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An alternative and efficient approach for the synthesis of N-alkylated amides from nitriles and alcohols was proposed and accomplished. 

By the combination of [(IPr)AuNTf] (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene) and [Cp*IrCl2]2 (Cp* = η5-

pentamethylcyclopentadienyl), a series of nitriles are first hydrated to give amides, followed by the resulting amides were further N-

alkylated with a variety of alcohols as alkylating agents to afford N-alkylated amides with good to excellent yields. Compared with 

previous methods for the synthesis of N-alkylated amides from nitriles and alcohols as starting materials, this protocol could be 10 

accomplished with high atom economy under more environmentally benign conditions. 

Introduction 

The N-alkylated amides constitute one of the most important 

classes of nitrogen-containing compounds because they 

occurred widely in natural products, pharmaceuticals, 15 

agrochemicals, polymers, peptides and polymers.1 

Traditionally, N-alkylated amides were synthesized via the 

coupling of activated carboxylic acid derivatives, such as acid 

chlorides, anhydrides and esters, with N-alkylated amines.2 

However, these procedures are suffering from the use of the 20 

stoichiometric amount of hazardous and/or expensive reagents, 

low tolerance to sensitive functional groups, and the 

generation of a large amount of harmful by-products. In recent 

years, the synthesis of N-alkylated amides via transition 

metal-catalyzed dehydrogenative coupling of amines and 25 

alcohols has been developed and attracted much attention due 

to the low toxicity of alcohols and high atom economy of 

reaction (Scheme 1, A).3 Although significant advances have 

been made, N-alkylated amines would be generated inevitably 

as by-products (even with high proportion) in above process. 30 

The classical Ritter reaction possesses a long history and 

provides a powerful method for the synthesis of N-alkylated 

amides from easily available nitriles and alcohols as starting 

materials (Scheme 1, B).4 However, this reaction was carried 

out in the presence of an excess amount of concentrated 35 

sulfuric acid, and thus its application were seriously restricted. 

In 2013, Hong and co-workers reported a catalytic strategy 

available for the synthesis of N-alkylated amides from nitriles 

and alcohols based on “hydrogen transfer” using 

[RuH2(CO)(PPh3)3] as the catalyst (Scheme 1, C).5 Despite 40 

complete atom efficiency, this procedure has still obvious 

limitations and it requires 10 mol% catalyst loading, 10 mol% 

ligand (NHC precursor) and 20 mol% inorganic strong base 

(NaH). More recently, we demonstrated the synthesis of N-

alkylated amides via iridium-catalyzed tandem hydration/N-  45 
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Scheme 1 Strategies for the synthesis of N-alkylated amides from alcohols. 

 

alkylation reaction from nitriles, n-butylaldoxime and 50 

alcohols (Scheme 1, D).6 This procedure is attractive due to 

the use of low catalyst loading, high yields and operational 

convenience. However, 1.1-1.3 equiv of n-butylaldoxime was 

used as the water surrogate, and thus it resulted in the 

generation of large amount of n-butyronitrile as by-products 55 

and low atom economy. From the standpoint of sustainable 

chemistry, it is necessary to develop a new catalytic system 

for the synthesis of N-alkylated amides from nitriles and 

alcohols with high atom economy under more 
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environmentally benign conditions.  

In the past decade, homogeneous gold complexes have  

emerged as one of the most promising catalysts for the 

activation of multiple bonds in organic synthesis.7 Especially, 

Nolan and co-workers have demonstrated that cationic gold 5 

complexes [(IPr)Au(NTf2)] [IPr = 1,3- 

bis(diisopropylphenyl)imidazol-2-ylidene, NTf = 

bis(trifluoromethanesulfonyl)imidate)] is highly effective 

catalysts for the hydration of nitriles to amides under 

microwave irradiation.8 Encouraged by their research and as 10 

part of our continuing interest in the development of catalytic 

transformations with the activation of alcohols as 

electrophiles,6,9 we herein wish to report an alternative and 

efficient protocol for the synthesis of N-alkylaed amides from 

nitriles and alcohols by the combination of gold and iridum 15 

catalysts. The proposed reaction pathway is shown in Scheme 

2. Nitriles are first hydrated to form amides catalyzed by a 

gold complex, and the resulting amides are further N-alkylated 

with alcohols to afford N-alkylated amides catalyzed by an 

iridium complex.  20 

 

Scheme 2 The alternative protocol for the synthesis of N-alkylated 

amides from nitriles and alcohols.  

Results and discussion 

Our initial investigation focused on the synthesis of N-25 

benzylbenzamide from benzonitrile 1a and benzyl alcohol 2a. 

When [(IPr)Au(NTf2)] was used as the catalyst, the hydration 

of 1a proceeded in THF/H2O (1:1) at 130 oC for 12 h to give 

benzamide 3a in 90% yield [Equation (1)]. Using 

[(IPr)Au(OTf)] (OTf = triflate) as the alternative catalyst, the 30 

product 3a could be obtained in 83% yield. However, only 

10% yield was found when [(Ph3P)Au(NTf2)] was used as a  

Table 1 Synthesis of N-alkylated amides from benzonitrile 1a and a 

variety of alcohols 2 a,b  
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Table 1 (Continued) 
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Entry Alcohol Product Yield (%)b

O

81c

 
a Reaction conditions: 1) 1a (1 mmol), [(IPr)Au(NTf2)] (2 mol%), THF 

(0.5 mL), H2O (0.5 mL), 130 oC, 12 h; 2) [Cp*IrCl2]2 (1 mol%), 2 (1.2 

mmol), Cs2CO3 (0.2 equiv), toluene (1 mL), 130 oC, 12 h. b Isolated yield. 5 
c In the step of N-alkylation, 2 (2 mmol), KOH (0.2 equiv). d  2r (0.5 

mmol), the yield is based on 2r. 

 

catalyst under same reaction conditions. Apparently, the gold 

complex bearing a NHC ligand exhibited higher activity than 10 

one bearing a phosphine ligand under current conditions, and 

thus [(IPr)Au(NTf2)] was selected as the catalyst in the step of 

the hydration of nitrile. In our previous work,9g [Cp*IrCl2]2 

(Cp* = pentamethylcyclopentadienyl) was proven to be the 

most effective catalyst for the N-alkylation of benzamide with 15 

benzyl alcohol over other commercially available transition 

metal complexes, including [Ir(cod)Cl]2 (cod = 1,5-

cyclooctadienyl), [Cp*RhCl2]2, [Rh(cod)Cl]2 and [Ru(p-

cymene)Cl2]2. As a result of it, [Cp*IrCl2]2 was selected as the 

catalyst in the step of N-alkylation with alcohol. The 20 

sequential hydration/N-alkylation catalyzed by the 

combination of [(IPr)Au(NTf2)] and [Cp*IrCl2]2 was then 

examined. In the presence of [Cp*IrCl2]2 (1 mol%), Cs2CO3 

(0.2 equiv) and benzyl alcohol 2a (1.2 equiv), the resulting 

intermediate 3a in the step of hydration could be further 25 

converted to the N-alkylated product 4aa in 84% yield 

[Equation (2)].  

With the identified catalytic system in hand, the scope of 

reaction with respect to alcohols was investigated and these 

results are summarized in Table 1. Transformations of 30 

benzylic alcohols bearing one or two halogen atoms, such as 

fluorine 2b, chlorine 2c, dichloride 2d and bromine 2e, gave 

the corresponding products 4ab-4ae in 80-85% yields (Table 

1, entries 1-4). When benzylic alcohols bearing a more strong 

electron-withdrawing substituent, such as trifluoromethyl 2f 35 

and trifluoromethoxy 2g, were used as substrates, the desired 

products 4af and 4ag were obtained in 81% and 84% yields, 

respectively (Table 1, entries 5-6). Benzylic alcohols bearing  

Table 2 Synthesis of N-alkylated amides from a series of nitriles 1 and 

benzyl alcohol 2a a,b  
40 
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    2 (1.2 equiv.), toluene, 130 oC, 12h

R CN

Entry Nitrile Product Yield (%)b

O

 

a Reaction conditions: 1) 1a (1 mmol), [(IPr)Au(NTf2)] (2 mol%), THF 

(0.5 mL), H2O (0.5 mL), 130 oC, 12 h; 2) [Cp*IrCl2]2 (1 mol%), 2a (1.2 

mmol), Cs2CO3 (0.2 equiv), toluene (1 mL), 130 oC, 12 h. b Isolated yield. 
c In the step of hydration, 140 oC. d In the step of N-alkylation, the use of 

KOH (0.2 equiv) instead of Cs2CO3. 
e In the step of hydration, 45 

[(IPr)Au(NTf2)] (5 mol%), MW, 140 oC, 6 h; In the step of N-alkylation, 

[Cp*IrCl2]2 (2 mol%), 2a (2 equiv), Cs2CO3 (0.4 equiv), MW, 130 oC, 3 h. 
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an electron-donating substituent, such as methyl 2h-i and 

methoxy 2j, proceeded smoothly as well, giving the 

corresponding products 4ah-4aj in 81-85% yields (Table 1, 

entries 7-9). Furthermore, 2-naphthalenemethanol 2k, 

thiophen-2-ylmethanol 2l, 2-furanylmethanol 2m and 5 

ferrocenemethanol 2n were also proven to be suitable 

substrates and the desired products 4ak-4an were obtained in 

80-86% yield (Table 1, entries 10-13). Aliphatic alcohols, 

such as n-hexanol 2o, 3-methyl-1-butanol 2p and 

cyclohexylmethanol 2q, could be also converted to the N-10 

alkylated products 4ao-4aq in 79-81% yields, although 2 

equiv of alcohols were required (Table 1, entries 14-16). 

When 1,3-benzenedimethanol 2r was used as the substrate, 

the N,N’-dialkylated product 4ar was obtained in 77% yield 

(Table 1, entry 17).  15 

As shown in Table 2, the scope of reaction with respect to 

nitriles was then examined. Reactions of benzonitriles bearing 

one or two electron-withdrawing substituents, such as halogen 

atoms    1b-f    and    trifluoromethyl   1g,    provided    the  

corresponding products 4ba-4ga in 80-88% yields (Table 2, 20 

entries 1-6). Transformations of benzonitriles bearing an 

electron-donating substituent, such as methyl 1h and methoxy 

1i, afforded also the desired products 4ha and 4ia in 80% and 

82% yields, respectively (Table 2, entries 7-8). In the case of 

heteroaryl nitriles 1j and 1k, the corresponding products 4ja 25 

and 4ka could be also obtained in 81% and 82% yields, 

respectively (Table 2, entries 9-10). Under microwave 

irradiation at 140 oC (a focused single-mode microwave 

synthesizer, Discover CEM, USA, 300W), hydrations of 

aliphatic nitriles 1l and 1m proceeded for 6 h at 140 oC to 30 

afford the corresponding amides, which underwent the N-

alkylation to give the desired products 4la and 4ma in 79% 

and 77% yields, respectively (Table 2, entries 11-12).10 

Conclusion 

We have established an alternative and efficient approach for 35 

the synthesis of N-alkylated amides from nitriles and alcohols 

by the combination of [(IPr)Au(NTf2)] and [Cp*IrCl2]2. 

Compared with previous methods for the synthesis of N-

alkylated amides from nitriles and alcohols as starting 

materials, this protocol could be accomplished with high atom 40 

economy under more environmentally benign conditions and 

thus it exhibited the significant application potential. 

Experimental Section 

General Experimental Details. High-resolution mass spectra 

(HRMS) were obtained on a HPLC-Q-Tof MS(Micro) 45 

spectrometer and are reported as m/z (relative intensity). Accurate 

masses are reported for the molecular ion [M+Na].+ Proton 

nuclear magnetic resonance (1H NMR) spectra were recorded at 

500 MHz using a Bruker Avance 500 spectrometer. Chemical 

shifts are reported in delta (δ) units, parts per million (ppm) 50 

downfield from tetramethylsilane or ppm relative to the center of 

the singlet at 7.26 ppm for CDCl3 and 2.50 ppm for DMSO-d6. 

Coupling constants J values are reported in Hertz (Hz), and the 

splitting patterns were designated as follows: s, singlet; d, doublet; 

t, triplet; m, multiplet; b, broad. Carbon-13 nuclear magnetic 55 

resonance (13C NMR) spectra were recorded at 125 MHz using a 

Bruker Avance 500 spectrometer. Chemical shifts are reported in 

delta (δ) units, ppm relative to the center of the triplet at 77.0 ppm 

for CDCl3 and 39.5 ppm for DMSO-d6. 
13C NMR spectra were 

routinely run with broadband decoupling. [(IPr)Au(NTf2)]
11 and 60 

[Cp*IrCl2]2
12 were synthesized according to previous reports. 

General procedure for the synthesis of N-alkylated amines 

from nitriles and alcohols. To a 25 ml oven-dried Schlenk tube 

were added nitrile 1 (1 mmol), [(IPr)Au(NTf2)] (0.02 mmol, 2 

mol%), THF (0.5 mL), H2O (0.5 mL), and the mixture was heated 65 

at 130 oC for 12 h. The reaction mixture was allowed to cool to 

ambient temperature and the solvent was removed under reduced 

pressure. Alcohol 2 (1.2 mmol), [Cp*IrCl2]2 (0.01 mmol, 1 

mol%), Cs2CO3 (0.2 mmol, 0.2 equiv) and toluene (1 mL) were 

added. The mixture was further heated at 130 oC for 12h. The 70 

reaction mixture was cooled to ambient temperature, concentrated 

in vacuo and purified by flash column chromatography with 

hexanes/ethyl acetate to afford the corresponding product.  

N-benzylbenzamide (4aa).6 mp 96-97 oC; 1H NMR (500 MHz, 

CDCl3) δ 7.79 (d, J = 7.4 Hz, 2H, ArH), 7.50 (t, J = 7.0 Hz, 1H, 75 

ArH), 7.43 (t, J = 7.3 Hz, 2H, ArH), 7.39-7.27 (m, 5H, ArH), 

6.45 (br s, 1H, NH), 4.65 (d, J = 5.4 Hz, 2H, NCH2); 
13C NMR 

(125 MHz, CDCl3) δ 167.4, 138.2, 134.3, 131.5, 128.7, 128.5, 

127.8, 127.5, 126.9, 44.0. 

N-(4-fluorobenzyl)benzamide (4ab).6 mp 107-108 oC; 1H 80 

NMR (500 MHz, CDCl3) δ 7.79 (d, J = 7.4Hz, 2H, ArH), 7.51 (t, 

J = 7.4 Hz, 2H, ArH), 7.43 (t, J = 7.6 Hz, 2H, ArH), 7.36-7.29 

(m, 2H, ArH), 7.03 (t, J = 8.6 Hz, 2H, ArH), 6.46 (br s, 1H, NH), 

4.61 (d, J = 5.7 Hz, 2H, NCH2); 
13C NMR (125 MHz, CDCl3) δ 

167.4, 162.2 (d, JC-F = 244.1 Hz), 134.2, 134.0, 131.6, 129.5 (d, 85 

JC-F = 8.0 Hz), 128.6, 126.9, 115.5 (d, JC-F = 21.5 Hz), 43.3. 

N-(4-chlorobenzyl)benzamide (4ac).6 mp 139-140 oC; 1H 

NMR (500 MHz, CDCl3).δ 7.78 (d, J = 7.4 Hz, 2H, ArH), 7.51 (t, 

J = 7.3 Hz, 1H, ArH), 7.43 (t, J = 7.5 Hz, 2H, ArH), 7.34-7.27 

(m, 4H, ArH), 6.51 (br s, 1H, NH), 4.61 (d, J = 5.8 Hz, 2H, 90 

NCH2); 
13C NMR (125 MHz, CDCl3) δ 167.5, 136.8, 134.1, 

133.2, 131.6, 129.1, 128.8, 128.5, 126.9, 43.3. 

N-(2,4-dichlorobenzyl)benzamide (4ad).6 mp 93-94 oC; 1H 

NMR (500 MHz, CDCl3) δ 7.78 (d, J = 7.6 Hz, 2H, ArH), 7.51 (t, 

J = 7.3 Hz, 1H, ArH), 7.47-7.37 (m, 4H, ArH), 7.23 (dd, J = 8.2 95 

Hz and 1.3 Hz, 1H, ArH), 6.66 (br s, 1H, NH), 4.68 (d, J = 6.0 Hz, 

2H, NCH2); 
13C NMR (125 MHz, CDCl3) δ 167.4, 134.2, 134.1, 

133.99, 133.95, 131.7, 131.0, 129.3, 128.6, 127.3, 126.9, 41.4. 

N-(4-bromobenzyl)benzamide (4ae).6 mp 134-135 oC; 1H 

NMR (500 MHz, CDCl3) δ 7.78 (d, J = 7.6 Hz, 2H, ArH), 7.51 (t, 100 

J = 7.3 Hz, 1H, ArH), 7.48-7.41 (m, 4H, ArH), 7.23 (d, J = 8.2 

Hz, 2H, ArH), 6.50 (br s, 1H, NH), 4.59 (d, J = 5.8 Hz, 2H, 

NCH2); 
13C NMR (125 MHz, CDCl3) δ 167.5, 137.3, 134.1, 

131.8, 131.6, 129.5, 128.6, 126.9, 121.4, 43.4. 

N-(4-(trifluoromethyl)benzyl)benzamide (4af).6 mp 140-141 105 

oC; 1H NMR (500 MHz, CDCl3) δ 7.80 (d, J = 6.2 Hz, 2H, ArH), 

7.60 (t, J = 7.2 Hz, 2H, ArH), 7.55-7.49 (m, 1H, ArH), 7.49-7.38 

(m, 4H, ArH), 6.74-6.47 (m, 1H, NH), 4.75-4.64 (m, 2H, NCH2); 
13C NMR (125 MHz, CDCl3) δ 167.6, 142.4, 134.0, 131.7, 129.8 
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(q, JC-F = 32.2 Hz), 128.6, 127.9, 127.0, 125.6 (q, JC-F = 3.5 Hz), 

124.0 (q, JC-F = 270.4 Hz), 43.5. 

N-(4-(trifluoromethoxy)benzyl)benzamide (4ag).6 mp 134-

135 oC; 1H NMR (500 MHz, CDCl3) δ 7.79 (d, J = 7.6Hz, 2H, 

ArH), 7.52 (t, J = 7.3 Hz, 1H, ArH), 7.44 (t, J = 7.5 Hz, 2H, ArH), 5 

7.38 (d, J = 8.4 Hz, 2H, ArH), 7.19 (d, J = 8.2 Hz, 2H, ArH), 6.50 

(br s, 1H, NH), 4.65 (d, J = 5.8 Hz, 2H, NCH2); 
13C NMR (125 

MHz, CDCl3) δ 167.5, 148.6, 137.1, 134.1, 131.7, 129.2, 128.6, 

127.0, 121.2, 120.4 (q, JC-F = 255.6 Hz), 43.2. 

N-(2-methylbenzyl)benzamide (4ah).13 mp 113-114 oC; 1H 10 

NMR (500 MHz, CDCl3) δ 7.78 (d, J = 7.8 Hz, 2H, ArH), 7.50 (t, 

J = 7.2 Hz, 1H, ArH), 7.42(t, J = 7.6 Hz, 2H, ArH), 7.30 (d, J = 

7.0 Hz, 1H, ArH), 7.25-7.17 (m, 3H, ArH), 6.22 (br s, 1H, NH), 

4.65 (d, J = 5.3 Hz, 2H, NCH2), 2.38 (s, 3H, CH3); 
13C NMR 

(125 MHz, CDCl3) δ 167.2, 136.6, 135.7, 134.3, 131.5, 130.6, 15 

128.6, 128.5, 127.9, 126.9, 126.2, 42.3, 19.0. 

N-(4-methylbenzyl)benzamide (4ai).6 mp 140-141 oC; 1H 

NMR (500 MHz, CDCl3) δ 7.78 (d, J = 7.7 Hz, 2H, ArH), 7.49 (t, 

J = 7.3 Hz, 1H, ArH), 7.42 (t, J = 7.6 Hz, 2H, ArH), 7.25 (d, J = 

7.9 Hz, 2H, ArH), 7.16 (d, J = 7.7 Hz, 2H, ArH), 6.38 (br s, 1H, 20 

NH), 4.60 (d, J = 5.5 Hz, 2H, NCH2), 2.34 (s, 3H, CH3); 
13C 

NMR (125 MHz, CDCl3) δ 167.3, 137.3, 135.1, 134.4, 131.4, 

129.4, 128.5, 127.9, 126.9, 43.8, 21.0. 

N-(4-methoxybenzyl)benzamide (4aj).6 mp 97-98 oC; 1H 

NMR (500 MHz, CDCl3) δ 7.78 (d, J = 7.5 Hz, 2H, ArH), 7.49 (t, 25 

J = 7.2 Hz, 1H, ArH), 7.42 (t, J = 7.4 Hz, 2H, ArH), 7.29 (d, J = 

8.2 Hz, 2H, ArH), 6.88 (d, J = 8.3 Hz, 2H, ArH), 6.36 (br s, 1H, 

NH), 4.58 (d, J = 5.4 Hz, 2H, NCH2), 3.80 (s, 3H, OCH3); 
13C 

NMR (125 MHz, CDCl3) δ 167.2, 159.0, 134.4, 131.4, 130.3, 

129.2, 128.5, 126.9, 114.1, 55.2, 43.5. 30 

N-(naphthalen-2-ylmethyl)benzamide (4ak).6 mp 141-142 oC; 
1H NMR (500 MHz, CDCl3) δ 7.88-7.76 (m, 6H, ArH), 7.52-7.39 

(m, 6H, ArH), 6.54 (br s, 1H,NH), 4.80 (d, J = 5.0 Hz, 2H, 

NCH2); 
13CNMR (125 MHz, CDCl3) δ 167.4, 135.6, 134.3, 133.3, 

132.8, 131.5, 128.6, 127.7, 127.6, 127.0, 126.5, 126.3, 125.94, 35 

125.91, 44.2. 

N-(thiophen-2-ylmethyl)benzamide (4al).6 mp 119-120 oC; 
1H NMR (500 MHz, CDCl3) δ 7.78 (d, J = 7.5 Hz, 2H, ArH), 

7.50 (t, J = 7.4 Hz, 1H, ArH), 7.43 (t, J = 7.6 Hz, 2H, ArH), 7.25 

(d, J = 5.3 Hz, 1H, ArH), 7.05 (d, J = 3.0 Hz, 1H, ArH), 6.98 (dd, 40 

J = 4.8 Hz and 3.7 Hz, 1H, ArH), 6.45 (br s, 1H, NH), 4.82 (d, J 

= 5.6 Hz, 2H, NCH2); 
13C NMR (125 MHz, CDCl3) δ 167.1, 

140.8, 134.1, 131.6, 128.5, 127.0, 126.9, 126.2, 125.3, 38.8. 

N-(furan-2-ylmethyl)benzamide (4am).6 mp 98-99 oC; 1H 

NMR (500 MHz, CDCl3) δ 7.78 (d, J = 7.4 Hz, 2H, ArH), 7.50 (t, 45 

J = 7.3 Hz, 1H, ArH), 7.43 (t, J = 7.5 Hz, 2H, ArH), 7.38 (s, 1H, 

ArH), 6.44 (br s, 1H, NH), 6.34 (m, 1H, ArH), 6.30 (m, 1H, ArH), 

4.65 (d, J = 5.4 Hz, 2H, NCH2); 
13C NMR (125 MHz, CDCl3) δ 

167.2, 151.2, 142.2, 134.1, 131.6, 128.5, 127.0, 110.5, 107.6, 

37.0. 50 

N-(ferrocenemethyl)benzamide (4an). mp 165-166 oC; 1H 

NMR (500 MHz, CDCl3) δ 7.78 (d, J = 7.4 Hz, 2H, ArH), 7.51 (t, 

J = 7.3 Hz, 1H, ArH), 7.44 (t, J = 7.4 Hz, 2H, ArH), 6.30 (br s, 

1H, NH), 4.34 (d, J = 5.2 Hz, 2H, NCH2), 4.27 (s, 2H, Ferrocene 

H), 4.21 (s, 5H, Ferrocene H), 4.18 (s, 2H, Ferrocene H); 13C 55 

NMR (125 MHz, CDCl3) δ 166.8, 134.5, 131.4, 128.6, 126.8, 

84.7, 68.5, 68.3, 68.2, 39.3. HRMS-EI (70 eV) m/z calcd for 

C18H17NOFeNa [M + Na]+ 342.0557, found 342.0567. 

N-hexylbenzamide (4ao).6 mp 41-42 oC; 1H NMR (500 MHz, 

CDCl3) δ 7.76 (d, J = 7.6 Hz, 2H, ArH), 7.49 (t, J = 7.2 Hz, 1H, 60 

ArH), 7.42 (t, J = 7.5 Hz, 2H, ArH), 6.14 (br s, 1H, NH), 3.45 (q, 

J = 6.7 Hz, 2H, NCH2), 1.61 (quint, J = 7.3 Hz, 2H, CH2), 1.42-

1.29 (m, 6H, 3xCH2), 0.89 (t, J = 6.4 Hz, 3H, CH3); 
13C NMR 

(125 MHz, CDCl3) δ 167.5, 134.9, 131.2, 128.4, 126.8, 40.1, 31.5, 

29.6, 26.6, 22.5, 14.0. 65 

N-isopentylbenzamide (4ap).9g oil; 1H NMR (500 MHz, 

CDCl3) δ 7.75 (d, J = 7.5 Hz, 2H, ArH), 7.49 (t, J = 7.3 Hz, 1H, 

ArH), 7.42 (t, J = 7.5 Hz, 2H, ArH), 6.10 (br s, 1H, NH), 3.48 

(quart, J = 6.8 Hz, 2H, NCH2), 1.69 (sept, J = 6.6 Hz, 1H, CH), 

1.51 (quart, J = 7.3 Hz, 2H, CH2), 0.96 (d, J = 6.6 Hz, 6H, 70 

2xCH3); 
13C NMR (125 MHz, CDCl3) δ 167.5, 134.8, 131.2, 

128.4, 126.8, 38.5, 38.3, 25.9, 22.4. 

N-(cyclohexylmethyl)benzamide (4aq).6 mp 103-104 oC; 1H 

NMR (500 MHz, CDCl3) δ 7.76 (d, J = 7.3 Hz, 2H, ArH), 7.49 (t, 

J = 7.1 Hz, 1H, ArH), 7.43 (t, J = 7.3 Hz, 2H, ArH), 6.21 (br s, 75 

1H, NH), 3.30 (t, J = 6.3 Hz, 2H, NCH2), 1.82-1.71 (m, 4H, 

2xCH2), 1.70-1.64 (m, 1H, CH), 1.63-1.54 (m, 1H, CH), 1.30-

1.12 (m, 3H, CH and CH2), 1.00 (q, J = 11.7 Hz, 2H, CH2);
 13C 

NMR (125 MHz, CDCl3) δ 167.5, 134.9, 131.2, 128.5, 126.8, 

46.2, 38.0, 30.9, 26.3, 25.8. 80 

N,N'-m-xylylene-bis-benzamide (4ar).14 mp 170-171 oC; 1H 

NMR (500 MHz, DMSO-d6) δ 9.04 (t, J = 5.3 Hz, 2H, ArH), 7.86 

(d, J = 7.4 Hz, 4H, ArH), 7.52 (t, J = 7.0 Hz, 2H, ArH), 7.45 (t, J 

= 7.4 Hz, 4H, ArH), 7.32-7.25 (m, 2H, ArH), 7.23-7.17 (m, 2H, 

ArH), 4.47 (d, J = 5.4 Hz, 4H, NCH2); 
13C NMR (125 MHz, 85 

DMSO-d6) δ 166.2, 139.8, 134.4, 131.1, 128.2, 127.2, 125.8, 

125.6, 42.5. 

N-benzyl-4-fluorobenzamide (4ba).6 mp 141-142 oC; 1H 

NMR (500 MHz, CDCl3) δ 7.83-7.76 (m, 2H, ArH), 7.40-7.27 (m, 

5H, ArH), 7.10 (t, J = 8.6 Hz, 2H, ArH), 6.38 (br s, 1H, NH), 90 

4.63 (d, J = 5.6 Hz, 2H, NCH2); 
13C NMR (125 MHz, CDCl3) δ 

166.3, 164.7 (d, JC-F = 251.0 Hz), 138.0, 130.5,129.3 (d, JC-F = 

9.0 Hz), 128.8, 127.8, 127.6, 115.5 (d, JC-F = 21.7 Hz), 44.1. 

N-benzyl-4-chlorobenzamide (4ca).6 mp 162-163 oC; 1H 

NMR (500 MHz, CDCl3) δ 7.73 (d, J = 8.2 Hz, 2H, ArH), 7.40 (d, 95 

J = 8.2 Hz, 2H, ArH), 7.38-7.28 (m, 5H, ArH), 6.40 (br s, 1H, 

NH), 4.63 (d, J = 5.6 Hz, 2H, NCH2); 
13C NMR (125 MHz, 

CDCl3) δ 166.3, 137.9, 137.7, 132.7, 128.8, 128.4, 127.9, 127.7, 

44.2. 

N-benzyl-3,4-dichlorobenzamide (4da).6 mp 105-106 oC; 1H 100 

NMR (500 MHz, CDCl3) δ 7.88 (s, 1H, ArH), 7.60 (d, J = 7.8 Hz, 

1H, ArH), 7.50 (d, J = 8.2 Hz, 1H, ArH), 7.41-7.29 (m, 5H, ArH), 

6.45 (br s, 1H, NH), 4.62 (d, J = 5.3 Hz, 2H, NCH2);  
13C NMR 

(125 MHz, CDCl3) δ 165.2, 137.6, 135.9, 134.1, 133.0, 130.6, 

129.2, 128.8, 127.9, 127.7, 126.1, 44.2. 105 

N-benzyl-3-bromobenzamide (4ea).13 mp 87-88 oC; 1H NMR 

(500 MHz, CDCl3): δ 7.93 (s, 1H, ArH), 7.70 (d, J = 7.7 Hz, 1H, 

ArH), 7.64-7.62 (m, 1H, ArH), 7.38-7.29 (m, 6H, ArH), 6.40 (s, 
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br, 1H, NH), 4.63 (d, J = 5.6 Hz, 2H, CH2); 
13C NMR (125 MHz, 

CDCl3): δ 165.9, 137.8, 136.3, 134.5, 130.2, 130.1, 128.8, 127.9, 

127.7, 125.5, 122.7, 44.2.  

N-benzyl-4-bromobenzamide (4fa).15 mp 169-170 oC; 1H 

NMR (500 MHz, CDCl3) δ 7.66 (d, J = 8.4 Hz, 2H, ArH), 7.56 (d, 5 

J = 8.4 Hz, 2H, ArH), 7.39-7.28 (m, 5H, ArH), 6.38 (br s, 1H, 

NH), 4.63 (d, J = 5.6 Hz, 2H, NCH2); 
13C NMR (125 MHz, 

CDCl3) δ 166.4, 137.9, 133.2, 131.8, 128.8, 128.6, 127.9, 127.7, 

126.2, 44.2. 

N-benzyl-4-(trifluoromethyl)benzamide (4ga).6 mp 170-171 10 

oC; 1H NMR (500 MHz, CDCl3) δ 7.90 (d, J = 8.0 Hz, 2H, ArH), 

7.69 (d, J = 8.0 Hz, 2H, ArH), 7.41-7.29 (m, 5H, ArH), 6.48 (br s, 

1H, NH), 4.66 (d, J = 5.6 Hz, 2H, NCH2);
 13C NMR (125 MHz, 

CDCl3) δ 166.1, 137.8, 137.7, 133.3 (q, JC-F = 32.5 Hz), 128.8, 

127.9, 127.8, 127.4, 125.6, 123.6 (q, JC-F = 271.1 Hz), 44.3. 15 

N-benzyl-4-methylbenzamide (4ha).6 mp 132-133 oC; 1H 

NMR (500 MHz, CDCl3) δ 7.69 (d, J = 8.0 Hz, 2H, ArH), 7.38-

7.27 (m, 5H, ArH), 7.22 (d, J = 6.8 Hz, 2H, ArH), 6.50-6.30 (m, 

1H, NH), 4.64 (dd, J = 5.3 Hz and 3.4 Hz, NCH2), 2.39 (s, 3H, 

CH3); 
13C NMR (125 MHz, CDCl3) δ 167.3, 141.9, 138.3, 131.5, 20 

129.2, 128.7, 127.8, 127.5, 126.9, 44.0, 21.4. 

N-benzyl-4-methoxybenzamide (4ia).6 mp 121-122 oC; 1H 

NMR (500 MHz, CDCl3) δ 7.76 (d, J = 8.6 Hz, 2H, ArH), 7.39-

7.27 (m, 5H, ArH), 6.91 (d, J = 8.6 Hz, 2H, ArH), 6.36 (br s, 1H, 

NH), 4.63 (d, J = 5.6 Hz, 2H, NCH2), 3.84 (s, 3H, CH3); 
13C 25 

NMR (125 MHz, CDCl3) δ 166.9, 162.2, 138.4, 128.8, 128.7, 

127.8, 127.4, 126.6, 113.7 , 55.3, 44.0. 

N-benzylthiophene-2-carboxamide (4ja).6 mp 117-118 oC; 
1H NMR (500 MHz, CDCl3) δ 7.51 (d, J = 3.8 Hz, 1H, ArH), 

7.47 (d, J = 5.0 Hz, 1H, ArH), 7.38-7.33 (m, 4H, ArH), 7.33-7.27 30 

(m, 1H, ArH), 7.06 (t, J = 4.3 Hz, 1H, ArH), 6.30 (br s, 1H, NH), 

4.62 (d, J = 5.7 Hz, 2H, NCH2); 
13C NMR (125 MHz, CDCl3) δ 

161.8, 138.8, 138.0, 130.0, 128.7, 128.1, 127.8, 127.6, 127.5, 

43.9. 

N-benzylfuran-2-carboxamide (4ka).6 mp 105-106 oC; 1H 35 

NMR (500 MHz, CDCl3): δ 7.42-7.41(m, 1H, ArH), 7.36-7.35 

(m, 4H, ArH), 7.32-7.28 (m, 1H, ArH), 7.15 (dd, J = 3.5 Hz and 

0.6 Hz, 1H, ArH), 6.64 (s, br, 1H, NH), 6.64 (dd, J = 3.5 Hz and 

1.8 Hz, 1H, ArH), 4.62 (d, J = 5.9 Hz, 2H, CH2); 
13C NMR (125 

MHz, CDCl3): δ 158.2, 147.9, 143.8, 138.0, 128.7, 127.9, 127.6, 40 

114.3, 112.1, 43.1. 

N-benzyl-2-phenylpropanamide (4la).6 mp 76-77 oC; 1H 

NMR (500 MHz, CDCl3) δ 7.39-7.20 (m, 8H, ArH), 7.14 (d, J = 

7.0 Hz, 2H, ArH), 5.65 (br s, 1H, NH), 4.45-4.33 (m, 2H, NCH2), 

3.60 (q, J = 6.9 Hz, 2H, CH), 1.56 (d, J = 7.0 Hz, 3H, CH3); 
13C 45 

NMR (125 MHz, CDCl3) δ 174.0, 141.3, 138.3, 128.9, 128.5, 

127.6, 127.4, 127.3, 127.2, 47.1, 43.5, 18.5. 

N-benzylbutyramide (4ma).6 mp 47-48 oC; 1H NMR (500 

MHz, CDCl3) δ 7.37-7.31 (m, 2H, ArH), 7.31-7.24 (m, 3H, ArH), 

5.74 (br s, 1H, NH), 4.45 (d, J = 4.7 Hz, 2H, NCH2), 2.19 (t, J = 50 

7.4 Hz, 2H, CH2), 1.70 (sext, J = 7.2 Hz, 2H, CH2), 0.96 (t, J = 

7.3 Hz, 3H, CH3); 
13C NMR (125 MHz, CDCl3) δ 172.8, 138.4, 

128.6, 127.7, 127.4, 43.5, 38.6, 19.1, 13.7. 
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