Dalton Transactions

Semi-catalytic reduction of secondary amides to imines and aldehydes

Journal:	Dalton Transactions
Manuscript ID:	DT-ART-02-2014-000372.R2
Article Type:	Paper
Date Submitted by the Author:	17-Apr-2014
Complete List of Authors:	Lee, Sun-Hwa; Brock University, Chemistry Nikonov, Georgii; Brock University, Department of Chemistry

SCHOLARONE[™] Manuscripts

Journal Name

ARTICLE

Semi-catalytic reduction of secondary amides to imines and aldehydes

Sun-Hwa Lee,^{*a*} and Georgii I. Nikonov^{*a*},

Received ooth January 2012, Accepted ooth January 2012

Cite this: DOI: 10.1039/x0xx00000x

DOI: 10.1039/x0xx00000x

www.rsc.org/

Introduction

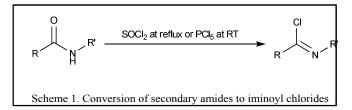
Amides are abundant in natural products, pharmaceuticals and agrochemical products,¹ but also are among the least reactive carbonyls. For example, their reduction presents a serious chemoselectivity problem if other, and usually more reactive functional groups, are present. Traditional reduction techniques are based on the application of alumo- and borohydrides, which are expensive, often pyrophoric, and generate a significant amount of waste upon the work-up.^{2,3} Reductions of amides by these reagents to alcohols and amines are well established but show little compatibility with the presence of other functional groups.^{4,5}

Silanes have recently received significant attention as reducing reagents due to their low toxicity, stability, ease of handing and accessibility from the by-products of the Direct Synthesis.⁶ Catalytic hydrosilylation of tertiary amides to amines is known for Ti,⁷ Mo,⁸ Fe,⁹ Ru,¹⁰ Co,¹¹ Rh,¹² Ir,¹³ Pt,¹⁴ Zn,¹⁵ and In¹⁶ catalysts, and in some cases can even provide chemoselective reduction of amides in the presence of other functional groups.^{9b,10b,13,15} Very recently Nolan et al. and Cui et al. reported a simple base-catalysed hydrosilylation of tertiary amides to amines,¹⁷ and Beller et al. introduced hydrosilylation of amides to amines in the presence of boronic acids.^{18,19}

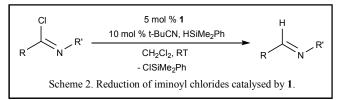
In contrast, reduction of secondary amides to amines is much less developed.^{9b,15b,20,21} In particular, Beller et al. reported a copper catalyst for chemoselective reduction of secondary amides by the inexpensive tetramethyldisiloxane (TMDS), and Reeves et al. developed a practical protocol by application of the Fichikami's catalyst Ru₃(CO)₉ and TMDS.²²

Reduction of primary amides to primary amines has been accomplished only very recently,^{12b,22,23} and can be compromised by the formation of nitriles, imines and secondary amines.^{23a,b} In particular, Beller et al. reported a two-component iron catalytic system which converts amides into nitriles and reduces the *in situ* formed nitriles to amines in high yields.^{23e}

Monoreduction of amides to aldehydes and imines is even more challenging but is of interest as an alternative method for the preparation of these important compounds and as a potential synthetic pathway in the transformation of amido groups.

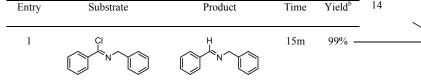

Secondary amides can be reduced by silane $HSiMe_2Ph$ into imines and aldehydes by a twostage process involving prior conversion of amides into iminoyl chloride followed by catalytic reduction mediated by the ruthenium complex $[Cp(i-Pr_3P)Ru(NCCH_3)_2]PF_6$ (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

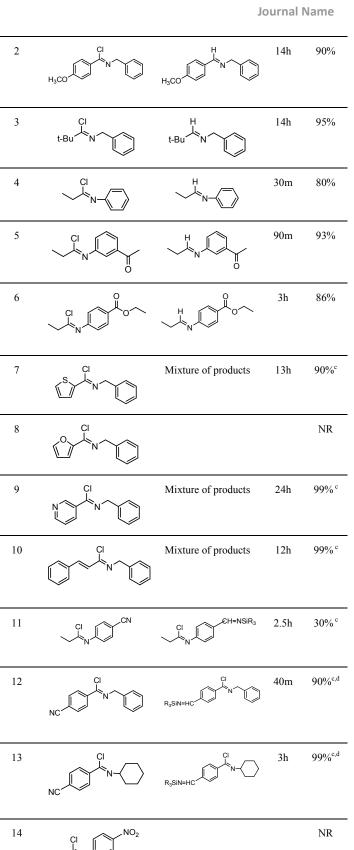
> Relevant to this theme is the report by Ganem et al. on the conversion of secondary amides to imines by stoichiometric amount of the Schwartz' reagent, (Cp₂ZrHCl)_n.²⁴ The imine product was isolated by a simple filtration of the reaction mixture through Celite. Georg et al. reported that the related treatment of tertiary and secondary amides with Cp₂ZrHCl followed by filtering the reaction mixture through Celite affords aldehydes instead of imines. Good tolerance to such reactive functionalities as keto, ester, nitro, and cyano was observed.²⁵ Buchwald et al. developed monoreduction of amides to aldehydes catalysed by the inexpensive complex Ti(OiPr)4, but this approach is applicable only to enolizable substrates.²⁶ Harrod et al. reported formation of aldehydes upon reduction of tertiary amides by H₂SiMePh catalysed by Cp₂TiX₂ (X=F, Me).²⁷ Very recently Brookhart et al. have shown catalytic reduction of secondary amides to imines by using a commercially available iridium complex [Ir(coe)₂Cl]₂ and H₂SiEt₂.^{1d,28} Full conversions were achieved with high efficiency at room temperature and a small catalyst load, and the imine products could be isolated by chromatography on basic alumina. Charette and co-workers reported a metal-free reduction of secondary amides by using pre-activation with triflic anhydride (Tf₂O) followed by reduction with HSiEt₃.²⁹ Good tolerance to several functional groups was observed. The corresponding imines were isolated by removing the triflate and silicon co-products in high vacuum to give analytically pure compounds. It was also found that the reaction can produce aldehydes when the reaction mixture is worked-up under acidic conditions.


> We have recently reported a Ru catalysed reduction of acid chlorides by HSiMe₂Ph, which is applicable to aromatic and aliphatic substrates and tolerates the presence of functional groups.³⁰ Given the fact that isoelectronic iminoyl chlorides are readily accessible from secondary amides, we became interested in the extension of this methodology to chemoselective reduction of amides. Here we report the application of this two-step approach to the preparation of imines and aldehydes from secondary amides.

Results and discussion

Reduction of amides to imines. Secondary amides are easily converted to iminoyl chlorides upon reactions with PCl_5 at room temperature or upon refluxing (70°C) with SOCl₂ (Scheme 1).³¹ The corresponding iminoyl chlorides were obtained with good to high yields (60-98%).




In the initial NMR screening, we found that complex $[Cp(i-Pr_3P)Ru(NCCH_3)_2]PF_6$ (1) catalyses the reduction of iminoyl chlorides by HSiMe₂Ph at room temperature, affording high NMR yields of the corresponding imines (Scheme 2). To avoid a possible catalyst deactivation, excess *t*-BuCN was added to the reaction mixture, as this was found to be beneficial for the reduction of corresponding acid chlorides.³⁰

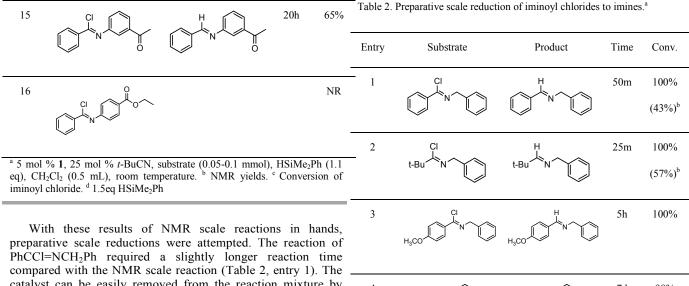
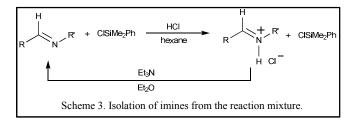
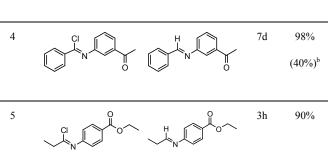
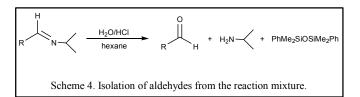

Full conversion of PhCCl=NCH₂Ph into the imine PhCH=NCH₂Ph was observed in only 15 min (Table 1, entry 1). The reactions of iminoyl chlorides bearing electron donating substituents, such as methoxy and t-butyl groups, were achieved with high conversions, although they required much longer reaction times (Table 1, entry 2 and 3). Alkyl substituted substrates also showed good conversion after 30 min (Table 1, entry 4). To our delight, we also found that reductions under these catalytic conditions tolerate the presence of keto- and ester groups (Table 1, entries 5, 6 and 15). But in contrast to the related reduction of acid chlorides, heterocyclic substrates do not react cleanly, affording a mixture of unidentified compounds (Table 1, entries 7, 8 and 9). Alkene bearing substrate also produced a mixture of compounds (Table 1, entry 10). Another difference with acid chlorides is that reduction of iminoyl chloride did not tolerate the presence of the cyano group. In the latter case, the products of nitrile hydrosilylation were obtained (Table 1, entries 11, 12 and 13). Finally, a mixture of unidentified compounds was produced upon attempted reduction of an iminoyl chloride with a nitro substituent (Table 1, entry 14).

Table 1. NMR scale screening of the reduction of iminoyl chlorides to imines.^a

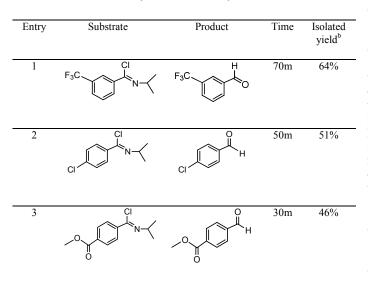



Journal Name

catalyst can be easily removed from the reaction mixture by adding a non-polar solvent. Several literature approaches to imine isolation were studied. Attempted removal of ClSiMe₂Ph (Mr = 170.71) from the crude reaction mixture in high vacuum in a similar fashion to the removal of Et_3SiOTf (*Mr*= 264.34) in the procedure reported by Charette,²⁹ was unsuccessful in that a significant amount of silane was left even upon drying the mixture for 5 hours at 60 mbar. On the other hand, TLC on basic alumina (Alumina G 1000 um, from Analtech) lead to imine decomposition even when the experiment was performed with dry solvents (hexane and ethyl acetate mixtures) in the glove-box. To circumvent these problems, the imine product was separated from the ClSiMe₂Ph by-product by precipitating the iminium salt upon addition of 1 equiv. HCl in ether, extraction with Et₂O, and finally regeneration of the imine by adding Et₃N (Scheme 3). The target imine, PhCH=NCH₂Ph, was isolated in a moderate yield (43%).


Reductions of t-BuCCl=NCH₂Ph was achieved quite smoothly (Table 2, entry 2), and the imine, *t*-BuCH=NCH₂Ph was obtained in 57% isolated yield following the same isolation protocol. The reaction of an iminoyl chloride bearing a ketone group was also achieved and the product was obtained in a moderate yield (Table 2, entry 4). Unfortunately, although the reductions initially produced the corresponding imines, attempted isolation of 4-CH₃OC₆H₄CH=NCH₂Ph and CH₃CH₂CH=NC₆H₄CO₂CH₂CH₃ failed because of decomposition of the products upon isolation (Table 2, entry 3 and 5).

^a 5 mol % **1**, 20 mol % *t*-BuCN, substrate (1.2-6.0 mmol), HSiMe₂Ph (1 eq), CH₂Cl₂ (12 mL), room temperature. ^b isolated yield.


Reduction of imidoyl chlorides to aldehydes. Due to the difficulty of isolating imines, we studied reduction of iminoyl chlorides to aldehydes. Aldehydes are useful building blocks for organic synthesis and are widely used in industrial processes. To achieve efficient isolation of aldehydes, isopropyl-substituted iminoyl chlorides were employed, because after reduction and hydrolysis these substrates give the highly volatile amine *i*-PrNH₂ as a coproduct (Scheme 4).

Reduction of iminoyl chlorides bearing both electronwithdrawing and electron-donating substituents was achieved under the conditions of Scheme 3. In the case of 3- $CF_3C_6H_4CCl=NCH(CH_3)_2$, the corresponding imine was obtained as a sole product and the aldehvde. 3-CF₃PhCHO, was isolated in a moderate vield after acid hydrolysis and chromatography on silica (Table 3, entry 1). Mixtures of imine and aldehyde were obtained in the reaction of $4-ClC_6H_4CCl=NCH(CH_3)_2$ and 4-CH₃O₂CC₆H₄CCl=NCH(CH₃)₂, although the formation of aldehydes was almost negligible (Table 3, entries 2 and 3). The corresponding aldehydes were separated from the reaction mixtures by following the same isolation procedure.

Page 4 of 7

Table 3. Reduction of iminoyl chlorides to aldehyde.^a

^a 5 mol % **1**, 20 mol % *t*-BuCN, substrate (1.0-1.6 mmol), HSiMe₂Ph (1 eq), CH₂Cl₂ (12 mL), room temperature. ^b isolated yield of aldehyde after hydrolysis and chromatography.

Experimental

General methods and instrumentation

Solvents were pre-dried by using Grubbs-type purification columns and stored in ampoules equipped with Teflon valve. Deuterated solvents were dried over sodium, potassium or CaH₂ as appropriate, distilled under reduced pressure and stored in Teflon valve ampoules. NMR samples were prepared in New Era tubes equipped with J. Young type Teflon valves. NMR spectra were obtained at room temperature with a Bruker DPX-300 and Bruker DPX-600 instruments (¹H: 300 and 600 MHz; ¹³C: 75.5 and 151 MHz). ¹H and ¹³C spectra were referenced internally to residual protio-solvent (¹H) or solvent (¹³C) resonances and are reported relative to tetramethylsilane $(\delta = 0 \text{ ppm})$. Chemical shifts are quoted in δ (ppm) and coupling constants in Hertz. IR spectra were recorded on a Perkin-Elmer 1600 FT-IR spectrometer as Nujol mulls between NaCl windows. All data are quoted in wavenumbers (cm⁻¹). The catalyst $[Cp(i-Pr_3P)Ru(NCCH_3)_2]PF_6$ (1) was prepared according to the literature procedure.³² Details of the syntheses of secondary amides and iminoyl chlorides are given in the Supplementary Information.

General procedure for the reduction of iminoyl chlorides to imines. In a representative procedure, a solution of $HSiMe_2Ph$ (145.0 µL, 1.04 mmol) and PhCCl=NCH₂Ph (150.0 mg, 0.69 mmol) in 0.3 mL of CD₂Cl₂ was added to a solution of [CpRu(PPrⁱ₃)(CH₃CN)₂]PF₆ (20 mg, 0.034 mmol) and *t*-BuCN (15 µL, 0.17 mmol) in 0.3 mL of CD₂Cl₂. The formation of PhCH=NCH₂Ph was periodically monitored by NMR spectroscopy. Volatiles we removed under vacuum and the residue was dissolved in hexane and filtered. To this mixture, comprised primarily of PhCH=NCH₂Ph and ClSiMe₂Ph, was added 1 eq. of 2 M HCl in Et₂O to give a precipitate. The precipitate was filtered and treated with 1.2 eq. of Et₃N in Et₂O. The solution was filtered and the filtrate was dried under vacuum. The product PhCH=NCH₂Ph was obtained as a yellow oil in 43 % yield. ¹H NMR (CDCl₃): δ 8.44 (s, 1, PhCH=NCH₂Ph), 7.39-7.86 (m, 10, *Ph*CH=NCH₂*Ph*), 4.88 (s, 2, PhCH=NCH₂Ph). ¹H-¹³C HSQC (CD₂Cl₂): δ 65.4 (s, PhCH=NCH₂Ph), 162.1 (s, PhCH=NCH₂Ph), 127.05-130.82 (s, *Ph*CH=NCH₂*Ph*).

General procedure for the reduction of iminoyl chlorides to aldehydes. The reduction was performed as discussed above with the following modification. After the reaction was complete, the catalyst was removed by extracting the products with hexanes. Then the mixture of imine and ClSiMe₂Ph was hydrolysed by adding 1 M organic HC1 solution. The products (aldehyde and PhMe₂SiOSiMe₂Ph) were then extracted with CH₂Cl₂ and the solution was dried over MgSO₄. In a representative example of the reduction of $F_3CC_6H_4CH=NPr^i$, 3- $F_3CC_6H_4CHO$ was isolated by chromatography over silica using 15:1 hexane:ethyl acetate as eluent to give the product as a colourless oil (89 mg, 64% yield).

¹H NMR (CH₂Cl₂): δ 10.02 (s, 1, C*H*O), 8.10 (s, 1, C₆*H*₄), 8.03 (d, J (H-H) = 8.15 Hz, 1, C₆*H*₄), 7.84 (d, J (H-H) = 8.15 Hz, 1, C₆*H*₄), 7.64 (t, J(H-H) = 7.72 Hz, 1, C₆*H*₄). ¹⁹F NMR (CDCl₃): δ -62.94 (s, 1, 3-CF₃PhCHO). ¹H-¹³C HSQC (CDCl₃): δ 186.3 (CHO) 132.4 (C₆H₄), 131.0 (C₆H₄), 129.7 (C₆H₄), 126.5 (C₆H₄).

Conclusions

We have developed a two-stage catalytic reduction of secondary amides by silane $HSiMe_2Ph$ mediated by the Ru complex 1. Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields to the corresponding imines and aldehydes under mild reaction conditions. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

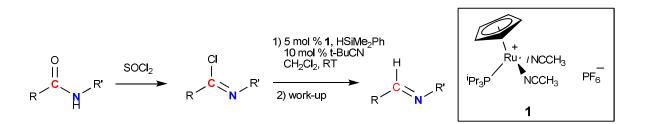
Acknowledgements

We are very grateful to Prof. J. Williams for inspiring discussions. This work was supported by a DG NSERC grant to G.I.N. We thank CIF and OIF for an equipment grant and R. Simionescu for his help with NMR.

Notes and references

^a Chemistry Department, Brock University, 500 Glenridge Ave., St.

Catharines, ON L2S 3A1, Canada. E-mail: gnikonov@brocku.ca


Electronic Supplementary Information (ESI) available: syntheses of secondary amides and iminoyl chlorides and their reduction to imines and aldehydes. See DOI: 10.1039/b000000x/

- ¹ The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science; A. Greenberg, C. M. Breneman, J. F. Liebman, Eds.; John Wiley & Sons: New York, 2000.
- ² (a) M. Hudlicky, *Reductions in Organic Chemistry*, ACS monograph, 1996, 118. (b) *Modern Reduction Methods*, P. G. Andersson, I. J. Munslow, Eds.; Wiley, NY, 2008.
- ³ Seyden-Penne, J. *Reduction by Alumino- and Borohydrides in Organic Synthesis*, 2nd ed.; Wiley, NY, 1997.
- ⁴ R. C. Larock, Comprehensive Organic Transformations: a Guide to Functional Group Preparation, 2nd ed., Wiley-VCH, NY, 1999.
- ⁵ N. Umino, T. Iwakuma, N. Itoh *Tetrahedron Lett.* 1976, **17**,763.
- ⁶ B. Marciniec (ed.), *Hydrosilylation*, Advances in Silicon Science; Springer: 2009.
- ⁷ For reduction accompanied by C-C coupling, see: (a) Selvakumar, K.; Harrod, J. F. *Angew. Chem. Int. Ed.* 2001, **40**, 2129. (b) Rangareddy, K.; Selvakumar, K.; Harrod, J. F. *J. Org. Chem.* 2004, **69**, 6843.
- ⁸ (a) A. C. Fernandes, C. C. Romão, *J. Mol. Catal. A: Chem.* 2007, 272, 60. (b) R. Arias-Ugarte, H. K. Sharma, A. L. C. Morris, K. H. Pannell, *J. Am. Chem.Soc.* 2012, 134, 848. (c) For reductive cleavage of the C-N bond, see: S. Krackl, C. I. Someya, S. Enthaler, *Chem. Eur. J.* 2012, 18, 15267.
- ⁹ (a) Y. Sunada, H. Kawakami, T. Imaoka, Y. Motoyama, H. Nagashima, *Angew. Chem. Int. Ed.* 2009, 48, 9511. (b) S. Zhou, K. Junge, D. Addis, S. Das, M. Beller, *Angew. Chem. Int. Ed.* 2009, 48, 9507. (c) A. Volkov, E. Buitrage, H. Adolfsson, *Eur. J. Org. Chem.* 2013, 2066. (d) D. Bézier, G. T. Venkanna, J. -B. Sortais, C. Darcel, *ChemCatChem* 2011, 3, 1747.
- ¹⁰ (a) Y. Motoyama, K. Mitsui, T. Ishida, H. Nagashima, J. Am.Chem. Soc. 2005, **127**, 13150. (b) H. Sasakuma, Y. Motoyama, H. Nagashima, Chem. Commun. 2007, 4916. (c) Y. Motoyama, S. Itonaga, T. Ishida, M. Takasaki, H. Nagashima, Org. Synthesis 2005, **82**, 188.
- ¹¹ T. Dombray, C. Helleu, C. Darcel, J.-B. Sortais, *Adv. Synth. Catal.* 2013, **355**, 3358.
- ¹² (a) R. Kuwano, M. Takahashi, Y. Ito, *Tetrahedron Lett.* 1998, **39**, 1017. (b) For earlier work, see: M. Igarashi, T. Fuchikami, *Tetrahedron Lett.* 2001, **42**, 1945. (c) G. Gerona-Navarro, A. Bonache, M. Alías, J. Pérez de Vega, T. García-López, P. López, C. Cativiela, R. González-Muñiz, *Tetrahedron Lett.* 2004, **45**, 2193.
- ¹³ S. Park, M. Brookhart, J. Am. Chem. Soc. 2012, **134**, 640.

- (a) L. I. Kopylova, N. D. Ivanova, M. G. Voronkov, *Zhur. Obshch. Khim.* 1985, 55, 1649. (b) S. Hanada, Y. Motoyama, H. Nagashima, *Tetrahedron Lett.* 2006, 47, 6173. (c) S. Hanada, E. Tsutsumi, Y. Motoyama, H. Nagashima, *J. Am. Chem. Soc.* 2009, 131, 15032.
- ¹⁵ (a) S. Das, D. Addis, S. Zhou, K. Junge, M. Beller, *J. Am. Chem. Soc.* 2010, **132**, 1770. (b) S. Das, D. Addis, K. Junge, M. Beller, *Chem. Eur. J.* 2011, **17**, 12186.
- ¹⁶ N. Sakai, K. Fujii, T. Konokahara, *Tetrahedron Lett.* 2008, **49**, 6873.
- ¹⁷ a) J. A. Fernández-Salas, S. Manzini, S. P. Nolan, *Chem. Commun.* 2013, **49**, 9758. b) W. Xie, M. Zhao, C. Cui, *Organometallics* 2013, **32**, 7440.
- ¹⁸ Y. Li, J. A. Molina de La Torre, K. Grabow, U. Bentrup, K. Junge, S. Zhou, A. Brückner, M. Beller, *Angew. Chem. Int. Ed.* 2013, **52**, 11577.
- ¹⁹ Related metal-free reduction of tertiary amides was accomplished with the Hantsch ester by using substrate pre-activation with Tf₂O: G. Barbe, A. Charette, *J. Am. Chem. Soc.* 2008, **130**, 18.
- ²⁰ (a) S. Hanada, T. Ishida, Y. Motoyama, H. Nagashima, J. Org. Chem. 2007, 72, 7551. (b) H. Sasakuma, Y. Motoyama, H. Nagashima, Chem Commun. 2007, 4916. (c) For earlier work, see: E. Frainnet, A. Bazouin, R. Calas, Compt. Rend. 1963, 257, 1304.
- ²¹ S. Das, B. Join, K. Junge, M. Beller, *Chem. Commun.* 2012, 48, 2683.
- ²² J. T. Reeves, Z. Tan, M. A. Marsini, Z. S. Han, Y. Xu, D. C. Reeves, H. Lee, B. Z. Lu, B. C. H. Senanayake, *Adv. Synth. Catal.* 2013, **355**, 47.
- ²³ (a) S. Laval, W. Dayoub, L. Pehlivan, E. Métay, A. Favre-Réguillon, D. Delbrayelle, G. Mignani, M. Lemaire, *Tetrahedron Lett.* 2011, **52**, 4072. (b) B. Li, J. -B. Sortais, C. Darcel, *Chem. Commun.* 2013, **49**, 3691. (c) S. Das, B. Wendt, K. Moller, K. Junge, M. Beller, *Angew. Chem. Int. Ed.* 2012, **51**, 1662.
- ²⁴ (a) D. J. Schedler, A G. Godfrey, B. Ganem, *Tetrahedron Lett.* 1993, **34**, 5035. (b) D. J. A. Schedler, J. Li, B. Ganem, *J. Org. Chem.* 1996, **61**, 4115.
- ²⁵ J. T. Spletstoser, J. M. White, A. R. Tunoori, G. I. Georg, *J. Am. Chem. Soc.* 2007, **129**, 3408.
- ²⁶ S. Bower, K. A. Kreutzer, S.L. Buchwald, *Angew. Chem. Int.Ed.* **1996**, *35*, 1515.
- ²⁷ K. Selvakumar, K. Rangareddy, J. F. Harrod, *Can. J. Chem.* 2004, 82, 1244.
- ²⁸ C. Cheng, M. Brookhart, J. Am. Chem. Soc. 2012, **134**, 11304.

- ²⁹ G. Pelletier, W. S. Bechara, A. B. Charette. J. Am. Chem. Soc. 2010, **132**, 12817.
- ³⁰ D. V. Gutsulyak, G. I. Nikonov, *Adv. Synth. Catal.* 2012, **354**, 607.
- ³¹ (a) H. Takahashi, T. Fukami, H. Kojima, T. Yamakawa, H. Takahashi, T. Sakamoto, T. Nichimura, M. Nakamura, T. Yosizumi, K. Niiyama, N. Ohtake, T. Hayama, *Tetrahedron* 2005, **61**, 3473. (b) A. D. Sinitsa, A. A. Shalimov, A. M. Nesterenko, D. M. Malenko, *Russ. Bull. Chem. Int. Ed.* 2005, **54**, 752.
- ³² A.L. Osipov, D.V. Gutsulyak, L.G. Kuzmina, J.A.K. Howard, D.A. Lemenovskii, G. Suess-Fink, G.I. Nikonov, *J. Organomet. Chem.*, 2007, **692**, 5081.

Table of contents entry with graphics

Ruthenium catalyzed reduction of iminoyl chlorides by HSiMe₂Ph allows for a two-step conversion of secondary amides into imines and aldehydes.