This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Synthesis and Characterisation of a New Anion Exchangeable Layered Hydroxyiodide

Faye Y. Southworth, Claire Wilson, Simon J. Coles and Andrew M. Fogg

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Lu₄O(OH)₉L₃H₂O is a new member of the anion exchangeable lanthanide hydroxyanion family of materials which has been synthesised hydrothermally. Its structure comprises positively charged [Lu₄O(OH)₉]⁺₉ layers with exchangeable charge balancing iodide anions located in the interlayer gallery. It has been found to undergo facile anion exchange reactions with dicarboxylate anions such as succinate and terephthalate at room temperature but reacts less readily with disulphonate anions such as 1,5- and 2,6-naphthalenedisulphonate under the same conditions. At reaction temperatures above 200 °C the cationic inorganic framework Lu₄O(OH)₉L₂H₂O forms instead of the layered phase.

Introduction

Inorganic materials capable of undergoing anion exchange reactions have been the focus of much attention over many years as a result of their compositional diversity and structural flexibility giving them applications in fields as diverse as catalysis, separation science and medicine amongst others. This area has traditionally been dominated by the layered double hydroxides (LDHs) which comprise extended 2D metal hydroxide sheets with exchangeable charge balancing anions between the layers. The largest family of LDHs has the general formula [M⁺ₓ₋ₓM₂⁺ₓ(OH)₂]⁺ₓA⁻ₓmH₂O where, for example, M⁺₂ = Mg²⁺, Ca²⁺, Ni²⁺, Co²⁺, Zn²⁺ and M⁺₃ = Al³⁺, Cr³⁺, Fe³⁺. A⁻ is the charge balancing anion which resides in interlayer regions within the structure which can range from small inorganic anions (e.g. carbonate, nitrate, chloride), to larger organic anions (e.g. succinate, terephthalate and surfactants) and even large, complex molecules such as DNA. A second group of LDHs can be prepared by the intercalation of salts into the different Al(OH)₃ polymorphs. These LDHs are just as flexible in terms of their anion exchange chemistry but are compositionally more limited with the reactions only being observed for lithium salts. M(NO₃)₂·xH₂O (M = Co, Ni, Cu, Zn), ZnSO₄ and MgCl₂·6H₂O. The diversity of inorganic anion exchange hosts has recently been increased with the discovery of lanthanide hydroxyanion materials. These materials can be represented by the formula Lnₓ(OH)yXz.H₂O and have been observed for the majority of the lanthanides including lutetium. Initially they were reported as having nitrate as the exchangeable anion in the interlayer gallery but subsequent studies have reported analogous materials containing chloride, bromide and sulfate. As for the LDHs these lanthanide based materials readily undergo anion exchange reactions with a wide variety of anions at room temperature. These lanthanide based materials have the potential to extend the range of applications available to inorganic anion exchange materials and have shown promise as catalysts and for their optical properties.

Experimental Section

Synthesis

Lu₄O(OH)₉L₃H₂O was synthesised under hydrothermal conditions. In a typical reaction, Lu₄ (3.3mmol, 1.834g), NaOH (5.25mmol, 0.21g) and NaI (3.6mmol, 0.54g) were placed into a Teflon liner with 10mL deionised water and treated hydrothermally in an oven for 45 hours at 150°C with a heating rate of 3°C/min and a cooling rate of 0.1°C/min. The product, which was a white microcrystalline powder, was then filtered under vacuum, washed with deionised water and dried with ethanol.

Anion exchange reactions were performed by suspending 50 mg of Lu₄O(OH)₉L₃H₂O in 5mL of an aqueous solution containing a 3-fold molar excess of the guest anion. The anions used in these reactions, as sodium salts, were succinate, phthalate, 1,5-naphthalenedisulfonate (1,5-NDS) and 2,6-naphthalenedisulfonate (2,6-NDS). The mixtures were stirred overnight at room temperature. The solid intercalation product was retrieved as described above.
The crystal data and structural refinement parameters are summarised in Table 1. The crystal structure is shown in Figure 1 from which it can be seen that it comprises \([\text{Lu}_2\text{O}(\text{OH})_9]_3\) layers which extend in the \(yz\) plane with uncoordinated iodide anions situated in the interlayer gallery.

The asymmetric unit contains three independent Lu\(^{3+}\) cations each of which is eight coordinate to oxygen atoms from hydroxide ions, water molecules and/or the oxide anion with bond lengths of 2.184(16) Å for the oxide, 2.282(16) – 2.507(17) Å for hydroxide and 2.36(4) and 2.43(3) Å for the water molecules.

The distinction between the hydroxide anions and water molecules was made by inspection of the structure with hydroxide ions bridging between three Lu\(^{3+}\) cations and water molecules coordinated to a single Lu\(^{3+}\) cation and oriented into the interlayer gallery. A diffraction pattern calculated from the crystal structure is compared to the experimental pattern in Figure 2 showing that the structure is representative of the major phase in the sample.

One unusual feature of the layers is the presence of the oxide anion which has not been observed in the related nitrate, chloride, bromide and sulfate materials. Oxide anions have, however, been seen in the cationic inorganic framework phases \(\text{Ln}_2\text{O}(\text{OH})_9\text{NO}_3\) (\(\text{Ln} = \text{Er} – \text{Lu}\)) and \(\text{Ln}_2\text{O}(\text{OH})_9\text{Cl}_2\text{H}_2\text{O}\) (\(\text{Ln} = \text{Yb}, \text{Lu}\)) which are formed from the same reaction mixtures as the layered phases but at higher temperatures (\(> 200 \, ^\circ\text{C}\)).

Time resolved \textit{in situ} energy dispersive X-ray diffraction data have shown that the layered phases form first and then convert to the framework materials and therefore the layered phases can be considered to be precursors to the frameworks at high temperatures. When this synthesis is performed at 220 \(^\circ\text{C}\) a framework material with the composition \(\text{Lu}_2\text{O}(\text{OH})_9\text{Cl}_2\text{H}_2\text{O}\) is formed which whilst less crystalline appears to be isostructural with the previously reported.

Table 1 Crystal data and structural refinement parameters for \(\text{Lu}_2\text{O}(\text{OH})_9\text{I}_3\text{H}_2\text{O}\).

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>(\text{H}_5\text{ILu}_2\text{O}_3)</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1049.9</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.6889 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>(Pbcn)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>(a = 9.399(7) , \text{Å}, \quad b = 12.413(9) , \text{Å}, \quad c = 13.5909(10) , \text{Å})</td>
</tr>
<tr>
<td>(\alpha = 90^\circ)</td>
<td></td>
</tr>
<tr>
<td>(\beta = 90^\circ)</td>
<td></td>
</tr>
<tr>
<td>(\gamma = 90^\circ)</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>1585.6(17) (\text{Å}^3)</td>
</tr>
<tr>
<td>(Z)</td>
<td>8</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>4.398 Mg / m(^3)</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>24.440 mm(^{-1})</td>
</tr>
<tr>
<td>(F(000))</td>
<td>1824</td>
</tr>
<tr>
<td>Crystal size</td>
<td>colourless rod</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.06 x 0.01 x 0.01 mm(^3)</td>
</tr>
<tr>
<td>(\theta) range for data collection</td>
<td>2.64 – 26.64°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>(-12 \leq h \leq 11, -16 \leq k \leq 14, -17 \leq l \leq 11)</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>8292</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>1898 ([R_w = 0.1397])</td>
</tr>
<tr>
<td>Completeness to (\theta = 27.500^\circ)</td>
<td>99.0 %</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on (F^2)</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>1898 / 0 / 61</td>
</tr>
<tr>
<td>Goodness-of-fit on (F^2)</td>
<td>0.988</td>
</tr>
<tr>
<td>Final (R) indices ([F^2 > 2\sigma(F^2)])</td>
<td>(R1 = 0.0833, , wR2 = 0.2135)</td>
</tr>
<tr>
<td>(R) indices ((\text{all data}))</td>
<td>(R1 = 0.1148, , wR2 = 0.2367)</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>n/a</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>9.746 and –5.078 e (\text{Å}^{-3})</td>
</tr>
</tbody>
</table>

Fig. 1 Crystal structure of \(\text{Lu}_2\text{O}(\text{OH})_9\text{I}_3\text{H}_2\text{O}\).

Characterisation

Powder X-ray diffraction (XRD) patterns were obtained with Cu \(K\alpha_1\) radiation on a Stoe Stadi-P diffractometer in either Bragg-Brentano or Debye-Scherrer geometry. Further characterisation was provided by TGA performed on a Perkin-Elmer STA6000 instrument where the sample was heated to 990°C at a rate of 5°C/min in a nitrogen atmosphere and Fourier transform infrared (FTIR) spectroscopy where spectra were recorded on a Perkin-Elmer Spectrum 100 spectrometer fitted with the Universal Diamond/ZnSe ATR. CHN analysis was performed on a Flash EA 1112 instrument.

X-ray Crystallography

Single crystal X-ray diffraction data for \(\text{Lu}_2\text{O}(\text{OH})_9\text{I}_3\text{H}_2\text{O}\) were collected on Beamline I19 of the Diamond Light Source. The beamline operates at a typical energy of 18 keV (Zr \(K\) absorption edge) and the experimental hutch (EH1) is equipped with a Crystal Logic 4-circle kappa geometry goniometer with a Rigaku Saturn 724+ CCD detector and an Oxford Cryosystems Cryostream plus cryostat. Unit cell determination and refinement and data reduction was performed using CrystalClear-SM Expert 2.0 r5. Structure solution was performed with SUPERFLIP\(^{35}\) and refined using SHELXL2013 within OLEX2.\(^{36, 37}\) Full details of the refinement and structural parameters are included in the ESI.

Results and Discussion

\(\text{Lu}_2\text{O}(\text{OH})_9\text{I}_3\text{H}_2\text{O}\) has been synthesised hydrothermally and represents a new member of the family of anion exchangeable lanthanide hydroxide phases which have been the focus of much attention in recent years. It was prepared as a white microcrystalline powder which contained small rod shaped single crystals. Structure determination was performed from synchrotron single crystal X-ray diffraction data which revealed that it crystallises in the orthorhombic space group \(\text{Pbcn}\) with the unit cell parameters \(a = 9.399(7) \, \text{Å}, \quad b = 12.413(9) \, \text{Å}, \quad c = 13.5909(10) \, \text{Å}\). The crystal data and structural refinement parameters are summarised in Table 1. The crystal structure is shown in Figure 1 from which it can be seen that it comprises \([\text{Lu}_2\text{O}(\text{OH})_9\text{I}_3]_3\) layers which extend in the \(yz\) plane with uncoordinated iodide anions situated in the interlayer gallery.\(^{46}\)

The asymmetric unit contains three independent Lu\(^{3+}\) cations each of which is eight coordinate to oxygen atoms from hydroxide ions, water molecules and/or the oxide anion with bond lengths of 2.184(16) Å for the oxide, 2.282(16) – 2.507(17) Å for hydroxide and 2.36(4) and 2.43(3) Å for the water molecules.\(^{56}\)

The distinction between the hydroxide anions and water molecules was made by inspection of the structure with hydroxide ions bridging between three Lu\(^{3+}\) cations and water molecules coordinated to a single Lu\(^{3+}\) cation and oriented into the interlayer gallery. A diffraction pattern calculated from the crystal structure is compared to the experimental pattern in Figure 2 showing that the structure is representative of the major phase in the sample.\(^{55}\)

One unusual feature of the layers is the presence of the oxide anion which has not been observed in the related nitrate, chloride, bromide and sulfate materials. Oxide anions have, however, been seen in the cationic inorganic framework phases \(\text{Ln}_2\text{O}(\text{OH})_9\text{NO}_3\) (\(\text{Ln} = \text{Er} – \text{Lu}\)) and \(\text{Ln}_2\text{O}(\text{OH})_9\text{Cl}_2\text{H}_2\text{O}\) (\(\text{Ln} = \text{Yb}, \text{Lu}\)) which are formed from the same reaction mixtures as the layered phases but at higher temperatures (\(> 200 \, ^\circ\text{C}\)).\(^{27, 28}\) Time resolved \textit{in situ} energy dispersive X-ray diffraction data have shown that the layered phases form first and then convert to the framework materials and therefore the layered phases can be considered to be precursors to the frameworks at high temperatures. When this synthesis is performed at 220 °C a framework material with the composition \(\text{Lu}_2\text{O}(\text{OH})_9\text{Cl}_2\text{H}_2\text{O}\) is formed which whilst less crystalline appears to be isostructural with the previously reported.

}\("Dalton Transactions Accepted Manuscript"
\[Page 2 of 6\]
Yb₃O(OH)₆Cl.2H₂O phase (Figures S1 and S2) suggesting that the observation of the oxide ion in the layered phase is reasonable (Figure 2(c)). Inspection of the powder XRD diffraction pattern of Lu₄O(OH)₉I.3H₂O (Figure 2(b)) shows that a small amount of the Lu₃O(OH)₆I.2H₂O is formed simultaneously as well as some unidentified amorphous material. Despite screening of the synthetic conditions it was not possible to prepare the layered phase without a small amount of the framework being present. Full details of the synthesis including in situ diffraction data, structure and anion exchange chemistry of the halide frameworks Ln₃O(OH)₆X.2H₂O (X = Cl, Br, I) will be published elsewhere.

Additional characterisation of Lu₄O(OH)₉I.3H₂O was provided by TGA, FTIR and CHN analysis. The TGA trace of Lu₄O(OH)₉I.3H₂O is shown in Figure 3 and shows three mass losses. The first two mass losses overlap giving a combined mass loss of 13.4 % below 400 °C corresponds to the loss of the bound water and decomposition of the hydroxide layers (calculated mass loss is 12.9 % for pure Lu₄O(OH)₉I.3H₂O). This is followed by loss of the iodide with a further mass loss of 13.8 % (calculated – 11.3 %) with decomposition complete by 700 °C. The residue is Lu₂O₃. The FTIR spectrum is shown in Figure 4(a) and shows bands in the 3200 – 3600 cm⁻¹ region due to the O-H stretches of the hydroxide anions and water molecules with an additional band at 1610 cm⁻¹ due to the bending mode of water. CHN analysis showed that the sample contained 1.09 % H compared to a calculated value of 1.44 % with only trace amounts of C suggesting little carbonate contamination consistent with the other lanthanide hydroxyanion phases.

One characteristic property of many layered hydroxide phases, including the previously reported lanthanide hydroxyanion materials and the widely studied LDHs, is their ability to undergo facile anion exchange reactions. The anion exchange capability of Lu₄O(OH)₉I.3H₂O has been demonstrated by reactions with aqueous solutions containing a threefold molar excess of the disodium salts of succinic, phthalic, 1,5-naphthalenedisulfonic (1,5-NDS) and 2,6-naphthalenedisulfonic (2,6-NDS) acids. Powder X-ray diffraction patterns of the resulting compounds are shown in Figure 5 and show the loss of the (100) reflection characteristic of Lu₄O(OH)₉I.3H₂O coupled with the appearance of a new...
organic species in addition to the O-H bands. For example, spectra (Figure 4) which all show bands characteristic of the evidence for the inclusion of the organic anions comes from FTIR the anion exchange products is summarised in Table 2. Further by the addition of AgNO$_3$ sulfonates. The loss of iodide from the materials was confirmed exchange is approximately 50% for the reactions with the precipitation of AgI in each case. The characterising data for these conditions with a significant amount of the host material remaining. Elemental analysis suggests that the degree of exchange is approximately 50% for the reactions with the sulfonates, 1,5- and 2,6-NDS, have only partially reacted under these conditions with a significant amount of the host material remaining. Elemental analysis suggests that the degree of exchange is approximately 50% for the reactions with the sulfonates. The loss of iodide from the materials was confirmed by the addition of AgNO$_3$ to the residual solution resulting from the precipitation of AgI in each case. The characterising data for the anion exchange products is summarised in Table 2. Further evidence for the inclusion of the organic anions comes from FTIR spectra (Figure 4) which all show bands characteristic of the organic species in addition to the O-H bands. For example, carboxylate stretches are observed at 1548 and 1545 cm$^{-1}$ for the succinate and phthalate compounds respectively.

Conclusions

Lu$_4$O(OH)$_9$L$_3$H$_2$O, a new member of the lanthanide hydroxyanion family of anion exchange hosts has been synthesised hydrothermally. Structure determination has revealed that it comprises positively charged [Lu$_4$O(OH)$_9$(H$_2$O)$_n$]$^+$ layers with uncoordinated iodide anions located in the interlayer gallery. These iodide anions can be exchanged readily at room temperature for dicarboxylate anions such as succinate and phthalate but it was observed that the reactivity towards the disulfonate anions 1,5- and 2,6-NDS was less resulting in only partial exchange under these conditions. As the reaction temperature is increased the layered phase is no longer observed with the cationic inorganic framework Lu$_4$O(OH)$_9$L$_3$H$_2$O forming instead.

Acknowledgements

AMF thanks the Royal Society for a University Research Fellowship and we thank the Diamond Light Source for time on beamline I19 under proposal MT6916.

Notes and references

c^* Calculated values are for the given formula and do not take into account the presence of the framework phase.

<table>
<thead>
<tr>
<th>Anion</th>
<th>Formula</th>
<th>Interlayer separation (Å)</th>
<th>Elemental Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodide</td>
<td>Lu$_4$O(OH)$_9$L$_3$H$_2$O</td>
<td>9.4</td>
<td>H 1.09, C 0.1</td>
</tr>
<tr>
<td>Succinate</td>
<td>Lu$_4$O(OH)$_9$(C$_6$H$_4$O$_2$)$_3$L$_3$H$_2$O</td>
<td>10.8</td>
<td>H 1.43, C 4.45</td>
</tr>
<tr>
<td>Phthalate</td>
<td>Lu$_4$O(OH)$_9$(C$_6$H$_4$O$_2$)$_3$L$_3$H$_2$O</td>
<td>13.1</td>
<td>H 1.36, C 6.68</td>
</tr>
<tr>
<td>1,5-NDS</td>
<td>Lu$_4$O(OH)$_9$(C$_6$H$_4$SO2)${3.25}$L$_3$H$_2$O</td>
<td>14.9</td>
<td>H 1.12, C 2.32</td>
</tr>
<tr>
<td>2,6-NDS</td>
<td>Lu$_4$O(OH)$_9$(C$_6$H$_4$SO2)${3.25}$L$_3$H$_2$O</td>
<td>15.3</td>
<td>H 1.19, C 3.18</td>
</tr>
</tbody>
</table>

Fig. 5 Powder XRD patterns of (a) Lu$_4$O(OH)$_9$L$_3$H$_2$O, (b) Lu$_4$O(OH)$_9$(C$_6$H$_4$O$_2$)$_3$L$_3$H$_2$O, (c) Lu$_4$O(OH)$_9$(C$_6$H$_4$O$_2$)$_3$L$_3$H$_2$O, (d) Lu$_4$O(OH)$_9$(1,5-ND$_2$L)$_3$L$_3$H$_2$O and (e) Lu$_4$O(OH)$_9$(2,6-ND$_2$L)$_3$L$_3$H$_2$O.

Conclusions

Lu$_4$O(OH)$_9$L$_3$H$_2$O, a new member of the lanthanide hydroxyanion family of anion exchange hosts has been synthesised hydrothermally. Structure determination has revealed that it comprises positively charged [Lu$_4$O(OH)$_9$(H$_2$O)$_n$]$^+$ layers with uncoordinated iodide anions located in the interlayer gallery. These iodide anions can be exchanged readily at room temperature for dicarboxylate anions such as succinate and phthalate but it was observed that the reactivity towards the disulfonate anions 1,5- and 2,6-NDS was less resulting in only partial exchange under these conditions. As the reaction temperature is increased the layered phase is no longer observed with the cationic inorganic framework Lu$_4$O(OH)$_9$L$_3$H$_2$O forming instead.

Acknowledgements

AMF thanks the Royal Society for a University Research Fellowship and we thank the Diamond Light Source for time on beamline I19 under proposal MT6916.

Notes and references

Synthesis and Characterisation of a New Anion Exchangeable Layered Hydroxyiodide

Faye Y. Southworth, Claire Wilson and Andrew M. Fogg

1 Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
2 EPSRC X-ray Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom

Graphical Abstract

A new anion exchangeable lanthanide hydroxyiodide has been synthesised, structurally characterised and its anion exchange chemistry investigated.