Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Dalton Transactions

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

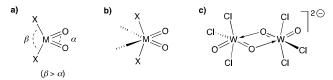
PAPER

Dalton Transactions Accepted Manuscript

Mononuclear anionic AO₂X₃ compounds with non-VSEPR structure[†]

M. Angeles García-Monforte, Miguel Baya, M. Pilar Betoré, Antonio Martín and Babil Menjón*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x


⁵ The molybdenyl compound [NBu₄][MoO₂(C₆F₅)₃] (1) has been obtained by low-temperature treatment of MoO₂Cl₂ with LiC₆F₅ in Et₂O followed by addition of [NBu₄]Br. This compound of the (AO₂X₃)^{\Box} type shows an unusual five-coordinate structure not lying on the Berry-pseudorotation path: it can be described rather as an edge-caped tetrahedron (*TE*-5). The same kind of structure has been found by DFT calculations to be the most energetically favored for the mononuclear (MoO₂X₃)^{\Box} model species, where

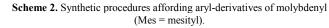
¹⁰ X = H, Cl or CN. Compound 1 exhibits marked stereochemical stability, as it shows no sign of exchange between chemically inequivalent C_6F_5 groups even at 150 °C in dmf solution (¹⁹F NMR spectroscopy).

Introduction

Neutral, closed-shell MO_2X_2 oxohalides are typical of Group 6 metals $^{\rm l}$ with the central atom bearing the group valence. $^{\rm 2}$ These

- ¹⁵ compounds are good oxidants with wide use in chemical synthesis³ and are also involved in chemical transport processes of great technical importance.⁴ Among the possible M/X combinations, only the chloro-series is sufficiently stable for all three Group 6 metals.⁵⁻⁸ They all have approximate tetrahedral ²⁰ (*T*-4) structure as isolated molecules (Scheme 1a).⁹ Essentially
- the same *T*-4 structure is preserved for CrO_2Cl_2 in the solid state,¹⁰ whereas for the heavier homologues $MoO_2Cl_2^6$ and WO_2Cl_2 ,¹¹ extended lattices are found, in which the metal centres achieve six-coordinate environments as the result of extended
- ²⁵ bridging systems (Scheme 1b).§^{12,13} The different degrees of intermolecular association observed in the solid state, denote different Lewis acidity for the corresponding d⁰ metal centres. Accordingly, CrO₂Cl₂ shows no affinity for any additional Cl[□] ligand, ||¹⁴ while the heavier metals form [MO₂Cl₃][□] compounds.¹⁵
- ³⁰ Even these anionic units are further associated, as in dimeric $[PPh_4]_2[(WO_2Cl_3)_2]^{16}$ (Scheme 1c),¶^{17,18} or bind an additional ligand, as in $[MOO_2Cl_3(OH_2)]^{-},\#^{19,20}$ rendering again the metal six-coordinate. Only for the Group 16 related species $(SO_2F_3)^{-}$ has a monomeric structure been assigned on the basis of ³⁵ vibrational data.²¹

Scheme 1. Structures of discrete MO_2X_2 molecules for Group 6 metals (a) and in condensed phase for the heavier ones (b), as well as that of the anion of $[PPh_4]_2[(WO_2Cl_3)_2]$ (c).¹⁶


⁴⁰ The organomolybdenum $[MoO_2(C_6F_5)_3]^{\Box}$ derivative presented here is, as far as we know, the first mononuclear $(AO_2X_3)^{\Box}$ compound to have been structurally characterized for any chemical element.

Results and Discussion

45 Synthesis and characterization

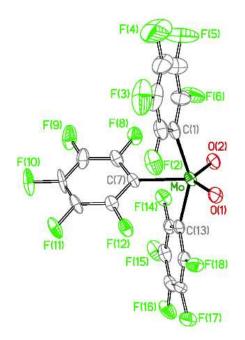
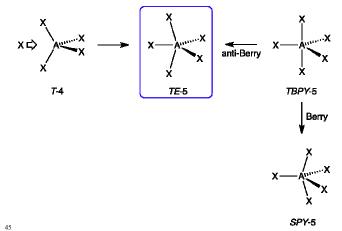
The molybdenyl chloride adduct MoO₂Cl₂·2thf is known to react (Scheme 2) with mesityl Grignard, MesMgBr, affording the neutral organomolybdenum(VI) compound MoO₂(Mes)₂,^{22a} which exhibits an approximate *T*-4 geometry (Scheme 1a).^{22b} We have ⁵⁰ now found that the unsolvated oxychloride MoO₂Cl₂ reacts with the organolithium derivative LiC₆F₅ giving rise, under subsequent addition of [NBu₄]Br, to an anionic organomolybdenum(VI) species that is isolated as the salt [NBu₄][MoO₂(C₆F₅)₃] (1) in reasonable yield (Scheme 2). Our attempts to prepare the ⁵⁵ analogous tungsten derivative starting from WO₂Cl₂ and working under similar conditions failed, probably due to the insolubility and the comparatively lesser reactivity of the starting material. Eventually no pentafluorophenyl-tungsten compound was detected among the reaction products.

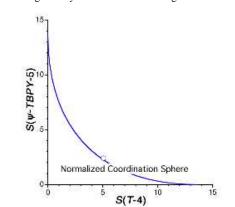
	(<i>x</i> = 2)	+ MesMgBr ►	MoO ₂ (Mes) ₂
$MoO_2Cl_2(thf)_x$ —			
	(<i>x</i> = 0)	+ LiC ₆ F ₅ + [NBu₄]Br	[NBu ₄][MoO ₂ (C ₆ F ₅) ₃] 1

Compound 1 is a thermally robust solid only decomposing at *ca.* 210 °C. It has been characterized by analytical and ⁶⁵ spectroscopic methods and its crystal and molecular structures have been established by single-crystal X-ray diffraction techniques. The crystal lattice of $1^{1/4}$ CH₂Cl₂ is made of separate ions with no significant cation/anion interaction and with additional solvent molecules interspersed. The molybdenum ⁷⁰ center in the mononuclear anion [MoO₂(C₆F₅)₃]⁻ (Fig. 1) is surounded by two terminal oxo ligands and three σ -bonded C₆F₅

groups with no sign of any intramolecular F^{...}Mo interaction. The three Mo–C bonds have indistinguishable lengths (220.7(5) pm, average) regardless of their respectively different locations in the molecule. The plane defined by the MoC₃ fragment is virtually ⁵ perpendicular to the MoO₂ unit (dihedral angle: 88.8°), almost

- bisecting it: O(1)-Mo-C(7) 124.8(2)° vs. O(2)-Mo-C(7) 121.5(2)°. The structure of this five-coordinate unit could be routinely described as a "distorted trigonal bipyramid". The distortion, however, does not lie on the Berry-pseudorotation path
- ¹⁰ connecting the two polytopes most usually found in fivesubstituted compounds of both metals and non-metals (Scheme 3).²³ The pseudo-axial C₆F₅ groups deviate from linearity (C(1)– Mo–C(13) 152.2(2)°) not toward the pseudo-equatorial oxo ligands but rather away from them. Considering this important
- ¹⁵ structural feature together with the fact that the O–Mo–O angle (113.6(2)°) does not significantly depart from an ideal tetrahedral angle (109.5°), we consider the structure to be best described as an edge-capped tetrahedron (*TE*-5). ♦²⁴ In fact, continuous shape meaures (CShM)²⁵ show that the normalized shape of the
- ²⁰ $[MoO_2(C_6F_5)_3]^-$ anion lies almost halfway between a tetrahedron (*T*-4) and a trigonal bipyramid (*TBPY*-5) with just 1% deviation from the ideal path connecting both geometries (Fig. 2).²⁶

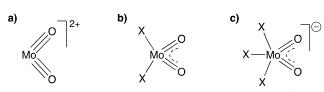

Fig. 1 Displacement-ellipsoid diagram (50% probability) of the ²⁵ [MoO₂(C₆F₅)₃][−] anion as found in single crystals of 1⁻¹/₄CH₂Cl₂. Selected bond lengths [pm] and angles [°] with estimated standard deviations: Mo– O(1) 168.9(3), Mo–O(2) 169.4(3), Mo–C(1) 219.9(5), Mo–C(7) 222.1(4), Mo–C(13) 220.2(4), O(1)–Mo–O(2) 113.6(2), O(1)–Mo–C(7) 124.8(2), O(2)–Mo–C(7) 121.5(2), C(1)–Mo–C(7) 76.4(2), C(1)–Mo–C(13) ³⁰ 152.2(2), C(7)–Mo–C(13) 76.0(2).

The *TE*-5 geometry was first identified by Ward and coworkers,²⁷ who suggested it to be associated with the presence of two strong π -donors on the non-capped edge, as is the case of the oxo ligand. Significantly wider O–M–O angles were found in ³⁵ the related neutral organorhenium(VII) compounds ReO₂(CH₂*t*Bu)₃ (117.4(5)°)^{28a} and ReO₂Me₃ (123.0(20)°).^{28b} It is, however, difficult to evaluate to what extent the intramolecular α -C–H^{...}O interactions found in the crystal structure of the former

species^{28a} and the C–H…Re agostic interactions identified in the ⁴⁰ gas-phase structure of the latter (obtained by electron diffraction)^{28b} might alter the corresponding structural features. It is interesting to note that no similar intramolecular interaction or additional intermolecular association of any kind have been found in the [MoO₂(C₆F₅)₃]⁻ anion.

Scheme 3 Two opposed distortion paths on a *TBPY*-5 structure, together with the formal relationship of the less-common *TE*-5 polytope with the *T*-4 geometry. No indication of charges is intended.

Fig. 2 Shape map showing the position of the five-coordinate $[MoO_2(C_6F_5)_3]^-$ anion as found in compound **1** with respect to the minimum distortion path (blue line) connecting the *T*-4 and ψ -*TBPY*-5 polyhedra through ligand association/dissociation (Scheme 3, left).²⁶


Theoretical calculations on model and real systems

In principle, compound **1** can be considered to derive from the neutral derivative $MoO_2(C_6F_5)_2$ by association of an additional C_6F_5 group (Scheme 3, left). Our attempts to prepare this neutral compound by 1:2 reaction of MoO_2Cl_2 with the Grignard reagent C_6F_5MgBr in Et₂O failed, giving instead magnesium salts of the [$MoO_2(C_6F_5)_3$]^{\Box} anion, as identified by IR, ¹⁹F NMR and X-ray fluorescence spectroscopy. The structure of the putative, nonisolated precursor species $MoO_2(C_6F_5)_2$ (**DFT-b**) has been optimized by DFT methods (see ESI for details).† The approximately *T*-4 geometry obtained (Fig. S1)† is similar to that ⁶⁵ experimentally observed for gaseous $MoO_2Cl_2^{29}$ and for solid $MoO_2(Mes)_2$.^{22b} None of these structures conform with the VSEPR model, since in all of them $\beta > \alpha$ (Table S1).†³⁰

It is worth noting that the structural parameters of the $(MoO_2)^{2+}$ unit show little variation within the wealth of known

existence".32

molybdenyl compounds, regardless of the different coordination environments.³¹ In our opinion, this apparent insensitivity denotes the special stability associated with the *cis*-(MoO₂)²⁺ unit and justifies its traditional formulation as a defined chemical entity: ⁵ molybdenyl. *Ab initio* calculations suggest that the singlet, bent (MoO₂)²⁺ unit (Scheme 4a) may even have "an autonomous

Scheme 4 Schematic drawing of the naked molybdenyl unit (a),³² the 10 neutral, isolated MoO₂X₂ molecules (b) and the mononuclear [MoO₂X₃]⁻ anion (c) with indication of the Mo–O bond order in each case.

An analysis of the bonding orbitals in the MoO₂(C₆F₅)₂ molecule enables to identify $2\sigma + 3\pi$ bonding orbitals as mainly involved in the MoO₂ bonding system (Fig. S2),† resulting in a ¹⁵ formal bond order of 2.5 for each Mo \square O bond (Scheme 4b).³³ We have also found that by forcing a gradual widening of the β angle in the lower-energy geometry of MoO₂(C₆F₅)₂ a welldefined LUMO emerges with the appropriate symmetry to allow the coordination of an additional ligand near the midpoint of the ²⁰ C^{...}C edge (Fig. 3). Similar results have been obtained by widening the β angle in other MoO₂X₂ molecules with X = H, Cl or CN, as typical representatives of ligands with sharply different donor abilities. In all these cases, the coordination of an

additional X ligand also results in the corresponding $(MoO_2X_3)^{\square}$ ²⁵ anionic species, for which similar *TE*-5 geometries have been found to be the most energetically favored (Fig. S5).† This common behavior suggests that five-coordinate species with a *TE*-5 structure—that has generally been overlooked—might play an important role in the chemistry of molybdenyl. Indeed, the

³⁰ structure of the mixed-ligand [MoO₂(Mes)Me₂]⁻ anion, originally described as a distorted *TBPY*-5,³⁴ displays features related to those found in compound **1**, despite the oxo ligands in the former strongly interact with the [Li(OEt)₂]⁺ cations building Mo–O–Li bridges. This strong cation/anion interaction might well be the

³⁵ reason for the wide O–Mo–O angle observed (119.53(8)°), which largely departs from the tetrahedral value.

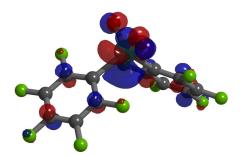


Fig. 3 Lowest unoccupied molecular orbital (LUMO) in compound DFTb (cf. Fig. S4).[†]

⁴⁰ The VSEPR model, which is a simple and invaluable tool to predict and rationalize the stereochemistry of a wealth of maingroup derivatives,³⁵ has proven of little use for transition metal compounds having non-spherical cores (*i.e.*, those in which the central atom has a partially occupied d shell). Nevertheless, the ⁴⁵ model should still apply for molecules in which the metal atom has a spherical core. The anion of **1** adds now to the notable exceptions documented for empty-shell d⁰ compounds.³⁰ The VSEPR model asumes that multiple bonds exert higher repulsion towards neighbor electron pairs than single bonds and hence the ⁵⁰ O–A–O angle in a mononuclear AO₂X₃ species should be wider

than 120°. In line with this reasoning, a value of 129.1° has been calculated for the O–S–O angle in the $(SO_2F_3)^{\Box}$ anion.^{21a} In contrast, however, a significantly narrower angle $(113.6(2)^\circ)$ has been experimentally found for the O–Mo–O unit in the anion of ⁵⁵ **1**. In view of this disparity, a theoretical treatment of the latter species seemed appropriate.

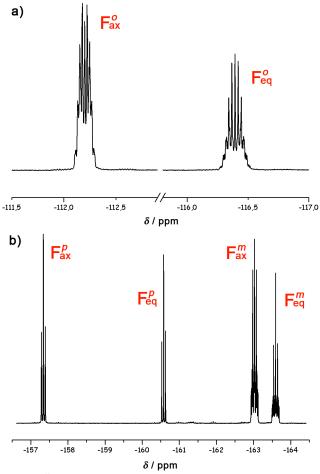
The geometry of the $[MoO_2(C_6F_5)_3]^-$ anion, as optimized by DFT methods (Fig. S5), † shows excellent agreement with the experimental one including the narrow O-Mo-O angle (Table 60 S1),[†]. No intramolecular secondary F. Mo interactions were identified by QTAIM calculations.^{†³⁶} An analysis of the bonding orbitals reveals that the MoO₂ unit in the anion of 1 (Fig. S6)⁺ displays a bonding pattern that is qualitatively similar to that found in the neutral species $MoO_2(C_6F_5)_2$. This is due to the fact 65 that the orbitals that are mainly responsible for the three M-C bonds are not involved in the MoO₂ bonding system. The calculated bond order of 2.5 for each Mo-O bond (Scheme 4c) is in keeping with the short bond length: average Mo-O 169.1(3) pm. Similar results have been obtained for the related anionic ⁷⁰ species $(MoO_2X_3)^{\square}$ with X = H, Cl or CN (Fig. S5 and Table S1),[†] These simple mononuclear species are likely to associate in dimers in condensed phase, as experimentally observed in the aforementioned tungsten(VI) derivative $[PPh_4]_2[(WO_2Cl_3)_2]$ (Scheme 1c).¹⁶ The reverse dissociation process was suggested to 75 occur upon heating the [NMe(octyl)₃]₂[(MoO₂Cl₃)₂] salt at 200 °C in the solid state,³⁷ but poor evidence for the actual formation of mononuclear [NMe(octyl)₃][MoO₂Cl₃] was given. The C₆F₅ group is a hard organic ligand, which has been assigned an electronegativity close to that of chlorine ($\chi_{Cl} = 3.16$ in Pauling ⁸⁰ scale).³⁸ Given this formal relationship, it is reasonable to assume that the steric bulk of the C_6F_5 groups together with the protective effect of the ortho-F substituents are the main factors precluding the association of $[MoO_2(C_6F_5)_3]^-$ units into dimers. Moreover, this anion shows no tendency to associate additional ligands, 85 since compound 1 fails to react at room temperature with sterically suited ligands, such as 'BuNC or MeCN. This lack of reactivity also points to a diminished acidity of the molybdenum(VI) center.

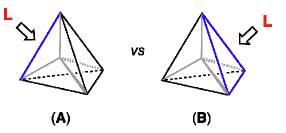
Stereochemical stability

⁹⁰ The room temperature ¹⁹F NMR spectrum of 1 in CD₂Cl₂ solution shows two F^o signals in 2:1 relative ratio (Fig. 4a). Two sets of F^m and F^p signals with the same relative ratio are also observed (Fig. 4b). This pattern, showing the presence of two chemically inequivalent C₆F₅ groups, is in keeping with the solid-state ⁹⁵ structure (Fig. 1). One of the most characteristic features of five-coordinate compounds of both metals and non-metals is their stereochemical non-rigidity in solution.^{39,40} Low energy barriers are usually associated with the dynamic process, especially in homoleptic AX₅ compounds, as for instance, in simple PF₅ (~13 ¹⁰⁰ kJ·mol⁻¹).⁴¹ or even in sterically crowded Sb(C₆F₅)₅ (24.4(4) kJ·mol⁻¹).⁴² Compound 1, however, shows no sign of polytopal

rearrangement up to 150 °C in dmf solution, \perp and thus exhibits a marked stereochemical stability. A lower limit of $E_a > 83$ kJ·mol⁻¹ can be estimated for the energy barrier in this case. The absence of polytopal rearrangement in compound 1 can be s assigned to the special stability attained by the $(MOO_2)^{2+}$ unit in a *cis* disposition and its reluctance to adopt a *trans* arrangement that would be required in one of the steps in a classic Berry pseudorotation mechanism.^{**43} This kind of limitation also seems to apply to related neutral AX₂Y₃ compounds, such as Me₂PF₃

¹⁰ and (Me₂N)₂PF₃, or non-strained cyclic derivatives, such as (CH₂)₅PF₃.³⁹ A satisfactory simulation of the experimental spectrum is shown in Fig. S7 (see ESI for details).[†]




Fig. 4 ¹⁹F NMR spectrum (376.308 MHz) of compound 1 in CD₂Cl₂ solution at 293 K with higher (a) and lower (b) frequency regions depicted separately.

Conclusions

A LUMO has been identified in the series of mononuclear, tetrahedral MoO_2X_2 derivatives with X = H, Cl, CN or C_6F_5 ²⁰ enabling the formation of the corresponding anionic $(MoO_2X_3)^{\Box}$ species. The mononuclear, five-coordinate $[MoO_2(C_6F_5)_3]^{\Box}$ anion in compound 1, which has been experimentally prepared in reasonable yield, exhibits a genuine edge-capped tetrahedral (*TE*-5) structure both in solid state (X-ray diffraction) and in solution

²⁵ (¹⁹F NMR spectroscopy). Similar geometries have also been found by DFT calculations to be the most energetically favored in the remaining compounds of the $(MoO_2X_3)^{\Box}$ series. In view of the

congruent behavior observed in the whole series encompassing representatives of most diverse types of ligands, it can be ³⁰ concluded that the *TE-5* geometry may have a wider and more prominent involvement in structural transformations than has hitherto been recognized or anticipated. Moreover, from a mechanistic point of view, the possibility of a ligand attack at the edge of a tetrahedral species (**A**) provides an interesting ³⁵ alternative in transition-metal chemistry to the well-known face attack (**B**), typically found, for instance, in the classic S_N2 nucleophilic substitution mechanism.⁴⁴

Experimental

40 General procedures and materials

Computational details are given in the ESI.[†] The reactions and manipulations were carried out under purified argon using Schlenk techniques. Solvents were dried using an MBraun SPS-800 System. The organolithium derivative LiC₆F₅ was prepared ⁴⁵ as described elsewhere.⁴⁵ The metal precursor MoCl₂O₂ was purchased (Aldrich) and used as received. Elemental analyses were carried out using a Perkin Elmer 2400 CHNS/O Series II microanalyzer. IR spectra of KBr discs were recorded on a Spectrum 100 Perkin-Elmer spectrophotometer (4000–200 cm⁻¹). ⁵⁰ Variable temperature ¹⁹F NMR spectra were recorded on a Bruker AV 400 spectrometer. Chemical shifts (δ in ppm) are given with respect to CFCl₃ as standard reference.

Synthesis of [NBu₄][MoO₂(C₆F₅)₃] (1)

To a dry Et₂O (40 cm³) solution of LiC₆F₅ (10.1 mmol) at -78 °C 55 was added MoCl₂O₂ (0.5 g, 2.5 mmol) suspended in Et₂O (15 cm³) at the same temperature. The resulting suspension formed by a clear solid in purple liquor was allowed to warm slowly while stirring. At -20 °C, solid [NBu₄]Br (0.81 g, 2.52 mmol) was added and the mixture was allowed to reach room 60 temperature. The suspension was stirred for an additional 15 h and then filtered and the filtrate was reserved for a further operation. The white solid obtained was extracted in CH₂Cl₂ (20 cm³), the extract was concentrated to dryness and the oily residue was further extracted with *i*PrOH (10 cm^3) and allowed to stand 65 for 2 days at -30 °C, after which a white solid formed. The solid was filtered, washed with *n*-hexane $(3 \times 3 \text{ cm}^3)$ and vacuumdried. The main crop was obtained from the initial Et₂O filtrate by concentration and standing at
30 °C (combined weight: 1.36 g, 1.56 mmol, 62% yield). IR (KBr): $v_{max}/cm^{-1} = 2967$ (w), 2879 70 (w), 1504 (s), 1459 (vs), 1438 (s), 1382 (w), 1367 (w), 1348 (m), 1258 (w), 1126 (w), 1107 (w), 1061 (s), 1008 (w), 957 (vs; C-F), 913 (s; Mo-O), 883 (w; [NBu₄]⁺), 874 (w), 797 (w), 767 (w; C_6F_5 : X-sensitive),⁴⁶ 738 (w; $[NBu_4]^+$), 485 (w), 379 (w), 348 (w). ¹⁹F NMR (470.385 MHz, CD₂Cl₂, 293 K): δ /ppm = -112.2 75 (4F, F_{ax}^{o}), -116.4 (2F, F_{eq}^{o}), -157.3 (2F, F_{ax}^{p}), -160.6 (1F, F_{eq}^{p}),

-163.0 (4F, F_{ax}^{m}), -163.6 (2F, F_{eq}^{m}); this spectrum (Fig. 3) is analyzed and simulated (Fig. S7) in the ESI (Section 3).† MS (MALDI–, DCTB): *m/z*: 631 [MoO₂(C₆F₅)₃]⁻. Elemental analysis calcd (%) for C₃₄H₃₆F₁₅NMoO₂: C 46.85, H 4.2, N 1.6; found: C \leq 46.4, H 4.3, N 1.4.

X-Ray structure determination

Single crystals of 1.1/4CH₂Cl₂ suitable for X-ray diffraction purposes were obtained by slow diffusion of a *n*-hexane layer (20 cm³) into a CH₂Cl₂ solution of **1** (40 mg) at -30 °C.

- ¹⁰ C₃₄H₃₆F₁₅MoNO₂·0.25CH₂Cl₂, M_t 892.8; crystal size: 0.29 × 0.09 × 0.04 mm³; space group $P\bar{1}$; a = 1119.22(3), b = 1295.30(4), c = 1310.07(5) pm, a = 79.063(3), $\beta = 84.902(3)$, $\gamma = 83.183(3)^\circ$, V = 1.84726(11) nm³; Z = 2; $\rho_{calc} = 1.605$ g cm⁻³; $\mu = 0.499$ mm⁻¹; graphite monochromated Mo-Kα radiation ($\lambda =$
- ¹⁵ 71.073 pm); T = 100(2) K; range for data collection; $4.16 \le \theta \le 25.50^{\circ}$; reflections collected/unique: 27884/6848 ($R_{int} = 0.1098$); Oxford Diffraction Xcalibur CCD diffractometer. The diffraction frames were integrated and corrected for absorption using the CrysAlis RED package.⁴⁷ Lorentz and polarization corrections
- $_{20}$ were applied. The structure was solved by direct methods. Due to the only average quality of the crystals, diffraction data were in general weak. One of the *n*Bu chains of the cation was found to be disordered over two positions, which were refined each with 0.5 occupancy. Restraints in the geometry of the disordered
- 25 atoms were used. Moreover, CH₂Cl₂ solvent is present near the inversion center and was refined with 0.25 occupancy. Refinement of this model against F^2 with SHELXL-97⁴⁸ converged to final residual indices of $R_1 = 0.0520$, $wR_2 = 0.0742$ [$I > 2\sigma(I)$] and $R_1 = 0.1155$, $wR_2 = 0.0812$ (all data). GoF = 0.875.
- ³⁰ CCDC 964630 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Acknowledgements

- ³⁵ This work was supported by the Spanish MICINN (DGPTC)/FEDER (Project CTQ2008-06669-C02-01/BQU), MINECO/FEDER (Project CTQ2012-35251), Universidad de Zaragoza (Project JIUZ 2012-CIE-02) and the Gobierno de Aragón (Grupo Consolidado E21: Química Inorgánica y de los
- ⁴⁰ Compuestos Organometálicos). We are indebted to Prof. Dr. S. Alvarez for kindly providing CShM data. We also thank the Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and the Centro de Supercomputación de Galicia (CESGA) for generous allocation of computational resources.

45 Notes and references

Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC– Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain, E-mail: menjon@unizar.es

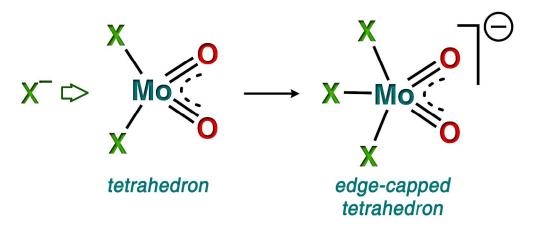
- † Electronic Supplementary Information (ESI) available: Theoretic 50 calculations (DFT and QTAIM) and simulation of the experimental ¹⁹F NMR spectrum of compound 1. For ESI and crystallographic data (CCDC
- 964630) see DOI: 10.1039/b00000x/[‡] The only stable iodo-derivative is formed with the heaviest metal, WO₂I₂.^{5,6} The fluoro-derivative WO₂F₂ seems to be unstable under
- $_{55}$ standard conditions,⁷ as it is also the bromo-derivative of the lighter metal, CrO₂Br₂.⁸

 $\$ Layered and columnar structures have been respectively found in crystals of $MoO_2Br_2{}^{12}$ and $MoO_2F_2{}^{13}$

- || Chromyl chloride is known to react with different chloride sources 60 giving no addition compound, but rather undergoing reduction to $Cr^{V,14}$
- ⁴⁰ giving no addition compound, our name indergoing reduction to C1⁻¹. ⁴¹ A wider structural variety is found in salts of the anionic [MO₂F₃]⁻ oxofluorides which, depending on the cation, are associated in fluorobridged dimers,¹⁷ cyclic trimers,^{17c} or infinite chains of vertex-sharing MO₂F₂F_{2/2}-octahedra.¹⁸
- 65 # Similar [MO₂X₃(OH₂)]⁻ hydrates seem to be present in concentrated HX aqueous solutions of the corresponding metal.¹⁹ On the probable existence of related species for element 106, seaborgium, see Ref. 20.

♦ We adhere the term "edge-capped tetrahedron" suggested by Alvarez and Llunell in Ref. 23c, for which we propose the *TE*-5 abbreviation in 70 keeping with related standard polyhedral symbols (see Ref. 24).

 \perp An upper limit of 150 °C is set by the probe manufacturer. ** Although other alternative rearrangement processes would, in principle, be possible,⁴³ it is clear that none of them works in this case, at least in the temperature range examined.


75

- Lehrbuch der Anorganischen Chemie, 102nd ed. (Founded by A. F. Holleman; Continued by E. Wiberg and N. Wiberg), Walter de Gruyter & Co., Berlin, 2007, Chapter 27, pp. 1562–1606.; N. N.
 Greenwood and A. Earnshow, Chemistry of the Elements, 2nd Ed., Butterwoth-Heinemann, Oxford, UK, 1997, Section 23.3.6, pp. 1019–1023.
- 2 S. Riedel and M. Kaupp, Coord. Chem. Rev., 2009, 253, 606.
- 3 See, for instance: D. K. Chand, R. D. Chakravarthy, Molybdenum Chloride Oxide, in e-EROS Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons, 2012, DOI: 10.1002/047084289X.rn01462; F. Freeman, Chromyl Chloride, in e-EROS Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, 2001, DOI: 10.1002/047084289X.rc177.
- 90 4 M. Lenz and R. Gruehn, Chem. Rev., 1997, 97, 2967.
- 5 J. Tillack, Z. anorg. allg. Chem., 1968, 357, 11; J. Tillack, P. Eckerlin and J. H. Dettingmeijer, Angew. Chem., Int. Ed. Engl., 1966, 5, 421.
- L. O. Atovmyan, Z. G. Aliev and B. M. Tarakanov, *Zh. Strukt. Khim.*, 1968, 9, 1097 (*J. Struct. Chem.*, 1968, 9, 985).
- 7 V. M. Petrov, V. N. Petrova, N. I. Giricheva and G. V. Girichev, *Zh. Strukt. Khim.*, 1997, **38**, 392 (*J. Struct. Chem.*, 1997, **38**, 318); M. J. Atherton and J. H. Holloway, *J. Chem. Soc., Chem. Commun.*, 1978, 254.
- 100 8 H. L. Krauss and K. Stark, Z. Naturforsch., Teil B, 1962, 17, 1.
 - 9 Even the dioxodichloride of the transactinoid element seaborgium, SgO₂Cl₂(g), has been calculated to exhibit a similar *T*-4 structure: V. Pershina and B. Fricke, *J. Phys. Chem.*, 1996, **100**, 8748.
- 10 J. Spandl, J. Supeł, T. Drews and K. Seppelt, Z. anorg. allg. Chem., 2006, **632**, 2222.
 - 11 O. Jarchow, F. Schröder and H. Schulz, Z. anorg. allg. Chem., 1968, **363**, 58.
 - 12 T. Schustereit, T. Schleid and I. Hartenbach, Z. anorg. allg. Chem., 2011, 637, 1159.
- 110 13 H. Shorafa, H. Ficicioglu, F. Tamadon, F. Girgsdies and K. Seppelt, *Inorg. Chem.*, 2010, 49, 4263.
 - 14 R. B. Johannesen and H.-L. Krauss, *Chem. Ber.*, 1964, **97**, 2094; H.-L. Krauss, M. Leder and G. Münster, *Chem. Ber.*, 1963, **96**, 3008, and Refs. given therein.
- ¹¹⁵ 15 W. P. Griffith, *Coord. Chem. Rev.*, 1970, **5**, 459. See also: R. F. Weinland and W. Knöll, *Z. anorg. Chem.*, 1905, **44**, 81; R. F. Weinland and W. Knöll, *Ber. dtsch. chem. Ges.*, 1904, **37**, 569.
 - 16 W. Willing, F. Schmock, U. Müller and K. Dehnicke, Z. anorg. allg. Chem., 1986, 532, 137.
- 120 17 a) T. Kanatani, K. Matsumoto and R. Hagiwara, *Eur. J. Inorg. Chem.*, 2010, 1049; b) R. Wollert, E. Rentschler, W. Massa and K. Dehnicke, *Z. anorg. allg. Chem.*, 1991, **596**, 121; c) M. Leimkühler, N. Buchholz and R. Mattes, *Z. Naturforsch., Teil B*, 1989, 44, 389; d) J. Dirand, L. Ricard and R. Weiss, *Transition Met. Chem.*, 1975, **1**, 2.
- 125 18 R. Mattes, G. Müller and H. J. Becher, Z. anorg. allg. Chem., 1972, 389, 177; L. O. Atovmyan, O. N. Krasochka and M. Y. Rahlin, J. Chem. Soc. D, 1971, 610.

- 19 M. Postel, J. G. Riess, J.-Y. Calves and J. E. Guerchais, *Inorg. Chim. Acta*, 1979, **32**, 175; Y. A. Buslaev, S. P. Petrosyants and V. I. Chagin, *Zh. Neorg. Khim.*, 1972, **17**, 704 (*Russ. J. Inorg. Chem.* 1972, **17**, 368); Y. A. Buslaev and S. P. Petrosyants, *Zh. Neorg.*
- Khim., 1971, 16, 1330 (Russ. J. Inorg. Chem., 1971, 16, 702); A. N. Zelikman, I. G. Kalinina and R. A. Smol'nikova, Zh. Neorg. Khim., 1968, 13, 2778 (Russ. J. Inorg. Chem., 1968, 13, 1429); W. P. Griffith and T. D. Wickins, J. Chem. Soc. A, 1967, 675; H. M. Neumann and N. C. Cook, J. Am. Chem. Soc., 1957, 79, 3026.
- 10 20 V. Pershina, *Radiochim. Acta*, 2004, **92**, 455.
- 21 a) C. Hohenstein, D. Kadzimirsz, R. Ludwig and A. Kornath, *Chem. Eur. J.*, 2011, **17**, 925; b) K. Garber and B. S. Ault, *Inorg. Chem.*, 1983, **22**, 2509.
- 22 a) B. Heyn and R. Hoffmann, *Z. Chem.*, 1976, 16, 195; b) F. Djafri, 15 R. Lai and M. Pierrot, *Acta Crystallogr., Sect. C*, 1989, **45**, 585.
- 23 a) S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell and D. Avnir, *Coord. Chem. Rev.*, 2005, 249, 1693; b) D. Casanova, J. Cirera, M. Llunell, P. Alemany, D. Avnir and S. Alvarez, *J. Am. Chem. Soc.*, 2004, 126, 1755; c) S. Alvarez and M. Llunell, *J. Chem. Soc., Dalton Trans.*, 2000, 3288.
- 24 Nomenclature of Inorganic Chemistry—IUPAC Recommendations 2005, RSC Publishing, Cambridge, UK, 2005, Section IR-9.3.2, pp. 175–179.
- 25 M. Llunell, D. Casanova, J. Cirera, J. M. Bofill, P. Alemany, S.
- Alvarez, M. Pinsky and D. Avnir, *SHAPE*, Version 1.1b 02t, Universitat de Barcelona and The Hebrew University of Jerusalem; M. Pinsky and D. Avnir, *Inorg. Chem.*, 1998, **37**, 5575.
- A. Ruiz-Martínez, D. Casanova and S. Alvarez, *Chem. Eur. J.*, 2010, 16, 6567; S. Alvarez, D. Casanova, P. Alemany, Manuscript in preparation.
- 27 T. R. Ward, H.-B. Bürgi, F. Gilardoni and J. Weber, J. Am. Chem. Soc., 1997, **119**, 11974.
- 28 a) S. Cai, D. M. Hoffman and D. A. Wierda, J. Chem. Soc., Chem. Commun., 1988, 313; b) A. Haaland, W. Scherer, H. V. Volden, H. P.
 ³⁵ Verne, O. Gropen, G. S. McGrady, A. J. Downs, G. Dierker, W. A. Herrmann, P. W. Roesky and M. R. Geisberger, Organometallics, 2000, 19, 22.
- 29 H. Thomassen and K. Hedberg, J. Mol. Struct., 1992, 273, 197.
- 30 M. Kaupp, Angew. Chem. Int. Ed., 2001, 40, 3535; M. Kaupp, Chem.
 Eur. J., 1999, 5, 3631.
- 31 V. L. Abramenko and V. S. Sergienko, *Russ. J. Inorg. Chem.*, 2009, 54, 2031; J. M. Mayer, *Inorg. Chem.*, 1988, 27, 3899; F. A. Schröder, *Acta Crystallogr., Sect. B*, 1975, 31, 2294.
- 32 P. Pyykkö and T. Tamm, J. Phys. Chem. A, 1997, 101, 8107.
- ⁴⁵ 33 K. Tatsumi and R. Hoffmann, *Inorg. Chem.*, 1980, **19**, 2656; W. P. Griffith and T. D. Wickins, *J. Chem. Soc. A*, 1968, 400; F. A. Cotton and R. M. Wing, *Inorg. Chem.*, 1965, **4**, 867; F. A. Cotton, S. M. Morehouse and J. S. Wood, *Inorg. Chem.*, 1964, **3**, 1603.
- 34 G. Kirsten, H. Görls and W. Seidel, Z. anorg. allg. Chem., 1997, **623**, 1661.
- 35 R. J. Gillespie and P. L. A. Popelier, *Chemical Bonding and Molecular Geometry*, Oxford University Press, New York, 2001; R. J. Gillespie and I. Hargittai, *The VSEPR Model of Molecular Geometry*, Allyn and Bacon, Boston, MA, 1991.
- 55 36 R. F. W. Bader, Atoms in Molecules A Quantum Theory, Clarendon Press, Oxford, UK, 1990.
 - 37 T. Sato, J. Therm. Anal., 1991, 37, 1309.
 - 38 W. A. Sheppard, J. Am. Chem. Soc., 1970, 92, 5419.
- R. R. Holmes, Prog. Inorg. Chem., 1984, **32**, 119; R. R. Holmes, Acc.
 Chem. Res., 1972, **5**, 296; P. Gillespie, P. Hoffman, H. Klusacek, D.
- Marquarding, S. Pfohl, F. Ramírez, E. A. Tsolis and I. Ugi, *Angew. Chem., Int. Ed. Engl.*, 1971, **10**, 687; E. L. Muetterties, *Acc. Chem. Res.*, 1970, **3**, 266.
- 40 P. Meakin, E. L. Muetterties and J. P. Jesson, J. Am. Chem. Soc., 1972, 94, 5271.
- 41 V. P. Spiridonov, A. A. Ischenko and L. S. Ivashkevich, *J. Mol. Struct.*, 1981, **72**, 153; L. S. Bernstein, S. Abramowitz and I. W. Levin, *J. Chem. Phys.*, 1976, **64**, 3228.
- 42 M. A. García-Monforte, P. J. Alonso, I. Ara, B. Menjón and P.
- ⁷⁰ Romero, Angew. Chem. Int. Ed., 2012, **51**, 2754.

- 43 E. P. A. Couzijn, J. C. Slootweg, A. W. Ehlers and K. Lammertsma, J. Am. Chem. Soc., 2010, 132, 18127, and Refs. given therein.
- 44 D. Casanova, P. Alemany, S. Alvarez, *Angew. Chem. Int. Ed.* 2006, 45, 1457; see also Ref. 23c.
- 75 45 D. E. Fenton, A. G. Massey, A. J. Park and V. B. Smith, In Organometallic Syntheses, Vol. 3 (Eds.: J. J. Eisch, R. B. King), Elsevier, Amsterdam 1986, pp. 343–345; R. Usón and A. Laguna, Inorg. Synth., 1982, 21, 71.
- 46 R. Usón and J. Forniés, Adv. Organomet. Chem., 1988, 28, 219; E.
 Maslowsky, Jr., Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, pp. 437–442.
- 47 CrysAlis RED, Program for X-ray CCD camera data reduction, Version 1.171.32.19, Oxford Diffraction Ltd., Oxford, UK, 2008.
- 48 G. M. Sheldrick, SHELXL-97: Program for the Refinement of Crystal
 85 Structures from Diffraction Data, University of Göttingen, Göttingen (Germany), 1997.

6 | Journal Name, [year], [vol], 00-00

Mononuclear $(MoO_2X_3)^{\&minus}$; compounds exhibit edge-capped tetrahedral structures, as has been theoretically calculated for X = H, Cl and CN, and experimentally found for X = C₆F₅. 1163x492mm (96 x 96 DPI)