This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Di-, Tri- and Tetranuclear Molecular Vanadium Phosphonates: A Chloride Encapsulated Tetranuclear Bowl

Dipankar Sahoo, Ramakirushnan Suriyanarayanan and Vadapalli Chandrasekhar

a Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208016, India.

b Department of Chemistry, University of the Free State, Bloemfontein, South Africa-9300

c National Institute of Science Education and Research, Institute of Physics Campus, Sachivalaya Marg, Sainik School Road, Bhubaneshwar-751005, Orissa, India.

CORRESPONDING AUTHOR FOOTNOTE: *To whom correspondence should be addressed.

E-mail: vc@iitk.ac.in, vc@niser.ac.in

Phone: (+91) 512-259-7259. Fax: (+91) 521-259-0007 / 7436.

KEYWORDS: phosphonates, transition metal cages, anion encapsulation, molecular phosphonates, vanadium phosphonates.
ABSTRACT

The reaction of vanadium(III) trichloride with *tert*-butylphosphonic acid (t-BuPO₃H₂) in the presence of 1,10-phenanthroline/2,2’-bipyridine as ancillary ligands in acetonitrile at room temperature afforded, two dinuclear dicationic vanadium(IV) complexes [(VO)₂(phen)₂{t-BuPO₂(OH)}₂(OH₂)₂]·2Cl [1] and [(VO)₂(bipy)₂{t-BuPO₂(OH)}₂(OH₂)₂]·2Cl [2]. On the other hand, when the reaction was carried out in methanol the dinuclear vanadium(V) complex [(VO)₂(bipy)₂(μ₂-O)₂(t-BuPO₃)₂]·2CH₃OH·0.5CH₂Cl₂ [3] was isolated. While 1 and 2 contain two six-membered V₂P₂O₄ rings, 3 contains a unique four-membered V₂O₂ ring. Replacement of *tert*-butylphosphonic acid by tritylphosphonic acid (Ph₃CPO₃H₂) under the same reaction conditions in methanol leads to the formation of dicationic trinuclear vanadium(IV) complexes [(VO)₃(phen)₃(Ph₃CPO₃)₂(OH₂)₃]·CHCl₃·2(OH)·2MeOH·1.5H₂O [4], and [(VO)₃(bipy)₃(Ph₃CPO₃)₂(CH₃OH)₃]·2(OH)·4CH₃OH·5H₂O [5]. In these complexes, the triangular V(IV) platform is held together by two bicapping tripodal phosphonate ligands. Replacement of the chelating 2,2’-bipyridine ligand with 3,5-dimethyl-1H-pyrazole, under the same reaction conditions, afforded a tetranuclear vanadium(V) complex [{(VO)₄(Ph₃CPO₃Me)₄(μ-O)₄}Cl] {3,5-Me₂PzH₂}·3C₇H₈·H₂O·CH₃OH [6]. Remarkably 6 possess a unique bowl-shaped structure encapsulating a chloride anion.
INTRODUCTION

Transition metal phosphonates possessing extended structures\(^1\) have been extensively studied for the last two decades in view of their potential applications in different areas such as cation exchange,\(^2\) NLO materials,\(^3\) luminescence properties,\(^4\) ion sensors,\(^5\) catalysis,\(^6\) catalyst supports,\(^7\) sorption,\(^8\) *etc.* In parallel, there have been continuous efforts for the preparation of molecular metal phosphonates by using various synthetic strategies including the use of sterically bulky phosphonic acids and ancillary ligands.\(^9\) These efforts have resulted in the isolation of molecular transition metal phosphonates of varying nuclearities.\(^10,9\) This remarkable modulation in nuclearity is partly due to the versatile coordination capability of the ligands \([\text{RPO}_3]^{2-}\) and \([\text{RP(OH)O}_2]\) (Chart 1). In contrast to molecular transition metal phosphonates containing Cu(II), Mn(II) or Co(II) those containing V(III), V(IV) or V(V) are still relatively few.\(^11\) Some examples of molecular vanadium phosphonates have been reported by us,\(^12\) Winpenny and coworkers\(^13,\) Zubieta and co-workers\(^14\) and Clearfield and co-workers,\(^15\) and some other groups,\(^16\) representative examples of which are shown in the ESI. On the other hand, researchers, particularly Zubieta and co-workers have shown, that the oxovanadium organophosphonate family \((\text{V/O/RPO}_3)\) possessing extended structures has a rich structural chemistry.\(^17\)

Molecular phosphonate chemistry is guided by two important components, one the nature of the phosphonic acid and the other the nature of the co-ligand. In trying to obtain new analogues in the vanadium phosphonate family we used the co-ligands, 1,10-phenanthroline and 2,2′-bipyridine which are known to restrict the nuclearity.\(^18,9a\) On the other hand, we also used 3,5-dimethyl-1Hpyrazole which has been shown in other instances to afford larger nuclearity aggregates.\(^19,9a,9b\) The phosphonic acids that we employed viz., *tert*-butylphosphonic acid \((t\text{-BuPO}_3\text{H}_2)\) and tritylphosphonic acid \((\text{Ph}_3\text{CPO}_3\text{H}_2)\) are sterically encumbered apart from being
lipophilic. Accordingly, as described below, in these investigations we were able to isolate and structurally characterize six molecular vanadium phosphonate assemblies:

\[(\text{VO})_2(\text{phen})_2\{t-\text{BuPO}_2(\text{OH})\}_2(\text{OH}_2)_2\cdot2\text{Cl} \] [1],

\[(\text{VO})_2(\text{bipy})_2\{t-\text{BuPO}_2(\text{OH})\}_2(\text{OH}_2)_2\cdot2\text{Cl} \] [2],

\[(\text{VO})_2(\text{bipy})_2(\mu_2-O)_2(t-\text{BuPO}_3)_2\cdot2\text{CH}_3\text{OH} \cdot 0.5\text{CH}_2\text{Cl}_2 \] [3],

\[(\text{VO})_3(\text{phen})_3(\text{Ph}_3\text{CPO}_3)_2(\text{OH}_2)_3\cdot\text{CHCl}_3 \cdot 2(\text{OH}) \cdot 2\text{MeOH} \cdot 1.5\text{H}_2\text{O} \] [4],

\[(\text{VO})_3(\text{bipy})_3(\text{Ph}_3\text{CPO}_3)_2(\text{CH}_3\text{OH})_3\cdot2(\text{OH}) \cdot 4\text{CH}_3\text{OH} \cdot 5\text{H}_2\text{O} \] [5] and

\[\{(\text{VO})_4(\text{Ph}_3\text{CPO}_3\text{Me})_4(\mu-O)_4\}\text{Cl}\{3,5-\text{Me}_2\text{PzH}_2\} \cdot 3\text{C}_7\text{H}_8 \cdot \text{H}_2\text{O} \cdot \text{CH}_3\text{OH} \] [6]. All of these compounds have been prepared by normal solution synthesis at ambient temperature.

Chart 1. Binding capacity of the phosphonate ligands (Harris notation20 has been used).

EXPERIMENTAL SECTION

Reagents and General Procedures. Solvents and other general reagents used in this work were purified according to standard procedures.21 The following chemicals were used as obtained:
anhydrous VCl₃ (Lancaster, U.K.), triethylamine (S.D. Fine Chemicals, India), AlCl₃ (S.D. Fine Chemicals, India), PCl₃ (S.D. Fine Chemicals, India), 2,4-pentanedione (S.D. Fine Chemicals, India), hydrazine hydrate (N₂H₄·H₂O; S.D. Fine Chemicals, India), 1,10-phenanthroline (Aldrich, U.S.A.), 2,2′-bipyridine (Spectrochem, India), acetonitrile (S.D. Fine Chemicals, India) methanol (S.D. Fine Chemicals, India) and toluene (S.D. Fine Chemicals, India) were used as received. 3,5-Dimethyl-1H-pyrazole,²²,²¹a (trimethyl)phosphonic acid (t-BuCPO₃H₂),²³ and tritylphosphonic acid (Ph₃CPO₃H₂)²⁴ were prepared according to the literature procedures.

Instrumentation. Melting points were measured using a JSGW melting point apparatus and are uncorrected. IR spectra were recorded as KBr pellets on a Perkin Elmer Spectrum Version FT IR spectrophotometer operating at 400-4000 cm⁻¹. Elemental analyses of the compounds were obtained from Thermoquest CE instruments CHNS-O, EA/110 model. Electrospray ionization mass spectrometry (ESI-MS) spectra were recorded on a Micromass Quattro II triple quadruple mass spectrometer. Thermogravimetric analysis (TGA) (heating rate of 10 °C min⁻¹) had been carried out on a Perkin-Elmer Pyris 6 machine.

Synthesis of 1. (Scheme 1). A solution of 1,10-phenanthroline (phen) (0.045 g, 0.250 mmol) and t-BuPO₃H₂ (0.017 g, 0.125 mmol) with Et₃N (0.510 g, 0.500 mmol) in CH₃CN (40 ml) were added slowly to a solution of VCl₃ (0.039 g, 0.250 mmol) in CH₃CN (10 ml). The reaction mixture was then stirred for 24 h and filtered. The resulting green colored filtrate was evaporated and was kept for crystallization in CH₃CN/toluene (2:1) mixture. Deep green block-shaped crystals of 1 were obtained after 7-8 days. Yield: 0.045 g, 41 % (based on vanadium). Mp: 135 °C (d). Anal. Calcd for C₃₂H₄₀Cl₂N₄O₁₀P₂V₂ (1): 875.40; C, 43.90; H, 4.61; N, 6.40. Found: C, 43.84; H, 4.65; N, 6.35. IR (KBr, ν/cm⁻¹): 3352 (b, m), 2869 (m), 1643 (w), 1585 (w), 1523 (w), 1463 (m), 1430 (w), 1178 (s), 1142 (m), 1092 (s), 987 (s), 936 (m), 928 (m), 859 (w), 834 (w), 814 (w), 772 (w), 745 (w), 698 (m), 665 (m), 612 (s), 562 (w), 534 (w), 496 (m), 461 (w), 421 (w).
740 (w), 727 (m), 653 (w), 489 (m), 430 (w). ESI-MS (m/z): 976.03 [(VO)$_2$((phen)$_2$)(t-Bu-PO$_2$(OH))$_2$(OH)$_2$] + 2Cl$^- + 2$CH$_3$CN + H$_2$O + H$^+$]$^+$ (Fig. 1).

Synthesis of 2. (Scheme 1). A solution of 2,2'$'$-bipyridine (bipy) (0.039 g, 0.250 mmol) and t-BuPO$_3$H$_2$ (0.017 g, 0.125 mmol) and Et$_3$N (0.510 g, 0.500 mmol) in CH$_3$CN (40 ml) was added slowly to a solution of VCl$_3$ (0.039 g, 0.250 mmol) in CH$_3$CN (10 ml). The reaction mixture was then stirred for 24 h and filtered. The resulting green colored filtrate was evaporated and was kept for crystallization in CH$_3$CN/toluene (2:1) mixture. Deep green block-shaped crystals of 2 were obtained after 6-7 days. Yield: 0.048 g, 46 % (based on vanadium). Mp: 122 °C (d). Anal. Calcd for C$_{28}$H$_{40}$Cl$_2$N$_4$O$_{10}$P$_2$V$_2$ (2; 827.36): C, 40.65; H, 4.87; N, 6.77. Found: C, 40.56; H, 4.84; N, 6.69. IR (KBr, ν/cm$^{-1}$): 3353 (b, m), 2975 (m), 2677 (m), 2605 (m), 2497 (w), 1611 (m), 1603 (m), 1568 (w), 1498 (w), 1476 (m), 1446 (m), 1396 (w), 1316 (w), 1186 (s), 1173 (s), 1089 (s), 1061 (m), 1034 (m), 985 (s), 923 (m), 832 (w), 772 (m), 735 (m), 661 (m), 566 (w), 490 (m), 417 (w). ESI-MS (m/z): 905.01 [(VO)$_2$(bipy)$_2$(t-Bu-PO$_2$(OH))$_2$(OH)$_2$] + 2Cl$^- +$CH$_3$CN + 2H$_2$O + H$^+$]$^+$ (ESI).

Synthesis of 3. (Scheme 1). A solution of 2,2'$'$-bipyridine (0.0359 g, 0.230 mmol) and t-BuPO$_3$H$_2$ (0.016 g, 0.115 mmol) and Et$_3$N (0.0469 g, 0.460 mmol) in MeOH (40 ml) were added slowly to a solution of VCl$_3$ (0.036 g, 0.230 mmol) in MeOH (10mL). The reaction mixture was then stirred for 24 h and filtered. The resulting brown colored filtrate was evaporated and was kept for crystallization in a MeOH/CH$_2$Cl$_2$ (1:1) mixture. Green block-shaped crystals of 3 were obtained after 8-10 days. Yield: 0.042 g, 43 % (based on vanadium). Mp: 164 °C (d). Anal. Calcd. for C$_{30.5}$H$_{43}$Cl$_4$N$_4$O$_{12}$P$_2$V$_2$ (3; 856.97): C, 42.75; H, 5.06; N, 6.54. Found: C, 42.60; H, 5.03; N, 6.48. IR (KBr, ν/cm$^{-1}$): 3389 (b, w), 3055 (w), 2960 (m), 2740 (w), 2605 (w), 2497 (m), 2497 (m), 1657 (w), 1601 (s), 1566 (w), 1497 (m), 1474 (s), 1445 (s), 1398 (w), 1314 (m), 1138
(s), 1033 (m), 976 (s), 935 (s), 852 (s), 771 (s), 731 (m), 657 (m), 637 (m), 540 (m), 498 (m), 416 (w). ESI-MS (m/z): 615.04 \left\{ (\text{VO})_2(\text{bipy})_2(\mu_2-O)_2(\text{t-BuPO}_3)_2 + \text{H}^+ \right\}^+ (ESI). ^{31}P \text{ NMR (500 MHz, DMSO-d}_6): \delta 40.12 (s) (ESI).

Synthesis of 4. (Scheme 1). A solution of 1,10-phenanthroline (0.0414 g, 0.230 mmol) and \(\text{t-BuPO}_3\text{H}_2 \) (0.016 g, 0.115 mmol) and \(\text{Et}_3\text{N} \) (0.0469 g, 0.460 mmol) in MeOH (40 mL) were added slowly to a solution of \(\text{VCl}_3 \) (0.036 g, 0.230 mmol) in MeOH (10 mL). The reaction mixture was then stirred for 24 h and filtered. The resulting brown filtrate was evaporated and was kept for crystallization in MeOH/CHCl\(_3\) (1:1) mixture. Block-shaped brown crystals of 4 were obtained after 6 days. Yield: 0.038 g, 29 % (based on vanadium). Mp: 155 °C (d). Anal. Calcd for \(\text{C}_{77}\text{H}_{74}\text{Cl}_3\text{N}_6\text{O}_{17.5}\text{P}_2\text{V}_3 \) (4; 1684.57): C, 54.90; H, 4.43; N, 4.99. Found: C, 54.84; H, 4.48; N, 4.92. IR (KBr, \(\nu/\text{cm}^{-1} \)): 3432 (b, m), 2937 (m), 2739 (m), 2678 (s), 2491 (m), 1626 (m), 1476 (m), 1398 (s), 1073 (s), 1037 (m), 977 (m), 852 (m), 727 (m), 702 (m), 553 (m). ESI-MS (m/z): 692.58 \left\{ (\text{VO})_3(\text{phen})_3(\text{Ph}_3\text{CPO}_3)_2 \right\}^{2+} (ESI).

Synthesis of 5. (Scheme 1). A solution of 2,2'-bipyridine (0.0359 g, 0.230 mmol) and \(\text{t-BuPO}_3\text{H}_2 \) (0.016 g, 0.115 mmol) and \(\text{Et}_3\text{N} \) (0.0469 g, 0.460 mmol) in MeOH (40 ml) were added slowly to a solution of \(\text{VCl}_3 \) (0.036 g, 0.230 mmol) in MeOH (10 ml). The reaction mixture was then stirred for 24 h and filtered. The resulting brown colored filtrate was evaporated and was kept for crystallization in MeOH/CHCl\(_3\) (1:1) mixture. Block shaped brown crystals of 5 were obtained after 5-6 days. Yield: 0.041 g, 32 % (based on vanadium). Mp: 124 °C (d) Anal. Calcd for \(\text{C}_{75}\text{H}_{94}\text{N}_6\text{O}_{23}\text{P}_2\text{V}_3 \) (5; 1662.37): C, 54.19; H, 5.70; N, 5.06. Found: C, 54.09; H, 5.65; N, 4.98. IR (KBr, \(\nu/\text{cm}^{-1} \)): 3385 (b, m), 2678 (w), 2500 (w), 1601 (s), 1570 (w), 1494 (m), 1473 (m), 1444 (s), 1314 (m), 1135 (s), 1096 (s), 1023 (s), 942 (m), 771 (m), 735 (m), 702 (m), 663 (w), 557 (m), 4909 (m), 418 (w). ESI-MS (m/z): 656.88 \left\{ (\text{VO})_3(\text{bipy})_3(\text{Ph}_3\text{CPO}_3)_2 \right\}^{2+} (ESI).
Synthesis of 6. (Scheme 1). A solution of 3,5-Me₂PzH (0.039 g, 0.410 mmol) and Ph₃CPO₃H₂ (0.266 g, 0.820 mmol) and Et₃N (0.125 g, 1.23 mmol) in MeOH (40 ml) was added slowly to a solution of VCl₃ (0.129 g, 0.820 mmol) in MeOH (10 ml). The reaction mixture was then stirred for 24 h and filtered. The brown colored filtrate was evaporated and was kept for crystallization in a MeOH/toluene mixture. Reddish brown crystals of 6 were obtained after 12-14 days. Yield: 0.044 g, 11 % (based on vanadium). Mp: 132 °C (d). Anal. Calcd for C₁₀₇H₁₁₁ClN₂O₂₂P₄V₄ (6; 2140.17): C, 60.05; H, 5.23; N, 1.31; Found: C, 59.98; H, 5.14; N, 1.22. IR (KBr, ν/cm⁻¹): 3385 (b), 3056 (m), 2952 (m), 2852 (m), 1599 (m), 1493 (m), 1445 (m), 1161 (s), 982 (m), 816 (m), 744 (m), 699 (s), 628 (m), 555 (s). ESI-MS (m/z): 1736.52 \([[(\text{VO})₄(\text{Ph}_3\text{CPO}_3\text{Me})₄(\mu-O)₄]\text{Cl}^{-} + \text{H}_2\text{O} + 2\text{H}^+]\) (Fig. 3). ³¹P NMR (500 MHz, DMSO-d₆): δ 25.51 (s) (ESI).
Scheme 1. Syntheses of 1-6.

X-ray Crystallography. Data were collected on Bruker APEX IICCDD diffractometer (MoKα, λ = 0.71073 Å). Complete hemispheres of data were collected using ω-scans (0.3°, up to 30 s/frame). Integrated intensities were obtained with SAINT+. For absorption correction SADABS was used. Structure solution and refinement were performed with the SHELXTL. The structures were solved by direct methods and completed by iterative cycles of DF syntheses and full-matrix least-squares refinement against F^2. All the other non-hydrogen atoms were refined with anisotropic displacement parameters. All the hydrogen atoms on the carbon...
frameworks were included in the final stages of the refinement and were refined with a typical riding model. Some solvent molecules could not be modeled satisfactorily because of disorder problem. Therefore the Olex/Mask29 was used to remove such disordered units from the respective overall intensity data. In compound 2, two of the carbon atoms of one of the \(t \)-butyl groups and one of the oxygen atoms of the phosphonate ligand are disordered into two positions in 0.5:0.5 occupancies. The details of the masked electron density have been provided. It is noted that the calculated density values in 4 and 5 assumes values less than 1 and it is due to the large amount of masked electron density. Thermo gravimetric analysis (TGA) of compound 4 show that the initial weight loss value of \(\sim 12 \% \) below 165 \(^\circ\)C is matching fairly well with the omitted solvents (1CHCl\(_3\), 2MeOH, 1.5 H\(_2\)O) corresponds to the masked density (12.4 \%). In case of compound 5, weight loss of \(\sim 12 \% \) is closer to that of the contributions from the solvent molecules (4MeOH, 5H\(_2\)O molecules) of the masked electron density (13.1 \%). Because of relatively poor date quality in case of 6, the \(wR_2 \) is little high. DIAMOND (version 3.1) has been used for mean-plane analyses as well as molecular drawings. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, U.K. Fax: +44-1223/336-033. E-mail: deposit@ccdc.cam.ac.uk].

Squeeze/Mask Details:

Compound 3

Electron count 33.2 (void of 210.4 \(\text{Å}^3 \)) per unit cell accounts for 0.5 CH\(_2\)Cl\(_2\) and 0.5 MeOH molecules [30 total number of calculated e\(^-\) (Z=1)]

Compound 4
Electron count 505.7 (void of 1810.0 Å³) per unit cell accounts for a CHCl₃, 2 methanol and 1.5 water (H₂O) molecules and 2 OH anions [508 total no. of calculated e⁻ (Z = 4)].

Compound 5

Electron count 779.6 (void of 1073 Å³) per unit cell accounts for 4 methanol (CH₃OH) molecule and 2 OH anions and 5 water (H₂O) molecules [780 total no. of calculated e⁻ (Z = 6)].

Compound 6

Electron count 349.1 (void of 584.9 Å³) per unit cell accounts for 1 methanol molecule and 2.5 water molecules [344 total no. of calculated e⁻ (Z = 8)].

RESULTS AND DISCUSSION

Synthesis

As mentioned earlier, molecular vanadium phosphonates are relatively sparse in comparison to other transition metal phosphonates, such as copper(II) phosphonates.⁹ The higher nuclearity molecular vanadium phosphonates include [H₆(VO₂)₁₆(MePO₃)₈][(Me₄N)₈ ¹⁶b T [V₁₄O₂₂(OH)₄(H₂O)₂(C₆H₅PO₃)₈]·2Cl·2NH₄ (ESI)¹⁴c, [V³⁺Ⅲ₁₂(V⁴⁺O)(μ₃-OH)₄(μ₂-OH)₆(μ₂-OEt)₄(EtOH)₄-(PhCO₂)₄(t-BuO₃P)₈]Cl₂, [H₁₂(VO₂)₁₂(PhPO₃)₈][N(C₃H₇)₄]₄ ¹⁶a and [V₁₁(O)₁₂(EtO)₁₃(EtOH)(Ph₃CCO₂)₂(MePO₃)]·EtOH.¹¹b Among the hexanuclear family, the following members are known: [(VO)₆(PhPO₃)₈]₄Cl (ESI),¹⁴a [V³⁺Ⅲ₆(μ₃-O)₂(O₂CtBu)₈(t-BuCO₂H)₂(t-BuPHO₃)ₒ(t-BuPO₃)₂ and [V⁶O₁₂(H₂O)₉(Ph₂CHPO₃)₃] (ESI)⁵. Only one pentanuclear derivative viz., V³⁺Ⅲ₅(μ₃-OH)(t-BuO₃P)₂Cl₂(py)₆ is known (ESI).¹³ Winpenny and coworkers reported a tetranuclear vanadium(IV) phosphonate, [V₄(O)(Ph₃CPO₃)₄Py₄].¹³ Our research group has previously reported two distorted double-four-ring (D4R) cubic tetranuclear vanadium (IV) phosphonate cages [(VO)₄(3,5-Me₂PzH)₈(CCl₃PO₃)₈] and [(VO)₄(3,5-Me₂PzH)₄-
(t-BuPO₃)₄] in the reaction of VCl₃ with t-BuPO₃H₂ or Cl₃CPO₃H₂ using 3,5-dimethyl-1H-pyrazole as the co-ligand.¹²,¹³ In these compounds, V(IV) ions and phosphorus atoms occupy alternate corners of the distorted cube (ESI). From the search of the literature it is clear that low-nuclearity vanadium phosphonates (nuclearity less than 4) are absent. We have previously shown, in the case of Cu(II) phosphonates that chelating ancillary ligands such as 1,10-phenanthroline or 2,2’-bipyridine are effective in affording low-nuclearity complexes.⁹ᵃ,¹⁸

Accordingly, in the current study we observe the formation of compounds 1-3 which are dinuclear, and compounds 4 and 5 which are trinuclear, when 1,10-phenanthroline or 2,2’-bipyridine are used as ancillary ligands (Scheme 1). On the other hand the reaction of VCl₃ with Ph₃CPO₃H₂ in the presence of 3,5-dimethyl-1H-pyrazole afforded the bowl shaped tetranuclear compound, 6. Remarkably here 3,5-dimethyl-1H-pyrazole does not coordinate to the metal center but it assists crystallization through supramolecular interactions. ESI-MS studies indicate that all the compounds (1-6) retain their structural integrity under these conditions (see Fig. 1 for a representative mass spectrum; the rest are given in ESI).

![Fig. 1 ESI-MS of 1.](image-url)
Molecular Structures of 1-6.

The molecular structures of 1-6 were determined by X-ray crystallography. The crystallographic parameters of these compounds are given in Tables 1-2. CCDC reference numbers for 1-6 are CCDC 990482-990487 respectively.

Table 1. Crystal data and structure refinement parameters of 1-3 (CCDC 990482-990484).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{32}H_{40}Cl_{2}N_{4}O_{10}P_{2}V_{2}</td>
<td>C_{28}H_{41}N_{4}O_{11}P_{2}Cl_{2}V_{2}</td>
<td>C_{51}H_{62}N_{8}O_{17}P_{2}V_{4}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>875.40</td>
<td>844.37</td>
<td>1324.78</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
<td>100(2) K</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71069 Å</td>
<td>0.71069 Å</td>
<td>0.71069 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
<td>Orthorhombic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>Pnma</td>
<td>P-1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 19.079(5) Å</td>
<td>a = 23.066(5) Å</td>
<td>a = 9.765(5) Å</td>
</tr>
<tr>
<td></td>
<td>(\alpha = 90^\circ)</td>
<td>(\alpha = 90^\circ)</td>
<td>(\alpha = 66.947(5)^\circ)</td>
</tr>
<tr>
<td></td>
<td>b = 18.583(5) Å</td>
<td>b = 14.961(5) Å</td>
<td>b = 12.448(5) Å</td>
</tr>
<tr>
<td></td>
<td>(\beta = 90^\circ)</td>
<td>(\beta = 90^\circ)</td>
<td>(\beta = 84.914(5)^\circ)</td>
</tr>
<tr>
<td></td>
<td>c = 10.924(5) Å</td>
<td>c = 10.893(5) Å</td>
<td>c = 14.734(5) Å</td>
</tr>
<tr>
<td></td>
<td>(\gamma = 90^\circ)</td>
<td>(\gamma = 90^\circ)</td>
<td>(\gamma = 80.991(5)^\circ)</td>
</tr>
<tr>
<td>Volume</td>
<td>3873(2) Å³</td>
<td>3759(2) Å³</td>
<td>1626.9(12) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.501 Mg/m³</td>
<td>1.492 Mg/m³</td>
<td>1.352 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.761 mm⁻¹</td>
<td>0.783 mm⁻¹</td>
<td>0.673 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1800</td>
<td>1740</td>
<td>682</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.084 x 0.082 x 0.080 mm³</td>
<td>0.092 x 0.086 x 0.082 mm³</td>
<td>0.068 x 0.062 x 0.060 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.19 to 25.50 deg.</td>
<td>4.08 to 25.4 deg.</td>
<td>4.2 to 25.03 deg.</td>
</tr>
<tr>
<td>Index ranges</td>
<td>21 ≤ h ≤ 23</td>
<td>-27 ≤ h ≤ 27</td>
<td>-12 ≤ h ≤ 12</td>
</tr>
<tr>
<td></td>
<td>-21 ≤ k ≤ 22</td>
<td>-17 ≤ k ≤ 18</td>
<td>-16 ≤ k ≤ 16</td>
</tr>
<tr>
<td></td>
<td>-13 ≤ l ≤ 12</td>
<td>-13 ≤ l ≤ 9</td>
<td>-19 ≤ l ≤ 14</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>19242</td>
<td>19194</td>
<td>10470</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3652 [R(int) = 0.1282]</td>
<td>3570 [R(int) = 0.0585]</td>
<td>5608[R(int) = 0.0402]</td>
</tr>
<tr>
<td>Completeness to theta = 25.27°</td>
<td>98.0 %</td>
<td>100 %</td>
<td>98.2 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Multi-Scan</td>
<td>Multi-Scan</td>
<td>Multi-Scan</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>1.0 and 0.078</td>
<td>1.0 and 0.5</td>
<td>1.0 and 0.40</td>
</tr>
</tbody>
</table>
Table 2. Crystal data and structure refinement parameters of 3-6 (CCDC 990485-990487).

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{74}H_{60}N_{6}O_{14}P_{2}V_{3}</td>
<td>C_{71}H_{66}N_{6}O_{12}P_{2}V_{3}</td>
<td>C_{212}H_{212}N_{4}O_{40}P_{8}Cl_{2}V_{8}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1440.04</td>
<td>1410.05</td>
<td>4182.02</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
<td>100(2) K</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71069 Å</td>
<td>0.71069 Å</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Trigonal</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C_{2}/m</td>
<td>R-3</td>
<td>P2_{1}/n</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>26.464(5)Å</td>
<td>17.454(3)Å</td>
<td>16.502(17)Å</td>
</tr>
<tr>
<td>α = 90°</td>
<td>α = 90°</td>
<td>α = 90°</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>27.628(5)Å</td>
<td>17.454(3)Å</td>
<td>32.938(3)Å</td>
</tr>
<tr>
<td>β = 91.213(5)°</td>
<td>β = 90°</td>
<td>β = 98.390(2)°</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>14.057(5)Å</td>
<td>45.618(3)Å</td>
<td>39.238(4)Å</td>
</tr>
<tr>
<td>γ = 90°</td>
<td>γ = 120°</td>
<td>γ = 90°</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>10275(5)Å^3</td>
<td>12035(4)Å^3</td>
<td>21099(4)Å^3</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>0.931 Mg/m^3</td>
<td>1.167 Mg/m^3</td>
<td>1.317 Mg/m^3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.343 mm(^{-1})</td>
<td>0.438 mm(^{-1})</td>
<td>0.496 mm(^{-1})</td>
</tr>
<tr>
<td>F(000)</td>
<td>2964</td>
<td>4374</td>
<td>8680</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.088 x 0.082 x 0.078 mm(^3)</td>
<td>0.078 x 0.074 x 0.070 mm(^3)</td>
<td>0.088 x 0.080 x 0.071 mm(^3)</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.07 to 25.5 deg.</td>
<td>2.24 to 25.50 deg.</td>
<td>1.85 to 25.50 deg.</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-3 ≤ h ≤ 31, -33 ≤ k ≤ 29, -13 ≤ l ≤ 17</td>
<td>-23 ≤ h ≤ 21, -21 ≤ k ≤ 23, -38 ≤ l ≤ 60</td>
<td>-20 ≤ h ≤ 20, -40 ≤ k ≤ 35, -48 ≤ l ≤ 42</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>27622</td>
<td>26835</td>
<td>121159</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>9723 [R(int) = 0.0793]</td>
<td>4973 [R(int) = 0.0952]</td>
<td>39165 [R(int) = 0.1248]</td>
</tr>
<tr>
<td>Completeness to theta = 25.27°</td>
<td>99.5%</td>
<td>99.9%</td>
<td>99.80%</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Multi-Scan</td>
<td>Multi-Scan</td>
<td>Multi-Scan</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>1.0 and 0.38</td>
<td>1.0 and 0.59</td>
<td>1.0 and 0.57</td>
</tr>
</tbody>
</table>
Refinement method | Full-matrix least-squares on F^2 | Full-matrix least-squares on F^2 | Full-matrix least-squares on F^2
---|---|---|---
Data / restraints / parameters | 9723/30/452 | 4973/9/287 | 39165/264/2455
Goodness-of-fit on F^2 | 1.056 | 1.055 | 0.954
Final R indices $[I>2\sigma(I)]$ | $R_1 = 0.1178$, $wR_2 = 0.3110$ | $R_1 = 0.0669$, $wR_2 = 0.1823$ | $R_1 = 0.0948$, $wR_2 = 0.2280$
R indices (all data) | $R_1 = 0.1673$, $wR_2 = 0.3459$ | $R_1 = 0.0900$, $wR_2 = 0.1968$ | $R_1 = 0.1961$, $wR_2 = 0.2793$
Largest diff. peak and hole | 1.24 and -0.85 e.Å$^{-3}$ | 0.98 and -0.53 e.Å$^{-3}$ | 0.099 and -0.52 e. Å$^{-3}$

Fig. 2 Molecular structure of (a) 1 and (b) 2. Some hydrogen atoms and the solvent molecules have been removed for clarity.

X-ray crystallography reveals that molecular structures of 1 and 2 are similar (Fig. 2a and 2b). Both are dinuclear dicaticonic complexes and contain two chloride (Cl$^-$) counter anions. The oxidation state of all the vanadium centers is +4 as corroborated from BVS calculations31 (ESI). The structure of these complexes reveals the presence of two vanadium centers that are bridged to each other by two [t-BuP(OH)(O)$_2$]$^-$ ligands. Each V(IV) has a chelating ligand (phen or bipy) along with an oxo group and a coordinated water molecule. Thus, each V(IV) is hexacoordinate (4O, 2N) in an octahedral geometry (ESI). The uncoordinated P-O bond distance [~1.577 Å (compound 1) and ~1.530 Å (compound 2)] is larger than the coordinated P-O bond distance.
[~1.498 (compound 1) and ~1.453 Å (compound 2)]. The bridging coordination action of the two monoanionic ligands \{t-BuP(OH)O_2\}^- {Harris Notaion: 2.110} results in an eight-membered \((V_2P_2O_4)\) puckered ring where the phosphorous atoms (P) are displaced (0.28 Å) above the mean plane; the vanadium atoms are present below the mean plane position (0.053 Å) (ESI). The two \(t\)-Bu groups of the phosphonate ligands are present on the same side of the ring. Also, the two \(V=O\) motifs are \textit{cis} w.r.t to each other and are present on the same side as the phosphonate ligands. Interestingly, the two chloride counter anions are held together tightly to the dicationic complex through strong hydrogen bonding interactions with the coordinated water molecules and the P-OH units. Thus, each chloride anion is involved in three hydrogen bonding interactions resulting in a bowl-shaped architecture (Fig. 3a and 3b, and ESI). The complete hydrogen bonding interactions present in this compound leads to the generation of an aesthetically pleasing supramolecular architecture (ESI).

Fig. 3 Bowl-shaped core, formed by H-bonding interactions, of (a) 1 (b) 2 (Hydrogen bond parameters have been provided in the ESI).
Fig. 4 Molecular structure of 3. All the hydrogen atoms and the solvent molecules have been removed for clarity.

The molecular structure of 3 also reveals that it is dinuclear (Fig. 4). However, in contrast to 1 and 2, in 3 the two V centers are in a +5 oxidation state. This structural motif is unique among all vanadium phosphonates. The four-membered V₂O₂ ring is puckered and is supported by a phosphonate ligand. The P-O distances involved are 1.553(4) and 1.560(5) Å. 3 is a vanadium dimer containing 2,2′-bipyridine as the ancillary ligand (Fig. 6). Here the two vanadium centres are bridged through a t-BuPO₃²⁻ and two O²⁻ ligands. The V-O bonds involved in the V₂O₂ four-membered ring are vastly different: [V1-O3, 1.670(4) Å; V1-O4, 2.335(4) Å; V2-O2, 1.621(5); V2-O3, 2.432(4) Å] indicating V1-O2 and V2-O3 to be weak bonds (Fig. 5).
Fig. 5 The dinuclear core of 3. Important bond distances (in Å) and angles (in º): V1-O1, 1.624(4); V1-O3, 1.670(4); V1-O4, 2.335(5); V1-N1, 2.130(6); V1-N2, 2.207(6); V2-O2, 1.621(5); V2-O3, 2.432(5); V2-O4, 1.652(5); V2-O7, 1.929(5); V2-N3 2.141(6); V2-N4, 2.217(6); P1-O5 1.553(5); P1-O6, 1.498(5); P1-O7 1.558(5); O1-V1-O3, 107.1(2); O3-V2-O4, 77.8(2); V1-O3-V2, 96.3(2); V1-O4-V2, 100.6(2); V1-O5-P1, 131.2(3); P1-O7-V2 126.5(3); O5-P1-O7, 109.6(3).
Compounds 4 and 5 are trinuclear and possess similar structures (Fig. 6a and 6b). All the three V(IV) centers are six-coordinate (2N,4O) in an octahedral geometry. Two hydroxide (OH⁻) counter anions balance the charge. These dicationic clusters are also stable under the ESI-MS ESI-MS conditions (ESI). 4 and 5 contain a bicyclic V₃P₂O₆ ring system (Fig. 7a and 7b) where a triangular V(IV) platform is held together two bicapping tripodal phosphonate ligands. The only structural difference between them is that in case of 4, the vanadium centers are coordinated to water molecules whereas in the case of 5, neutral methanol molecules are attached. Similar kind of cores have been reported for Mn(III) phosphonates,²² Zn(II) phosphates³³ and Cu(II) phosphonates³⁴ (ESI) but these are uncommon among the vanadium phosphonates.

Fig. 6 Molecular structures (a) 4 and (b) 5. Some hydrogen atoms and all the solvent molecules have been removed for clarity.
Fig. 7 The V₃P₂O₆ core of (a) 4 and (b) 5. Selected bond distances (Å) and angles (°) of 4: V1-O1, 1.593(6); V1-O3, 1.967(4); V1-N7, 2.101(5); V2-O4, 1.617(6); V2-O5, 1.951(4); V2-N15, 2.107(6); V3-O8, 1.595(7); V3-O6, 1.945(4); V3-N6, 2.126(5); P1-O3, 1.514(4); P1-O5, 1.521(4); P1-O6, 1.526(4); O3-V1-O3#1, 94.1(2); O3-V1-O2, 80.49(15); O1-V1-O3, 101.01(18); O1-V1-N7, 97.4(2); P1-O3-V1, 141.5(2); P1-O5-V2, 139.7(2); P1-O6-V3, 143.6(2); P2-O6-V3, 140.2(3); O5-P1-O6, 111.5(2); O3-P1-O6, 113.0(2); O3-P1-O5, 111.5(2). Selected bond distances (Å) and angles (°) of 5: V1-O1, 1.589(7); V1-O2, 1.949(7); V1-O3, 1.952(7); V1-O4, 2.321(6); V1-N1, 2.096(9); V1-N2, 2.119(8); P1-O2, 1.525(6); P2-O3, 1.532(6); P1-O2-V1, 147.2(4); P1-O3-V1, 145.3(4); O2-V1-O3, 95.3(3); O2-V1-O4, 78.8(3); O3-V1-O4, 82.0(3); O2-P1-O2#2, 112.0(3); O2-P1-O2#3, 112.0(3); O2#2-P1-O2#3, 112.0(3); O3-P2-O3#2, 112.3(3); O3-P2-O3#3, 112.3(3); O3#2-P2-O3#3, 112.0(3). Symmetry transformations used to generate equivalent atoms: #1 +X,1-Y,+Z; #2 -Y,-1+X,+Z; #3 1+Y,-X,+Z
Fig. 8 (a) Molecular structure of 6. Hydrogen atoms and the solvent molecules have been removed for clarity. (b) The core of 6 showing the bowl-shaped core encapsulating the chloride ion. The trityl group of the phosphonate, some hydrogen atoms and the solvent molecules have been removed for clarity.

The X-ray crystallographic analysis of the complex 6 shows that it is a tetranuclear bowl shaped V(V) aggregate (Fig. 8). The metal assembly is enclosed by a lipophilic organic sheath composed of trityl groups which are attached to the phosphonate ligands. The presence of protonated 3,5-DMPzH₂ makes the bowl shape aggregate negatively charged. The tetranuclear aggregate is formed as a result of the cumulative coordination action of four [Ph₃CPO₂(OCH₃)]⁻ ligands which are generated in situ. The base of the complex contains a [V₄O₄] square (V−V distance, ~ 3.4 Å) (Fig. 9a). Four V=O units, serve as legs to the square-base of the compound. On the other hand, four [PO₃] units emanate from the base and provide an encapsulating surface, within which is trapped a chloride ion (Fig. 8b) which is placed symmetrically w.r.t all the
vanadium and oxygen atoms. The V(V)-Cl distances are smaller (average 3.00 Å) than the sum of the van der Waals distance of V(V) and Cl (3.85 Å).35 Previously bowl-shaped vanadates with a V$_4$O$_4$ core are known, however, all of these contain carboxylate ligands and none contains phosphonate or phosphinate ligands.36

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig9}
\caption{(a) Tetranuclear square-base 6 (b) The four phosphonate ligands emerging from the square-base of 6. Important bond distances (Å) and angles (in °): V1A-O1A, 1.576(5); V1A-O2A, 1.941(5); V1A-O3A, 1.796(5); V1A-O18A, 1.878(5); V1A-O20A, 1.984(5); V2A-O3A, 1.848(5); V2A-O5A, 1.985(5); V2A-O5A, 1.985(5); V2A-O6A, 1.597(5); V2A-O7A, 1.974(5); V2A-O8A, 1.802(5); V3A-O8A, 1.847(5); V3A-O10A, 1.993(5); V3A-O11A, 1.592(5); V3A-O12A, 1.946(5); V3A-O13A, 1.806(5); V4A-O13A, 1.835(5); V4A-O15A, 1.835(5); V4A-O16A, 1.585(5); V4A-O17A, 1.966(5); V4A-O18A, 1.818(5); O1A-V1A-O3A, 102.3(2); O1A-V1A-O18A, 100.9(2); O3A-V1A-O18A, 94.1(2); O2A-V1A-O20A, 82.82(19); V1A-O3A-V2A, 135.8(3); V1A-O18A-V3A, 137.1(3); V2A-O8A-V3A, 136.2(3); V3A-O13A-V4A, 136.4(3).}
\end{figure}
Another interesting feature of the structure of 6 is that supramolecular interactions between two dimethylpyrazolium cations (π-π stacking: ~3.48 Å) as well with V=O generates an octanuclear aggregate (Fig. 10 and ESI). Two face to face bowls interact with each other affording the oval eight-metal ensemble. In 6, as may be noted, the ancillary ligand does not coordinate to the metal centers but helps in crystallization through supramolecular interactions (Fig. 10).

![Image of molecular structure](image)

Fig. 10 (a) Supramolecular interactions in 6. The average V=O--H-N distance 2.08 Å (ESI); **(b)** π--π stacking interaction between protonated 3,5-Me2PzH (π-π distance 3.48 Å).

Summary

In summary, we report six molecular vanadium phosphonates whose nuclearity varies from 2 to 4. Use of 1,10-diphenanthroline and 2,2′-bipyridine as co-ligand afford di- and trinuclear derivatives. 3,5-Dimethylpyrazole, does not bind to the metal centers. However, its protonated form assists the formation of a supramolecular aggregate in 6.

ACKNOWLEDGEMENTS

We thank the Department of Science and Technology, India, and the Council of Scientific and Industrial Research, India, for financial support. V.C. is thankful to the Department of Science
and Technology for a J. C. Bose fellowship. D.S. thanks the Council of Scientific and Industrial Research, India, for a Senior Research Fellowship.

ASSOCIATED CONTENT

Electronic Supplementary Information (ESI). Crystallographic information files (CIF), CCDC 990482-990487 for 1-6, tables of bond distance (Å) and bond angle (˚), coordination environments of the metal centers, TGA plots, Charts S1-S2, Fig. S1-S22 and Tables S1-S15.

REFERENCES

For TOC

Di-, Tri- and Tetranuclear Molecular Vanadium Phosphonates: A Chloride Encapsulated Tetranuclear Bowl

Dipankar Sahoo, a Ramakirushnan Suriyanarayanan b and Vadapalli Chandrasekhar* c

a Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208016, India.
b Department of Chemistry, P O Box 339, University of the Free State, Bloemfontein, South Africa-9300
c National Institute of Science Education and Research, Institute of Physics Campus, Sachivalaya Marg, Sainik School Road, Bhubaneshwar-751005, Orissa, India.