Catalysis Science & Technology

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

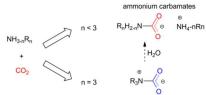
www.rsc.org/catalysis

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

COMMUNICATION

Observation of Guanidine-Carbon Dioxide Complexation in Solution and Its Role in Reaction of Carbon Dioxide and Propargylamines

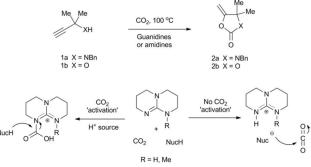

Rachel Nicholls,^b Simon Kaufhold^a and Bao N. Nguyen*^{a,b}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

The first observation of guanidine-CO₂ 'activation' complexes in solution using ATR-FTIR is reported. While cyclic guanidines TBD and MTBD form stable and detectable complexes with CO₂, other guanidines and tertiary amines do Correlation with catalytic activity of 10 not. these between amines/guanidines in reaction CO_2 and propargylamines indicated that the basicity of the catalyst, rather than its ability to form complexes with CO₂, is the origin of catalytic activity.

¹⁵ The thermodynamic stability of carbon dioxide (CO_2) ,¹ is one of the main obstacles in developing practical processes to convert man made CO₂ into useful chemicals. However, facile reactions between organic bases and CO₂ to give carbonate and carbamate salts are well-known and have long been employed in CO₂ ²⁰ scrubbing,² and, more recently, switchable polarity solvents.³

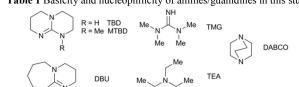
Although these are equilibria, they do not require high energy reactants to effect reactions with CO₂. When trisubstituted amines are employed, the products are zwitterionic complexes instead of carbamate salts (Scheme 1).⁴


Scheme 1 Reactions between CO2 and N-bases 25 Villiers and Cantat isolated and characterized the first complexation product of this type between 1,5,7triazabicyclo[4.4.0]dec-5-ene (TBD) and CO_2 in the solid state,⁵ and suggested that this could allow activation of CO₂ for catalytic 30 conversion into high value chemicals.^{4, 6, 7} Similar complexes have also been proposed by North and co-workers to explain improved catalytic activity in their cyclic carbonate production

Guanidines, such as 7-methyl-1,5,7-triaza-bicyclo[4,4,0]dec-5-35 ene (MTBD), have been reported to catalyse reactions between CO₂ and propargylamines (Scheme 2).⁹ The proposed mechanism involves deprotonation of the substrate by a superbase, i.e. the guanidine, rather than formation of a guanidine-CO₂ complex. Importantly, guanidines and amidines are both superbases and

process in the presence of tributylamine.⁸

⁴⁰ strong nucleophiles,¹⁰ and the mechanisms outlined in Scheme 2 are equally probable. In addition, ab initio, DFT and MD


calculations have shown that both nucleophilicity and steric factors modulate complexation between amines and alkanolamines and CO_2 .¹¹ Consequently, the origin of the 45 catalytic activity is difficult to delineate.

Scheme 2 Reaction between CO₂ and propargylamines and possible mechanisms with/without CO2 'activation'

Understanding 'CO₂ activation', particularly in catalytic context, is fundamental to sustainable CO₂ capture and utilisation 50 processes.¹² Solid state NMR data on DBU.CO₂ and TBD.CO₂ complexes has been previously reported by Franco,4, 13 Villiers and Cantat.⁵ However, attempts to detect and characterise these complexes in solution and to evaluate their relevance to possible catalytic processes using ¹³C NMR have been unsuccessful.^{7d} 55 While equilibrium constants of some amine-CO₂ complexations in pentane have been measured by Johnston et. al.,¹⁴ no such data, even qualitative, is currently available with guanidines. In this communication, we report the first ATR-FTIR study of guanidine-CO₂ complexation in solution and its mechanistic 60 implications in reactions between propargylamines and CO₂.

Table 1 Basicity and nucleophilicity of amines/guanidines in this study

N N		~ ~		
No.	Amine/	pKa	pKa	N (nucleophilicity in
	Guanidine	(MeCN) ^[a]	(THF) ^[a]	MeCN)
1	TBD	26.0^{10}	21.0^{15}	16.2 ^{[b],16}
2	MTBD	25.4^{10}	17.9^{15}	14.4 ^{[b]16}
3	DBU	23.9^{10}	16.8 ¹⁵	15.3 ¹⁷
4	TMG	23.3^{10}	15.3^{15a}	13.6 ^{[b],16}
5	TEA	18.5^{18}	12.5^{19}	17.1^{20}
6	DABCO	18.3 ²¹		18.8 ²²

[a] pK_a of the conjugated acid; [b] Data measured in dichloromethane.

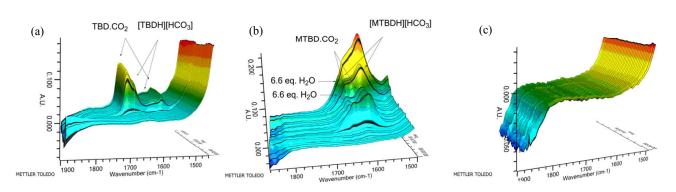


Fig. 1 Time evolution of ATR-FTIR spectra of reaction between CO₂ and THF solution of (a) TBD (7 mM); (b) MTBD (21 mM), followed by addition of water (2 x 6.6 eq.) and (c) TMG (8 mM), TEA (7 mM) or DABCO (9 mM). Data was collected every 30 seconds, at 8 cm⁻¹ resolution.

'Activation' of CO2 with guanidines and amines

ATR-FTIR has been proven as an useful tool in monitoring chemical and physical processes involving CO_2 .²³ In the context of monitoring amine/guanidine and CO_2 complexation in solution, it is the ideal technique, exploiting the C=O stretching frequencies of CO_2 (2300 cm⁻¹) and of the zwitterionic complexes 10 (1600-1700 cm⁻¹).

Solutions of TBD, MTBD, TMG, DABCO and TEA (Table 1) in anhydrous THF were treated with CO₂ at 1 atm/25 °C and the reaction progress was monitored by measuring the IR spectra over time. These organic bases were chosen to include active ¹⁵ catalysts (TBD, MTBD, TMG) for the reaction in Scheme 2,^{9b} and strong nucleophiles which are weaker bases (DABCO, TEA). THF was chosen as solvent due to the poor solubility of the zwitterionic complexes in MeCN, the preferred solvent for catalytic reactions. In all cases, introduction of CO₂ to the system ²⁰ resulted in rapid saturation of CO₂ in solution (within 60

seconds), as observed by the growth of its finger-print frequencies at $\sim 2300 \text{ cm}^{-1}$ (stretching) and 660 cm⁻¹ (bending).²⁴

Formation of two new sets of peaks in the carbonyl region was observed with TBD in THF (Fig. 1a). These are assigned to ²⁵ TBD.CO₂ complex (1683 cm⁻¹ (C=O) and 1564 cm⁻¹ (C=N)) and [TBDH][HCO₃] (1595 cm⁻¹ (C=O) and 1657 cm⁻¹ (C=N)). The

presence of these two species is consistent with observations of Pérez and Jessop by solid state NMR, given the not-strictlyanhydrous operational conditions of our ATR-FTIR equipment.^{7d,} ³⁰ ²⁵ The assigned frequencies are also in agreement with solid data,

³⁰ The assigned frequencies are also in agreement with solid data, i.e. 1712 and 1605 cm⁻¹ for TBD.CO₂ and 1660 and 1600 cm⁻¹ for [TBDH][HCO₃].⁵ The difference in vibrational frequencies of TBD.CO₂ in the solid state and in THF solution could be attributed to solvation effects, which are significant with ³⁵ zwitterionic structures.²⁶

Treatment of MTBD with CO_2 in THF in a similar fashion also resulted in rapid formation of two broad peaks in the carbonyl region (Figure 1b). A small decrease in the intensity of these peaks was observed after 30 seconds, accompanied by formation

⁴⁰ of a white precipitate. These were attributed to the formation of a saturated solution of MTBD.CO₂, albeit with a small amount of [MTBDH][HCO₃] due to the presence of moisture as with TBD. Portion-wise addition of water to the solution led to complete hydrolysis of the complex MTBD.CO₂ to [MTBDH][HCO₃].

 $_{45}$ Consequently the frequencies were assigned to MTBD.CO₂ (1648

cm⁻¹ (C=O) and 1602 cm⁻¹ (C=N)) and [MTBDH][HCO₃] (1598 cm⁻¹ (C=O) and 1620 cm⁻¹, 1603 cm⁻¹ (C=N)). Two stretching frequencies were observed for [MTBDH]⁺ due to its lack of symmetry and the assignments were confirmed by comparing ⁵⁰ with a spectrum of [MTBDH]Cl. The different electronic properties of the guanidines are also reflected in the lower C=O stretching frequency in MTBD.CO₂ compared to that of TBD.CO₂. Bubbling nitrogen through the solution led to the disappearance of the peaks in the carbonyl region. This is the first ⁵⁵ successful observation of the formation of MTBD.CO₂ complex in solution.

Table 2 Vibrational frequencies of guanidine-CO2 complexes

C II	F (-b)	A .
Guanidine	Frequency (cm ⁻¹)	Assignment
TBD	1683	C=O
	1564	C=N
MTBD	1648	C=O
	1602	C=N

Surprisingly, no new peak in the carbonyl region or precipitate was observed when solutions of TMG, TEA and DABCO were 60 treated with CO₂ (Figure 1c). This indicates no detectable complexation between these amines and TMG with CO₂ in THF While a low value equilibrium constant (K =or acetonitrile. 0.046) has been reported for TEA.CO2,14 TMG is much more basic and DABCO is much more nucleophilic than TEA (Table 65 1). Thus, factors other than these are important in this type of complexes. These experimental results are consistently reproduced by our ab initio studies. Optimisation of the amine/guanidine-CO2 complexes in MeCN using the MP2/6-311G(d,p) method was investigated. Only the structures of 70 TBD.CO₂ and MTBD.CO₂ could be successfully optimised to a minimum without breaking the N-CO₂ bond (\leq 1.8 Å). The optimised structures of TBD.CO2 and MTBD.CO2 also exhibit significant charge delocalisation on the guanidine, in agreement with computational work by Villiers,⁵ which could explain their 75 stability.

Evaluation of catalytic activity

As TMG has been shown to catalyse the addition of CO_2 to propargyl amines,⁹ the lack of a TMG.CO₂ complex raised questions about the relevance of these complexes to the catalytic ⁸⁰ activity of guanidines. Thus, we re-examined the effects of catalyst and solvent in the reaction between propargylamines and CO_2 as reported by Costa (Scheme 2, X = NBn).^{9b, 9c} This reaction was reported to work well with TBD, MTBD, TMG and DBU as catalysts at 100-110 °C, 10 bar CO₂ in acetonitrile, supercritical CO₂ or under neat conditions. Importantly, the reaction also works in water using a bulky guanidine as catalyst ⁵ and sodium bicarbonate as the source of CO₂. In this study, five solvents of widely different polarity and proton-donating capability (DMSO, MeCN, EtOH, THF and toluene) were examined. Lower pressure of CO₂ (5 bar) and temperature (50–75

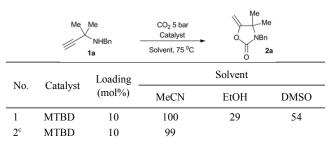
°C) were deliberately chosen to lower the efficiency of the 10 catalysts for better comparison.

Preliminary experiments with the five solvents at 5 bar CO₂, 50 °C gave little to no catalytic activity for DABCO and DMAP, or for reactions using THF and toluene as solvent, despite the strong complexation between CO₂ and MTBD/TBD in THF ¹⁵ described above (supporting information, Table S1). The relevance of guanidine-CO₂ complexes in this type of catalytic reactions is consequently questioned. Subsequent reactions were

performed at 75 °C and 5 bar of high purity CO₂. The solvent and catalyst scopes were narrowed to MeCN/DMSO/EtOH and ²⁰ MTBD/TMG (Table 3). Despite its activity, DBU was not further

considered in this study due to our focus on comparison to CO₂ complexation and poor chemical compatibility between DBU and our equipment.

While MTBD showed excellent catalytic activity in MeCN at $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$


- ²⁵ 10 mol% as reported by Costa et. al.,^{9b} only 8% conversion was observed at 1 mol% catalyst loading (Table 3, entries 1 and 5). TMG is a poorer catalyst in MeCN and EtOH (Table S1) but showed equal catalytic performance to MTBD/MeCN in DMSO (Table 3, entries 3 and 7). The lack of evidence for TMG.CO₂
- ³⁰ complex in THF and the observed catalytic activity, albeit lower than in DMSO, in a protic solvent such as EtOH suggested that guanidine-CO₂ complexes may not be crucial for the reaction. As demonstrated with ATR-FTIR, addition of EtOH to a solution of MTBD.CO₂ and [MTBDH][HCO₃] in THF led to complete ³⁵ disappearance of IR peaks belonging to MTBD.CO₂ (see

supporting information).

The observed catalytic activity can be explained with a basicity-controlled mechanism. TMG is a weaker base than TBD and MTBD in acetonitrile. However, DMSO and EtOH are

- ⁴⁰ strongly polar solvents which can effectively stabilize TMGH⁺. The use of these solvents therefore enables TMG to be a more active catalyst. In order to verify this hypothesis on the origin of catalytic activity in these reactions, catalytic reactions using MTBD/MeCN, TMG/EtOH and TMG/DMSO combinations were
- $_{45}$ performed again in the presence of a small amount of water (0.1 mL of H₂O in 3.0 mL of organic solvent, Table 3, entries 2, 4, 6 and 8).

Table 3 Conversion (%) of 1a to 2a using MTBD or TMG as $catalyst^{[a,b]}$

3 4°	TMG TMG	10 10	19	40 39	100 100
5	MTBD	1	8		
6 ^c	MTBD	1	8		
7	TMG	1		7	6
8°	TMG	1		8	61

[a] Reaction were performed using 0.866 mmol of 1a and catalyst in 3.0
 ⁵⁰ mL of the specified solvent under 5 bar of CO₂ at 75 °C. [b] Conversion was determined using ¹H NMR of the crude product.[c] Reaction

performed in the presence of 0.1 mL H_2O .

In all cases, no loss of catalytic activity was observed compared to the corresponding reaction under anhydrous ⁵⁵ conditions, further ruling out guanidine-CO₂ complexes as intermediates. Interestingly, the addition of water resulted in a 10 times increase in product yield using TMG/DMSO conditions at 1 mol% catalyst loading (Table 3, entry 8). This novel catalyst/solvent combination gave a far superior catalytic ⁶⁰ performance compared to the optimised MTBD/MeCN combination in the literature at 5 bar CO₂, 75 °C.

Conclusions

The first observation of cyclic guanidine-CO₂ complexes in solution by ATR-FTIR is reported, along with the lack of ⁶⁵ evidence for observable complexes with TMG and trisubstituted amines. Correlation between these observations and the catalytic activity of these nitrogen bases in reactions between propargylamines and CO₂ did not support activation of CO₂ via this mode of complexation. Instead, the basicity of the catalyst ⁷⁰ has been shown to be important to the catalytic activity. Consequently, polar solvents (e.g. DMSO), which can stabilize guanidinium cation, are beneficial to the reaction. Similar type of reactivity, i.e. via generation of strong nucleophile rather than direct activation of CO₂, has also been proposed by Leitner and With the structure of the st

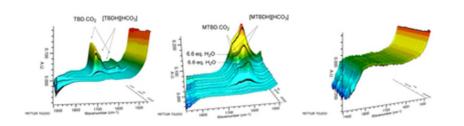
⁷⁵ Hölscher in reaction of rhodium-alkyl complexes and CO₂.²⁷ Finally, a novel catalyst/solvent combination (TMG/DMSO/H₂O) with superior catalytic activity at low catalyst loading has been discovered. This may lead to much more sustainble process from propargylamines to cyclic carbamates using a commercially ⁸⁰ available and much less expensive catalyst.

Acknowledgements

The authors thank Dr Andreas Kogelbauer (Imperial College London) and his group for access to a MultiMaxIR and Prof. Christopher Rayner for his insightful discussion. We thank the 85 Royal Society for a research grant (RG100569). BNN thanks The Ramsay Memorial Trust and ICL for his fellowship. SK thanks the Erasmus programme and the Friedrich-Alexander-Universität Erlangen-Nürnberg. RN thanks the University of Leeds for a University Research Scholarship.

90 Notes and references

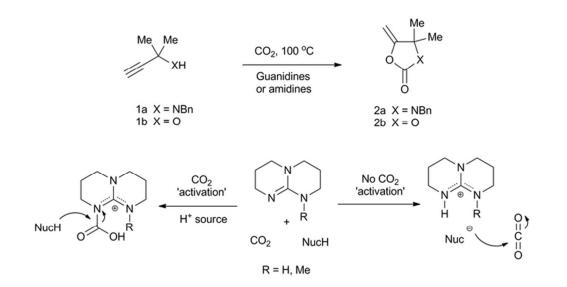
^a Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK.

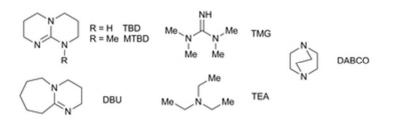

 ^b Current address: School of Chemistry, University of Leeds, Leeds, West Yorkshire,LS2 9JT, UK. Tel: +44 (0)1133430109; E-mail:
 <u>b.nguyen@leeds.ac.uk</u> † Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

- 5 1. (a) J. Schneider, H. Jia, J. T. Muckerman and E. Fujita, *Chem. Soc. Rev.*, 2012, 41, 2036-2051; (b) A. Galia and G. Filardo, in *Carbon Dioxide as Chemical Feedstock*, ed. M. Aresta, Wiley-VCH, Weinheim, 2010, pp. 15-32.
- (a) L. Dumee, C. Scholes, G. Stevens and S. Kentish, *Int. J. Greenh. Gas. Con.*, 2012, **10**, 443-455; (b) G. T. Rochelle, *Science*,
 2009, **325**, 1652-1654; (c) D. J. Heldebrant, C. R. Yonker, P.
- G. Jessop and L. Phan, *Energy Environ. Sci.*, 2008, 487-493.
 (a) D. J. Heldebrant, P. K. Koech, M. T. C. Ang, C. Liang, J. E.
- Rainbolt, C. R. Yonker and P. G. Jessop, *Green Chem.*, 2010,
 12, 713; (b) P. G. Jessop, L. Phan, A. Carrier, S. Robinson, C. J. Dürr and J. R. Harjani, *Green Chem.*, 2010, 12, 809-814.
 - E. R. Pérez, R. H. A. Santos, M. T. P. Gambardella, L. G. M. de Macedo, U. P. Rodrigues-Filho, J.-C. Launay and D. W. Franco, J. Org. Chem., 2004, 69, 8005-8011.
- 20 5. C. Villiers, J.-P. Dognon, R. Pollet, P. Thuéry and M. Ephritikhine, Angew. Chemie. Int. Ed., 2010, 49, 3465-3468.
 - C. Das Neves Gomes, O. Jacquet, C. Villiers, P. Thuéry, M. Ephritikhine and T. Cantat, *Angew. Chemie. Int. Ed.*, 2012, 51, 187-190.
- 7. (a) J. Ma, X. Zhang, N. Zhao, A. S. N. Al-Arifi, T. Aouak, Z. A. Al-Othman, F. Xiao, W. Wei and Y. Sun, J. Mol. Catal. A: Chem., 2010, 315, 76-81; (b) K. D. Vogiatzis, A. Mavrandonakis, W. Klopper and G. E. Froudakis, ChemPhysChem, 2009, 10, 374-383; (c) X. Zhang, Y.-B. Jia,
 X.-B. Lu, B. Li, H. Wang and L.-C. Sun, Tetrahedron Lett., 2008, 49, 6589-6592; (d) F. S. Pereira, E. R. deAzevedo, E. F. da Silva, T. J. Bonagamba, D. L. da Silva Agostíni, A.
 - Magalhães, A. E. Job and E. R. Pérez González, *Tetrahedron*, 2008, 64, 10097-10106; (e) B. Ochiai, K. Yokota, A. Fujii, D. Nagai and T. Endo, *Macromolecules*, 2008, 41, 1229-1236; (f) X. Zhang, N. Zhao, W. Wei and Y. Sun, *Catal. Today*, 2006,

35

- A. Ehang, H. Ehao, W. Wei and T. Oan, Catal. Today, 2006, 115, 102-106; (g) A. Barbarini, R. Maggi, A. Mazzacani, G. Mori, G. Sartori and R. Sartorio, *Tetrahedron Lett.*, 2003, 44, 2931-2934; (h) J. M. Hooker, A. T. Reibel, S. M. Hill, M. J. Schueller and J. S. Fowler, *Angew. Chemie. Int. Ed.*, 2009, 48, 3482-3485.
- (a) J. Meléndez, M. North, P. Villuendas and C. Young, *Dalton Trans.*, 2011, 40, 3885-3902; (b) W. Clegg, R. W. Harrington, M. North and R. Pasquale, *Chem. -Eur. J.*, 2010, 16, 6828-6843.
- (a) N. D. Ca, B. Gabriele, G. Ruffolo, L. Veltri, T. Zanetta and M. Costa, Adv. Synth. Cat., 2011, 353, 133-146; (b) M. Costa, G. P. Chiusoli, D. Taffurelli and G. Dalmonego, J. Chem. Soc., Perkin Trans. 1, 1998, 1541-1546; (c) M. Costa, G. P. Chiusoli and M. Rizzardi, Chem. Commun., 1996, 1699.
- J. E. Taylor, S. D. Bull and J. M. J. Williams, *Chem. Soc. Rev.*, 2012, 41, 2109.
- (a) Y. H. Jhon, J.-G. Shim, J.-H. Kim, J. H. Lee, K.-R. Jang and J. Kim, J. Phys. Chem. A, 2010, 114, 12907-12913; (b) K. R.
- 55 Jorgensen, T. R. Cundari and A. K. Wilson, J. Phys. Chem. A, 2012, 116, 10403-10411.


- F. Joó, in *Physical Inorganic Chemistry: Reactions, Processes, and* Applications, ed. A. Bakac, Wiley, Hoboken, New Jersey, 2010, p. 247.
- 60 13. E. R. Pérez, M. O. da Silva, V. C. Costa, U. P. Rodrigues-Filho and D. W. Franco, *Tetrahedron Lett.*, 2002, **43**, 4091-4093.
 - J. C. Meredith, K. P. Johnston, J. M. Seminario, S. G. Kazarian and C. A. Eckert, *J. Phys. Chem.*, 1996, **100**, 10837-10848.
- (a) T. Rodima, I. Kaljurand, A. Pihl, V. Mäemets, I. Leito and I. A.
 Koppel, *J. Org. Chem.*, 2002, **67**, 1873-1881; (b) I. Kaljurand,
 T. Rodima, A. Pihl, V. Mäemets, I. Leito, I. A. Koppel and M. Mishima, *J. Org. Chem.*, 2003, **68**, 9988-9993.
 - B. Maji, D. S. Stephenson and H. Mayr, *Chemcatchem*, 2012, 4, 993-999.
- 70 17. M. Baidya and H. Mayr, Chem. Commun., 2008, 1792-1794.
 - J. F. Coetzee and G. R. Padmanabhan, J. Am. Chem. Soc., 1965, 87, 5005-5010.
- K. Abdur-Rashid, T. P. Fong, B. Greaves, D. G. Gusev, J. G. Hinman, S. E. Landau, A. J. Lough and R. H. Morris, *J. Am. Chem. Soc.*, 2000, **122**, 9155-9171.
 - J. Ammer, M. Baidya, S. Kobayashi and H. Mayr, J. Phys. Org. Chem., 2010, 23, 1029-1035.
 - 21. Sigma-Aldrich, in ChemFiles, 2003, vol. 3, No. 1.
- 22. M. Baidya, S. Kobayashi, F. Brotzel, U. Schmidhammer, E. Riedle and H. Mayr, *Angew. Chemie. Int. Ed.*, 2007, **46**, 6176-6179.
- 23. (a) L. Ohlin and M. Grahn, J. Phys. Chem. C, 2014, 118, 6207-6213;
 (b) S. Hardy, I. M. de Wispelaere, W. Leitner and M. A. Liauw, Analyst, 2013, 138, 819-824; (c) A. Buchard, F. Jutz, M. R. Kember, A. J. P. White, H. S. Rzepa and C. K. Williams, Macromolecules, 2012, 45, 6781-6795; (d) Y. Yuan and A. S. Teja, J. Supercrit. Fluids, 2011, 56, 208-212.
- 24. C. J. Pouchert, *Aldrich*® *Library of FT-IR Spectra: Vapor Phase*, Aldrich Chemical Co., Milwaukee, WI, 1989.
- 25. D. J. Heldebrant, P. G. Jessop, C. A. Thomas, C. A. Eckert and C. L. Liotta, *J. Org. Chem.*, 2005, **70**, 5335-5338.
- 26. (a) M. N. Blom, I. Compagnon, N. C. Polfer, G. von Helden, G. Meijer, S. Suhai, B. Paizs and J. Oomens, *J. Phys. Chem. A*, 2007, **111**, 7309-7316; (b) J. H. Jensen and M. S. Gordon, *J. Am. Chem. Soc.*, 1995, **117**, 8159-8170.
- 95 27. A. Uhe, M. Hölscher and W. Leitner, *Chem. -Eur. J.*, 2012, **18**, 170-177.


35x9mm (300 x 300 DPI)

60x31mm (300 x 300 DPI)

29x9mm (300 x 300 DPI)

18x4mm (300 x 300 DPI)