Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Dalton Transactions

Dalton Transactions

RSCPublishing

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

New triethoxysilylated 10-vertex closo-decaborate clusters. Synthesis and controlled immobilization into mesoporous silica.

Fatima Abi-Ghaida,^{*a,b,c*} Zahra Laila,^{*b,c*} Ghassan Ibrahim,^{*b,c*} Daoud Naoufal*^{*b,c*} and Ahmad Mehdi*^{*a*}

Novel silvlated hydroborate clusters comprising the closo-decaborate cage were prepared and characterized by ¹H, ¹³C, ¹¹B, ²⁹Si NMR and mass spectroscopy ESI. The synthesis of such silvlated clusters was achieved by using reactive derivatives of $[B_{10}H_{10}]^{2-}$, $[1-B_{10}H_9N_2]^-$ and $[2-B_{10}H_9CO]^-$. These silvlated decaborate clusters constitute a new class of precursors that can be covalently anchored onto various silica supports without any prior surface modification. As a proof of concept, the synthesized precursors were successfully anchored on mesoporous silica, SBA-15 type, in different percentages where the mesoporous material retained its structure. All materials modified with closo-decaborate were characterized by ¹¹B and ²⁹Si solid state NMR, XRD, TEM and Nitrogen sorption.

Introduction

The chemistry of the closo-decaborate anion has been well developed^{1,2} owing to its atypical oxidative, hydrolytic and thermal properties.³ These properties are governed by the 3-dimensional aromaticity and electron deficient nature which renders the exo-B-H systems susceptible to nucleophilic, electrophilic and radical substitution.⁴ Nowadays, literature concerning these clusters focused on the decaborate reactivity, particularly on the activation of the B-H bond, apical and equatorial positions. The high stability and low toxicity of the closo-decaborate anion and its derivatives render these clusters to be excellent candidates for Boron Neutron Capture Therapy (BNCT),^{5,6} among several other applications such as extraction,⁷ catalysis,⁸ material science⁹ and nuclear wastes treatment.¹⁰

Interest in closo-decahydrodecaborate anion $[B_{10}H_{10}]^{2}$ -(Scheme 1) has been slowly receding in comparison to its higher polyhedral borate sister $[B_{12}H_{12}]^{2}$, mainly due to the higher cost. Nevertheless, a number of exo-polyhedral substitution reactions of the $[B_{10}H_{10}]^{2}$ - anion have been recently investigated.3 For example, monoanions such as $[1-B_{10}H_9NH(C_6H_5)_2]^-$, $[1-B_{10}H_9N(C_6H_5CH_2)(C_6H_5)_2]^-$ and $[1-B_{10}H_9P(OH)(C_6H_5)_2]^-$ were prepared from the diazonium derivative of $[B_{10}H_{10}]^{2-}$ and used for the extraction of radioactive Cs⁺ cations.7,^{11,12}

In addition, hetero-disubstituted derivatives of the closodecaborate anion such as 1-(4-pentyloxypyridinyl)-10-(4pentyl-1-thiacyclohexyl)-closo-decaborane were prepared as structural elements for quadrupolar liquid crystals following a sequential introduction of the oxonium fragments at the apical positions of the closo-decaborate cluster.¹¹ Here again the diazonium derivative $[1-B_{10}H_9N_2]^-$ was used as the reactive intermediate in the synthesis.

Scheme 1. schematic representation of the anion $[B_{10}H_{10}]^{2-1}$

Furthermore, oxonium derivatives of $[B_{10}H_{10}]^{2-}$, which constitute a useful intermediate for the preparation of novel derivatives, were synthesized by the reaction of the closo-decaborate anion with cyclic ethers in the presence of CF₃COOH, dry hydrogen halides or Lewis acids as initiators.^{12,13}

Silicon-openborane clusters such as 6,9-(CH₃SiCH=CH)₂-B₁₀H₁₂ and (CH₃)₃Si(CH₂)₃-B₁₀H₁₃ were reported for the open cage decaborane $B_{10}H_{14}$.^{14,15} The 6,9-derivative was prepared by reacting $B_{10}H_{14}$ with trimethylsilylacetylene through an iridium [Cp*IrCl₂]₂ catalyzed hydroboration. The monosilylated derivative (CH₃)₃Si(CH₂)₃-B₁₀H₁₃ was prepared by the reaction of $B_{10}H_{14}$ with allyltrimethylsilane catalyzed by Cp₂Ti(CO)₂. However, alkoxy silylated closo-decaborate clusters ((RO₃)₃Si-linker-B₁₀H₉), comprising the closodecaborate cage [$B_{10}H_{10}$]²⁻, were never reported and are unprecedented. The difficulties and challenges which were faced during the synthesis of such clusters are outweighed by the important potential applications.

For instance, the covalent anchoring of such deca-borate bearing silica precursors on silica matrices holds interest in the production of boron-silica based matrices (silica, glass, silicon substrate, silica nanoparticles...) ever since the latter has gained notice in the field of medicine as drug carriers and probes.¹⁶ Theoretically, the notion of incorporating the $[B_{10}H_{10}]^2$ cluster into a biologically compatible luminescent silica-based drug carrier can facilitate the imaging process of tumours and their treatment by BNCT.¹⁷ Since its appearance, BNCT has been plagued with the lack of suitable drug carriers. The success rate of this phenomenon depends on the preferential accumulation of the Boron enriched source in tumour cells. Hence, such silylated boron clusters provide a novel method for the production of boron enriched silica matrices for biological application.

In order to achieve such silvlated clusters, one needs to explore the wide variety of reactions which $[B_{10}H_{10}]^{2-}$ undergo to produce substituted derivatives. Recent studies¹⁸ have focused on the reaction of $(NH_4)_2B_{10}H_{10}$ with solvents containing nucleophilic functional groups such as nitriles, alcohols, thiols and amines. These solvents can play the role of a ligand thereby producing polysubstituted derivatives in the form of $[B_{10}H_9L]^{n-}$, $[B_{10}H_8L_2]^{n-}$, $[B_{10}H_7L_3]^{n-}$, etc... (L is a solvent molecule). The mechanism suggested for the synthesis of such derivatives is an electrophile-induced nucleophilic substitution, where the electrophile acts as an initiator.³ Unfortunately, these reactions are often accompanied with the production of isomers. To avoid such occurrences, other routes were investigated.

Considered to be the most useful among all substituents to give monosubstituted decaborates is the diazonium derivative $(CH_3)_4N[1-B_{10}H_9N_2]$ which can be obtained through the diazotation of $K_2B_{10}H_{10}$.^{19,20,21} Another important precursor for substituted derivatives of $[B_{10}H_{10}]^{2-}$ is the carbonyl derivative PPh₄[2-B₁₀H₉CO] reported by Hawthorne et al.,²² facilitating the production of new derivatives through the reaction of the carbonyl group with diverse nucleophiles.

The importance of organic-inorganic materials has escalated after the development of the sol-gel process in 1930, in particular, silica-organic based composites.²³ So far these composites have been extensively studied. Indeed, silica based hybrid materials obtained through the sol-gel process²⁴ "chimie douce" constitute an interesting class of materials which combine the properties of organic moieties and inorganic

matrices.^{25,26,27} Hybrid organosilsesquioxanes materials (R-SiO_{1.5}) and bridged polysilsesquioxanes ($_{1.5}$ OSi-R-SiO_{1.5}) with a large variety of spacers *R* comprising functional organic units can be obtained starting respectively from mono^{28,29} or bis-silylated^{30,31} precursors. One of the classes of silica based hybrid materials are the ordered mesoporous silica.

Since their discovery, ordered mesoporous silica^{32,33} has fascinated and continues to attract a number of research groups due to their large surface areas, as well as controllable pore sizes and arrangements.²⁷ The modification of such materials, which holds significant importance in the field of biomedical science, can be achieved through covalently grafting of organic moieties³⁴ or by direct copolymerization of the silica precursor (TEOS) with an organotrialkoxysilane RSi(OR')₃ bearing the desired functionality.³⁵

In this study, we report the preparation of the first triethoxysilylated closo-decaborate clusters and their immobilization into the pores of mesoporous silica by grafting or by direct synthesis.

Experimental procedure

Chemicals and Characterization

All synthetic reactions were performed under Argon atmosphere using vacuum line and Schlenk-techniques. All solvents were dried and distilled unless stated otherwise. $(NH_4)_2[B_{10}H_{10}]$ was purchased from Katchem Ltd., Prague; it was dried under vacuum for 24 hours at 80 °C prior to use. 3-Aminopropyltriethoxysilane, 3isocyanopropyltriethoxysilane, 3cyanopropyltriethoxysilane and tetraethylorthosilicate Si(OEt)₄ were purchased from Sigma-Aldrich and used as received. Oxalyl chloride was obtained as 2.0 M solution in CH_2Cl_2 from Aldrich. The salt $(PPh_4)_2B_{10}H_{10}$ was precipitated from an aqueous $(NH_4)_2B_{10}H_{10}$ and recrystallized from Acetonitrile/Et₂O mixture.

The nitrogen adsorption isotherms were measured at N₂ liquid temperature (77 K) using a Micromeritics Tristar 3000 analyzer. The samples were degassed under vacuum for 12 h at 80 °C prior to analysis. The specific surface areas were calculated by the Brunauer-Emmett-Teller (BET) method using 74 points and starting from 0.01 as the value of the relative pressure and the pore size distributions were determined by the BJH method applied to the adsorption branch. Elemental analyses of C, H and N were performed on a FLASH EA 1112 CHNS analyzer. Solution ¹H-NMR, ¹³C-NMR, ¹¹B-NMR, ³¹P-NMR and ²⁹Si-NMR spectra were recorded using an AMX 400 Bruker spectrometer operating respectively at 400 MHz, 100 MHz, 128 MHz, 162 MHz and 80 MHz. Chemical shifts were externally calibrated to TMS for ¹H, ¹³C, and ²⁹Si nucleus, H_3PO_4 (85%) for ³¹P nuclei and EtO₂.BF₃ for ¹¹B nuclei. Deuterated chloroform and acetonitrile were used as solvents. Powder X-ray diffraction patterns were measured on a Bruker D5000 diffractometer equipped with a rotating anode. The wavelength used was 1.542 Å (Cu Ka radiation). Mass Spectrometry measurements were performed by negative

Electrospray Ionization method (ESI). Transmission Electron Microscopy (TEM) observations were carried out at 100 kV on a JEOL 1200 EXII microscope. Si and B content were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) following this procedure: 5 mg of material, 1,5 g of NaOH pellet and 1,5 g of KNO3 were mixed in Nickel crucible. After thermal treatment at 650°C for 10 hours, the crucible was cooled at room temperature and the obtained pearl was dissolved in 10 mL of distilled water. After filtration, the solution was recovered in Teflon flask and analyzed by ICP-AES on Perkin Elmer Optima 2100 DV spectrometer. Scanning Electron Microscopy (SEM) images were obtained with FEI Quanta 200 FEG microscope. EDX analyses were measured on X-Max^N silicon drift detector. Solid state NMR spectra for ²⁹Si, ¹¹B, ³¹P and ¹³C were recorded on a Varian VNMRS 300 solid spectrometer with a magnetic field strength of 7.05 T equipped with 7.5 mm MAS probe at 5 kHz as a spinning rate.

Synthesis of silylated boron clusters

$[Me_4N][1-B_{10}H_9N_2]$ (1)

Compound **1** was prepared as described in the literature.²⁰ ¹¹B (¹H) NMR (δ ppm, 128 MHz, CD₃CN): 21.50 (d, 1 B, *J*_{B-H} = 151 Hz), -13.5 (s, 1 B), -17.4 (d, 4 B, *J*_{B-H} = 138 Hz) and - 25.1 (d, 4 B, *J*_{B-H} = 137 Hz).

$[PPh_4][1-B_{10}H_9NH_2CH_2CH_2NH_2]$ (2)

2.00 g (9.13 mmol) of 1 were mixed with 30 mL of ethylenediamine under argon and heated at 120 °C for 24 hrs. After cooling to ambient temperature the mixture was filtered and passed through a silica gel column 2.5 x 30 cm, eluted with CH₂Cl₂:CH₃CN gradient mixture as described in literature.³⁶ The dark red solid was precipitated as the tetraphenylphosphonium salt and recrystallized from CH₃CN:CH₂Cl₂ to give compound **2** as dark red solid with 71% vield.

¹¹B (¹H) NMR (δ ppm, 128 MHz, CD₃CN): 10.3 (s, 1 B), -2.4 (d, 1 B, $J_{B-H} = 138$ Hz), -28.4 (d, 4 B, $J_{B-H} = 119$ Hz) and -30.1 (d, 4 B, $J_{B-H} = 127$ Hz).

[PPh₄][2-B₁₀H₉CO] (3)

 $[PPh_4][2-B_{10}H_9CO]$ was prepared according to literature²² with 74% yield after crystallization from CH_2Cl_2 :Et₂O.

¹¹B (¹H) NMR (δ ppm, 128 MHz, CDCl₃): 5.3 (d, 2 B, $J_{B-H} =$ 141 Hz), -18.7 (d, 1 B, $J_{B-H} =$ 128 Hz), -26.8 (d, 2 B, $J_{B-H} =$ 145 Hz), -28.1 (d, 2 B, $J_{B-H} =$ 110 Hz), -29.8 (d, 2 B, $J_{B-H} =$ 120 Hz), -44.7 (s, 1 B).

[PPh₄][1-B₁₀H₉NH₂CH₂CH₂NHCONH(CH₂)₃Si(OC₂H₅)₃] (4)

1.00 g (4.32 mmol) of 3-Isocyanatopropyltriethoxysilane was slowly added to a mixture of 2 (1.00 g, 1.93 mmol) in 20 mL of dry acetonitrile under argon. After stirring under reflux for 24 hours, the mixture was cooled to room temperature and the solvent was reduced to 5 ml under vacuum. Excess of 3-isocyanatopropyltriethoxysilane were eliminated by washing

with pentane followed by drying at 80 °C to yield 1.20 g of compound 4 (81%).

¹H NMR (δ ppm, 400 MHz, CD₃CN): 0.60 (2 H, t, CH₂), 1.12 (9 H, t, CH₃), 1.65 (2 H, quin, CH₂), 2.11 (2 H, s, NH₂), 2.21 (3 H, m, BH), 2.35 (2 H, m, CH₂), 3.07 (6 H, m, BH), 3.13 (2 H, m, CH₂), 3.57 (2 H, q, CH₂), 3.76 (6 H, q, CH₂), 5.72 (1 H, s, NH), 5.76 (1 H, s, NH), 7.68-7.97 (22 H, m, Ph). ¹¹B (¹H) NMR (δ ppm, 128 MHz, CD₃CN): 7.5 (s, 1 B), -1.2 (d, 1 B, J_{B-H} = 140 Hz), -27.6 (d, 4 B, J_{B-H} = 129 Hz), -29.4 (d, 4 B, J_{B-H} = 132 Hz). ²⁹Si NMR (δ ppm, 80 MHz, CD₃CN): -45.16 (s). ¹³C NMR (δ ppm, 100 MHz, CH₃CN): 160.00, 135.45, 134.74, 130.41, 118.72, 117.34, 58.09, 52.54, 42.71, 39.28, 23.52, 17.78, 7.26. ³¹P NMR (δ ppm, 162 MHz, CH₃CN): 22.88 (s). IR (ATR, ν, cm⁻¹): 2560 (B-H ap.), 2462 (B-H eq.), 1101 (B-H deformed), 878 (B-B), 1549-1660 (NH-CO-NH), 2926-2981 (CH₃), 1210-840-723 (OSiC). MS/ESI = 423.74 (m/z theoretical = 423.36). Anal. Calc. for C₃₆H₅₈B₁₀O₄N₃PSi: C, 56.61, H, 7.60, B, 14.15, N, 5.50, Si, 3.66. Found: C, 56.90, H, 7.94, B, 14.23, N, 5.44, Si, 3.65.

$[PPh_4][(^{i}pr)_2(Et)NH][2-B_{10}H_9CONH(CH_2)_3Si(OC_2H_5)_3]$ (5)

450 mg (2.06 mmol) of 3-Aminopropyltriethoxysilane were added to a mixture of 3 (1.00 g, 2.06 mmol) in 20 mL of dry CH_2Cl_2 under argon and refluxed for 4 hours in the presence of excess di-isopropylethylamine (1.00 mL). The solvent was reduced to 5 mL and excess of 3-aminopropyltriethoxysilane was removed by washing with pentane. The viscous light yellow solid obtained was further washed by diethyl ether. After drying under vacuum at 80 °C for 6 hours; 1.57 g (1.88 mmol, 92%) of 5 were obtained as pale yellow solid.

¹H NMR (δ ppm, 400 MHz, CDCl₃): -0.50-1.5 (5 H, broad, m, BH), 0.50 (2 H, t, CH₂), 1.18 (9 H, t, CH₃), 1.37 (15 H, m, CH₃), 2.95 (2 H, quin, CH₂), 3.12 (2 H, q, CH₂), 3.55 (2 H, q, CH₂), 3.42-4.73 (4H, broad, m, BH), 3.68 (2 H, s, CH₂), 3.79 (6 H, q, CH₂), 6.04 (1 H, s, NH), 7.69-7.98 (20 H, m, Ph). ¹¹B (¹H) NMR (δ , ppm, 128 MHz, CDCl₃): 0.4 (d, 1 B, $J_{B-H} = 110$ Hz), -1.7 (d, 1 B, J_{B-H} = 130 Hz), -24.8 (s, 1 B), -27.6 to -29.7 (m, broad, 7 B). ²⁹Si NMR (δ ppm, 80 MHz, CDCl₃): -45.06 (s). ¹³C NMR (δ ppm, 100 MHz, CDCl₃): 161.20, 135.82, 134.33, 130.92, 117.77, 116.81, 58.45, 42.97, 22.88, 18.36, 7.52, ³¹P NMR (δ ppm, 162 MHz, CDCl₃): 22.85 (s). IR (ATR, v, cm⁻¹): 2540 (B-H ap.), 2462 (B-H eq.), 1100 (B-H deformed), 890 (B-B), 1550 (CON), 1190-860-717 (OSiC).MS/ESI = 365.45 (m/z theoretical = 365.50). Anal. Calc. for $C_{42}H_{71}B_{10}O_4N_2PSi$: C, 60.43, H, 8.51, B, 12.94, N, 3.35, Si, 3.35. Found: C, 60.21, H, 8.49, B, 12.80, N, 3.34, Si, 3.30.

$[NH_4][2-B_{10}H_9NC(CH_2)_3Si(OC_2H_5)_3]$ (6)

In a Schlenk tube, 5 mL of 3-cyanopropyltriethoxysilane were mixed with $(NH_4)_2B_{10}H_{10}$ (0.50 g, 3.2 mmol) and heated at 140 °C under argon for 48 hours. Excess of 3-cyanopropyltriethoxysilane was eliminated by washing with pentane to yield a viscous yellow solid, which was further copiously washed with diethyl ether and dried at 80 °C for 24 hours to yield a light yellow viscous solid.

¹¹B (¹H) NMR (δ ppm, CD₃CN): -1.2 (d, 2 B), -30.1 (d, 8 B) corresponding to the initial reactant (NH₄)₂B₁₀H₁₀ 1.0 (d, 1B), -4.5 (d, 1B), -14.4 (s, 1B), -25.5 (d, 4B), -29.0 (d, 3B) corresponding to compound **6** and another product believed to be the di-silylated cluster 2,6-*B*₁₀*H*₈[*N*C(*C*H₂)₃Si(*O*C₂H₅)₃]₂. Attempts to separate these 3 derivatives were unsuccessful.

Grafting of silvlated closo-decaborate clusters on SBA-15 SBA-15 was prepared through the traditional sol-gel process according to literature.³⁷ 4.00 g (0.067 mmol) of the triblock polymer HO(CH₂CH₂O)₂₀(CH₂CH(CH₃)O)₇₀(CH₂CH₂O)₂₀H (P123) were dissolved in 160 mL of an acidic aqueous solution of pH~1.5. To the obtained clear solution, 9.30 g (44.8 mmol) of TEOS were added and the resulting mixture was vigorously stirred at room temperature until a homogenous solution is evident, then 76 mg of NaF were added to the mixture to initiate polymerization and the setup was immediately placed in an oil bath at 60 °C for 3 days. Afterwards, the resulting material was filtered and the surfactant was selectively removed with Soxhlet extraction over ethanol. The mesoporous silica SBA-15 was obtained quantitatively as white powder after drying under vacuum at 120 °C for 24 hours.

Grafting of 4 on mesoporous silica SBA-15 (SBA@4)

1.0 g (16.6 mmol) of SBA-15 was dispersed in 20 mL of acetonitrile, a solution 10 % by mole of 4 (1.30 g, 1.7 mmol) in 5 mL of acetonitrile was added. The resulting mixture was refluxed overnight. After cooling to room temperature and filtration, the solid was copiously washed with acetonitrile to remove any adsorbed compounds and dried for 4 hours at 80 °C to obtain the material **SBA@4** as pale orange powder.

¹¹B CP-MAS NMR: 5 (B₁), -1 (B₁₀), -10 to -25 ppm (B₂₋₉). ²⁹Si CP-MAS NMR: -57 (T²), -67 (T³), -92 (Q²), -105 (Q³) and -112 ppm (Q⁴). ³¹P CP-MAS NMR: 24 ppm. ¹³C CP-MAS NMR: 159 (C=O), 100-140 (Pph₄), 72, 61, 45, 24, 13 ppm (ammonium salt and propyl spacer).

Nitrogen sorption (adsorption branch): S_{BET} (m²/g): 358; Vp (cm³/g): 0.71 and Dp: 75 Å

Atomic ratio Si/N: 13.6.

Anal. Calc.: Si, 37.53, B, 3.57. Found: Si, 38.01, B, 3.49.

Grafting of 5 on SBA-15 (SBA@5)

1.00 g of SBA-15 was dispersed in 20 mL of DMF, a solution of 10 % by mole of **5** (1.40 g, 1.7 mmol) dissolved in 5 mL DMF was added to the resulting mixture and heated at 90 °C over night. After cooling, filtration, and washing extensively with DMF and acetonitrile, the resulting pale yellow powder **SBA@5** was dried at 80°C for 4 hours.

¹¹B CP-MAS NMR: -0.5 (B_{1,10}), -10 to -25 ppm (B₂₋₉).

²⁹Si CP-MAS NMR: -57 (T²), -68 (T³), -92 (Q²), -102 (Q³) and -110 ppm (Q⁴).

Nitrogen sorption (adsorption branch): S_{BET} (m²/g): 446; Vp (cm³/g): 0.76 and Dp: 72 Å.

Atomic ratio Si/N: 10.5.

Anal. Calc.: Si, 30.07, B, 5.80. Found: Si, 30.45, B, 5.50.

Anchoring of **3** on **SBA-NH**₂

Direct synthesis of SBA-15 functionalized with 10% NH_2 was prepared according to published literature.³⁸

Nitrogen sorption (adsorption branch): S_{BET} (m²/g): 600; Vp (cm³/g): 0.98 and Dp: 62 Å.

Atomic ratio Si/N: 15.6.

0.50 g (0.769 mmol) of **SBA-NH**₂ was dispersed in 20 ml of dichloromethane where a solution of cluster **3** (0.25 g, 0.516 mmol in 5 mL of dichloromethane) was added with 1.00 mL of diisopropylethylamine. The resulting mixture was refluxed overnight where 0.64 g of a pale yellow powder **SBA-NH**₂@3 was isolated after filtration and drying.

¹¹B CP-MAS NMR: -0.7 (B_{1,10}), -10 to -28 ppm (B₂₋₉).

²⁹Si CP-MAS NMR: -56 (T²), -68 (T³), -92 (Q²), -101 (Q³) and -110 ppm (Q⁴).

Nitrogen sorption (adsorption branch): S_{BET} (m²/g): 360; Vp (cm³/g): 0.65 and Dp: 59 Å.

Atomic ratio Si/N: 13.7.

Results and Discussion

Silylated closo-decaborate clusters

The anchoring approach of the triethoxysilyl group on $(NH_4)_2B_{10}H_{10}$ was investigated and several silylated clusters were prepared following scheme 2 where only the quantitative products are attributed.

Before approaching the silylated closo-decaborate clusters, it is worth mentioning that the attempt to directly synthesize silylated clusters starting from $(NH_4)_2B_{10}H_{10}$ were unsuccessful

Scheme 2. General pathway for the preparation of quantitative silylated decaborate clusters 4 and 5.

Journal Name

due to the lack of a suitable electrophile to initiate the reaction. Also, some successful reactions were plagued with either isomerisation or very low yields or both. For example, the reaction involving $(NH_4)_2B_{10}H_{10}$ with 3cyanopropyltriethoxysilane was not efficient because attempts the to separate two obtained products NH₄[2- $B_{10}H_9NC(CH_2)_3Si(OC_2H_5)_3], 2,6-B_{10}H_8[NC(CH_2)_3Si(OC_2H_5)_3]_2$ and the initial reactant (NH₄)₂B₁₀H₁₀ were unsuccessful (see experimental part, cluster 6).

Dalton Transactions

In general, the synthesis of closo-decaborate derivatives involves the abstraction of an exo-polyhedral hydride ion (eq. 1) through electrophile-induced nucleophilic substitution (EINS). EINS reactions require the presence of an electrophile such as Bronsted acids, Lewis acids, carbocations, organometallic catalysts, or gaseous hydrogen halide. The context of the current work was limited by this criterion since the ethoxy groups in the silica precursors are highly sensitive to acids, bases, and humidity.

Moreover, recent unpublished results¹⁸ have revealed (NH₄)₂B₁₀H₁₀ predisposition to react solely with polar protic/aprotic solvents to yield mono, di, and polysubstituted derivatives (isomerisation). This predisposition was later determined to be a result of the NH₄⁺ counter cation of the cluster $[B_{10}H_{10}]^2$ already present in the medium.¹⁸ Hence, any direct synthesis starting from $[B_{10}H_{10}]^2$ leads to mono and polysubstituted isomers where the separation attempts while trying to conserve the ethoxy chemical group were unsuccessful. Subsequently, the silvlation often resulted in two mono-substituted major products, [B₁₀H₉L]ⁿ⁻ and to several poly-substituted products where L is either the silicon precursor or a solvent molecule. Consequently, silica precursors were anchored on reactive derivatives of the closo-decaborate cage which are: the diazo-derivative¹⁹ $[1-B_{10}H_9N_2]^-$ and the carbonyl derivative [2-B₁₀H₉CO]^{-.22}

50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 f1(ppm)

Figure 1. ¹¹B (¹H) NMR spectra of clusters **1**(top), **2** (middle) and **4** (bottom); the arrows indicate the peaks of the corresponding substituted boron atom (apical position).

Compounds 1^{19} , 2^{36} and 3^{22} were prepared following described methods. The reaction between silane precursors and the highly reactive diazonium derivative $[1-B_{10}H_9N\equiv N]^-$ was accompanied with the production of multiple isomers in the form of $[1-B_{10}H_9L]^{n^-}$ where L is either a solvent molecule or the silane precursor, since $[1-B_{10}H_9N\equiv N]^-$ is highly reactive towards certain solvents at higher temperature. Under rigorous conditions, the reaction proceeds with an insignificant yield where a considerable percentage of $[1-B_{10}H_9N\equiv N]^-$ reverted to the unmodified cluster $[B_{10}H_{10}]^{2^-}$. Therefore, the diazonium derivative was further functionalized with ethylenediamine to give $[1-B_{10}H_9NH_2CH_2CH_2NH_2]^-(2)$.

The synthesis of **4** involved the reaction of the peripheral amine on the cluster with -N=C=O group present in 3-isocyanatopropyltriethoxysilane. The ¹¹B NMR of cluster **4** (Figure 1) is virtually the same as that of compound **2** since the reaction occurred at a distance from the substitution site (apical position) of $[1-B_{10}H_9NH_2CH_2CH_2NH_2]^-$, an insignificant shift in the chemical shift (ppm) from **2** was observed. However evidence of the reaction was observed in ¹H NMR, ²⁹Si NMR and IR (ATR) where two unique absorption at 1540 and 1650 cm⁻¹ relevant to the urea group were now evident.

The ¹H NMR spectrum contains a triplet at 1.12 ppm and a quadruplet at 3.76 ppm corresponding to the ethoxy groups (CH₃CH₂O-) attached to the silicon atom, a triplet at 0.60 ppm corresponding to the -CH₂ adjacent to the silicon atom and 2 singlets at 5.72 and 5.76 ppm relevant to the hydrogen's of urea units (-NH-CO-NH-) can also be seen. ²⁹Si NMR spectrum revealed a peak at -45.16 ppm characteristic for -Si(OEt)₃ group. ¹³C NMR clearly exhibited a signal at 160.00 ppm corresponding to the carbonyl group and an additional one at 7.26 ppm corresponding to the -CH₂ adjacent to the silicon atom. In addition, compound **4** was verified by mass spectroscopy ESI to be 423.74 (m/z theoretical = 423.36).

Figure 2. ¹¹B (¹H) NMR spectra of clusters **3** (top) and **5** (bottom); the arrows indicate the peaks of the corresponding substituted boron atom (equatorial position).

The synthesis of 5 involved the reaction of $-C\equiv O$ with 3-aminopropyltriethoxysilane in the presence of a base; the

product analyzed caused a shift of the singlet in ¹¹B NMR characteristic of $-B-C\equiv O^+$ from -44.76 ppm to -24.89 ppm at the equatorial position (Figure 2). The two apical boron atoms B₁ and B₁₀ appear as a triplet (two overlapping doublets) at 0.41 and -1.74 ppm, and the 7 remaining equatorial Boron atoms B₃ to B_7 appear as a broad peak between -27.0 and -33.0 ppm, this is in agreement with published literature²² which state that the remaining equatorial peaks are indiscernible in the spectrum. ²⁹Si NMR also exhibited a signal at -45.06 ppm relevant to $Si(OEt)_3$ and the MS/ESI = 365.4 (m/z theoretical = 365.5). Initially, the preceding reaction was performed in the absence of a base and an excess of 3-aminopropyltriethoxysilane, the amine group NH₂ present in the silane precursor played the role of a base and abstracted a H-atom to produce (EtO)₃Si(CH₂)₃NH₃⁺ which was evident in ¹H and ²⁹Si NMR. ²⁹Si NMR revealed the presence of two silicon types, the desired product 5 and the protonated derivative seen as two signals at -45.04 and -46.10 ppm while the product retained a viscous nature. When triethylamine was used as the base, two major products were observed, the silvlated cluster $[(EtO)_{3}Si(CH_{2})_{3}NHCO-B_{10}H_{9}]^{2}$ and the triethylamine derivative [(Et₃)NCO-B₁₀H₉]. As a consequence, it is best to use a more basic less nucleophilic base. Indeed, di-isopropyl ethylamine proved to be successful when utilized in excess, and the reaction yielded a quantitative product when the two reactants were used in equivalent ratios. Note that attempts to crystallize these two clusters (4 and 5) were unsuccessful.

Grafting of 4 and 5 on SBA-15

The triethoxysilylated borate clusters **4** and **5** were grafted directly onto the pore surfaces of SBA-15 (Scheme 3). This covalent linking was realized by the treatment of the silica (1 eq.) with a solution of **4** (0.1 eq) in acetonitrile or **5** (0.1 eq) in DMF. Acids were not utilized in this process since acid presence might induce the production of $[B_{10}H_9L]^{n-}$ where L is a solvent molecule. It is noteworthy to mention that closodecaborate functionalized SBA material was not achieved directly through sol-gel process due to the hydrophobicity of the silylated clusters (insolubility in acidic water).

The functionalized hybrid materials were characterized by elemental analyses, N₂ adsorption/desorption, solid state NMR, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

Nitrogen sorption isotherms at 77 k (Figure 3) of SBA-15, SBA@4 and SBA@5 show type IV isotherms with a clear H1type hysteresis loop at high pressure, characteristic of mesoporous material. The isotherms exhibit a sharp inflection in the P/P₀ region at ~0.63 characteristic of capillary condensation and uniform pore size distribution. All isotherms are quite similar in the overall trend; however they differ in a notable shift of the hysteresis position towards lower P/P₀ for SBA@4 and SBA@5 plus a significant decrease in overall nitrogen adsorption. An evident decrease in surface area can be noticed from 520 m²/g relevant to SBA-15 to 358 m²/g and 446 m²/g for SBA@4 and SBA@5 respectively. Another decrease can also be observed for pore volume (1.00 cm³/g for SBA-15, to 0.71 cm³/g for SBA@4 and 0.76 cm³/g for SBA@5) which

Journal Name

indicates that the grafted precursors are located inside the mesoporous pores, hence reducing the pore dimension in comparison with the unmodified SBA-15. Based on nitrogen, boron and silicon % determined from elemental analyses and EDS, the estimated molar percentage of grafted precursors are 2.6 % for SBA@4 and 5.2 % for SBA@5.

Figure 3. Nitrogen adsorption/desorption isotherms of SBA-15, SBA@4 and SBA@5. The inset represents BJH pore-size distributions calculated from adsorption branch for SBA-15, SBA@4 and SBA@5.

Figure 4 depicts XRD patterns obtained for unmodified SBA-15 and the decaborate functionalized SBA materials. X-ray of the hybrid materials exhibited three low-angle reflections characteristic of a hexagonal symmetry of space group p6m with an intense diffraction peak corresponding to d_{100} spacing (10.47 nm) as well as weak and broad peaks at d_{110} and d_{200} reflection. The similarity of the XRD patterns of **SBA@4** and **SBA@5** to the unmodified SBA-15 clearly indicates the preservation of the hexagonal symmetry and structure. Further evidence of the hexagonal structure was provided by TEM images (Figure 5).

Figure 4. Powder X-ray diffraction patterns of SBA-15, SBA@4, and SBA@5.

The ¹¹B CP/MAS NMR of **SBA@4** and **SBA@5** and ²⁹Si CP/MAS NMR spectra of the **SBA@4** and **SBA-15** materials are shown in figures 6 and 7 respectively. ¹¹B NMR of 4 and 5 (Figure 6) is in general consistent with that of liquid NMR but with a varying fluctuation in chemical shifts. The ¹¹B NMR of

Figure 5. TEM images of SBA@4 (A), SBA@5 (B) and SEM images of SBA@4 (D), SBA@5 (C).

SBA@4 reveals a peak at ~5 ppm (7.5 ppm in liquid NMR) corresponding to the substituted B_1 atom position, another peak at ~ -1 ppm (-1.2 ppm) for B_{10} atom position and a broad peak between -10 to -25 ppm for the remaining 8 equatorial B atoms (-27 to -32 ppm). The ¹¹B NMR of **SBA@5** reveals a peak at ~ -0.5 ppm for $B_{1,10}$ (seen as 2 adjacent peaks in liquid NMR at 0.4 and -1.7 ppm) and a broad peak between -10 and -25 ppm

Figure 6. Solid state ¹¹B CP/MAS NMR spectra of SBA@5 (top) and SBA@4 (bottom); arrows are to indicate the peaks corresponding to the substituted boron atom for SBA@5 (equatorial position) and SBA@4 (apical position.)

where the substituted boron peak at position 2 is overlapped with the remaining B_{3-8} peaks.

The ²⁹Si shows resonance peaks at -92, -105 and -112 ppm originating from the structural units of SBA-15 corresponding respectively to Q^2 , Q^3 and Q^4 substructures. After the modification of SBA-15 material with silylated clusters, the

intensities of Q^2 and Q^3 peaks are reduced with respect to that of SBA-15 while the intensity for the Q^4 increases and two new peaks appear at -57 and -67 ppm corresponding respectively to T^2 and T^3 substructures characteristic for anchored silylated decaborate clusters.

Figure 7. ²⁹Si CP/MAS NMR spectra of SBA-15 (top) and SBA@4 (bottom).

In order to verify the integrity of grafted precursors, ${}^{31}P$ and ${}^{13}C$ NMR were realised for SBA@4 material. 31P spectrum shows a board signal at 24 ppm which characterizes the phosphonium ion. ${}^{13}C$ spectrum revealed a peak at 159 corresponding to C=O group, several peaks between 100 and 140 for the phosphonium cation (PPh₄) and at 72, 61, 45, 24, 13 ppm attributed to ammonium salt and propyl spacer. These chemical shifts being similar to those observed in solution for **4** and confirm that the organic moieties are intact within the material.

previously Finally, mentioned, direct as the copolymerization of silvlated decaborate clusters with TEOS to obtain decaborate functionalized SBA material was unsuccessful because of clusters 4 and 5 insolubility in water (pH = 1.5). As such, SBA-NH₂ (Scheme 3) containing 6%molar of -NH₂ groups regularly distributed in the pores, was synthesized according to published procedures.³⁸ The carbonyl derivative 3 of closo-decaborate was covalently anchored to the -NH₂ in the presence of diisopropylethyl amine in order to control the percentage of grafting where the obtained pale yellow solid was characterized with N2 adsorption-desorption. As expected, a decrease in surface area from 600 m²/g for SBA-NH₂ to 360 m²/g for SBA-NH₂@3, and in pore volume from 0.98 cm³/g to 0.65 cm³/g were observed. The powder smallangle X-ray pattern for SBA-NH₂@3 also exhibits a diffraction peak corresponding to d_{100} spacing, in addition to solid ¹¹B and ²⁹Si NMR where the results were similar to that of SBA@5 (Figures 6 and 7). From elemental analysis and EDS, anchoring rate for 3 was estimated to be 2.0 % by mole. This incomplete anchoring can be attributed to two factors, the bulkiness of the cluster PPh₄[B₁₀H₉CO] or/and the competition between the species present in the medium, since $[B_{10}H_9CO]^-$ reacts with the amine in **SBA-NH₂** to obtain **SBA-NH₂@3** and with the base di-isopropylethylamine to give $[B_{10}H_9N(^ipr)_2(Et)]^-$.

Conclusion

New mono-silylated decaborate clusters were prepared starting from the $[B_{10}H_{10}]^{2-}$ derivatives such as $[1-B_{10}H_9N_2]^-$ and $[2-B_{10}H_9CO]^-$ in quantitative yields through a general approach without the use of catalysts. These derivatives were prepared following reported procedures through the replacement of an exo-polyhedral hydrogen atom with the diazonium or the carbonyl functional group, and then additionally modified with nucleophilic substituents to obtain silylated clusters.

As a proof of concept, these clusters were successfully grafted on mesoporous silica SBA-15 with molar percentage between 2.6 and 5.2 %. The hexagonal symmetry and mesoporosity of SBA-15 were retained after modification as seen in nitrogen sorption and XRD studies.

The importance of this family of precursors is their ease to be covalently anchored on any silica matrices, glass, silicon surface and specially on metal oxide nanoparticles, hence facilitating the tracing of the closo-decaborate drug pathway in BNCT. In other terms, the design of such precursors containing hydrolysable alkoxy groups would be favourable since it allows the incorporation of a closo-decaborate cluster into a biologically compatible luminescent silica-based drug carrier; thereby opening a broad venue to optical and biomedical applications. In the near future, multifunctionalized luminescent nanoparticles will be prepared through the introduction of silylated decaborate clusters into the luminescent silica nanoparticles either through grafting or through one pot synthesis for controlled vectorization.

Acknowledgements

The authors thank the CNRS, the University Montpellier II and the Conseil National de la Recherche Scientifique du Liban CNRSL (<u>http://www.cnrs.edu.lb/</u>) for financial support.

Notes and references

^aInstitut Charles Gerhardt, UMR 5253, CC1701, Equipe Chimie Moléculaire et Organisation du Solide, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France. E-mail: <u>ahmad.mehdi@univ-montp2.fr</u>

^bLaboratoire de Chimie de Coordination Inorganique et Organométallique LCIO, Université Libanaise, Faculté des Sciences I, Hadath, Liban. Email: <u>dnaoufal@ul.edu.lb</u>

^cEcole Doctorale des Sciences et Technologie EDST, PRASE, Université Libanaise, Liban

* Co-corresponding authors.

1 I. Sivaev, A. V. Prikaznov and D. Naoufal, Coll. Czech. Chem. Commun., 2010, 75, 1149.

Dalton Transactions

- 2 E. A Malinina, V. V. Avdeeva, L. V. Goeva, and N. T. Kuznetsov, Russ. J. Inorg. Chem., 2010, 55, 2148.
- 3 K. Yu. Zhizhin, A. P. Zhdanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem., 2010, 55, 14, 2089.
- 4 R. Dobrott and W. Lipscomb, J. Chem. Phys., 1962, 37, 1779.
- 5 D. Gabel, S. Mai and O. Perleberg, J. Organomet. Chem., 1999, 581, 45.
- B. Sivaev, N.A. Votinova, V. I. Bragin, Z.A. Starikova, L. V. Goeva, V. I. Bregadze and S. Sjoberg, J. Organomet. Chem., 2002, 657, 163;
 V. I. Bregadze, I. B. Sivaev and S. A. Glazun, Anti-Cancer Agents Med. Chem., 2006, 6, 75.
- 7 D. Naoufal, B. Grüner, P. Selucký, B. Bonnetot and H. Mongeot, J. Radioanal. Nucl.Chem., 2005, 266, 145.
- P. Kaszynski, Coll. Czech. Chem. Commun., 1999, 64, 895; O. N. Kazheva, A. N. Chekhlov, G. G. Alexandrov, L. I. Buravov, A. V. Kravchenko, V. A. Starodub, I. B. Sivaev, V. I. Bregadze and O. A. Dyachenko, J. Organomet. Chem., 2006, 691, 4225; M. F. Hawthorne, J. I. Zink, J. M. Skelton, M. J. Bayer, C. Liu, E. Livshits, R. Baer and D. Neuhauser, Science, 2004, 303, 1849.
- 9 M. F. Hawthorne, Advances on Boron and the Boranes, ed. J. F. Liebman, A. Greenberg and R. E. Williams, VCH Publishers, New York, 1988, 225; A. Demonceau, E. Saive, Y. de Froidmont, A. F. Noels, A. J. Hubert, I. T. Chizhevsky, I. A. Lobanova and V. I. Bregadze, Tetrahedron Lett., 1992, 33, 2009.
- 10 V. N. Romanovskiy, I. V. Smirnov, V. A. Babain, T. A. Todd, J. D. Law, R. S. Herbst and K. N. Brewer, Solvent Extr. Ion Exch., 2001, 19, 1; J. F. Dozol, M. Dozol and R. M. Macias, J. Inclusion Phenom. Macrocyclic Chem., 2000, 38, 1; J. Rais and B. Grüner, Solvent Extr. Ion Exch, ed. Y. Marcus and A. K. Sengupra, CRC Press, Boston, 2004, 17, 243.
- 11 A. Jankowiak, A. Balinski, J. E. Harvey, K. Mason, A. Januszko, P. Kaszynski, V. G. Young Jr., and A. Persoons, J. Mater. Chem. C, 2013, 1, 1144.
- 12 K. Yu. Zhizhin, V. N. Mustyatsa, E. A. Malinina, N. A. Votinova, E. Yu. Matveev, L. V. Goeva, I. N. Polyakova and N. T. Kuznetsov, Russ. J. Inorg. Chem., 2004, 49, 221.
- 13 S. S. Akimov, E. Yu. Matveev, G. A. Razgonyaeva, L. I. Ochertyanova, N. A. Votinova, K. Yu. Zhizhin, and N. T. Kuznetsov, Russ. Chem. Bull., Int. Ed., 2010, 59, 371.
- 14 S. Chatterjee, P. J. Carroll, and L. G. Sneddon, Inorg. Chem., 2013, 52, 9119.
- 15 Mark J. Pender, Patrick J. Carroll, and Larry G. Sneddon, J. Am. Chem. Soc., 2001, 123, 12222.
- 16 D. M. Webster, P. Sundaram and M. E. Byrne, European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 1.
- 17 A. H. Soloway, W. Tjarks, B. A. Barnum, F. Rong, R. F. Barth, I. M. Codogni and J. Gerald Wilson, Chem. Rev., 1998, 98, 1515.
- 18 D. Naoufal et al, Unpublished results.
- 19 R. N. Leyden and M. F. Hawthorne; Inorg. Chem., 1975, 14, 2444.
- 20 R. N. Leyden and M. F. Hawthorne J. Am. Chem. Soc., 1973, 95, 2032.

- 21 L. L. Ng, B. K. Ng, K. Shelly, C. B. Knobler and M. F. Hawthorne, Inorg. Chem., 1991, 30, 4278.
- 22 K. Shelly, C. B. Knobler, and M. F. Hawthorne; Inorg. Chem., 1992, 31, 2889.
- 23 B. Lin, F. Chu, N. Yuan, H. Shang, Y. Ren, Z. Gu, J. Ding, Y. Wei and X. Yu, J. Power Sources, 2014, 252, 270; I. Saana Amiinu, X. Liang, Z. Tu, H. Zhang, J. Feng, Z. Wan and M. Pan, ACS Appl. Mater. Interfaces, 2013, 5, 11535; C. Laberty-Robert, K. Valle, F. Pereira and C. Sanchez, Chem. Soc. Rev., 2011, 40, 961; B. P. Tripathi and V. K. Shahi, Prog. Polym. Sci., 2011, 36, 945.
- 24 C. J. Brinker and G. W. Scherrer, Sol-Gel Science, 1990: the physics and chemistry of sol-gel processing, 1st ed.; Academic Press: San Diego.
- 25 C. Sanchez, B. Julian, P. Belleville and M. Popall, J. Mater. Chem., 2005, 15, 3559.
- 26 G. Kickelbick, Hybrid Materials, 2006, Wiley-VCH, Weinheim.
- 27 A. Mehdi, C. Reye and R. J. P. Corriu, Chem. Soc. Rev., 2011, 40, 563.
- 28 C. O. Turrin, V. Maraval, A. Mehdi, C. Reye, A. M. Caminade and J. P. Majoral, Chem. Mater., 2000, 12, 3848.
- 29 S. Dourdain, J.-F. Bardeau, M. Colas, B. Smarsly, A. Mehdi, B. M. Ocko and A. Gibaud, Appl. Phys. Lett., 2005, 86, 113108.
- 30 J. Alauzun, A. Mehdi, C. Reye and R. J. P. Corriu, J. Am. Chem. Soc., 2005, 32, 11204.
- 31 E. Besson, A. Mehdi, D. A. Lerner, C. Reye, and R. J. P. Corriu, J. Mater. Chem., 2005, 15, 803.
- 32 T. Yanagisawa, C. Yokoyama, K. Kuroda and C. Kato, Bull. Chem. Soc. Jpn., 1990, 63, 47.
- 33 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710.
- 34 G. Subra, A. Mehdi, C. Enjalbal, M. Amblard, L. Brunel, R. J. P. Corriu and J. Martinez, J. Mater. Chem., 2011, 21, 6321; S. Jebors, C. Enjalbal, M. Amblard, G. Subra, A. Mehdi and J. Martinez, J. Mater. Chem. B, 2013, 23, 2921.
- 35 R. Mouawia, A. Mehdi, C. Reye and R. J. P. Corriu, J. Mater. Chem., 2008, 18, 2028.
- 36 D. Naoufal, Z. Assi, E. Abdelhai, G. Ibrahim, O. Yazbeck, A. Hachem, H. Abdallah and M. El Masri, Inorganica Chimica Acta, 2012, 383, 33.
- 37 R. J. P. Corriu, E. Lancelle-Beltran, A. Mehdi, C. Reyé, S. Brandès and R. Guilard, J. Mater. Chem., 2002, 12, 1355.
- 38 A. Mehdi, C. Reye, S. Brandes, R. Guilard and R. J. P. Corriu, New J. Chem., 2005, 29, 965.

Graphical Abstract

Triethoxysilyalted borate clusters comprising the closo-decaborate cage were synthesized and immobilized into the pores of SBA-15 mesoporous silica.

