Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Synthesis and Characterisation of a New Anion Exchangeable Layered Hydroxyiodide

Faye Y. Southworth, Claire Wilson, Simon J. Coles and Andrew M. Fogg*a

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Lu₄O(OH)₉I.3H₂O is a new member of the anion exchangeable lanthanide hydroxyanion family of materials which has been synthesised hydrothermally. Its structure comprises positively charged $[Lu_4O(OH)_9(H_2O)_3]^+$ layers with exchangeable charge balancing iodide anions located in the interlayer gallery. It has been found to undergo facile anion exchange reactions with dicarboxylate anions such as 10 succinate and terephathalate at room temperature but reacts less readily with disulfonate anions such as 1,5- and 2,6-naphthalenedisulfonate under the same conditions. At reaction temperatures above 200 °C the cationic inorganic framework Lu₃O(OH)₆I.2H₂O forms instead of the layered phase.

Introduction

Inorganic materials capable of undergoing anion exchange 15 reactions have been the focus of much attention over many years as a result of their compositional diversity and structural flexibility giving them applications in fields as diverse as catalysis, separation science and medicine amongst others. ¹⁻⁴ This area has traditionally been dominated by the layered double 20 hydroxides (LDHs) which comprise extended 2D metal hydroxide sheets with exchangeable charge balancing anions between the layers. The largest family of LDHs has the general formula $[M^{2+}_{1-x}M^{3+}_{x}(OH)_{2}]^{x+}A^{n-}_{x/n}\cdot mH_{2}O$ where, for example, $M^{2+} = Mg^{2+}$, Ca^{2+} , Ni^{2+} , Co^{2+} , Zn^{2+} and $M^{3+} = Al^{3+}$, Cr^{3+} , Fe^{3+} . A^{n-} 25 is the charge balancing anion which resides in interlayer regions within the structure which can range from small inorganic anions (e.g. carbonate, nitrate, chloride), to larger organic anions (e.g. succinate, terephthalate and surfactants) and even large, complex molecules such as DNA.6-9 A second group of LDHs can be 30 prepared by the intercalation of salts into the different Al(OH)₃ polymorphs. 10 These LDHs are just as flexible in terms of their anion exchange chemistry but are compositionally more limited with the reactions only being observed for lithium salts, 11-13 $M(NO_3)_2 \times H_2O$ (M = Co. Ni. Cu. Zn). ¹⁴⁻¹⁶ ZnSO₄ and 35 MgCl₂.6H₂O.¹⁸

The diversity of inorganic anion exchange hosts has recently been increased with the discovery of lanthanide hydroxyanion materials. These materials can be represented by the formula Ln₂(OH)₅X.nH₂O and have been observed for the majority of the 40 lanthanides including lutetium. Initially they were reported as

- having nitrate as the exchangeable anion¹⁹⁻²¹ in the interlayer gallery but subsequent studies have reported analogous materials containing chloride, ^{22, 23} bromide²³ and sulfate. ²⁴ As for the LDHs these lanthanide based materials readily undergo anion exchange
- 45 reactions with a wide variety of anions at room temperature. These lanthanide based materials have the potential to extend the range of applications available to inorganic anion exchange materials and have shown promise as catalysts and for their optical properties.^{25, 26}
- 50 Time resolved in situ energy dispersive X-ray diffraction investigations into the formation of Yb₂(OH)₅NO₃.1.5H₂O

revealed that its mechanism of formation is complex and that it transforms into Yb₄O(OH)₉NO₃ at high temperatures; a material which has a 3D cationic inorganic framework structure.²⁷ Whilst

- 55 Yb₄O(OH)₀NO₃ does not undergo anion exchange its discovery subsequently led to the synthesis of Yb₃O(OH)₆Cl.2H₂O which has a similar cationic inorganic framework structure which does undergo anion exchange reactions with small inorganic and organic anions. 28 Yb₃O(OH)₆Cl.2H₂O is therefore a rare example
- 60 of an anion exchangeable cationic inorganic framework of which we believe that only one other example, a thorium borate, has been reported.²⁹

In this paper we report the synthesis and characterisation of a new member of the layered lanthanide hydroxyanion family,

65 Lu₄O(OH)₉I.3H₂O. Whilst there are numerous studies involving the intercalation of iodide e.g. from sea water or waste water streams it is much rarer to have iodide as the exchangeable anion within an inorganic system. 30-33

Experimental Section

70 Synthesis

Lu₄O(OH)₉I.3H₂O was synthesised under hydrothermal conditions. In a typical reaction, LuI₃ (3.3mmol, 1.834g), NaOH (5.25mmol, 0.21g) and NaI (3.6mmol, 0.54g) were placed into a Teflon liner with 10mL deionised water and treated 75 hydrothermally in an oven for 45 hours at 150°C with a heating rate of 3°C/min and a cooling rate of 0.1°C/min. The product, which was a white microcrystalline powder, was then filtered under vacuum, washed with deionised water and dried with

- 80 Anion exchange reactions were performed by suspending 50 mg of Lu₄O(OH)₉I.3H₂O in 5mL of an aqueous solution containing a 3-fold molar excess of the guest anion. The anions used in these reactions, as sodium salts, were succinate, phthalate, 1,5naphthalenedisulfonate (1,5-NDS)and
- 85 naphthalenedisulfonate (2,6-NDS). The mixtures were stirred overnight at room temperature. The solid intercalation product was retrieved as described above.

Fig. 1 Crystal structure of Lu₄O(OH)₉I.3H₂O.

Characterisation

Powder X-ray diffraction (XRD) patterns were obtained with Cu 5 Kα₁ radiation on a Stoe Stadi-P diffractometer in either Bragg-Brentano or Debye-Scherrer geometry. Further characterisation was provided by TGA performed on a Perkin-Elmer STA6000 instrument where the sample was heated to 990°C at a rate of 5°C/min in a nitrogen atmosphere and Fourier transform infrared 10 (FTIR) spectroscopy where spectra were recorded on a Perkin-Elmer Spectrum 100 spectrometer fitted with the Universal Diamond/ZnSe ATR. CHN analysis was performed on a Flash EA 1112 instrument.

X-ray Crystallography

15 Single crystal X-ray diffraction data for Lu₄O(OH)₉I.3H₂O were collected on Beamline I19 of the Diamond Light Source. The beamline operates at a typical energy of 18 keV (Zr K absorption edge) and the experimental hutch (EH1) is equipped with a Crystal Logic 4-circle kappa geometry goniometer with a Rigaku 20 Saturn 724+ CCD detector and an Oxford Cryosystems Cryostream plus cryostat. Unit cell determination and refinement and data reduction was performed using CrystalClear-SM Expert 2.0 r5.³⁴ Structure solution was performed with SUPERFLIP³⁵ and refined using SHELXL2013 within OLEX2.36, 37 Full details 25 of the refinement and structural parameters are included in the

Results and Discussion

Lu₄O(OH)₉I.3H₂O has been synthesised hydrothermally and represents a new member of the family of anion exchangeable 30 lanthanide hydroxide phases which have been the focus of much attention in recent years. It was prepared as a white microcrystalline powder which contained small rod shaped single crystals. Structure determination was performed from synchrotron single crystal X-ray diffraction data which revealed 35 that it crystallises in the orthorhombic space group Pbcm with the unit cell parameters a = 9.399(7) Å, b = 12.413(9) Å, c =13.5909(10) Å. The crystal data and structural refinement parameters are summarised in Table 1. The crystal structure is

Table 1 Crystal data and structural refinement parameters for 40 Lu₄O(OH)₉I.3H₂O.

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	H ₁₅ ILu ₄ O ₁₃ 1049.9 100(2) K 0.6889 Å Orthorhombic Pbcm $a = 9.399(7)$ Å $\alpha = 90^{\circ}$		
	$b = 12.413(9) \text{ Å}$ $\beta = 90^{\circ}$		
	$c = 13.5909(10) \text{ Å} \qquad \gamma = 90^{\circ}$		
Volume	$1585.6(17) \text{Å}^3$		
Z	8		
Density (calculated)	4.398 Mg / m ³		
Absorption coefficient	24.440 mm ⁻¹		
F(000)	1824		
Crystal	colourless rod		
Crystal size	$0.06 \times 0.01 \times 0.01 \text{ mm}^3$		
θ range for data collection	2.64 – 26.64°		
Index ranges	$-12 \le h \le 11, -16 \le k \le 14, -17 \le l$		
	≤ 11		
Reflections collected	8292		
Independent reflections	1898 [$R_{int} = 0.1397$]		
Completeness to $\theta = 27.500^{\circ}$	99.0 %		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	1898 / 0 / 61		
Goodness-of-fit on F^2	0.988		
Final R indices $[F^2 > 2\sigma(F^2)]$	R1 = 0.0833, $wR2 = 0.2135$		
R indices (all data)	R1 = 0.1148, wR2 = 0.2367		
Extinction coefficient	n/a		
Largest diff. peak and hole	9.746 and –5.078 e Å ⁻³		

shown in Figure 1 from which it can be seen that it comprises $[Lu_4O(OH)_9(H_2O)_3]^+$ layers which extend in the yz plane with uncoordinated iodide anions situated in the interlayer gallery. 45 The asymmetric unit contains three independent Lu³⁺ cations each of which is eight coordinate to oxygen atoms from hydroxide ions, water molecules and/or the oxide anion with bond lengths of 2.184(16) Å for the oxide, 2.282(16) - 2.507(17)for hydroxide and 2.36(4) and 2.43(3) for the water molecules. 50 The distinction between the hydroxide anions and water molecules was made by inspection of the structure with hydroxide ions bridging between three Lu3+ cations and water molecules coordinated to a single Lu3+ cation and oriented into the interlayer gallery. A diffraction pattern calculated from the 55 crystal structure is compared to the experimental pattern in Figure 2 showing that the structure is representative of the major phase in the sample.

One unusual feature of the layers is the presence of the oxide anion which has not been observed in the related nitrate, chloride, 60 bromide and sulfate materials. Oxide anions have, however, been seen in the cationic inorganic framework phases Ln₄O(OH)₉NO₃ (Ln = Er - Lu) and $Ln_3O(OH)_6Cl.2H_2O$ (Ln = Yb, Lu) which are formed from the same reaction mixtures as the layered phases but at higher temperatures (> 200 °C). 27, 28 Time resolved in situ 65 energy dispersive X-ray diffraction data have shown that the layered phases form first and then convert to the framework materials and therefore the layered phases can be considered to be precursors to the frameworks at high temperatures. When this synthesis is performed at 220 °C a framework material with the 70 composition Lu₃O(OH)₆I.2H₂O is formed which whilst less crystalline appears to be isostructural with the previously reported

Fig. 2 Powder XRD patterns of Lu₄O(OH)₉I.3H₂O (a) calculated and (b) experimental and (c) powder XRD pattern of Lu₃O(OH)₆I.2H₂O.

Yb₃O(OH)₆Cl.2H₂O phase (Figures S1 and S2) suggesting that 5 the observation of the oxide ion in the layered phase is reasonable (Figure 2(c)). Inspection of the powder XRD diffraction pattern of Lu₄O(OH)₀I.3H₂O (Figure 2(b)) shows that a small amount of the Lu₃O(OH)₆I.2H₂O is formed simultaneously as well as some unidentified amorphous material. Despite screening of the 10 synthetic conditions it was not possible to prepare the layered phase without a small amount of the framework being present. Full details of the synthesis including in situ diffraction data, structure and anion exchange chemistry of the halide frameworks $Ln_3O(OH)_6X.2H_2O(X = Cl, Br, I)$ will be published elsewhere. 15 Additional characterisation of Lu₄O(OH)₉I.3H₂O was provided by TGA, FTIR and CHN analysis. The TGA trace of Lu₄O(OH)₉I.3H₂O is shown in Figure 3 and shows three mass losses. The first two mass losses overlap giving a combined mass loss of 13.4 % below 400 °C corresponds to the loss of the bound 20 water and decomposition of the hydroxide layers (calculated mass loss is 12.9 % for pure Lu₄O(OH)₉I.3H₂O). This is followed by loss of the iodide with a further mass loss of 13.8 % (calculated – 11.3 %) with decomposition complete by 700 °C. The residue is Lu₂O₃. The FTIR spectrum is shown in Figure 4(a) and shows 25 bands in the 3200 – 3600 cm⁻¹ region due to the O-H stretches of the hydroxide anions and water molecules with an additional band at 1610 cm⁻¹ due to the bending mode of water. CHN analysis showed that the sample contained 1.09 % H compared to a calculated value of 1.44 % with only trace amounts of C

One characteristic property of many layered hydroxide phases, including the previously reported lanthanide hydroxyanion materials and the widely studied LDHs, is their ability to undergo

30 suggesting little carbonate contamination consistent with the

other lanthanide hydroxyanion phases.

Fig. 3 TGA trace of Lu₄O(OH)₉I.3H₂O.

Fig. 4 FTIR spectra of (a) Lu₄O(OH)₉I.3H₂O, (b) $Lu_4O(OH)_9(C_4H_4O_4)_{0.5}.3H_2O$, (c) $Lu_4O(OH)_9(C_8H_4O_4)_{0.5}.3H_2O$, (d) $Lu_4O(OH)_9(1,5-NDS)_{0.25}I_{0.5}.3H_2O$ and (e) $Lu_4O(OH)_9(2,6-1)$ $NDS)_{0.25}I_{0.5}.3H_2O.$

facile anion exchange reactions. The anion exchange capability of Lu₄O(OH)₉I.3H₂O has been demonstrated by reactions with aqueous solutions containing a threefold molar excess of the 45 disodium salts of succinic, phthalic, 1,5-naphthalenedisulfonic (1,5-NDS) and 2,6-naphthalenedisulfonic (2,6-NDS) acids. Powder X-ray diffraction patterns of the resulting compounds are shown in Figure 5 and show the loss of the (100) reflection characteristic of Lu₄O(OH)₉I.3H₂O coupled with the appearance 50 of a new

Table 2 Characterising data for the anion exchange products of Lu₄O(OH)₉I.3H₂O.

Anion	Formula	Interlayer separation (Å)	Elemental Analysis	
			Observed (%)	Calculated ^a (%)
Iodide	$Lu_4O(OH)_9I.3H_2O$	9.4	H 1.09	H 1.44
			C 0.1	C 0
Succinate	Lu ₄ O(OH) ₉ (C ₄ H ₄ O ₄) _{0.5} .3H ₂ O	10.8	H 1.43	Н 1.74
			C 4.45	C 2.44
Phthalate Lu ₂	$Lu_4O(OH)_9(C_8H_4O_4)_{0.5}.3H_2O$	13.1	Н 1.36	H 1.71
			C 6.68	C 4.78
1,5-NDS	$Lu_4O(OH)_9(C_{10}H_6(SO_3)_2)_{0.25}I_{0.5}.3H_2O$	14.9	H 1.12	H 1.22
			C 2.32	C 2.42
2,6-NDS	$Lu_4O(OH)_9(C_{10}H_6(SO_3)_2)_{0.25}I_{0.5}.3H_2O$	15.3	H 1.19	H1.22
			C 3.18	C 2.42

^a Calculated values are for the given formula and do not take into account the presence of the framework phase.

35

succinate and phthalate compounds respectively.

 $\label{eq:Fig. 5 Powder XRD patterns of (a) Lu4O(OH)9I.3H2O, (b) $$ Lu_4O(OH)9(C_4H_4O_4)_{0.5}.3H_2O, (c) Lu_4O(OH)9(C_8H_4O_4)_{0.5}.3H_2O, (d) $$ Lu_4O(OH)9(1,5-NDS)_{0.25}I_{0.5}.3H_2O \ and (e) Lu4O(OH)9(2,6-NDS)_{0.25}I_{0.5}.3H_2O. $$ Powder XRD patterns of (a) Lu4O(OH)9(2,6-NDS)_{0.25}I_{0.5}.$$ Powder XRD patterns of (a) Lu4O(OH)9(2,6-NDS)_{0.5}.$$ Powder XRD patterns of (a) Lu4O(OH)9(2,6-NDS)$

20

2θ (°)

10

15

10 reflection indicating an increase of the interlayer separation resulting from the successful intercalation of the organic anion. The framework phase is unaffected by the anion exchange reactions. From the data it is apparent that the carboxylate anions, succinate and phthalate, have fully exchanged whilst the 15 sulfonates, 1,5- and 2,6-NDS, have only partially reacted under these conditions with a significant amount of the host material remaining. Elemental analysis suggests that the degree of exchange is approximately 50 % for the reactions with the sulfonates. The loss of iodide from the materials was confirmed 20 by the addition of AgNO₃ to the residual solution resulting from the precipitation of AgI in each case. The characterising data for the anion exchange products is summarised in Table 2. Further evidence for the inclusion of the organic anions comes from FTIR spectra (Figure 4) which all show bands characteristic of the 25 organic species in addition to the O-H bands. For example, carboxylate stretches are observed at 1548 and 1545 cm⁻¹ for the

Conclusions

Lu₄O(OH)₉I.3H₂O, a new member of the lanthanide hydroxyanion family of anion exchange hosts has been synthesised hydrothermally. Structure determination has revealed that it comprises positively charged [Lu₄O(OH)₉(H₂O)₃]⁺ layers with uncoordinated iodide anions located in the interlayer gallery. These iodide anions can be exchanged readily at room temperature for dicarboxylate anions such as succinate and phthalate but it was observed that the reactivity towards the disulfonate anions 1,5- and 2,6-NDS was less resulting in only partial exchange under these conditions. As the reaction temperature is increased the layered phase is no longer observed with the cationic inorganic framework Lu₃O(OH)₆I.2H₂O forming instead.

Acknowledgements

AMF thanks the Royal Society for a University Research Fellowship and we thank the Diamond Light Source for time on beamline I19 under proposal MT6916.

Notes and references

- ^a Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, U.K. Tel: +44 151 794 2047; E-mail: afogg@liverpool.ac.uk
- EPSRC X-ray Crystallography Service, School of Chemistry, University
 of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- † Electronic Supplementary Information (ESI) available: [Additional characterising data and structural parameters for Lu₄O(OH)₉I.3H₂O is available. Further details of the crystal structure investigation may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-
- 55 Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de/request_for_deposited_data.html) on quoting the CSD number 427333]. See DOI: 10.1039/b000000x/
- 60 1. L. Feng and X. Duan, Struct. Bonding, 2006, 119, 193.
 - A. M. Fogg, J. S. Dunn, S. G. Shyu, D. R. Cary and D. O'Hare, Chem. Mater., 1998, 10, 351.
- 3. A. M. Fogg, V. M. Green, H. G. Harvey and D. O'Hare, *Adv. Mater.*, 1999, **11**, 1466.
- 65 4. B. F. Sels, D. E. De Vos and P. A. Jacobs, *Catal. Rev. Sci. Eng.*, 2001, 43, 443.
 - 5. D. G. Evans and R. C. T. Slade, Struct. Bonding, 2006, 119, 1-87.
 - 6. R. Allman, Chimia, 1970, 24, 99.

- 7. F. Cavani, F. Trifiro and A. Vaccari, Catal. Today, 1991, 11, 173.
- 8. A. I. Khan and D. O'Hare, J. Mater. Chem., 2002, 12, 3191.
- 9. G. R. Williams and D. O'Hare, J. Mater. Chem., 2006, 16, 3065.
- 10. G. R. Williams, S. J. Moorhouse, T. J. Prior, A. M. Fogg, N. H. Rees
- 5 and D. O'Hare, Dalton Trans., 2011, 40, 6012.
- 11. A. V. Besserguenev, A. M. Fogg, R. J. Francis, S. J. Price, D. O'Hare, V. P. Isupov and B. P. Tolochko, Chem. Mater., 1997, 9, 241.
- 12. A. M. Fogg, A. J. Freij and G. M. Parkinson, Chem. Mater., 2002, 14, 232.
- 10 13. A. M. Fogg and D. O'Hare, Chem. Mater., 1999, 11, 1771.
 - 14. A. M. Fogg, G. R. Williams, R. Chester and D. O'Hare, J. Mater. Chem., 2004, 14, 2369.
- 15. G. R. Williams, T. G. Dunbar, A. J. Beer, A. M. Fogg and D. O'Hare, J. Mater. Chem., 2006, 16, 1231.
- 15 16. G. R. Williams, T. G. Dunbar, A. J. Beer, A. M. Fogg and D. O'Hare, J. Mater. Chem., 2006, 16, 1222.
 - 17. S. Britto and P. V. Kamath, Inorg. Chem., 2010, 49, 11370.
 - 18. R. Chitrakar, Y. Makita, A. Sonoda and T. Hirotsu, J. Haz. Mater., 2011, 185, 1435.
- 20 19. L. J. McIntyre, L. K. Jackson and A. M. Fogg, Chem. Mater., 2008,
 - 20. L. J. McIntyre, L. K. Jackson and A. M. Fogg, J. Phys. Chem. Solids, 2008, 69, 1070.
 - 21. K. H. Lee and S. H. Byeon, Eur. J. Inorg. Chem., 2009, 929.
- 25 22. F. X. Geng, Y. Matsushita, R. Z. Ma, H. Xin, M. Tanaka, F. Izumi, N. Iyi and T. Sasaki, J. Am. Chem. Soc., 2008, 130, 16344.
 - 23. L. Poudret, T. J. Prior, L. J. McIntyre and A. M. Fogg, Chem. Mater., 2008, 20, 7447.
- 24. F. X. Geng, R. Z. Ma, Y. Matsushita, J. B. Liang, Y. Michiue and T.
- 30 Sasaki, Inorg. Chem., 2011, 50, 6667.
 - 25. F. X. Geng, R. Z. Ma and T. Sasaki, Acc. Chem. Res., 2010, 43, 1177.
- 26. F. Gandara, J. Perles, N. Snejko, M. Iglesias, B. Gomez-Lor, E. Gutierrez-Puebla and M. A. Monge, Angew. Chem. Int. Ed., 2006, 45, 35 7998.
 - 27. L. J. McIntyre, T. J. Prior and A. M. Fogg, Chem. Mater., 2010, 22, 2635
- 28. H. V. Goulding, S. E. Hulse, W. Clegg, R. W. Harrington, H. Y. Playford, R. I. Walton and A. M. Fogg, J. Am. Chem. Soc., 2010, 132, 40 13618.
 - 29. S. A. Wang, E. V. Alekseev, D. W. Juan, W. H. Casey, B. L. Phillips, W. Depmeier and T. E. Albrecht-Schmitt, Angew. Chem. Int. Ed., 2010,
- 30. J. Chen, L. Lv, J. He and L. Xv, Desalination and Water Treatment, 45 2012, **42**, 279.
- 31. M. J. Kang, K. S. Chun, S. W. Rhee and Y. Do, Radiochim. Acta, 1999, 85, 57.
- 32. F. L. Theiss, M. J. Sear-Hall, S. J. Palmer and R. L. Frost, Desalination and Water Treatment, 2012, 39, 166.
- 50 33. K. Watson, M. J. Farre and N. Knight, J. Env. Management, 2012, 110, 276.
 - 34. Rigaku, CrystalClear-SM Expert 2.0 r5, (2010).
 - 35. L. Palatinus and G. Chapuis, J. Appl. Cryst., 2007, 40, 786.
 - 36. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and
- 55 H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
 - 37. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112.

Synthesis and Characterisation of a New Anion

Exchangeable Layered Hydroxyiodide

Faye Y. Southworth, ¹ Claire Wilson² and Andrew M. Fogg¹*

Graphical Abstract

A new anion exchangeable lanthanide hydroxyiodide has been synthesised, structurally characterised and its anion exchange chemistry investigated.

¹ Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom

² EPSRC X-ray Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom