This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
New triethoxysilylated 10-vertex closo-decaborate clusters. Synthesis and controlled immobilization into mesoporous silica.

Fatima Abi-Ghaida, a,b,c Zahra Laila, b,c Ghassan Ibrahim, b,c Daoud Naoufal* b,c and Ahmad Mehdi* a

Novel silylated hydroborate clusters comprising the closo-decaborate cage were prepared and characterized by 1H, 13C, 11B, 29Si NMR and mass spectroscopy ESI. The synthesis of such silylated clusters was achieved by using reactive derivatives of [B10H10]2b, [1bB10H9N]b and [2bB10H9CO]b. These silylated decaborate clusters constitute a new class of precursors that can be covalently anchored onto various silica supports without any prior surface modification. As a proof of concept, the synthesized precursors were successfully anchored on mesoporous silica, SBA-15 type, in different percentages where the mesoporous material retained its structure. All materials modified with closo-decaborate were characterized by 11B and 29Si solid state NMR, XRD, TEM and Nitrogen sorption.

Introduction

The chemistry of the closo-decaborate anion has been well developed1,2 owing to its atypical oxidative, hydrolytic and thermal properties.3 These properties are governed by the 3-dimensional aromaticity and electron deficient nature which renders the exo-B-H systems susceptible to nucleophilic, electrophilic and radical substitution.4 Nowadays, literature concerning these clusters focused on the decaborate reactivity, particularly on the activation of the B-H bond, apical and equatorial positions. The high stability and low toxicity of the closo-decaborate anion and its derivatives render these clusters to be excellent candidates for Boron Neutron Capture Therapy (BNCT),5,6 among several other applications such as extraction,7 catalysis,8 material science9 and nuclear wastes treatment.10

Interest in closo-decahydrodecarborane anion [B10H10]2- (Scheme 1) has been slowly receding in comparison to its higher polyhedral borate sister [B12H12]2-, mainly due to the higher cost. Nevertheless, a number of exo-polyhedral substitution reactions of the [B10H10]2- anion have been recently investigated.3 For example, monoanions such as [1-B10H9NH(C6H5)2]−, [1-B10H9N(C6H5CH2)(C6H5)2]− and [1-B10H9P(OH)(C6H5)2]− were prepared from the diazonium derivative of [B10H10]5- and used for the extraction of radioactive Cs+ cations.7,11,12

In addition, hetero-disubstituted derivatives of the closo-decaborate anion such as 1-(4-pentoxypropyridyl)-10-(4-pentyl-1-thiacyclohexyl)-closo-decaborane were prepared as structural elements for quadrupolar liquid crystals following a sequential introduction of the oxonium fragments at the apical positions of the closo-decaborate cluster.11 Here again the diazonium derivative [1-B10H9N2]2- was used as the reactive intermediate in the synthesis.

Furthermore, oxonium derivatives of [B10H10]2-, which constitute a useful intermediate for the preparation of novel derivatives, were synthesized by the reaction of the closo-decaborate anion with cyclic ethers in the presence of CF3COOH, dry hydrogen halides or Lewis acids as initiators.12,13

Silicon-openboraine clusters such as 6,9-(CH3SiCH=CH2)-B10H12 and (CH3)3Si(CH2)3-B10H13 were reported for the open
The 6,9-derivative was prepared by reacting B\textsubscript{10}H\textsubscript{14} with trimethylsilylacetylene through an iridium [Cp*IrCl\textsubscript{2}] catalyzed hydroboration. The monosilylated derivative (CH\textsubscript{3})\textsubscript{3}Si(CH\textsubscript{2})\textsubscript{3}B\textsubscript{10}H\textsubscript{13} was prepared by the reaction of B\textsubscript{10}H\textsubscript{14} with allyltrimethylsilane catalyzed by Cp\textsubscript{2}Ti(CO)\textsubscript{2}. However, alkoxy silylated closo-decaborate clusters ((RO\textsubscript{3})\textsubscript{3}Si-linker-B\textsubscript{10}H\textsubscript{13}), comprising the closo-decaborate cage [B\textsubscript{10}H\textsubscript{10}]\textsuperscript{2-}, were never reported and are unprecedented. The difficulties and challenges which were faced during the synthesis of such clusters are outweighed by the important potential applications.

For instance, the covalent anchoring of such decaborate bearing silica precursors on silica matrices holds interest in the production of boron-silica based matrices (silica, glass, silicon substrate, silica nanoparticles...) ever since the latter has gained notice in the field of medicine as drug carriers and probes. Theoretically, the notion of incorporating the [B\textsubscript{10}H\textsubscript{10}]\textsuperscript{2-} cluster into a biologically compatible luminescent silica-based drug carrier can facilitate the imaging process of tumours and their treatment by BNCT. Since its appearance, BNCT has been plagued with the lack of suitable drug carriers. The success rate of this phenomenon depends on the preferential accumulation of the Boron enriched source in tumour cells. Hence, such silylated boron clusters provide a novel method for the production of boron enriched silica matrices for biological application.

In order to achieve such silylated clusters, one needs to explore the wide variety of reactions which [B\textsubscript{10}H\textsubscript{10}]\textsuperscript{2-} undergo to produce substituted derivatives. Recent studies have focused on the reaction of (NH\textsubscript{4})\textsubscript{2}B\textsubscript{10}H\textsubscript{10} with solvents containing nucleophilic functional groups such as nitriles, alcohols, thiols, amines. These solvents can play the role of a ligand thereby producing polysubstituted derivatives in the form of [B\textsubscript{10}H\textsubscript{10}L]\textsuperscript{n-}, [B\textsubscript{10}H\textsubscript{6}L\textsubscript{2}]\textsuperscript{n-}, [B\textsubscript{10}H\textsubscript{6}L\textsubscript{3}]\textsuperscript{n-}, etc... (L is a solvent molecule). The mechanism suggested for the synthesis of such derivatives is an electrophile-induced nucleophilic substitution, where the electrophile acts as an initiator. Unfortunately, these reactions are often accompanied with the production of isomers. To avoid such occurrences, other routes were investigated.

Considered to be the most useful among all substituents to give monosubstituted decaborates is the diazonium derivative (CH\textsubscript{3})\textsubscript{4}N-[1-B\textsubscript{10}H\textsubscript{10}N\textsubscript{2}] which can be obtained through the diazotation of K\textsubscript{5}B\textsubscript{10}H\textsubscript{15}\textsuperscript{2-}. Another important precursor for substituted derivatives of [B\textsubscript{10}H\textsubscript{10}]\textsuperscript{2-} is the carbonyl derivative PPh\textsubscript{3}(2-B\textsubscript{10}H\textsubscript{10}CO) reported by Hawthorne et al., facilitating the production of new derivatives through the reaction of the carbonyl group with diverse nucleophiles.

The importance of organic-inorganic materials has escalated after the development of the sol-gel process in 1930, in particular, silica-organic based composites. So far these composites have been extensively studied. Indeed, silica based hybrid materials obtained through the sol-gel process constitute an interesting class of materials which combine the properties of organic moieties and inorganic matrices. Hybrid organosilsesquioxanes materials (R-SiO\textsubscript{1.5}) and bridged silsesquioxanes (1\textsubscript{2}OSi-R-SiO\textsubscript{1.5}) with a large variety of spacers R comprising functional organic units can be obtained starting respectively from mono- or bis-silylated precursors. One of the classes of silica based hybrid materials are the ordered mesoporous silicas.

Since their discovery, ordered mesoporous silicas has fascinated and continues to attract a number of research groups due to their large surface areas, as well as controllable pore sizes and arrangements. The modification of such materials, which holds significant importance in the field of biomedical science, can be achieved through covalently grafting of organic moieties or by direct copolymerization of the silica precursor (TEOS) with an organotrialkoxysilane RSi(OR\textsubscript{3})\textsubscript{3} bearing the desired functionality.

In this study, we report the preparation of the first triethoxysilylated closo-decaborate clusters and their immobilization into the pores of mesoporous silica by grafting or by direct synthesis.

**Experimental procedure**

**Chemicals and Characterization**

All synthetic reactions were performed under Argon atmosphere using vacuum line and Schlenk-techniques. All solvents were dried and distilled unless stated otherwise. (NH\textsubscript{4})\textsubscript{2}B\textsubscript{10}H\textsubscript{10} was purchased from Katchem Ltd., Prague; it was dried under vacuum for 24 hours at 80 °C prior to use. 3-Aminopropyltriethoxysilane, 3-isocyanopropyltriethoxysilane, 3-cyanopropyltriethoxysilane and triethyloxysilyl silicate Si(OEt\textsubscript{3})\textsubscript{4} were purchased from Sigma-Aldrich and used as received. Oxalyl chloride was obtained as 2.0 M solution in CH\textsubscript{2}Cl\textsubscript{2} from Aldrich. The salt (PPh\textsubscript{3})\textsubscript{2}B\textsubscript{10}H\textsubscript{10} was precipitated from an aqueous (NH\textsubscript{4})\textsubscript{2}B\textsubscript{10}H\textsubscript{10} and recrystallized from Acetonitrile/Et\textsubscript{2}O mixture.

The nitrogen adsorption isotherms were measured at N\textsubscript{2} liquid temperature (77 K) using a Micromeritics Tristar 3000 analyzer. The samples were degassed under vacuum for 12 h at 80 °C prior to analysis. The specific surface areas were calculated by the Brunauer-Emmet-Teller (BET) method using 74 points and starting from 0.01 as the value of the relative pressure and the pore size distributions were determined by the BJH method applied to the adsorption branch. Elemental analyses of C, H and N were performed on a FLASH EA 1112 CHN analyzer.

Solution \textsuperscript{1}H-NMR, \textsuperscript{13}C-NMR, \textsuperscript{11}B-NMR, \textsuperscript{29}Si-NMR and \textsuperscript{29}Si-NMR spectra were recorded using an AMX 400 Bruker spectrometer operating respectively at 400 MHz, 100 MHz, 128 MHz, 162 MHz and 80 MHz. Chemical shifts were externally calibrated to TMS for \textsuperscript{1}H, \textsuperscript{13}C, and \textsuperscript{29}Si nuclei, H\textsubscript{2}PO\textsubscript{4} (85%) for \textsuperscript{31}P nuclei and EtO\textsubscript{2}BF\textsubscript{3} for \textsuperscript{11}B nuclei. Deuterated chloroform and acetonitrile were used as solvents. Powder X-ray diffraction patterns were measured on a Bruker D5000 diffractometer equipped with a rotating anode. The wavelength used was 1.542 Å (Cu K\alpha radiation). Mass Spectrometry measurements were performed by negative...
Electrospray Ionization method (ESI). Transmission Electron Microscopy (TEM) observations were carried out at 100 kV on a JEOL 1200 EXII microscope. Si and B content were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) following this procedure: 5 mg of material, 1.5 g of NaOH pellet and 1.5 g of KNO$_3$ were mixed in Nickel crucible. After thermal treatment at 650°C for 10 hours, the crucible was cooled at room temperature and the obtained pearl was dissolved in 10 mL of distilled water. After filtration, the solution was recovered in Teflon flask and analyzed by ICP-AES on Perkin Elmer Optima 2100 DV spectrometer. Scanning Electron Microscopy (SEM) images were obtained with FEI Quanta 200 FEG microscope. EDX analyses were measured on X-Max$^\text{N}$ silicon drift detector. Solid state NMR spectra for $^{29}$Si, $^{11}B$, $^{31}P$ and $^{13}C$ were recorded on a Varian VNMRS 300 solid spectrometer with a magnetic field strength of 7.05 T equipped with 7.5 mm MAS probe at 5 kHz as a spinning rate.

**Synthesis of silylated boron clusters**

\[ [\text{Me}_2\text{N}]\{[1-\text{B}_3\text{H}_2\text{N}] \} (1) \]

Compound 1 was prepared as described in the literature.\textsuperscript{20} $^{11}B$ ($^1$H) NMR ($\delta$ ppm, 128 MHz, CD$_2$Cl$_2$): 21.50 (d, 1 B, $J_{BB}$ = 151 Hz), -13.5 (s, 1 B), -17.4 (d, 4 B, $J_{BB}$ = 138 Hz) and -25.1 (d, 4 B, $J_{BB}$ = 137 Hz).

\[ [\text{PPbH}_3]\{[1-\text{B}_3\text{H}_2\text{NH}_2\text{CH}_2\text{CH}_2\text{NH}_2] \} (2) \]

2.00 g (9.13 mmol) of 1 were mixed with 30 mL of ethylenediamine under argon and heated at 120 °C for 24 hrs. After cooling to ambient temperature the mixture was filtered and passed through a silica gel column 2.5 x 30 cm, eluted with CH$_2$Cl$_2$:CH$_3$CN gradient mixture as described in literature.\textsuperscript{26} The dark red solid was precipitated as the tetraphenylphosphonium salt and recrystallized from CH$_2$CN:CH$_2$Cl$_2$ to give compound 2 as dark red solid with 71% yield.

$^{11}B$ ($^1$H) NMR ($\delta$ ppm, 128 MHz, CD$_2$Cl$_2$): 10.3 (s, 1 B), -2.4 (d, 1 B, $J_{BB}$ = 138 Hz), -28.4 (d, 4 B, $J_{BB}$ = 119 Hz) and -30.1 (d, 4 B, $J_{BB}$ = 127 Hz).

\[ [\text{PPbH}_3]\{[2-\text{B}_3\text{H}_2\text{CO}] \} (3) \]

[PPbH$_3$][[2- B$_3$H$_2$CO]] was prepared according to literature\textsuperscript{22} with 74% yield after crystallization from CH$_2$Cl$_2$:Et$_2$O.

$^{11}B$ ($^1$H) NMR ($\delta$ ppm, 128 MHz, CDCl$_3$): 5.3 (d, 2 B, $J_{BB}$ = 141 Hz), -18.7 (d, 1 B, $J_{BB}$ = 128 Hz), -26.8 (d, 2 B, $J_{BB}$ = 145 Hz), -28.1 (d, 2 B, $J_{BB}$ = 110 Hz), -29.8 (d, 2 B, $J_{BB}$ = 120 Hz), -44.7 (s, 1 B).

$^{11}B$ ($^1$H) NMR ($\delta$ ppm, 128 MHz, CD$_2$Cl$_2$): 5.3 (d, 2 B, $J_{BB}$ = 141 Hz), -18.7 (d, 1 B, $J_{BB}$ = 128 Hz), -26.8 (d, 2 B, $J_{BB}$ = 145 Hz), -28.1 (d, 2 B, $J_{BB}$ = 110 Hz), -29.8 (d, 2 B, $J_{BB}$ = 120 Hz), -44.7 (s, 1 B).

In a Schlenk tube, 5 mL of 3-cyanopropyltriethoxysilane were mixed with (NH$_2$)$_3$B$_3$H$_10$ (0.50 g, 3.2 mmol) and heated at 140 °C under argon for 48 hours. Excess of 3-cyanopropyltriethoxysilane was eliminated by washing with pentane to yield a viscous yellow solid, which was further copiously washed with diethyl ether and dried at 80 °C for 24 hours to yield a light yellow viscous solid.

\[ [\text{NH}_2]\{[2-\text{B}_3\text{H}_2\text{NC}(\text{CH}_2)_2\text{Si(OCH}_3)_2] \} (6) \]

In a Schlenk tube, 5 mL of 3-cyanopropyltriethoxysilane were mixed with (NH$_2$)$_3$B$_3$H$_10$ (0.50 g, 3.2 mmol) and heated at 140 °C under argon for 48 hours. Excess of 3-cyanopropyltriethoxysilane was eliminated by washing with pentane to yield a viscous yellow solid, which was further copiously washed with diethyl ether and dried at 80 °C for 24 hours to yield a light yellow viscous solid.
Nitrogen sorption (adsorption branch): $S_{\text{BET}}$ (m$^2$/g): 600; $V_p$ (cm$^3$/g): 0.98 and Dp: 62 Å. Atomic ratio Si/N: 15.6.

0.50 g (0.769 mmol) of SBA-NH$_2$ was dispersed in 20 ml of dichloromethane where a solution of cluster 3 (0.25 g, 0.516 mmol in 5 ml of dichloromethane) was added with 1.00 ml of diisopropylethylamine. The resulting mixture was refluxed overnight where 0.64 g of a pale yellow powder SBA-NH$_2$@3 was isolated after filtration and drying.

**Results and Discussion**

**Silylated closo-decaborate clusters**

The anchoring approach of the triethoxysilyl group on (NH$_4$)$_2$B$_{10}$H$_{10}$ was investigated and several silylated clusters were prepared following scheme 2 where only the quantitative products are attributed.

Before approaching the silylated closo-decaborate clusters, it is worth mentioning that the attempt to directly synthesize silylated clusters starting from (NH$_4$)$_2$B$_{10}$H$_{10}$ were unsuccessful.
due to the lack of a suitable electrophile to initiate the reaction. Also, some successful reactions were plagued with either isomerisation or very low yields or both. For example, the reaction involving (NH₄)₂B₁₀H₁₀ with 3-cyanopropyltriethoxysilane was not efficient because attempts to separate the two obtained products NH₄[2-B₁₀H₉NC(CH₃)₂Si(OC₂H₅)₃] and 2,6-B₁₀H₉[NC(CH₃)₂Si(OC₂H₅)₂]₂ were unsuccessful (see experimental part, cluster 6).

In general, the synthesis of closo-decaborate derivatives involves the abstraction of an exo-polyhedral hydride ion (eq. 1) through electrophile-induced nucleophilic substitution (EINS). EINS reactions require the presence of an electrophile such as Bronsted acids, Lewis acids, carbocations, organometallic catalysts, or gaseous hydrogen halide. The context of the current work was limited by this criterion since the ethoxy groups in the silica precursors are highly sensitive to acids, bases, and humidity.

\[
B\text{H} + E + \text{Nu} \rightarrow B\text{Nu} + \text{He}^+ \quad (\text{eq. 1})
\]

Moreover, recent unpublished results\(^{18}\) have revealed (NH₄)₂B₁₀H₁₀ predisposition to react solely with polar protic/aprotic solvents to yield mono, di, and polysubstituted derivatives (isomerisation). This predisposition was later determined to be a result of the NH₄⁺ counter cation of the cluster [B₁₀H₁₀]³⁻ already present in the medium.\(^{18}\) Hence, any direct synthesis starting from [B₁₀H₁₀]³⁻ leads to mono and polysubstituted isomers where the separation attempts while trying to conserve the ethoxy chemical group were unsuccessful. Subsequently, the silylation often resulted in two mono-substituted major products, [B₁₀H₉L]ⁿ⁺ and to several poly-substituted products where L is either the silicon precursor or a solvent molecule. Consequently, silica precursors were anchored on reactive derivatives of the closo-decaborate cage which are: the diazo-derivative\(^{19}\) [1-B₁₀H₉N₂]⁻ and the carbonyl derivative [2-B₁₀H₄CO].\(^{22}\)

Compounds 1\(^{19}\), 2\(^{36}\) and 3\(^{22}\) were prepared following described methods. The reaction between silane precursors and the highly reactive diazonium derivative [1-B₁₀H₉N≡N]⁻ was accompanied with the production of multiple isomers in the form of [1-B₁₀H₉L]ⁿ⁺ where L is either a solvent molecule or the silane precursor, since [1-B₁₀H₉N≡N]⁻ is highly reactive towards certain solvents at higher temperature. Under rigorous conditions, the reaction proceeds with an insignificant yield where a considerable percentage of [1-B₁₀H₉N≡N]⁻ reverted to the unmodified cluster [B₁₀H₁₀]²⁻. Therefore, the diazonium derivative was further functionalized with ethylenediamine to give [1-B₁₀H₉NH₂CH₂CH₂NH₃]²⁻ (2).

The synthesis of 4 involved the reaction of the peripheral amine on the cluster with –N=C=O group present in 3-isocyanatopropyltriethoxysilane. The \(^{11}B\) NMR of cluster 4 (Figure 1) is virtually the same as that of compound 2 since the reaction occurred at a distance from the substitution site (apical position) of [1-B₁₀H₉NH₂CH₂CH₂NH₃]²⁻, an insignificant shift in the chemical shift (ppm) from 2 was observed. However evidence of the reaction was observed in \(^{1}H\) NMR, \(^{29}Si\) NMR and IR (ATR) where two unique absorption at 1540 and 1650 cm⁻¹ relevant to the urea group were now evident.

The \(^{1}H\) NMR spectrum contains a triplet at 1.12 ppm and a quadruplet at 3.76 ppm corresponding to the ethoxy groups (CH₃CH₂O⁻) attached to the silicon atom, a triplet at 0.60 ppm corresponding to the -CH₂ adjacent to the silicon atom and 2 singlets at 5.72 and 5.76 ppm relevant to the hydrogen’s of urea units (-NH-CO-NH-) can also be seen. \(^{29}Si\) NMR spectrum revealed a peak at -45.16 ppm characteristic for -Si(OEt)₃ group. \(^{13}C\) NMR clearly exhibited a signal at 160.00 ppm corresponding to the carbonyl group and an additional one at 7.26 ppm corresponding to the -CH₂ adjacent to the silicon atom. In addition, compound 4 was verified by mass spectroscopy ESI to be 423.74 (m/z theoretical = 423.36).

![Figure 1. \(^{11}B\) (\(^{1}H\)) NMR spectra of clusters 1(top), 2 (middle) and 4 (bottom); the arrows indicate the peaks of the corresponding substituted boron atom (apical position).](image)

The synthesis of 5 involved the reaction of –C≡O with 3-aminopropyltriethoxysilane in the presence of a base; the

![Figure 2. \(^{11}B\) (\(^{1}H\)) NMR spectra of clusters 3 (top) and 5 (bottom); the arrows indicate the peaks of the corresponding substituted boron atom (equatorial position).](image)
product analyzed caused a shift of the singlet in $^{11}$B NMR characteristic of $-\text{B}–\text{C}=\text{O}^+$ from -44.76 ppm to -24.89 ppm at the equatorial position (Figure 2). The two apical boron atoms $\text{B}_1$ and $\text{B}_{10}$ appear as a triplet (two overlapping doublets) at 0.41 and -1.74 ppm, and the 7 remaining equatorial Boron atoms $\text{B}_3$ to $\text{B}_7$ appear as a broad peak between -27.0 and -33.0 ppm, this is in agreement with published literature\textsuperscript{22} which state that the remaining equatorial peaks are indiscernible in the spectrum.\textsuperscript{29} $^{29}$Si NMR also exhibited a signal at -45.06 ppm relevant to Si(OEt)$_3$ and the MS/ESI = 365.4 (m/z theoretical = 365.5). Initially, the preceding reaction was performed in the absence of a base and an excess of 3-aminopropyltriethoxysilane, the amine group NH$_2$ present in the silane precursor played the role of a base and abstracted a H atom to produce (EtO)$_3$Si(CH$_2$)$_3$NH$_3^+$ which was evident in $^1$H and $^{29}$Si NMR.\textsuperscript{29} $^{29}$Si NMR revealed the presence of two silicon types, the desired product 5 and the protonated derivative seen as two signals at -45.04 and -46.10 ppm while the product retained a viscous nature. When triethylamine was used as the base, two major products were observed, the silylated cluster [(EtO)$_3$Si(CH$_2$)$_3$NHCO-B$_{10}$H$_{12}$] and the triethylamine derivative [(Et$_3$NCO-B$_{10}$H$_{12}$)]. As a consequence, it is best to use a more basic less nucleophilic base. Indeed, di-isopropyl ethyamine proved to be successful when utilized in excess, and the reaction yielded a quantitative product when the two reactants were used in equivalent ratios. Note that attempts to crystallize these two clusters (4 and 5) were unsuccessful.

**Grafting of 4 and 5 on SBA-15**

The triethoxysilylated borate clusters 4 and 5 were grafted directly onto the pore surfaces of SBA-15 (Scheme 3). This covalent linking was realized by the treatment of the silica (1 eq.) with a solution of 4 (0.1 eq) in acetonitrile or 5 (0.1 eq) in DMF. Acids were not utilized in this process since acid presence might induce the production of $[\text{B}_{10}\text{H}_8\text{L}]^{2-}$ where L is a solvent molecule. It is noteworthy to mention that close-decaborate functionalized SBA material was not achieved directly through sol-gel process due to the hydrophobicity of the silylated clusters (insolubility in acidic water).

The functionalized hybrid materials were characterized by elemental analyses, $N_2$ adsorption/desorption, solid state NMR, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

Nitrogen sorption isotherms at 77 K (Figure 3) of SBA-15, SBA@4 and SBA@5 show type IV isotherms with a clear H1-type hysteresis loop at high pressure, characteristic of mesoporous material. The isotherms exhibit a sharp inflection in the P/P$_0$ region at $\sim$0.63 characteristic of capillary condensation and uniform pore size distribution. All isotherms are quite similar in the overall trend; however they differ in a notable shift of the hysteresis position towards lower P/P$_0$ for SBA@4 and SBA@5 plus a significant decrease in overall nitrogen adsorption. An evident decrease in surface area can be noticed from 520 m$^2$/g relevant to SBA-15 to 358 m$^2$/g and 446 m$^2$/g for SBA@4 and SBA@5 respectively. Another decrease can also be observed for pore volume (1.00 cm$^3$/g for SBA-15, to 0.71 cm$^3$/g for SBA@4 and 0.76 cm$^3$/g for SBA@5) which
indicates that the grafted precursors are located inside the mesoporous pores, hence reducing the pore dimension in comparison with the unmodified SBA-15. Based on nitrogen, boron and silicon % determined from elemental analyses and EDS, the estimated molar percentage of grafted precursors are 2.6 % for SBA@4 and 5.2 % for SBA@5.

Figure 3. Nitrogen adsorption/desorption isotherms of SBA-15, SBA@4 and SBA@5. The inset represents BJH pore-size distributions calculated from adsorption branch for SBA-15, SBA@4 and SBA@5.

Figure 4 depicts XRD patterns obtained for unmodified SBA-15 and the decaborate functionalized SBA materials. X-ray of the hybrid materials exhibited three low-angle reflections characteristic of a hexagonal symmetry of space group $p6m$ with an intense diffraction peak corresponding to $d_{100}$ spacing (10.47 nm) as well as weak and broad peaks at $d_{110}$ and $d_{200}$ reflection. The similarity of the XRD patterns of SBA@4 and SBA@5 to the unmodified SBA-15 clearly indicates the preservation of the hexagonal symmetry and structure. Further evidence of the hexagonal structure was provided by TEM images (Figure 5).

Figure 5. TEM images of SBA@4 (A), SBA@5 (B) and SEM images of SBA@4 (D), SBA@5 (C).

$\text{SBA@4}$ reveals a peak at ~5 ppm (7.5 ppm in liquid NMR) corresponding to the substituted B$_1$ atom position, another peak at ~ -1 ppm (~1.2 ppm) for B$_{10}$ atom position and a broad peak between -10 to -25 ppm for the remaining 8 equatorial B atoms (~27 to -32 ppm). The $^{11}$B NMR of $\text{SBA@5}$ reveals a peak at ~ -0.5 ppm for B$_{1,10}$ (seen as 2 adjacent peaks in liquid NMR at 0.4 and 1.7 ppm) and a broad peak between -10 and -25 ppm where the substituted boron peak at position 2 is overlapped with the remaining B$_{3,8}$ peaks.

The $^{11}$B CP/MAS NMR of $\text{SBA@4}$ and $\text{SBA@5}$ and $^{29}$Si CP/MAS NMR spectra of the $\text{SBA@4}$ and $\text{SBA-15}$ materials are shown in figures 6 and 7 respectively. $^{11}$B NMR of 4 and 5 (Figure 6) is in general consistent with that of liquid NMR but with a varying fluctuation in chemical shifts. The $^{11}$B NMR of $\text{SBA@4}$ reveals a peak at ~5 ppm (7.5 ppm in liquid NMR) corresponding to the substituted B$_1$ atom position, another peak at ~ -1 ppm (~1.2 ppm) for B$_{10}$ atom position and a broad peak between -10 to -25 ppm for the remaining 8 equatorial B atoms (~27 to -32 ppm). The $^{11}$B NMR of $\text{SBA@5}$ reveals a peak at ~ -0.5 ppm for B$_{1,10}$ (seen as 2 adjacent peaks in liquid NMR at 0.4 and 1.7 ppm) and a broad peak between -10 and -25 ppm where the substituted boron peak at position 2 is overlapped with the remaining B$_{3,8}$ peaks.

The $^{29}$Si shows resonance peaks at -92, -105 and -112 ppm originating from the structural units of SBA-15 corresponding respectively to Q$^2$, Q$^3$ and Q$^4$ substructures. After the modification of SBA-15 material with silylated clusters, the
peaks appear at b57 and b67 ppm corresponding respectively to NMR were realised for SBA@4 material. 31P spectrum shows peak corresponding to T(pH = 1.5). As such, 0.98 cm

derivative
cation (PPh group, several peaks between 100 and 140 for the phosphonium ammonium salt and propyl spacer. These chemical shifts being similar to those observed in solution for 4 and confirm that the organic moieties are intact within the material.

Finally, as previously mentioned, the direct copolymerization of silylated decaborate clusters with TEOS to obtain decaborate functionalized SBA material was unsuccessful because of clusters 4 and 5 insolubility in water (pH = 1.5). As such, SBA-NH2 (Scheme 3) containing 6% molar of –NH2 groups regularly distributed in the pores, was synthesized according to published procedures. The carbonyl derivative 3 of closo-decaborate was covalently anchored to the –NH2 in the presence of diisopropylethyl amine in order to control the percentage of grafting where the obtained pale yellow solid was characterized with N2 adsorption-desorption. As expected, a decrease in surface area from 600 m2/g for SBA-NH2 to 360 m2/g for SBA-NH2@3, and in pore volume from 0.98 cm3/g to 0.65 cm3/g were observed. The powder small-angle X-ray pattern for SBA-NH2@3 also exhibits a diffraction peak corresponding to d100 spacing, in addition to solid 13B and 29Si NMR where the results were similar to that of SBA@5 (Figures 6 and 7). From elemental analysis and EDS, anchoring rate for 3 was estimated to be 2.0 % by mole. This incomplete anchoring can be attributed to two factors, the bulkiness of the cluster PPh2[B10H10CO] or/and the competition between the species present in the medium, since [B10H10CO] reacts with the amine in SBA-NH2 to obtain SBA-NH2@3 and with the base di-isopropylethylamine to give [B10H8N(pr)2(Et)].

**Conclusion**

New mono-silylated decaborate clusters were prepared starting from the [B10H10]2 derivatives such as [1-B10H8N2] and [2-B10H8CO] in quantitative yields through a general approach without the use of catalysts. These derivatives were prepared following reported procedures through the replacement of an exo-polyhedral hydrogen atom with the diazonium or the carbonyl functional group, and then additionally modified with nucleophilic substituents to obtain silylated clusters.

As a proof of concept, these clusters were successfully grafted on mesoporous silica SBA-15 with molar percentage between 2.6 and 5.2 %. The hexagonal symmetry and mesoporosity of SBA-15 were retained after modification as seen in nitrogen sorption and XRD studies.

The importance of this family of precursors is their ease to be covalently anchored on any silica matrices, glass, silicon surface and specially on metal oxide nanoparticles, hence facilitating the tracing of the closo-decaborate drug pathway in BNCT. In other terms, the design of such precursors containing hydrolysable alkoxy groups would be favourable since it allows the incorporation of a closo-decaborate cluster into a biologically compatible luminescent silica-based drug carrier; thereby opening a broad venue to optical and biomedical applications. In the near future, multifunctionalized luminescent nanoparticles will be prepared through the introduction of silylated decaborate clusters into the luminescent silica nanoparticles either through grafting or through one pot synthesis for controlled vectorization.

**Acknowledgements**

The authors thank the CNRS, the University Montpellier II and the Conseil National de la Recherche Scientifique du Liban CNRS (http://www.cnrs.edu.lb/) for financial support.

**Notes and references**

1 Institut Charles Gerhardt, UMR 5253, CC1701, Equipe Chimie Moléculaire et Organisation du Solide, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France. Email: ahmad.mehdi@univ-montp2.fr

2 Laboratoire de Chimie de Coordination Inorganique et Organométallique Lcio, Université Libanaise, Faculté des Sciences I, Hadath, Liban. Email: dhaoufali@ul.edu.lb

3 Ecole Doctorale des Sciences et Technologie EDST, PRASE, Université Libanaise, Liban

* Co-corresponding authors.

16 D. M. Webster, P. Sundaram and M. E. Byrne, European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 1.
18 D. Naoufal et al, Unpublished results.
Graphical Abstract

Triethoxysilylated borate clusters comprising the closo-decaborate cage were synthesized and immobilized into the pores of SBA-15 mesoporous silica.