of 2- and 4-picoly1 alkali-metal (Li, Na, K) complexes and characterized them in solution by NMR spectroscopy and in the solid state by X-ray crystallography. In the case of lithium and sodium, monomeric complexes of this ligand have been identified for the first time with the absence of aggregation being due to the polydenticity and generous steric protection provided by either of the bulky neutral polyamine Lewis donors PMDETA or Me₆TREN. This has allowed an unimpeded view of the primary metal-anion bonding interactions in the solid state which show that the anion preferentially binds in a η¹ enamide fashion. With the larger metal potassium, complexes were obtained as either a picoline-solvated polymer (containing the 4-picoly1 anion) or a PMDETA solvated dimer (containing the 2-picoly1 anion) with an aza-allyl type metal-anion bonding motif. The 4-picoly1 series were surprisingly not amenable to a complete solution state study in non-interacting solvent due to their reduced solubility, however, the 2-picoly1 series were revealed to maintain their structural integrity in benzene solution via DOSY NMR spectroscopy and to likely maintain their solid state metal-anion bonding motifs in solution.

Experimental

General experimental

All reactions and manipulations were performed under a protective argon atmosphere using either standard Schlenk techniques or a glove box. Hexane, THF and diethyl ether were dried by heating to reflux over sodium benzophenone ketyl and then distilled under nitrogen prior to use. PMDETA was distilled over CaH₂ and stored over 4Å molecular sieves. 2-picoline and 4-picoline were stored over 4Å molecular sieves. nBuLi (1.6 M in hexanes) and MOtBu were purchased commercially from Sigma-Aldrich and used as received. Me₆TREN was prepared by a literature method.²³ NMR spectra were recorded on a Bruker AV 400 MHz spectrometer operating at 400.13 MHz for ¹H, 155.47 MHz for ⁷Li and 100.62 MHz for ¹³C. All ¹³C spectra were proton decoupled. Satisfactory elemental analyses of the air sensitive products could not be obtained so ¹H NMR spectra for all products except 2, which was not sufficiently soluble, are included in Supporting Information as evidence of good bulk purity.
DOSY NMR Spectroscopy

Diffusion-Ordered Spectroscopy (DOSY) NMR experiments were performed on a Bruker AVANCE 400 NMR spectrometer operating at 400.13 MHz for proton resonance under TopSpin (version 2.0, Bruker Biospin, Karlsruhe) and equipped with a BBFO-z-atm probe with actively shielded z-gradient coil capable of delivering a maximum gradient strength of 54 Gcm\(^{-1}\). Diffusion-ordered NMR data were acquired using the Bruker pulse program dstegp3s employing a double stimulated echo with three spoiling gradients. Sine-shaped gradient pulses were used with a duration of 4 ms together with a diffusion period of 100 ms. Gradient recovery delays of 200 μs followed the application of each gradient pulse. Data were systematically accumulated by linearly varying the diffusion encoding gradients over a range of 2% to 95% of maximum for 64 gradient increment values. The signal decay dimension on the pseudo-2D data was generated by Fourier transformation of the time-domain data. DOSY plots were generated by use of the DOSY processing module of TopSpin. Parameters were optimized empirically to find the best quality of data for presentation purposes. Diffusion coefficients were calculated by fitting intensity data to the Stejskal-Tanner expression.

Samples were prepared by adding the desired complex (0.1 mmol) to an NMR tube containing 1,2,3,4-tetraphenylnaphthalene (TPhN, 15 mg), 1-phenylnaphthalene (PhN, 13.2 μL) and tetramethylsilane (TMS, 19.1 μL) as inert internal reference standards. The \(^1\)H DOSY NMR data were recorded at 300 K.

From the diffusion coefficients of the internal standards, linear calibration graphs were obtained by plotting logD versus logFW. Using the diffusion coefficients for the signals corresponding to the species under study an estimate of FW in solution was obtained.

X-ray crystallography

Crystallographic data were collected on Oxford Diffraction instruments with Mo or Cu Kα radiation (λ = 0.71073 and 1.54180 Å respectively). Structures were solved using SHELXS-97,\(^{24}\) while refinement was carried out on \(F^2\) against all independent reflections by the full-matrix least-squares method using the SHELXL-97 program.\(^{24}\) All non-hydrogen atoms were refined using anisotropic
thermal parameters. Selected crystallographic details and refinement details are given in table 5. Complex 3 has a Flack parameter of 0.00(3).25 CCDC-991853 to CCDC-991858 contain the supplementary crystallographic data for this paper. These can be obtained free of charge from the Cambridge Crystallographic Data Centre via \url{www.ccdc.cam.ac.uk/data_request/cif}.

General synthesis of picolyl-sodium and picolyl potassium salts

MO\textsubscript{t}Bu (16 mmol; M = Na, K) was dispersed in hexane (10 mL) with stirring. This suspension was cooled to 0°C then picoline (1.6 mL, 16 mmol) was added followed by \textit{n}BuLi (10 mL, 1.6M in hexane, 16 mmol) slowly via syringe. An orange/brown solid precipitate formed which was collected by filtration, washed with hexane (3 x 10 mL) and dried \textit{in vacuo} to give the final product.

\textbf{4-picLi•Me\textsubscript{6}TREN (1)}

4-picoline (0.16 mL, 1.6 mmol), Me\textsubscript{6}TREN (0.42 mL, 1.6 mmol) and hexane (5 mL) were added to a Schlenk flask and cooled to 0°C. \textit{n}BuLi (1 mL, 1.6 mmol) was slowly added precipitating an orange solid. THF (~3 mL) was slowly added until a homogeneous solution was obtained. This solution was cooled to -30°C where a crop of red crystals (153 mg, 0.46 mmol, 29%) was obtained.

1H NMR (400.1 MHz, \textit{d}\textsubscript{8}-THF, 300 K): \(\delta \) 6.34 (2H, d, \(^3J_{\text{H-H}} = 6.83 \) Hz, picolyl), 5.23 (2H, d, \(^3J_{\text{H-H}} = 7.04 \) Hz, picolyl), 2.68 (2H, s, CH\textsubscript{2}), 2.58 (6H, t, \(^3J_{\text{H-H}} = 6.50 \) Hz, 3 x CH\textsubscript{2}), 2.35 (6H, t, \(^3J_{\text{H-H}} = 6.63 \) Hz, 3 x CH\textsubscript{2}) 2.18 ppm (18H, s, CH\textsubscript{3}).

13C NMR (100.6 MHz, C\textsubscript{6}D\textsubscript{6}, 300 K): \(\delta \) 147.6 (picolyl ipso), 143.7 (picolyl CH), 109.6 (picolyl CH), 58.9 (3 x CH\textsubscript{2}), 53.8 (3 x CH\textsubscript{2}), 46.2 (CH\textsubscript{3}), 30.6 ppm (picolyl CH\textsubscript{2}).

7Li NMR (x): \(\delta \) 0.38 ppm.

\textbf{4-picNa•Me\textsubscript{6}TREN (2)}

Freshly prepared 4-picNa (0.115 g, 1.0 mmol) was suspended in hexane (5 mL) with stirring and Me\textsubscript{6}TREN (0.26 mL, 1.0 mmol) was introduced. THF (~2 mL) was slowly added until a homogeneous solution was obtained. This solution was cooled to -30°C where a crop of red crystals (92 mg, 0.27 mmol, 27%) was obtained.
\(^1\)H NMR (400.1 MHz, d\(_8\)THF, 300 K): \(\delta\) 6.39 (2H, d, \(^3\)J_H-H = 5.63 Hz, picolyl), 5.23 (2H, d, \(^3\)J_H-H = 5.81 Hz, picolyl), 2.60 (2H, s, CH\(_2\)), 2.53 (6H, t, \(^3\)J_H-H = 6.69 Hz, 3 x CH\(_2\)), 2.32 (6H, t, \(^3\)J_H-H = 6.69 Hz, 3 x CH\(_2\)) 2.17 ppm (18H, s, CH\(_3\))

\(^{13}\)C NMR (100.6 MHz, C\(_6\)D\(_6\), 300 K): \(\delta\) 145.0 (picolyl CH), 109.7 (picolyl CH), 58.9 (3 x CH\(_2\)), 53.8 (3 x CH\(_2\)), 46.1 ppm (CH\(_3\)). Picolyl ipso and CH\(_2\) carbon resonances were not resolved.

\([4\text{-picK}\cdot 2(4\text{-picH})]_\infty (3)\)

Freshly prepared 4-picK (0.131 g, 1.0 mmol) was suspended in hexane (5 mL) with stirring and 4-picoline (~2 mL) was slowly added until a homogeneous solution was obtained. This solution was cooled to -30°C where a crop of red crystals (47 mg, 0.15 mmol based on monomeric unit, 15 %) was obtained.

\(^1\)H NMR (400.1 MHz, d\(_8\)THF, 300 K): \(\delta\) 8.37 (4H, d, \(^3\)J_H-H = 6.09 Hz, picoline), 7.08 (4H, d, \(^3\)J_H-H = 5.19 Hz, picoline), 6.56 (2H, d, \(^3\)J_H-H = 5.87 Hz, picolyl), 5.32 (2H, d, \(^3\)J_H-H = 6.32 Hz, picolyl), 2.65 (2H, s, picolyl CH\(_2\)), 2.30 ppm (6H, s, picoline CH\(_3\)).

\(^{13}\)C NMR (100.6 MHz, C\(_6\)D\(_6\), 300 K): \(\delta\) 150.5 (picoline CH), 148.1 (picolyl ipso), 147.2 (picoline ipso), 145.0 (picolyl CH), 125.1 (picoline CH), 109.3 (picolyl CH), 30.6 (picolyl CH\(_2\)), 20.8 ppm (picoline CH\(_3\)).

\(2\text{-picLi}\cdot\text{Me}_6\text{TREN} (4)\)

2-picoline (0.16 mL, 1.6 mmol), Me\(_6\)TREN (0.42 mL, 1.6 mmol) and diethyl ether (10 mL) were added to a Schlenk flask and cooled to 0°C. nBuLi (1 mL, 1.6 mmol) was slowly added precipitating a dark solid. THF (~2 mL) was slowly added until a homogeneous solution was obtained. This solution was cooled to -30°C where a crop of purple crystals (273 mg, 0.83 mmol, 52 %) was obtained.

\(^1\)H NMR (400.1 MHz, C\(_6\)D\(_6\), 300 K): \(\delta\) 7.16 (1H, d, H5, masked by solvent but confirmed by \(^1\)H-\(^{13}\)C HSQC NMR), 6.59 (1H, dt, \(^3\)J_H-H = 5.95 Hz, H3), 6.37 (1H, dd, \(^3\)J_H-H = 9.00 Hz, H2), 5.42 (1H, dt, \(^3\)J_H-H = 6.27 Hz, H4), 3.46 (1H, s, H6), 2.83 (1H, s, H6), 2.18 (6H, br s, 3 x CH\(_2\)), 2.06 (18H, s, CH\(_3\)), 1.96 ppm (6H, br s, 3 x CH\(_2\)).

\(^{13}\)C NMR (100.6 MHz, C\(_6\)D\(_6\), 300 K): \(\delta\) 162.5 (C1), 148.4 (C5), 131.2 (C3), 115.9 (C2), 95.3 (C4), 61.3 (C6), 56.7 (3 x CH\(_2\)), 51.2 (3 x CH\(_2\)), 45.4 ppm (CH\(_3\)).

\(^7\)Li NMR (155.46 MHz, C\(_6\)D\(_6\), 300 K): \(\delta\) 0.78 ppm.
2-picLi•PMDETA (4')
2-picoline (0.16 mL, 1.6 mmol), PMDETA (0.34 mL, 1.6 mmol) and diethyl ether (10 mL) were added to a Schlenk flask and cooled to 0°C. nBuLi (1 mL, 1.6 mmol) was slowly added precipitating an orange solid. THF (~2.5 mL) was slowly added until a homogeneous solution was obtained. This solution was cooled to -30°C where a crop of red crystals (405 mg, 1.49 mmol, 93 %) was obtained.

1H NMR (400.1 MHz, C₆D₆, 300 K): δ 7.08 (1H, d, J_H-H = 5.42 Hz, H5), 6.61 (1H, dt, J_H-H = 6.16 Hz, H3), 6.36 (1H, dd, J_H-H = 9.00 Hz, H2), 5.41 (1H, dt, J_H-H = 6.29 Hz, H4), 3.44 (1H, s, H6), 2.79 (1H, s, H6), 2.07 (12H, s, 4 x CH₃), 1.91 (3H, s, CH₃), 1.72 ppm (8H, s, CH₂).

13C NMR (100.6 MHz, C₆D₆, 300 K): δ 162.5 (C1), 148.3 (C5), 131.3 (C3), 115.7 (C2), 95.2 (C4), 60.6 (C6), 56.6 (2 x CH₂), 53.2 (2 x CH₂), 45.1 (4 x CH₃), 44.3 ppm (1 x CH₃).

7Li NMR (155.46 MHz, C₆D₆, 300 K): δ 0.79 ppm.

2-picNa•Me₆TREN (5)
Freshly prepared 2-picNa (0.115 g, 1.0 mmol) was suspended in diethyl ether (5 mL) with stirring and Me₆TREN (0.26 mL, 1.0 mmol) was added. THF (~3 mL) was slowly added until a homogeneous solution was obtained. This solution was cooled to -30°C where a crop of red crystals (186 mg, 0.54 mmol, 54 %) was obtained.

1H NMR (400.1 MHz, C₆D₆, 300 K): δ 7.40 (1H, d, J_H-H = 5.12 Hz, H5), 6.69 (1H, dt, J_H-H = 6.18 Hz, H3), 6.37 (1H, dd, J_H-H = 8.83 Hz, H2), 5.49 (1H, dt, J_H-H = 5.83 Hz, H4), 3.28 (1H, s, H6), 2.96 (1H, s, H6), 2.05 (18H, s, CH₃), 1.84 ppm (12H, s, CH₂).

13C NMR (100.6 MHz, C₆D₆, 300 K): δ 164.8 (C1), 150.5 (C5), 131.8 (C3), 113.8 (C2), 95.5 (C4), 59.1 (C6), 57.4 (3 x CH₂), 51.6 (3 x CH₂), 45.4 ppm (CH₃).

[2-picK•PMDETA]₂ (6')
Freshly prepared 2-picK (0.131 g, 1.0 mmol) was suspended in diethyl ether (5 mL) with stirring and PMDETA (0.42 mL, 2.0 mmol) was slowly added giving a homogeneous solution. This solution was cooled to -30°C where a crop of red crystals (138 mg, 0.45 mmol based on monomeric unit, 45 %) was obtained.
1H NMR (400.1 MHz, C$_6$D$_6$, 300 K): δ 7.36 (1H, d, 3J$_{H-H} = 4.40$ Hz, H5), 6.52 (1H, dt, 3J$_{H-H} = 6.69$ Hz, H3), 6.14 (1H, dd, 3J$_{H-H} = 8.80$ Hz, H2), 5.35 (1H, dt, 6.16 Hz, H4), 3.17 (1H, s, H6), 2.88 (1H, s, H6), 2.16 (3H, s, CH$_3$), 2.13 (12H, s, 4 x CH$_3$), 2.08 ppm (8H, s, CH$_2$).

13C NMR (100.6 MHz, C$_6$D$_6$, 300 K): δ 162.7 (C1), 149.6 (C5), 132.0 (C3), 114.5 (C2), 96.0 (C4), 59.4 (C6), 57.5 (2 x CH$_2$), 55.9 (2 x CH$_2$), 45.3 (4 x CH$_3$), 41.7 ppm (1 x CH$_3$).

Acknowledgements
We are grateful to the Royal Society of Edinburgh (BP Trust Fellowship to S.D.R.), the U.K. Engineering and Physical Sciences Research Council (award no. EP/K001183/1) and the Royal Society (Wolfson research merit award to R.E.M.).
Table 5 Crystallographic data and refinement details for compounds 1-6

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4’</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{22}H_{44}LiN_{5}O</td>
<td>C_{22}H_{44}NaN_{3}</td>
<td>C_{18}H_{29}KN_{3}</td>
<td>C_{15}H_{29}LiN_{4}</td>
<td>C_{18}H_{36}NaN_{3}</td>
<td>C_{15}H_{29}KN_{4}</td>
</tr>
<tr>
<td>Mol. mass</td>
<td>401.56</td>
<td>417.61</td>
<td>317.47</td>
<td>272.36</td>
<td>345.51</td>
<td>304.52</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
<td>orthorhombic</td>
<td>orthorhombic</td>
<td>triclinic</td>
<td>monoclinic</td>
<td>triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 2_12_12_1</td>
<td>P 2_12_12_1</td>
<td>Pna2_1</td>
<td>P-1</td>
<td>P 2_1/n</td>
<td>P-1</td>
</tr>
<tr>
<td>a/Å</td>
<td>9.3900(3)</td>
<td>9.2483(7)</td>
<td>7.24604(12)</td>
<td>9.2329(16)</td>
<td>8.6737(4)</td>
<td>9.1770(6)</td>
</tr>
<tr>
<td>b/Å</td>
<td>14.7150(4)</td>
<td>15.1708(12)</td>
<td>12.9546(2)</td>
<td>13.071(3)</td>
<td>15.2476(10)</td>
<td>10.2187(8)</td>
</tr>
<tr>
<td>c/Å</td>
<td>18.0296(4)</td>
<td>18.4204(15)</td>
<td>17.9978(3)</td>
<td>14.754(2)</td>
<td>16.1518(12)</td>
<td>10.7465(7)</td>
</tr>
<tr>
<td>α/°</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>105.504(16)</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>91.111(13)</td>
<td>93.219(5)</td>
</tr>
<tr>
<td>γ/°</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>96.930(17)</td>
<td>90</td>
</tr>
<tr>
<td>V/Å³</td>
<td>2491.22(12)</td>
<td>2584.5(4)</td>
<td>1689.44(4)</td>
<td>1700.7(5)</td>
<td>2132.8(2)</td>
<td>918.15(11)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>λ/Å</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
<td>1.54180</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Measured reflections</td>
<td>27324</td>
<td>8480</td>
<td>21032</td>
<td>10190</td>
<td>9420</td>
<td>6705</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>5856</td>
<td>4942</td>
<td>4133</td>
<td>6270</td>
<td>4098</td>
<td>3719</td>
</tr>
<tr>
<td>R_int</td>
<td>0.0409</td>
<td>0.0247</td>
<td>0.0324</td>
<td>0.0488</td>
<td>0.0369</td>
<td>0.0231</td>
</tr>
<tr>
<td>Observed rflns [I > 2σ(I)]</td>
<td>4706</td>
<td>3176</td>
<td>3774</td>
<td>3423</td>
<td>2328</td>
<td>3059</td>
</tr>
<tr>
<td></td>
<td>1.073</td>
<td>1.026</td>
<td>1.044</td>
<td>1.028</td>
<td>1.010</td>
<td>1.058</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>GooF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R) [on (F), obs reflns only]</td>
<td>0.0588</td>
<td>0.0890</td>
<td>0.0316</td>
<td>0.0823</td>
<td>0.0615</td>
<td>0.0426</td>
</tr>
<tr>
<td>(\omega R) [on (F^2), all data]</td>
<td>0.1458</td>
<td>0.2798</td>
<td>0.0679</td>
<td>0.2749</td>
<td>0.1577</td>
<td>0.1001</td>
</tr>
<tr>
<td>Largest diff. peak/hole e/Å³</td>
<td>0.305/-0.224</td>
<td>0.697/-0.357</td>
<td>0.182/-0.183</td>
<td>0.400/-0.218</td>
<td>0.271/-0.180</td>
<td>0.376/-0.221</td>
</tr>
</tbody>
</table>
References

A series of alkali metal 2- and 4-picolyl (methylpyridyl) complexes have been prepared and their metal-anion bonding probed in the solid state and solution.