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Possible Intermediates of Cu(Phen)-catalyzed C-O 
cross coupling of phenol with aryl bromide by in situ 
ESI-MS and EPR studies  

Hong-Jie Chen, a,b I-Jui Hsu, c Mei-Chun Tseng, a and Shin-Guang Shyu*a,b 

The C-O coupling reaction between 2,4-dimethylphenol and 4-bromotoluene catalyzed by 

CuI/K2CO3/phen  system can be inhibited by radical scavenger cumene. Complexes [Cu(I)(phen)(1-(2,4-

dimethylphenoxy)-4-methylbenzene)]+ (denoted as A), {H[Cu(I)(phen)(2,4-dimethylphenoxy)]}+ and  

[Cu(I)(2,4-dimethylphenoxy)2]¯ (denoted as B) were observed by in situ electrospray ionization mass 

spectrometry (ESI-MS) analysis of the copper(I)-catalyzed C-O coupling reaction under the catalytic 

reaction condition indicating that they could be intermediates in the reaction. In situ EPR study of the 

reaction solution detected a Cu(II) specie with a fitted g value of 2.188. A catalytic cycle with a single 

electron transfer (SET) step was proposed based on these observations. 

Introduction 

The synthesis of aryl ester by Ullmann type reaction using Cu(I) 
salt as the catalyst is prevalent in biological, pharmaceutical, 
and materials interests due to its economic attractiveness, low 
toxicity, and air and moisture stability.1 Workable catalytic 
systems usually consists of  a ligand, a base and a copper 
salt.1d,2,3 Better yields are often obtained when ligands are 
added, and different ligands may have different catalytic 
activities.1d,1j,2c,3 Thus, Cu(I) complex containing the added 
ligand is generally proposed as the working intermediate of the 
catalytic reaction.4 Complexes with the corresponding ArO¯ 
ligand have been prepared, and their catalytic activities have 
been evaluated.5 Mechanisms involving either the 2e oxidative 
addition path or the free radical path for the activation of aryl 
halide in the copper-catalyzed C-O cross coupling reaction have 
also been reported.4b-c,5 However, the mechanism of the overall 
catalytic reaction so far has not been well established. 

In recent studies for the Ullmann type C-S coupling reaction 
with the catalyst system of CuI/tBuOK/phen (phen = 1,10-
phenanthroline), intermediates including Cu(SPh)2¯, 
[Cu(SPh)I]¯ and {K[Cu(SPh)2(Ph)]}+ were clearly observed by 
in situ ESI-MS studies, but for the phen-containing 
intermediate,6 indicating ligand may not be involved in the 
catalytic center. In CuI/tBuONa/phen catalyzed C-N coupling 
reaction, copper(I) complex [Na(phen)3][Cu(NPh2)2] was 
isolated from the catalytic system, and intermediates 
Cu(NPh2)2¯ and {Na[Cu(NPh2)2(p-tolyl)]}+ were observed in 
the ESI-MS spectra.7 Based on these observations, mechanisms 
involving 2e oxidative addition of aryl halide to the 
corresponding phen-free Cu(I) complexes Cu(NPh2)2¯ or 

Cu(SPh)2¯ were proposed for both reactions. It is therefore 
possible that Cu(I) catalyzed C-O coupling reaction may have 
also involved intermediates similar to that of the corresponding 
C-N and C-S coupling reactions. 

Recently, [(phen)Cu(OAr)(HOAr2)2] was proposed as the 
intermediate in the C-O cross coupling reaction between (E)-
bromostilbene and phenol catalyzed by the CuI/K3PO4/phen 
catalytic system, and a 2e oxidative addition reaction path was 
proposed based on the observation of [LCu(OAr)(HOAr2)2]

+ (L 
is an ionically-tagged phen derivative) in the in situ ESI-MS 
measurement.  However, the oxidative addition intermediate 
was not observed and the negative-ion mode of the ESI-MS has 
not been reported. The existence of [Cu(OAr)2]¯ in the reaction 
system is still unclear.8 

We herein report the in situ ESI-MS analysis9 for the 
Ullmann type copper(I)-catalyzed C-O coupling reaction using 
K2CO3 as the base and phen as the ligand under the reaction 
conditions described. {H[Cu(I)(phen)(2,4-dimethylphenoxy)]}+ 
and [Cu(I)(phen)(1-(2,4-dimethylphenoxy)-4-methylbenzene)]+ 
(denoted as A) or  [Cu(III)(phen)(2,4-dimethylphenoxy)(p-
tolyl)]+  (denoted as A) were observed in the CuI/K2CO3/phen 
reaction system indicating that they are possible intermediates 
in the reaction. Addition of radical scavenger cumene inhibits 
the reaction indicating the existence of free radical pathway in 
the mechanism of the reaction. In addition, in situ EPR study of 
the reaction solution detected a Cu(II) specie with a fitted g 
value of 2.188. A catalytic cycle is proposed based on these 
observations. 

Results and Discussion 
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Figure  3.  Isotopic  distributions  of  (a)  H[Cu(I)(phen)(2,4‐dimethylphenoxy)]+,  (b)  A  or  A  and  (c)  [Cu(phen)2]
+.

Peak at m/z = 455.13 observed in ESI-MS spectrum may be 
assigned as A and/or A since they are isomers. 4-
Bromotoluene reacts with C, via 2e oxidative addition reaction 
(Scheme 2), to form Cu(III)(phen)(2,4-dimethylphenoxy)(p-
tolyl)Br (denoted as D), which may be fragmented into Br¯ and  
A during the ESI-MS measurement.4c Formation of A is 
through single electron transfer (SET) path in which C transfer 
an electron to 4-bromotoluene to form [Cu(II)(phen)(2,4-
dimethylphenoxy)]+ and 4-bromotoluene free radical anion. 
Further recombination of these two species produces A (or A) 
and Br¯ as suggested by DFT calculation (Scheme 2).4b Thus 
observation of peak at m/z = 455.13 may indicate the reaction 
go through the free radical path if the signal is A, or non-free-

radical path if the signal is A as both mechanisms have been 
proposed and supported by DFT calculations.4b,4c MS/MS 
experiments were tried in order to obtain additional information. 
No informative data were observed due to the very low 
intensity of the signal. 

Effect of free radical scavenger. One effective way to 
elucidate the possibility of free radical path is the addition of 
free radical scavenger into the system.  When 20 mol% of 
cumene was added into the reaction system, the reaction yield 
dropped from 65% to 29%.15 When the amount of cumene was 
increased to 50 mol%, the yield dropped further to 8%. The 
radical scavenger inhibits the reaction indicating the existence 
of radical path (Scheme 1).16 
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Scheme  2.  Two  possible  reaction  paths:  2e  oxidative  addition  path  and  single 

electron transfer (SET) path. 

It has been reported that 1-bromonaphthalene has a higher 
reactivity than 4-chlorobenzonitrile in the C-O coupling 
reaction if non-free-radical path dominates.5 When the same 
comparison study was performed based on our catalytic system, 
1-bromonaphthalene reacted to give 1-(2,4-
dimethylphenoxy)naphthalene(3a) in 41% yield; while 4-
chlorobenzonitrile gave 4-(2,4-
dimethylphenoxy)benzonitrile(4a) in 84% yield (Scheme 3). 
These observations together with the reaction inhibition by 
cumene and the observation of prop-1-en-2-ylbenzene (product 
of the reaction between cumene and the tolyl radical) indicate 
that free radical path is present or even dominates in the 
reaction.17  Such dual reaction path, i.e., both 2e oxidative 
addition path and free-radical path, has been observed in the C-
N coupling reaction in the mixed base system.7b, 

EPR Measurement In order to evaluate the existence of any 
Cu(II) intermediates, in situ EPR study was also carried out at 
components of g-tensor because the spectrum was taken at high  

 

Scheme  3.  C‐O  coupling  reaction  with  1‐bromonaphthalene  and  4‐

chlorobenzonitrile 

100 ºC. Similar reaction mixture in toluene was stirred at 120 ºC 
for 2 h in a sealed tube. The upper portion of the reaction 
solution was then transferred to an EPR tube in a dry box. The 
EPR spectrum was taken at 100 ºC and a signal around 3200G 
was observed (Figure 4). We are unable to obtain all 

Scheme 4. The proposed catalytic cycle with phen. 

temperature. After fitting,18 the isotropic g value is 2.188 which 
is  in agreement with a Cu(II) signal.19 We tentatively assign 
this signal to complex E based on the result of DFT calculation 
reported and our ESI-MS spectra.4b Although, the assignment 
cannot be conclusive, the presence of a Cu(II) complex further 
support the reaction may go through a SET mechanism. 
(Scheme 2). 

Catalytic cycle for the Cu(I) catalyzed C-O coupling 
reaction between 2,4-dimethylphenol and  4-bromotoluene 
in the presence of phen. Two possible paths were proposed if 
the reaction goes through single electron transfer (SET) 
mechanisms when phen was used as the ligand (Scheme 2).  

 
Figure  4.  Experimental  and  simulated  EPR  spectra  for  the  reaction  of  2,4‐

dimethyl  phenol  and  4‐bromotoluene with  K2CO3  in  the  presence  of  CuI  and 

phen in toluene at 373K. 

Based on all above observations and the reported DFT 
studies, a catalytic cycle is proposed and shown in Scheme 4. 
Complexes B and [Cu(phen)2]

+ are generated by the reaction 
among 2,4-dimethylphenol, potassium carbonate, phen and CuI.  
Likewise, the ligand redistribution reaction between B and 
[Cu(phen)2]

+ produces complex C in an equilibrium fashion (C 
picks up a H+ and was observed as {H[Cu(I)(phen)(2,4- 
dimethylphenoxy)]}+ in the ESI-MS 

OH
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respectively, with the 2a/2b  ratio of 5.25. But, when similar 
reaction was carried out without phen for 48 h (cf. longer 
reaction time was needed to obtain a measurable yield), the 
yield of 2a and 2b were 1.1% and 0.7% respectively, with the 
2a/2b  ratio of 1.5. The higher selectivity (higher 2a/2b ratio) in 
the CuI/K2CO3/phen system is consistent with the observations 
in ESI-MS analysis that the reaction mainly goes through C, 
which would show a greater steric effect because of the 
presence of the bulky phen ligand.5 

 

Scheme 6. Comparison of selectivities in the C‐O coupling reactions. 

Conclusions 

Phen can enhance the reactivity of the Cu(I)/K2CO3 catalyzed 
C-O coupling reaction by forming a possible intermediate C 
which reacts with 1a to form A as the intermediate via free 
radical path, and steric selectivity can be introduced because of 
the bulky phen ligand in C. It is worth to noted that in the 
reaction between [L2Cu][Cu(OPh)2] (L = trans-N,N’-dimethyl-
1,2-cyclohexanediamine) and a mixture of 1-bromonaphthalene  
and 4-chlorobenzonitrile in DMSO, 1-bromonaphthalene has 
higher reactivity than 4-chlorobenzonitrile, and non-free radical 
path was proposed.5 This report together with our present study 
indicate that the reaction mechanism depends on the substrate, 
the base and even the solvent of the reaction. 

Experimental Section 

All reagents were purchased from commercial sources and used 
without further purification. Copper(I) iodide (fine grey 
powder), 2,4-dimethylphenol, 4-bromotoluene, 1,10-
phenanthroline, 1,4-di-tert-butylbenzene were purchased from 
ACROS. K2CO3 was purchased from Alfa Aesar. Toluene 
(dried, seccoSolv®) was purchased from Merck and purged 
with argon for 15 min before use. Reagents were transferred to 
the reaction vessel (Pyrex tube with a Teflon screw cap) in a 
glove box. GC experiments were performed on an Agilent 
6890N gas chromatograph equipped with a 30 m X 0.53 mm X 
3.0 m HP-1 capillary column and a FID detector.  1,4-di-tert-
butylbenzene was used as the internal standard in the 
quantitative GC analyses. 

Typical procedure of copper-catalyzed C-O coupling reaction. 

2,4-Dimethylphenol (0.147 ml, 1.2 mmol), 4-bromotoluene 
(0.123 ml, 1.0 mmol) were added to a Pyrex tube with a 
septum. The tube was evacuated and backfilled with nitrogen 

through needle for 3 cycles, then capped with parafilm before it 
was put into dry box. CuI (4.8 mg, 0.025 mmol, 2.5 mol%), 
1,10-phenanthroline (9.0 mg, 0.050 mmol, 5.0 mol%), 1,4-di-
tert-butylbenzene (19.0 mg, 0.1 mmol), K2CO3 (414.0 mg, 3.0 
mmol) and toluene (2 ml) were added to the tube in dry box at 
RT, and capped with a Teflon screwcap. The reaction mixture 
was stirred at 120 °C for 8 h. GC yield of 2a: 63% (1,4-di-tert-
butylbenzene was used as the internal standard, response factor 
for 2a: 1.1325). 

Typical procedure of copper-catalyzed C-O coupling reaction 
with radical scavenger. 

2,4-Dimethylphenol (0.147 ml, 1.2 mmol), 4-bromotoluene 
(0.123 ml, 1.0 mmol) were added to a Pyrex tube with a 
septum. The tube was evacuated and backfilled with nitrogen 
through needle for 3 cycles, then capped with parafilm before it 
was put into dry box. CuI (4.8 mg, 0.025 mmol, 2.5 mol%), 
1,10-phenanthroline (9.0 mg, 0.050 mmol, 5.0 mol%), 1,4-di-
tert-butylbenzene (19.0 mg, 0.1 mmol), K2CO3 (414.0 mg, 3.0 
mmol), cumene (5 mol%, 0.069ml; 20 mol%, 0.276 ml; 50 
mol% 0.690 ml) and toluene (2 ml) were added to the tube in 
dry box at RT, and capped with a Teflon screwcap. The 
reaction mixture was stirred at 120 °C for 8 h. GC yield of 2a: 
64%; 29%; 8% (1,4-di-tert-butylbenzene was used as the 
internal standard, response factor for 2a: 1.1325). 

Copper-catalyzed C-O coupling reaction of 2,4-dimethylphenol 
with 1-bromonaphthalene. 

2,4-Dimethylphenol (0.147 ml, 1.2 mmol), 1-bromonaphthalene 
(0.140 ml, 1.0 mmol) were added to a Pyrex tube with a 
septum. The tube was evacuated and backfilled with nitrogen 
through needle for 3 cycles, then capped with parafilm before it 
was put into dry box. CuI (4.8 mg, 0.025 mmol, 2.5 mol%), 
1,10-phenanthroline (9.0 mg, 0.050 mmol, 5.0 mol%), 1,4-di-
tert-butylbenzene (19.0 mg, 0.1 mmol), K2CO3 (414.0 mg, 3.0 
mmol) and toluene (2 ml) were added to the tube in dry box at 
RT, and capped with a Teflon screwcap. The reaction mixture 
was stirred at 120 °C for 8 h. GC yield of 3a: 41% (1,4-di-tert-
butylbenzene was used as the internal standard, correction 
factor for 3a: 1.0758). 

Copper-catalyzed C-O coupling reaction of 2,4-dimethylphenol 
with 4-chlorobenzonitrile. 

2,4-Dimethylphenol (0.147 ml, 1.2 mmol), 4-chlorobenzonitrile 
(0.138 g , 1.0 mmol) were added to a Pyrex tube with a septum. 
The tube was evacuated and backfilled with nitrogen through 
needle for 3 cycles, then capped with parafilm before it was put 
into dry box. CuI (4.8 mg, 0.025 mmol, 2.5 mol%), 1,10-
phenanthroline (9.0 mg, 0.050 mmol, 5.0 mol%), 1,4-di-tert-
butyl benzene (19.0 mg, 0.1 mmol), K2CO3 (414.0 mg, 3.0 
mmol) and toluene (2 ml) were added to the tube in dry box at 
RT, and capped with a Teflon screwcap. The reaction mixture 
was stirred at 120 °C for 8 h. GC yield of 4a: 84% (1,4-di-tert-
butylbenzene was used as the internal standard, response factor 
for 4a: 1.0714). 

BrOH Br

+ +

1 equiv 2equiv 2equiv

2.5 mol% CuI

Toluene, 120 °C
3 equiv K2CO3

O O

1a 1b 2a 2b

i) with 5 mol% phen, 4 h                    (2a:2b = 5.25:1)                 42%                          8%
ii) without phen, 48 h                          (2a:2b = 1.5:1)                   1.1%                       0.7%

+
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Selectivity 

2,4-dimethyl phenol (0.123 ml, 1.0 mmol), 4-bromotoluene (1a) 
(0.246 ml, 2.0 mmol), 2-bromotoluene (1b) (0.240 ml, 2.0 
mmol) were added to a Pyrex tube with a septum. The tube was 
evacuated and backfilled with nitrogen through needle for 3 
cycles, then capped with parafilm before it was put into dry 
box. CuI (4.8 mg, 0.025 mmol, 2.5 mol%), 1,10-phenanthroline 
(9.0 mg, 0.050 mmol, 5 mol%), 1,4-di-tert-butylbenzene (19.0 
mg, 0.1 mmol), K2CO3 (414.0 mg, 3.0 mmol) and toluene (2 
ml) were added to the tube in dry box at RT, and capped with a 
Teflon screwcap. The reaction mixture was stirred at 120 °C for 
4 h. GC yield: 2a 42%, 2b 8% (1,4-di-tert-butylbenzene was 
used as the internal standard, response factor for 2a and 2b: 
1.1325). 

ESI-MS analysis 

High-resolution ESI-MS were measured with a Waters LCT 
Premier XE with a Z-spray atmospheric pressure ionization 
source for ESI in the Mass Spectrometry Facility in the Institute 
of Chemistry, Academia Sinica.  Leucine Enkephalin m/z 
556.277 [M+H]+ was used as a reference standard.  Samples 
were injected 10 μL using a model Agilent 1100 autosampler 
system with flow injection analysis (FIA).  The mobile phase 
was 100% acetonitrile at a flow rate of 50 μL/min. 
 
EPR Measurement. EPR measurements were performed at the 
X-band using a Bruker E580 spectrometer equipped with a 
Bruker ELEXSYS super-high-sensitivity cavity in National 
Tsing Hua University. X-band EPR spectra of toluene reaction 
solution in a 4 mm EPR tube at 373K were obtained with a 
microwave power of 15.000 mW, frequency at 9.6589 GHz, 
ADC conversion time of 20.39 ms, receiver gain of 30, and 
modulation amplitude of 0.16 G at 100 kHz with phase of 0.0 
deg. EPR spectra were examined by the program WINEPR. 
Simulations were carried by the EasySpin toolbox in Matlab.16   
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Possible Intermediates of Cu(Phen)-catalyzed C-O cross coupling of 

phenol with aryl bromide by in situ ESI-MS and EPR studies 

Hong-Jie Chen,
 a,b
 I-Jui Hsu,

 c
 Mei-Chun Tseng,

 a
 and Shin-Guang Shyu*

a,b
  

 Cu(I) complexes with phen, 2,4-dimethylphenoxide and  

(1-(2,4-dimethylphenoxy)-4-methylbenzene) as ligands were observed in the copper(I)-catalyzed 

C-O coupling reaction using K2CO3 as the base and phen as the ligand under the catalytic reaction 

condition by in situ electrospray ionization mass spectrometry (ESI-MS) and EPR analysis. 
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